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IMPROVING THE FULLY SEQUENTIAL SAMPLING
SCHEME OF ANSCOMBE–CHOW–ROBBINS

By Wei Liu

University of Southampton

A new sequential sampling scheme is proposed in which, after an ini-
tial batch sample, sampling is continued in batches of data-dependent sizes
(at most k such batches), and then one-at-a-time with a data-dependent
stopping rule. This new scheme requires about the same sample size as
the fully sequential Anscombe–Chow–Robbins (ACR) sampling scheme but
substantially fewer sampling operations. The problem of constructing fixed-
width confidence intervals for the mean of a normal population with un-
known variance is used as an illustration.

1. Introduction. In many statistical inference problems, some predeter-
mined accuracy is required of a procedure used, and the “optimal” fixed-
sample-size procedure to meet this accuracy requirement often depends on
some unknown nuisance parameter. For example, we wish to construct a con-
fidence interval for the unknown mean θ of a normal population N�θ; σ2� with
preassigned accuracy “width 2d and confidence level γ” for given d > 0 and
γ ∈ �0;1�; the optimal fixed-sample-size procedure requires a sample of size
n0 = �zσ/d�2, where z = 8−1��1+ γ�/2� and 8 is the cdf of a N�0;1� random
variable, and constructs confidence interval Ȳ±d for θ, where Ȳ is the sample
mean. Note, however, the sample size n0 = �zσ/d�2 depends on σ2, which is
often (and is assumed in this paper) unknown. To solve such problems, it is
necessary to use a sequential sampling scheme.

A two-stage sampling scheme of Stein (1945) requires only two samples to
achieve this end. The basic idea is to take a first sample of size m to get an
estimate of the unknown parameter and, hence, an estimate of the required
total sample size by using the fixed-sample-size formula; the second sample
is then taken to make good the shortfall of this estimated total sample size.
When the size of the first sample m is too small, however, the estimates after
the first sample may not be accurate enough and, as a result, the two-stage
scheme can perform poorly. On the other hand, if the size of the first sample
m is set to be too large, then m itself may already exceed the required total
sample size.

To improve the two-stage scheme, Hall (1981) proposed a three-stage
scheme. Instead of taking just one sample to make up the shortfall of the
projected total sample size after the first sample, this scheme takes a second
sample to make up only a proportion (half, say) of the projected total sample
size. After this second sample, the unknown parameter and the required
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total sample size can then be reestimated, and they are most likely to be
more accurate than those estimates calculated after the first sample. A third
sample is then taken to make up the shortfall of the newly estimated total
sample size. As one might expect, the three-stage scheme is robust to the
small value of m, since it has the extra opportunity to update the estimates
after the second sample, which is often of reasonably large size.

The most frequently used sequential sampling scheme is the fully sequen-
tial sampling scheme due to Anscombe (1953), Robbins (1959) and Chow and
Robbins (1965), the ACR scheme. After the first sample of size m, the ACR
scheme takes observations one by one. It renews the estimates of the unknown
parameter and the total sample size after each new observation, and checks
whether enough observations have already been drawn. Not surprisingly, the
ACR scheme is very efficient in terms of sample size. The stopping time of the
ACR scheme may be written in the form

�1:1� t∗ = inf
{
n ≥mx Sn < cnαL�n�

}

[see Woodroofe (1977)], where Sn; n ≥ 1, are the partial sums of certain
i.i.d. positive random variables X1;X2; : : : ; L�n� is a sequence of numbers
given by 1 + L0/n + o�1/n� as n → ∞, α > 1, m ≥ 1 and c is a positive
parameter (which is often allowed to approach zero). The properties of t∗ have
been studied by Woodroofe (1977) and, in particular, it has been shown that
under certain assumptions

�1:2� E�t∗� = λ+ βµ−1ν − βL0 − 1
2αβ

2τ2µ−2 + o�1�

as c→ 0, where β = 1/�α− 1�, λ = �µ/c�β, µ = E�X1�, τ2 = Var�X1� and

�1:3� ν = �2µ�−1β��α− 1�2µ2 + τ2� −
∞∑
n=1

n−1E�max�Sn − nαµ;0��:

Despite its great efficiency in terms of sample size, the ACR scheme can be
expensive to carry out since, after the first sample, it is fully sequential and so
requires a lot of sampling operations. In many real situations significant sav-
ings can be achieved by gathering many observations together. The purpose of
this paper is to propose a new sequential sampling scheme which needs about
the same sample size as the ACR scheme but substantially fewer sampling
operations. This new scheme starts with up to k+ 1, k ≥ 1, random samples
followed by fully sequential sampling. The motivation is that, when we are
far away from the target, the truly required total sample size, we can leap
forward by taking clusters of observations, and when we are getting closer to
the target we should approach carefully by taking one observation at a time.
The new sampling scheme is given in Section 2 with the proofs outlined in
Section 4. Section 3 applies the general theory to construct a fixed-width con-
fidence interval for θ of a normal population N�θ; σ2�. Throughout this paper,
�x� denotes the largest integer no larger than x.
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2. The new sampling scheme. The new sequential sampling scheme is
defined in terms of a stopping time, as for the ACR scheme. Assume that
integer k (≥ 1) and constants 0 < ρ1 < · · · < ρk < 1 are prefixed, and that
m ≥ 1 is an integer which will be allowed to approach infinity. Under the
notation of Section 1, define

N0 =m;
Nj = max

{〈
ρj�X̄Nj−1

/c�β
〉
;Nj−1

}
; 1 ≤ j ≤ k;

tm = inf
{
n ≥Nkx Sn < cnαL�n�

}
:

(2.1)

The new scheme is to first take a random sample of size N0, then successive
random samples of sizes Nj−Nj−1 ≥ 0, j = 1; : : : ; k, and then to sample one
at a time until the stopping time tm. It is clear that this tm is similar to the
stopping time t∗ in (1.1) of the ACR scheme, except that tm ≥Nk.

The limit operation under which the asymptotic results have been estab-
lished is similar to those in Hall (1981):

�2:2� m→∞; c = c�m� → 0; λ = O�mr�; lim sup
m

λ
< ρ1;

where r ≥ 1 is a fixed constant. In addition to the assumption that X1;X2; : : :
are i.i.d. positive random variables with both mean µ and variance τ2 positive
and finite, we suppose also that X1 has a density f which is continuous a.e.
and that some power of the characteristic function of X1 is integrable. Finally,
we suppose that

�2:3� F�x� ≤ Bxa for all x > 0

and for some B > 0 and a > 0, where F is the distribution function of X1.
Now we have the following major result of this paper.

Theorem 2.1. Suppose that (2.3) holds and that E�X1�ξ < ∞ for some
constant ξ > 2r+ 1/�α− 1�. Then, under limit operation (2.2),

�2:4� E�tm� = λ+ βµ−1ν − βL0 − 1
2αβ

2τ2µ−2 + o�1�:

It is clear that the asymptotic expansions of E�tm� and E�t∗� are of the
same form, though the limit operations are different. Although the constants
ρj do not appear in the asymptotic expansion of E�tm�, they play vital roles
in determining the performance of this new sequential sampling scheme. In
actual fact, if ρk is set close to zero, then the new scheme is similar to the ACR
scheme, since most observations will be taken in the stage of fully sequential
sampling. On the other hand, if ρ1 is set close to unity, then the new scheme
behaves like Stein’s two-stage scheme, since most observations will be taken
in the first two samples.
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3. Fixed-width confidence interval for a normal mean. Assume that
random observations Y1;Y2; : : : are from N�θ; σ2�. Then the ACR procedure
continues sampling until

T∗ = inf
{
n ≥m+ 1x n > ln�zσn/d�2

}
;

where m+ 1 (≥ 2) is the size of the first sample, ln is a sequence of numbers
given by ln = 1+21/n+o�1/n� as n→∞, and σ2

n = �n−1�−1∑n
i=1�Yi− Ȳn�2

with Ȳn = n−1∑n
i=1Yi. On stopping sampling, a confidence interval for θ is

defined to be IT∗ ≡ ȲT∗ ± d. The following asymptotic result can be derived
from (1.2) [see, e.g. Woodroofe (1977), Theorem 4.1].

Theorem 3.1. Suppose that m ≥ 3, then, as n0 = �zσ/d�2 →∞,

E�T∗� = n0 + ν + 21− 2+ o�1�;

where ν = 3/2−∑∞n=1 n
−1E��χ2

n − 2n�+� ≈ 0:817. Moreover, if m ≥ 6, then

�3:1� P�θ ∈ IT∗� = γ + n−1
0 �z2ψ′�z2��ν + 21− 2� + z4ψ′′�z2�� + o�n−1

0 �

as n0 → ∞, where ψ�x� = 28�√x� − 1, and ψ′ and ψ′′ denote the first and
second order derivatives of ψ, respectively.

The new procedure operates as follows. Fix the values of the integer k(≥1)
and the constants 0 < ρ1 < · · · < ρk < 1. Take a first sample of size m+1, and
take the next k samples sequentially with the ith, i = 2; : : : ; k + 1, sample
having size Mi−1 −Mi−2, where

Mj = max��ρj�z/d�2σ2
Mj−1
� + 1;Mj−1�; 1 ≤ j ≤ k;

and M0 =m+ 1. Then, continue sampling until

T = inf�n ≥Mkx n > ln�zσn/d�2�:

On stopping sampling, construct confidence interval IT ≡ ȲT±d for θ. Denote
this procedure by P �k; ρ1; : : : ; ρk�.

The stopping time T may be written in the form tm + 1 by applying the
Helmert transformation in the usual way [see, e.g., Woodroofe (1977), (3.2)],
where

N0 =m;
Nj = max��ρj�zσ/d�2X̄Nj−1

�;Nj−1�; 1 ≤ j ≤ k;

tm = inf�n ≥Nkx Sn < �zσ/d�−2n2L�n��;

where X1;X2; : : : are i.i.d. χ2
1 random variables and L�n� = 1+ �1− 21�/n+

o�1/n�. So, tm is of form (2.1) with α = 2, β = 1, µ = 1, τ2 = 2, c = �zσ/d�−2

and λ = 1/c = �zσ/d�2 = n0. Now from Theorem 2.1 we have the following
theorem.
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Theorem 3.2. Suppose that

�3:2� m→∞; n0 = n0�m� → ∞; n0 = O�mr�; lim sup
m

n0
< ρ1;

where r ≥ 1 is a constant. Then

�3:3�
E�T� = n0 + ν + 21− 2+ o�1�;

P�θ ∈ IT� = γ + n−1
0 �z2ψ′�z2��ν + 21− 2� + z4ψ′′�z2�� + o�n−1

0 �:

To investigate the suitable choice of �k; ρ1; : : : ; ρk�, a series of Monte Carlo
trials have been conducted, in which we set ln = 1+21/n and choose 21 = 2−
ν+�1+z2�/2 so that the confidence levels of both the new and ACR procedures
are equal to γ + o�n−1

0 �. Varying γ from 0:90 to 0:99 leads to similar results.
So we shall report in detail only for γ = 0:95, which implies that z = 1:96 and
21 = 3:604. It is noteworthy that both the new and ACR procedures depend
on d and σ only through d/σ = z/

√
n0, and so the results are presented

in terms of n0 instead of d and σ2. The initial sample size has been set at
m+ 1 = 10;20, and a wide range of values of n0 has been used.

From the simulation results, it becomes clear that the following choices
of �k; ρ1; : : : ; ρk� work well: �1;0:5�; �2;0:5;0:8�; �3;0:5;0:8;0:975�. Table 1
presents the simulation results of these three new procedures, P1 ≡ P �1;0:5�,
P2 ≡ P �2;0:5;0:8� and P3 ≡ P �3;0:5;0:8;0:975�, and the ACR procedure P0,
with each entry based on 10,000 trials. For each procedure we computed the

Table 1
Results of 10;000 Monte Carlo trials with γ = 0:95 and 21 = 3:604

m 1 1 5 10 m 1 1 5 20

n0 PPP M M 2 n0 sM p M M 2 n0 sM p

24 P0 25.8 1.8 7.2 0.943 27.0 3.0 5.7 0.959
P1 25.9 1.9 7.2 0.945 27.0 3.0 5.7 0.957
P2 25.8 1.8 7.3 0.944 26.9 3.0 5.7 0.960
P3 25.8 1.8 7.1 0.955 26.8 2.8 5.6 0.963

61 P0 63.0 2.0 11.7 0.950 63.0 2.0 11.5 0.948
P1 63.2 2.2 11.8 0.947 63.1 2.1 11.4 0.947
P2 63.0 2.0 11.8 0.949 62.9 1.9 11.6 0.950
P3 63.5 2.5 10.9 0.963 63.4 2.4 10.6 0.965

125 P0 127.4 2.4 15.9 0.950 127.5 2.5 16.0 0.952
P1 127.8 2.8 16.5 0.950 127.4 2.4 16.0 0.948
P2 127.5 2.5 17.0 0.949 127.0 2.0 16.2 0.950
P3 128.1 3.1 15.5 0.962 127.6 2.6 14.8 0.965

384 P0 386.5 2.5 27.8 0.948 386.4 2.4 27.8 0.950
P1 388.1 4.1 32.0 0.951 386.4 2.4 27.8 0.951
P2 387.7 3.7 31.1 0.950 386.1 2.1 27.9 0.952
P3 388.6 4.6 30.5 0.964 386.7 2.7 25.9 0.963
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average total sample size M̄, the standard deviation of the total sample size
sM and the proportion of times p that θ is covered by the confidence intervals.

From Table 1, it can be seen that all the confidence levels are close to the tar-
get value γ = 0:95, and the expected total sample sizes of the four procedures
are hardly different. The four procedures require significantly different num-
bers of sampling operations, however. For example, when m+1 = 10 and n0 =
125, the average number of sampling operations is about 119 for P0, 67 for P1,
33 for P2 and 11 for P3. So P3 needs only about 9% of the number of sampling
operations of the ACR procedure; P3, as well as P1 and P2, is more advanta-
geous than the ACR procedure when n0 is large. Asymptotically, the ACR pro-
cedure requires on average n0+ν+21−2−m+o�1� sampling operations while
P �k; ρ1; : : : ; ρk� requires on average �1−ρk�n0+ν+21+2ρk/ρk−1−3/2+k+o�1�
sampling operations.

Finally, the problem of constructing fixed-width confidence intervals serves
only to demonstrate the idea, which can be used to deal with many other
problems, for example, the sequential point estimation [see, e.g., Woodroofe
(1977)], hypotheses testing [see, e.g., Liu (1997)], ranking and selection [see,
e.g., Mukhopadhyay and Solanky (1994)] and simultaneous confidence inter-
vals [see, e.g., Liu (1995)].

4. Proofs. Limit operation (2.2) is assumed unless otherwise stated, and
C and C1 denote some generic constants. We first have the following lemma.

Lemma 4.1. If E�X1�ξ < ∞ for some ξ > 2 and (2.3) holds, then for 0 <
γ < 1 we have P�t∗ < Nk� = O�λ−min�γ; 1/r�ξ/2�.

Proof. Letting δ > 0, it is straightforward to show that P��X̄N0
− µ� >

δ� = O�m−ξ/2� by using the Markov inequality and Von Bahr’s theorem [Von
Bahr, (1965)]. This then implies P��N1−ρ1λ� > δρ1λ� = O�m−ξ/2�. These two
results together imply P��X̄N1

−µ� > δ� = O�m−ξ/2� and, then, P��N2−ρ2λ� >
δρ2λ� = O�m−ξ/2�. Continuing in this way, we can show that P��Nk − ρkλ� >
δρkλ� = O�m−ξ/2� and, hence, P�Nk > �1+ δ�ρkλ� = O�m−ξ/2� = O�λ−ξ/�2r��.

From Lemma 2.3 of Woodroofe (1977), we have, for 0 < δ; γ < 1, P�t∗ ≤
δλ� = O�λ−γξ/2�. Combining the two results above gives

P�t∗ < Nk� ≤ P�t∗ ≤ δλ� +P�δλ < Nk�
= O�λ−γξ/2� +O�λ−ξ/�2r��
= O�λ−min�γ; 1/r�ξ/2�; ρk < δ < 1;

as required. 2

Lemma 4.2. If E�X1�ξ < ∞ for some ξ > 2, then ��tm/λ�ξ�α−1�� are domi-
nated.
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Proof. First note that supn≥1�Sn/n�ξ is integrable [see, e.g., Woodroofe
(1977), Lemma 2.1]. From the definition of Ni,

Nk/λ ≤ ρk�X̄Nk−1
/µ�β + · · · + ρ1�X̄N0

/µ�β +N0/λ

≤ C0 sup
n≥1
�Sn/n�β +C1

for some constants C0 and C1, and so ��Nk/λ�ξ�α−1�� are dominated. The re-
quired result now follows directly from

�tm/λ�ξ�α−1� = �tm/λ�ξ�α−1��I�tm=Nk� + I�tm>Nk��
≤ �Nk/λ�ξ�α−1�I�tm=Nk� +C0 sup

n≥1
�Sn/n�ξI�tm>Nk�;

since, on �tm > Nk�,
�tm/λ�α−1 = cµ−1�tm�α−1 ≤ C0c�tm − 1�α−1L�tm − 1�

≤ C0Stm−1/�tm − 1� ≤ C0 sup
n≥1
�Sn/n�: 2

Proof of Theorem 2.1. Observe that (1.2) still holds under the assump-
tions of Theorem 2.1 and limit operation (2.2). So the theorem follows directly
from

0 ≤ Etm −Et∗ = E�tm − t∗�I�t∗<Nk� ≤ EtmI�t∗<Nk�

≤
(
E�tm/λ�ξ�α−1�)1/�ξ�α−1��

λ
(
P�t∗ < Nk�

)1−1/�ξ�α−1��

= O�λ1−min�γ;1/r��1−1/�ξ�α−1���ξ/2� = o�1�: 2

Proof of (3.3). Observe that (3.1) still holds under limit operation (3.2),
and so (3.3) follows by noting that

�P�θ ∈ IT� −P�θ ∈ IT∗�� ≤ E�ψ�z2n−1
0 T� − ψ�z2n−1

0 T∗��
= E�ψ�z2n−1

0 T� − ψ�z2n−1
0 T∗��I�T∗<Nk+1�

≤ C0P�T∗ < Nk + 1� = o�n−1
0 �

where the last equality is due to Lemma 4.1. 2
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