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Suppose X1;X2; : : : ;Xν−1 are iid random variables with distribution
F0, and Xν;Xν+1; : : : are are iid with distributed F1. The change point ν
is unknown. The problem is to raise an alarm as soon as possible after the
distribution changes from F0 to F1 (detect the change), but to avoid false
alarms.

Pollak found a version of the Shiryayev–Roberts procedure to be asymp-
totically optimal for the problem of minimizing the average run length to
detection over all stopping times which satisfy a given constraint on the
rate of false alarms. Here we find that this procedure is strictly optimal
for a slight reformulation of the problem he considered.

Explicit formulas are developed for the calculation of the average run
length (both before and after the change) for the optimal stopping time.

1. Introduction. The traditional formulation of sequential change point
detection involves a series of independent observations X1;X2; : : : : The dis-
tribution of the observation may change at some point from the initial distri-
bution F0 to a different distribution F1. Let ν be the change point. Hence,
when ν = k, X1;X2; : : : ;Xk−1 are each distributed according to F0, and
Xk;Xk+1; : : : are each distributed according to F1. The change point ν = ∞
corresponds to the case of “no change”—all observations are distributed ac-
cording to F0. The distribution of the sequence, given that ν = k, is denoted
by Pk�·�. Denote the associated expectation by Ek�·�.

The formulation of sequential change point detection originated in problems
of quality control. When the manufacturing process is “in control” then the
products are distributed according to a target distribution F0. At an unknown
point in time the process may go “out of control” and yield products that are
distributed according to F1.

The objectives are to raise an alarm as soon as possible after the change
and to avoid false alarms. A detection policy, therefore, is a stopping time on
the sequence of observations X1;X2; : : : : The goal is to sample a maximal
number of prechange observations and to minimize the number of postchange
observations. Hence, the stopping time N should satisfy �N ≥ ν − 1� but, at
the same time, keep N− ν + 1 small.

A Bayesian approach may involve some prior distribution on ν, and a loss
function of the form

|�N < ν − 1� + c�N− ν + 1�|�N ≥ ν − 1�;
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for some constant c. A non-Bayesian formulation may put a constraint on the
rate of false alarms and minimize a functional of the number of post-change
observations. The constraint on the rate of false alarms is customarily taken to
be an expectation restriction. In other words, the stopping time N is required
to satisfy E∞N ≥ B, for some prespecified constant B. Here we propose to use
the functional

sup
1≤k<∞

Ek�N− k+ 1 �N ≥ k− 1�(1)

as a measure of the speed of detection. Hence, a detection policy is optimal, in
a non-Bayesian sense, if it minimizes (1) among all stopping rules that satisfy
the given expectation constraint on the rate of false alarms.

In this paper we show that the detection policy proposed by Pollak (1985) is
optimal under the non-Bayesian formulation. Let Zi = f1�Xi�/f0�Xi� be the
likelihood ratio of the ith observation, i = 1;2; : : : ; and consider the sequence
of statistics R∗n, satisfying the recursion

R∗n = �R∗n−1 + 1�Zn;

for n = 1;2; : : : ; and for some initial random variable R∗0. Given an appropri-
ate threshold A, define the stopping rule

N∗A = inf
{
n ≥ 0 �R∗n ≥ A

}
:

This stopping rule is a modification of the original Shiryayev–Roberts stopping
rule. In the original form the recursion is initiated with R∗0 ≡ 0, where, as in
the optimal, rule R∗0 has a nondegenerate distribution.

In Theorem 2 we show that when the distribution of R∗0 is an appropri-
ate quasistationary distribution then N∗A is optimal. This follows from the
fact that an equalizer rule, which is a limit of Bayes rules, is minimax. The
stopping rule N∗A is an equalizer rule due to the quasistationarity. The qua-
sistationary distribution is useful not only for the construction of the optimal
rule but also for the computation of its working characteristics. In Theorem 3
formulas are derived for the average run length to false alarm and for the
average run length to detection of the optimal rule. These averages are rep-
resented as functionals of the quasistationary distribution.

The first who solved a Bayesian version of the problem was Shiryayev [see
Shiryayev (1978) and Pollak (1985)]. He considered the loss function

|�N < ν� + c�N− ν�|�N ≥ ν�
and the prior distribution

P�ν = 0� = π0; P�ν = n� = �1− π0�p�1− p�n−1; n ≥ 1;

where p and π0 are known constants, 0 ≤ p ≤ 1, 0 ≤ π0 ≤ 1. When ν = 0
(and when ν = 1) the observations are iid with distribution F1. Note that by
Shiryayev’s formulation one loses for stopping after sampling ν−1 observations
(N = ν − 1), even though in this case all the observations sampled are from
the prechange distribution!
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Pollak (1985) and Pollak and Siegmund (1975) extended Shiryayev’s work
in a non-Bayesian setting. They proposed to measure the speed of detection
with the functional

sup
1≤k<∞

Ek�N− k �N ≥ k�:

Observe that while this functional is very similar to (1) they are not identical,
mainly since conditioning is with respect to different events.

For the Pollak–Siegmund functional, it was shown by Pollak (1985) that the
(modified) Shiryayev–Roberts rule N∗A is an asymptotic minimax rule [up to
an o�1� term, as B→∞]. He was able to prove only an asymptotic version of
the minimax property since he used Shiryayev’s formulation, which involves
the artificial state ν = 0. Nevertheless, in our proof we rely heavily on the
techniques developed in Pollak’s important paper.

A different functional for measuring the speed of detection was proposed by
Lorden (1971). His proposal involves conditioning on the least favorable event
preceding the change:

sup
1≤k<∞

ess supEk�N− k+ 1 �X1; : : : ;Xk−1�:

He also showed that Page’s cusum procedure [Page (1954)] is asymptotically
optimal. His result was improved by Moustakides (1986), who showed that
the cusum procedure is strictly optimal. A different optimal property of the
cusum procedure was proved in Ritov (1990). It was shown there that the
cusum stopping rule is the statistician’s minimax rule in a game against na-
ture. Nature, in this game, can choose the time of change based on previous
observations so as to make it hardest for the statistician to detect the change.

In the next section some auxiliary Bayes problems are presented. The Bayes
rules for these problems are also equalizer rules. In Section 3 the main result—
the minimax property of N∗A—is proved. In Section 4 we develop exact formu-
las for calculating the average run length to detection and the speed of detec-
tion of the minimax rule. The numerical details are worked out for a specific
example in Section 5. Some final remarks are put in Section 6.

2. A converging sequence of equalizer Bayes rules. This section is
devoted to the construction of auxiliary Bayes rules. These rules are crucial for
proving the minimax property of the modified Shiryayev–Roberts procedure.

Consider the Bayesian problem B�π0; p; c�. Suppose the prior distribution
on ν is given by P�ν = 1� = π0, and P�ν = n� = �1 − π0�p�1 − p�n−2; for all
n ≥ 2 and for some 0 ≤ p ≤ 1 and 0 ≤ π0 ≤ 1. Let X1;X2; : : : be a sequence
of random variables. Conditional on the event �ν = k� all random variables
in the sequence are independent. The first k − 1 variables X1;X2; : : : ;Xk−1
have density f0, with respect to some σ-finite measure µ, whereas the density
of the following variables Xk;Xk+1; : : : is f1 (with respect to the same µ). If
ν = 1, then all variables in the sequence are iid with density f1, and if ν = ∞,
then they are iid with density f0. Let Pk�·� = P�· � ν = k�, 1 ≤ k ≤ ∞, be the
conditional probability measures on the sequence of observations.
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A rule in this problem is a stopping time on the sequence of observations.
A Bayes rule, in particular, is the stopping time which minimizes the risk
function

ρ�N; �π0; p�� = P�N < ν − 1� + cE�N− ν + 1�+;

where c > 0 is the relative cost of sampling a postchange observation. (Equiv-
alently, a Bayes rule maximizes the gain

1− ρ�N; �π0; p�� = P�N ≥ ν − 1� − cE�N− ν + 1�+:�

Let F0 = �\;�� and denote by Fn the σ-algebra generated by the first
n observations, n ≥ 1. Note that π0 = P�ν − 1 ≤ 0 �F0�. Define, for n ≥ 1,
πn = P�ν − 1 ≤ n �Fn� to be the posterior probability of needing to set an
alarm, given the first n observations.

It can be shown that the posterior probabilities satisfy the recursion

πn =
πn−1f1�Xn� + �1− πn−1�pf0�Xn�
πn−1f1�Xn� + �1− πn−1�f0�Xn�

= p�πn−1/p�Zn + 1− πn−1

πn−1Zn + 1− πn−1
;

with Zn = f1�Xn�/f0�Xn�. Moreover, if one uses the same type of calcula-
tions as in Shiryayev [(1978), pages 195–196], one gets that, for any stopping
time N,

ρ�N; �π0; p�� = E
(

1− πN + c
N−1∑
k=0

πk

)
:

It follows from standard optimal stopping theory that the Bayes rule is of
the form Mπ0; p; c

= inf�n �πn ≥ δp; c� for some threshold δp; c. This threshold
depends on p and c, but does not depend on the value of π0.

Define 1 = inf�x �P∞�Z1 ≤ x� > 0� < 1 and fix A, 1 < A < ∞. In
the following theorem a sequence of Bayes problems is considered. The Bayes
solution for each one of these problems has p�A+1�/�pA+1� as its threshold.

Theorem 1. Suppose that the P∞-distribution of Z1 has no atoms and
set 1 < A < ∞. Then there exists a constant 0 < c∗ < ∞ and a sequence
��pi; c�pi�� �1 ≤ i < ∞�, with pi → 0 and c�pi� → c∗, such that δp; c =
p�A+ 1�/�pA+ 1� is the threshold in B�π0; p = pi; c = c�pi��.

Proof. Choose π0 = p and let q = 1 − p. Define R∗q;n by the recursion
R∗q;n = �R∗q;n−1 + 1�Zn/q (with R∗q;0 = 0). The proof of the theorem, given
these definitions, is very similar to the relevant part of the proof of Theorem 1
in Pollak (1985) and is thus omitted. 2

A detection procedure N is called an equalizer rule if, for all k ≥ 1,

Ek�N− k+ 1 �N ≥ k− 1� = E1N:
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Given a Bayes problem with p = pi, c = c�pi� and threshold δp; c = p�A +
1�/�pA + 1�, we are looking for a rule which is both equalizer and Bayes.
In order to achieve that goal the definition of a Bayes problem needs to be
extended. Let G be a distribution over the interval �0;1�, and assume that
initially, prior to taking any observation, π0 is sampled from the distribution
G. Given the observed value of π0, the structure of the Bayes problem is
that of B�π0; p; c�. Denote this extended problem by B�G;p; c�, and note that
the threshold is still intact, and so is the definition of πn. The Bayes rule
MG;p; c, as before, is the first n for which πn exceeds the threshold δp; c =
p�A+ 1�/�pA+ 1�. Equivalently, this rule can be represented in terms of the
statistics R∗q;n as MG;p; c = inf�n ≥ 0 �R∗q;n ≥ A�, where

R∗q;0 =
π0q

�1− π0�p
− 1:

Define

Fn�x� = P∞
(
R∗q;n ≤ x

∣∣ max
m≤n

R∗q;m < A
)
;

ϕ�t; x� = P∞
(
R∗q;n+1 ≤ x

∣∣R∗q;n = t; max
m≤n+1

R∗q;m < A
)
;

ψ�t� = P∞
(

max
m≤n+1

R∗q;m < A
∣∣R∗q;n = t;max

m≤n
R∗q;m < A

)
:

Both ϕ�t; x� and ψ�t� are continuous in t and x for 0 ≤ t; x < A, since the
P∞-distribution of Z1 has no atoms. Note that both ϕ and ψ do not depend
on G nor on n.

Consider the transformation T, defined by

�T ◦F��x� =
∫A

0 ϕ�t; x�ψ�t�dF�t�∫A
0 ψ�t�dF�t�

:(2)

This transformation maps the set of probability measures, supported by the in-
terval �0;A�, into itself. Considerations similar to those given in Pollak [(1985),
Lemma 11] lead to the existence of a distribution φ �= φp� which solves the
equation T ◦φ = φ. Let R∗ and Z be random variables. The distribution of
R∗ is φ, and the distribution of Z is the P∞-distribution of Z1. Let G be the
distribution of

�R∗ + 1�Z/q+ 1
�R∗ + 1�Z/q+ 1+ p/q:

It follows that for all k, k ≥ 1, the conditional Pk-distribution of πk−1, given
the event �MG;p; c ≥ k − 1�, is again G. It can be concluded that the Bayes
rule MG;p; c is also an equalizer rule. Note that P�ν = 1� = Eπ0. It follows
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that the gain from this rule is

P�MG;p; c ≥ ν − 1� − cE�MG;p; c − ν + 1�+

=
∞∑
k=1

�1− cE1MG;p; c�Pk�MG;p; c ≥ k− 1�P�ν = k�

= �1− cE1MG;p; c�

×
[
Eπ0 + �1−Eπ0�p

∞∑
m=1

P∞�MG;p; c ≥m��1− p�m−1
]
;

= p�1− cE1MG;p; c�
[
E

(
π0

p

)
+
�1−Eπ0�P�R∗q;0 < A�
p+ �1− p�P�R∗q;0 ≥ A�

]
;

(3)

since the P∞-distribution of MG;p; c + 1 is geometric.

3. A minimax rule. In this section we show that the (modified)
Shiryayev–Roberts procedure N∗A, proposed by Pollak (1985), is opti-
mal. Define the (modified) Shiryayev–Roberts statistics by the recursion
R∗n = �R∗n−1 + 1�Zn, where R∗0 is random. Let

Fn�x� = P∞
(
R∗n ≤ x

∣∣ max
m≤n

R∗m < A
)
;

ϕ�t; x� = P∞
(
R∗n+1 ≤ x �R∗n = t; max

m≤n+1
R∗m < A

)
;

ψ�t� = P∞
(

max
m≤n+1

R∗m < A �R∗n = t; max
m≤n

R∗m < A
)
:

The transformation T is defined in (2), with the current ϕ and ψ. Let φ0 be
the probability measure on the interval �0;A� which is invariant under the
transformation T. Let the distribution of R∗ be φ0, and let the distribution
of Z be the P∞-distribution of Z1. Both R∗ and Z are independent of the
sequence of observations X1;X2; : : : : Then R∗0 = �R∗ + 1�Z. The (modified)
Shiryayev–Roberts procedure is N∗A = inf�n ≥ 0 �R∗n ≥ A�.

For the given B, one can find A for which E∞N
∗
A = B. The stopping rule

N∗A is also an equalizer rule. Let N be any stopping time. In the proof it is
shown that if E∞N ≥ B but Ek�N − k + 1 �N ≥ k − 1� < E1N

∗
A; for all

1 ≤ k <∞, then the risk of N is smaller than the Bayes risk in the problem
B�G;p; c�, for some 0 < p < 1. This contradiction establishes the minimax
property of N∗A.

Theorem 2. Suppose that the P∞-distribution of Z1 has no atoms. For all
1 < A <∞, let N∗A be the stopping time defined above.

(i) For every 1 < B <∞ there exists 1 < A <∞ such that E∞N
∗
A = B.

(ii) This N∗A minimizes

sup
1≤k<∞

Eν�N− k+ 1 �N ≥ k− 1�

among all stopping times N that satisfy the constraint E∞N ≥ B.
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Proof. The proof of (i) is similar to the proofs of Lemmas 15, 16 and 17
in Pollak (1985) and is thus omitted.

It can be shown that φp → φ0 in distribution (for some sequence p→0).
It follows that π0/p→R∗0+1 in distribution and that MG;p; c→N∗A in
P1-distribution. Moreover, by Lebesgue’s dominated convergence theorem,
Eπ0/p→ ER∗0 + 1 and E1MG;p; c → E1N

∗
A. (Note that all relevant stopping

times are dominated by the Shiryayev–Roberts stopping time with R∗0 = 0.)
The P∞-distribution of N∗A + 1 is geometric. Therefore,

B = E∞N∗A =
P�R∗0 < A�
P�R∗0 ≥ A�

:

It follows from (3) that

lim
p→0

P�MG;p; c ≥ ν − 1� − cE�MG;p; c − ν + 1�+
p

= �1− c∗E1N
∗
A��ER∗0 + 1+B�:

In order to prove (2.2) assume the contrary holds. There exist, thus, a stop-
ping time N and some ε > 0 such that E∞N ≥ B but

sup
1≤k<∞

Ek�N− k+ 1 �N ≥ k− 1� ≤ E1N
∗
A − ε:

Reasoning similar to (3) leads to the conclusion that

P�N ≥ ν − 1� − cE�N− ν + 1�+
p

≥ �1− cE1N
∗
A + cε�

[
E
π0

p
+ �1−Eπ0�

∞∑
m=1

P∞�N ≥m��1− p�m−1
]
:

The right-hand side of the above inequality converges, as p→ 0, to

�1− c∗E1N
∗
A + c∗ε��ER∗0 + 1+E∞N� ≥ �1− c∗E1N

∗
A + c∗ε��ER∗0 + 1+B�:

It follows that, for some small (but positive) p, the stopping rule N is better
than the Bayes rule of the problem B�G;p; c�. This is a contradiction, which
establishes the proof of (2.2). 2

4. Average run length. When applying detection schemes in real prob-
lems, it is important to be able to compute their performance characteristics.
This is, in particular, true for the average run length, both before and after
the change, of the optimal policy described in Theorem 2. Here we present
formulas for these average run lengths when the distribution φ0 can be at-
tained. Approximate expressions (asymptotic, as B→∞) for the average run
lengths are derived in Pollak (1987). Our results are exact.
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Theorem 3. Define

p0 = P�R∗0 ≥ A� = 1−E∞φ0�A/Z1 − 1�;

µ0 = E�R∗0 �R∗0 < A� =
∫ A

0
xdφ0�x�;

and let N∗A be the minimax detection scheme associated with A. Then the
following hold:

(i) E∞N
∗
A = �1− p0�/p0;

(ii) E1N
∗
A = �µ0 + 1��1− p0�/�p0�µ0 + 1� + 1�:

Proof. The P∞-distribution of N∗A + 1 is geometric. Relation (i) thus fol-
lows.

Given p > 0, consider the equalizer Bayes rule MG;p; c. From the proof of
Theorem 2 it follows that

E�MG;p; c − ν + 1�+/p→ E1N
∗
A�ER∗0 + 1+E∞N∗A�:(4)

On the other hand, if one uses the same calculations as in Shiryayev [(1978),
pages 195–196], one gets

E�MG;p; c − ν + 1�+ = E
(MG;p; c−1∑

k=0

πk

)
= E

( ∞∑
k=0

πk|�MG;p; c ≥ k+ 1�
)
;

hence

E�MG;p; c − ν + 1�+/p = E
( ∞∑
k=0

�πk/p�|�MG;p; c ≥ k+ 1�
)
:(5)

Consider, for any fixed k, the limit of E�πk/p�|�MG;p; c ≥ k+ 1� as p→ 0.
The joint density of X1; : : : ;Xk, given π0, is

π0

k∏
i=1

f1�xi�+ �1−π0�
k∑

m=2

pqm−2
m−1∏
i=1

f0�xi�
k∏

i=m
f1�xi�+ �1−π0�qk−1

k∏
i=1

f0�xi�:

This density converges to
∏k
i=1 f0�xi�, since π0 → 0 as p → 0. Moreover,

πk/p → R∗k + 1 and |�MG;p; c ≥ k + 1� → |�N∗A ≥ k + 1� (in distribution),
as p→ 0. By definition πk/p < �A+ 1�/�pA+ 1� on the event �Np ≥ k+ 1�,
and R∗k < A on the event �N∗A ≥ k + 1�. Hence, by Lebesgue’s dominated
convergence theorem,

E�πk/p�|�MG;p; c ≥ k+ 1� → E∞�R∗k + 1�|�N∗A ≥ k+ 1�:(6)

The conditional P∞-distribution of R∗k, given the event �N∗A ≥ k + 1�, is φ0.
Therefore,

E∞R
∗
k|�N∗A ≥ k+ 1� = µ0P∞�N∗A ≥ k+ 1�:(7)
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The stopping times NG;p;c are uniformally integrable. It follows, thereby,
from (5), (6) and (7) that

lim
p→0

E�Np − ν + 1�+/p = �µ0 + 1�E∞N∗A:(8)

Combine (i), (4) and (8) in order to conclude the proof of (ii). 2

5. An example. Let f0�x� = exp�−x�|�x > 0� and f1�x� = 2 exp�−2x�×
|�x > 0�, and consider A, 0 < A < 2. This example is considered in Pollak
(1985). It is shown there that the quasistationary distribution φ0 is given by

φ0 =





0; if x ≤ 0;
x/A; if 0 < x ≤ A;
1; if A < x:

Hence, µ0 = A/2. The P∞-distribution of Z1 is uniform on the interval �0;2�
since

P∞
(
2 exp��1− 2�X1� ≤ z

)
= P∞�X1 ≥ − log�z/2�� = z/2;

for 0 ≤ z ≤ 2. It follows that

p0 = 1−E∞φ0�A/Z1 − 1� = 1− �logA�/2:

6. Concluding remarks. In the problem of change point detection, the
optimal policy is to stop when R∗n is large. The statistic R∗n can be thought
of as a measure of the information on the likelihood of the process being “out
of control.” The statistic R∗0 can be interpreted as a prior belief regarding the
likelihood of a change when surveillance is initiated. The distribution of prior
beliefs, for the optimal policy, is the quasistationary distribution when the
process is “in control.”

In practice it seems unlikely that one would apply a procedure which initi-
ates with a random R∗0. We believe, however, that the results presented here
have theoretical significance: they fill a gap in the present optimal change
point detection theory. It is known from Pollak’s work that the Shiryayev–
Roberts procedure is optimal when the average run length to false alarm is
large. Here we showed that it is actually optimal for any such average run
length.

Our results suggest a method for the calculation of the working charac-
teristics of the optimal policy: One starts by solving the operator equation
T ◦φ = φ and then applying Theorem 3. Unfortunately, in most examples,
solving the equation is an analytically intractable task. Evaluation of φ0 may
require numerical methods.
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