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OPTIMAL EXACT DESIGNS ON A CIRCLE
OR A CIRCULAR ARC1

BY HUAIQING WU

University of Michigan, Ann Arbor

Fitting a circle to a set of data points on a plane is very common in
engineering and science. An important practical problem is how to choose
the locations of measurement on a circular feature. So far little attention
has been paid to this design issue and only some simulation results are
available. In this paper, for Berman’s bivariate four-parameter model,
F-optimality is defined and shown to be equivalent to all f -criteria withp

w .p g y`, 1 . Then F-optimal exact designs on a circle or a circular arc are
derived for any sample size and sampling range. As a by-product, F-opti-
mal approximate designs are also obtained. These optimal designs are
used to evaluate the efficiency of the equidistant sampling method widely
used in practice. These results also provide guidelines for users on sam-
pling method and sample size selection.

1. Introduction. The circle is one of the most common features occur-
ring in engineering, computer science, physics and optics. The problem of
fitting a circle to a set of data points on a plane has become very common in

wmany areas such as engineering design and manufacturing Dowling, Griffin,
Ž .x wTsui and Zhou 1997 , computer graphics and computer vision Moura and

Ž .x w Ž .xKitney 1991 , microwave engineering Berman 1983 and high energy
w Ž .xphysics Karimaki 1991 . Since measurement is time consuming and costly,¨

an important practical problem is how to choose the locations of measure-
ment on a circular feature so that the estimates are most precise for a given

w Ž .xsample size Dowling, Griffin, Tsui and Zhou 1997 . So far almost all papers
on circle fitting deal with estimation of the center and radius of the circle
w Ž . Ž . Ž . Ž .Chan 1965 , Anderson 1981 , Berman 1983 , Berman and Culpin 1986 ,

Ž .xChan and Mak 1994 . Little attention has been paid to the design issue, and
only some simulation results comparing the performance of some commonly

w Ž .xused sampling methods are available Dowling, Griffin, Tsui and Zhou 1997 .
A theoretical investigation is needed to provide guidelines for users on
sampling method selection.

In this paper we will concentrate on the design aspects of the problem for
Ž .Berman’s 1983 circular model, which assumes that the angular differences
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between sample points are known in advance, either from the special struc-
ture of the problem or through experimental design. Since a circular feature
can have an arbitrary angle with respect to the coordinate system of a
measuring machine, the determination of the locations of sample points is
equivalent to the determination of the angular differences between these
points. It is therefore reasonable to use Berman’s model for the search of
optimal designs of the sample points. Furthermore, Berman’s model is techni-
cally tractable. After some transformation of parameters, Berman’s model
becomes a bivariate four-parameter linear model Y s Xu q « , where X s
w Ž . Ž .xXf t , . . . , f t is the model matrix and t , . . . , t are the n support points1 n 1 n
on the design region TT, that is, the circular arc to be measured. See Section 2
for details. Classical linear optimal design theory mostly focuses on the

w Ž . Ž .xso-called approximate theory Silvey 1980 , Pukelsheim 1993 which works
Ž . Ž .Xon the information matrix H f t f t dt and chooses a probability measureTT

Ž .an approximate design t on the design region TT. The purpose of this paper
is to find optimal exact designs by choosing the model matrix X, which is the
more important and interesting problem in practice. Related works for opti-
mal approximate designs on balls and cubes can be found in Galil and Kiefer
Ž .1977a, b .

The remainder of this paper proceeds as follows. Section 2 briefly reviews
Berman’s model and formulates the design problem using the notation close

Ž .to Pukelsheim 1993 . In Section 3 orthogonal designs are obtained. When
orthogonality cannot be achieved, F-optimality is defined in Section 4 and

w .shown to be equivalent to all f -criteria with p g y`, 1 and minimizingp
the common variance of the estimators of the parameters. Section 5 then
derives all F-optimal exact designs on a circle or a circular arc for any sample
size and sampling range. As a by-product, F-optimal approximate designs are
also obtained. Finally, in Section 6 we compare the efficiency of F-optimal
exact designs and equidistant sampling with that of F-optimal approximate
designs. These results also provide guidelines for users on sampling method
and sample size selection.

Ž .2. The bivariate, four-parameter Berman model. The Berman 1983
model uses the regression function f : TT ª RR4=2 given by

I2 cos t ysin t1 f t s , where A t sŽ . Ž . Ž .X ž /ž / sin t cos tA tŽ .

w .is the 2 = 2 matrix of a plane rotation by the angle t g 0, 2p , TT is a circular
arc and RR4=2 is the set of all real 4 = 2 matrices. The parameter vector for

Ž .X Ž .Xthe regression model is u s u , u , u , u , where u , u is the center and1 2 3 4 1 2
2 2'r s u q u is the radius of the circular arc. The bivariate observations at3 4

t , . . . , t are assumed to have independent and identically distributed errors1 n
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« with mean zero and variance s 2. Thus, the model is represented byi j

Y «1 j X 1 js f t u qŽ .j «ž /Yž / 2 j2 j
2Ž .

u q u cos t y u sin t q «1 3 j 4 j 1 j
s for j s 1, . . . , n ,

u q u sin t q u cos t q «ž /2 3 j 4 j 2 j

Ž .or simply denoted by Y s Xu q « . This is a linear model with 2n = 4 model
matrix

I A tŽ .2 1
. .. .3 X sŽ . . .� 0I A tŽ .2 n

and dispersion matrix s 2I . Hence the design with one bivariate observa-2 n
tion at each of the support points t , . . . , t has the moment matrix1 n

1 I A tŽ .2X4 M t s X X s ,Ž . Ž . Xž /A t In Ž . 2

where the design quantities of interest are

1 c t ys tŽ . Ž .
A t s A t dt s A t s ,Ž . Ž . Ž .ÝH j ž /s t c tn Ž . Ž .jFn

1
c t s cos t dt s cos t ,Ž . Ž . Ž .ÝH jn jFn5Ž .

1
s t s sin t dt s sin t ,Ž . Ž . Ž .ÝH jn jFn

2 2d t s det A t s c t q s t G 0.Ž . Ž . Ž . Ž .Ž . Ž .
Ž . Ž .The quantity d t turns out to play a key role. By definition, d t is

nonnegative. The Cauchy]Schwarz inequality gives its upper bound
2 2

1 1
d t s cos t q sin tŽ . Ž . Ž .Ý Ýj jž / ž /n njFn jFn6Ž .

1 12 2F cos t q sin t s 1.Ž . Ž .Ý Ýj jn njFn jFn

Ž .The maximum value 1 of d t is obtained if and only if t s ??? s t , that1 n
Ž .is, t is a one-point design. Then its moment matrix M t is of rank 2 and

Ž .singular. If a design t has two or more distinct support points, then M t is
positive definite and the parameter u is estimable.
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Ž . Ž .The minimum value 0 of d t leads to M t s I . Then the dispersion4
ˆmatrix of the least squares estimator u of u becomes proportional to the

identity matrix. Such designs are called orthogonal.

3. Experimental domain and orthogonality. We first point out that
Ž .the location of a single, connected proper circular arc TT in the complete

w .circle 0, 2p does not matter. To show this, assume that the support points
Ž .t , . . . , t are all rotated by an angle r g 0, 2p . Then the off-diagonal blocks1 n

Ž . Ž . Ž . Ž . Ž Ž . Ž ..Xof the moment matrix M t in 4 change into A t A r and A t A r ,
Ž . Ž .respectively. Since det A r s 1, d t is unchanged. Therefore, for all analy-

Ž .ses based on d t , such as those in this paper, a circular arc TT may be placed
w .anywhere in the complete circle 0, 2p . Thus we can standardize TT to make 0

w x Ž .its midpoint, that is, TT s yar2, ar2 for an arc of length a g 0, 2p . When
w .a s 2p , we take TT s yp , p .

For convenience in the ensuing discussion, we define the following con-
cepts.

Ž .DEFINITION 1. Two support points t and t yar2 F t , t F ar2 are1 2 1 2
< < < <called a diametrical pair if t y t s p , and an endpoint pair if t y t s a .1 2 1 2

A support point t is called a midpoint if t s 0, and an endpoint if1 1
t s "ar2.1

� 4For any design t s t , . . . , t , let1 n

2 2
27 g t , . . . , t ' n d t s cos t q sin t .Ž . Ž . Ž . Ý Ýn 1 n j jž / ž /

jFn jFn

Then orthogonality is equivalent to g s 0. If n s 2m and p F a F 2p , wen
can take m points at ypr2 and the remaining m points at pr2, so that
orthogonality is achieved. If n s 2m q 1, then in order to obtain an orthogo-

Ž .nal design, we consider the design with m pairs at ybr2, br2 and a
midpoint, where 0 - b F a . Then

28 g t , . . . , t s 2m cos br2 q 1 .Ž . Ž . Ž .Ž .2 mq1 1 2 mq1

Let b be such thatm

9 2m cos b r2 q 1 s 0, that is, b s 2p y 2 arccos 1r2m .Ž . Ž . Ž .m m

Ž .Then, for any b F a F 2p , the design with m pairs at yb r2, b r2 and am m m
midpoint is orthogonal. Some selected values of b , given in Table 1, indicatem

TABLE 1
Some selected values of bm

m 1 2 3 5 10 20 50 100 `

4b p 1.161p 1.107p 1.064p 1.032p 1.016p 1.006p 1.003p pm 3
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that b is quite close to p for m G 10. Later we will see that, if n s 2m andm
0 - a - p , or if n s 2m q 1 and 0 - a - b , then orthogonal designs do notm
exist.

The above orthogonal designs only contain two or three distinct points and
do not provide much opportunity for model verification. More interesting
orthogonal designs with more distinct points will be constructed based on the

� 4following lemma, where the design consisting of designs t s t , . . . , t and1 1 n1
� 4t s t , . . . , t is denoted by t s t j t .2 n q1 n qn 1 21 1 2

Ž .LEMMA 1. The following designs are all orthogonal: a equidistant sam-
Ž .pling on a complete circle; b designs consisting of any diametrical pairs and

Ž .c designs consisting of any orthogonal designs.

Ž . w xPROOF. a For equidistant sampling on yar2, ar2 , the n support
Ž . Ž .points are t s yar2 q j y 1 ar n y 1 , for j s 1, . . . , n. Thenj

2

g t , . . . , t s cos t q i sin tŽ . Ý Ýn 1 n j j
jFn jFn

2

s exp i yar2 q j y 1 ar n y 1Ž . Ž .Ž .Ý
jFn

10Ž .
2

1 y exp i nar n y 1Ž .Ž .Ž .
s

1 y exp i ar n y 1Ž .Ž .Ž .
1 y cos nar n y 1Ž .Ž .

s ,
1 y cos ar n y 1Ž .Ž .

Ž . ŽŽwhere i is the imaginary unit. Hence d t s 0 if and only if a s n y
1. . Ž .Ž .1 rn 2p . Then t s yp q 2prn j q , j s 1, . . . , n. Hence the angle be-j 2

tween t and t is 2prn, which is the same as the angles between any other1 n
Ž . Ž .neighboring pairs t , t , . . . , t , t . This indicates that the design t is an1 2 ny1 n

equidistant sampling on a complete circle.
Ž .b If t and t are any diametrical pair, then cos t q cos t s sin t q1 2 1 2 1

Ž .sin t s 0. Hence for any design consisting of diametrical pairs t , t , . . . ,2 1 2
Ž . 2 m 2 m Ž .t , t , we have Ý cos t s Ý sin t s 0. Then d t s 0 and the2 my1 2 m js1 j js1 j
design is orthogonal.

Ž . Ž . Ž .c From 5 , a design t is orthogonal if and only if A t s 0. Therefore, if
� 4 Ž .t s t , . . . , t j s 1, . . . , k, k G 2 are orthogonal, and if n q ??? qn isj j1 jn 1 kj

Ž . � Ž . Ž .4denoted by n, then we have A t j ??? j t s n A t q ??? qn A t rn s1 k 1 1 k k
0, which implies that the design t j ??? j t is also orthogonal. I1 k

Ž .Note that the proof of a shows that equidistant sampling is orthogonal if
and only if its support points form an equidistant sampling on a complete
circle.

The first main result then follows from Lemma 1. It gives many choices for
orthogonal designs.
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Ž .THEOREM 1. a If n s 2m and p F a F 2p , them m diametrical pairs
form an orthogonal design.

If n s 2m q 1, then the following designs are orthogonal:
Ž .b m y k diametrical pairs and 2k q 1 equidistant points on a complete

Ž .circle, if 4pr3 F a F 2p , where k s 1, . . . , k and k is given by 11 ;0 0
Ž .c m y k y 1 diametrical pairs, k endpoint pairs, one pair at "g r2,1 1 0

Ž .and a midpoint, if b F a - 4pr3, where k is determined by 14 , b isn 1 m
Ž . Ž .given by 9 and g by 15 .0

Ž . Ž .PROOF. The results of a and b follow directly from Lemma 1. All that
Ž .remains is to determine k for part b . To arrange 2k q 1 equidistant points0

w xon a circle within the experimental domain yar2, ar2 , we must have
Ž .2pr 2k q 1 G 2p y a . Hence

11 k F k ' min m, ar 4p y 2a ,Ž . Ž .Ž .0

w Ž .x Ž .where ar 4p y 2a denotes the integral part of ar 4p y 2a . When a G
Ž Ž ..1 y 1r 2m q 1 2p , we have k s m, that is, all 2m q 1 points can be0
placed equidistantly on a circle.

Ž .c We need to find k and g such that the design satisfies1 0

2
12 g s 2k cos ar2 q 2 cos g r2 q 1 s 0.Ž . Ž . Ž .Ž .2 mq1 1 0

Ž .Since p - b F a - 4pr3, then, by 9 , we havem

13 2 cos ar2 q 1 ) 0 s 2m cos b r2 q 1 G 2m cos ar2 q 1.Ž . Ž . Ž . Ž .m

Hence there exists a unique k , 1 F k - m, such that1 1

14 2k cos ar2 q 1 ) 0 G 2 k q 1 cos ar2 q 1.Ž . Ž . Ž . Ž .1 1

Ž . Ž . Ž . Ž . Ž .Let v g s 2k cos ar2 q 2 cos gr2 q 1. Then v p s 2k cos ar2 q 1 )1 1
Ž . Ž . Ž . Ž .0 and v a s 2 k q 1 cos ar2 q 1 F 0. Since v g is continuous and strictly1

w x w x Ž .decreases on p , a , there exists a unique g g p , a such that v g s 0.0 0
Ž Ž ..2Then g s v g s 0, which leads to orthogonality of the design, where2 mq1 0

g is given by0

15 2k cos ar2 q 2 cos g r2 q 1 s 0,Ž . Ž . Ž .1 0

that is,
g s 2p y 2 arccos k cos ar2 q 1r2 .Ž .Ž .0 1

4. Optimality criteria. When orthogonality cannot be achieved, one
Ž . Ž . Ž .may instead choose some optimality criterion. For M t and d t given in 4

Ž .and 5 , let F denote the class of all optimality criteria f that are of the form

f M t s c d t ,Ž . Ž .Ž . Ž .
w x w xfor some monotonic function c : 0, 1 ª y`, ` . That is, any criterion in F

Ž .depends on the design t only through d t .
If f is an information function and c is antitonic, then maximizing f is

Ž .the same as minimizing d t . If f behaves like a variance and c is isotonic,
Ž .then minimizing f again means minimizing d t . Therefore, we have the

following definition.
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Ž .DEFINITION 2. Designs that minimize d t are called F-optimal.

Hence every orthogonal design is F-optimal. It is interesting to explore the
relationships between F-optimality and other design criteria in the litera-

ˆŽ . � w x4ture. So far the two most popular criteria are 1 minimizing det Cov u , or
Ž . Ž .equivalently, maximizing det M t , which is the D-criterion, and 2 minimiz-

ˆ y1wŽ Ž .. xing the total or average variance of u , that is, minimizing tr M t
Ž .A-criterion . These two criteria give the so-called optimal exact designs
which are very important in practice. So far, many algorithms are available

w Ž .for constructing D-optimal exact designs Cook and Nachtsheim 1980 , Li
Ž .xand Wu 1997 . However, the global optimality of the resulting designs is not

guaranteed. It is also worth noting that the design issue here is for the case of
bivariate observations, which causes the numerical algorithms for finding
optimal designs to be more complicated. More generally, we can consider a

w Ž .xclass of f -criteria Pukelsheim 1993 . When p s y`,y 1, 0, 1, we obtainp
the E-, A-, D- and T-criteria, respectively. Let l G l G l G l be the four1 2 3 4

Ž . Ž w x.eigenvalues of the moment matrix M t . Then the f -criteria p g y`, 1p
maximize the following f functions:p

l , for p s y`,¡ 4

1r4

l , for p s 0,Ł jž /
jF4~16 f M t sŽ . Ž .Ž .p 1rp
1 pl , for p / 0, " `,Ý j4ž /

jF4¢l , for p s `.1

' 'It is easy to show that l s l s 1 q d t and l s l s 1 y d t .Ž . Ž .1 2 3 4
Hence

f M t s c d tŽ . Ž .Ž . Ž .p p

¡ '1 y d t , for p s y`,Ž .
'1 y d t , for p s 0,Ž .

1rpp p~s ' '1 q d t 1 y d tŽ . Ž .ž / ž /
q , for p / 0, " `,ž /2 2

¢ '1 q d t , for p s `.Ž .

17Ž .

Ž . Ž Ž ..Here the T-criterion trace criterion is useless since f M t ' 1. Since1
Ž Ž .. Ž Ž .. Ž . w .f M t s c d t decreases in d t for any p g y`, 1 , all the f -criteriap p p

w .with p g y`, 1 are equivalent to F-optimality. Since

s 2 s 2 I yA tŽ .2y1ˆw x18 Cov u s M t s ,Ž . Ž .Ž . Xž /yA t In n 1 y d t Ž .Ž .Ž . 2
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we can see that F-optimality also leads to minimizing the common variance
ˆof the unbiased estimators u . This property is stronger and more inter-

pretable than the E-, A- and D-criteria. However, since u and u are not of3 4
direct interest, one question is whether F-optimality can lead to minimizing

2 2ˆ ˆ'the mean-squared error of the biased estimator r s u q u of the radiusˆ 3 4
r. This turns out to be true and its proof is given in the Appendix. In
summary, we have the following lemma.

Ž .LEMMA 2. For Berman’s model 2 , F-optimality is equivalent to
Ž . w . Ž .a f -criteria with p g y`, 1 ; b minimizing the common variancep

2 ˆŽ Ž Ž ... Ž . Ž .s r n 1 y d t of the unbiased least squares estimators u of u ; and c
minimizing the mean-squared error of r .̂

5. F-optimal exact designs. In Section 3, we obtained orthogonal de-
Ž . Ž .signs for i n s 2m and p F a F 2p , and ii n s 2m q 1 and b F a F 2p .m

In this section, we will construct F-optimal exact designs for other cases.
When n s 2m and 0 - a - p , F-optimality can be achieved by m endpoint
pairs. When n s 2m q 1, we may try to set m endpoint pairs, but the ‘‘extra’’
support point needs special care by setting it as an endpoint, a midpoint or an
arbitrary point, depending on the length of a . This gives the second main
result as follows.

Ž .THEOREM 2. a If n s 2m and 0 - a - p , then the design with m
endpoint pairs is F-optimal.

If n s 2m q 1, then the F-optimal exact designs are:
Ž .b m endpoint pairs and an endpoint, if 0 - a - p ;
Ž .c m endpoint pairs and a midpoint, if p - a - b , where b is givenm m
Ž .by 9 ;
Ž .d m endpoint pairs and any other point, if a s p .

Ž .PROOF. Since F-optimality is equivalent to minimizing g defined in 7 ,n
we only need to show that the above designs have the smallest g valuesn
among any designs with the same sample size n on the same circular arc
w xyar2, ar2 . It is easy to see that the g values of the above designs aren
Ž . Ž Ž ..2 Ž . Ž .Ž Ž ..2 Ž . Ž Ž ..2a 2m cos ar2 , b 1 q 4m m q 1 cos ar2 , c 1 q 2m cos ar2 ,

Ž . w xand d 1, respectively. Recall that TT s yar2, ar2 and that all t ’s fall in TT.j
Ž . Ž .a If 0 - a - p , then cos t G cos ar2 ) 0 for j s 1, . . . , 2m. Hencej

2 22m 2 m
219 g t , . . . , t G cos t G cos ar2 s 2m cos ar2 .Ž . Ž . Ž . Ž .Ž .Ý Ý2 m 1 2 m jž / ž /js1 js1
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Ž . Ž . Ž .For the proofs of b , c and d , noting that g is symmetric in2 mq1
t , . . . , t , we assume t F ??? F t . As argued at the beginning of1 2 mq1 1 2 mq1
Section 3, rotation of t , . . . , t does not matter, so we can also assume1 2 mq1
t s ydr2 and t s dr2, where 0 F d F a .1 2 mq1

Ž .b It suffices to show that, for any m G 0 and yar2 F t F ??? F t F1 2 mq1
ar2,

220 g t , . . . , t G 1 q 4m m q 1 cos ar2 .Ž . Ž . Ž . Ž .Ž .2 mq1 1 2 mq1

Ž . Ž .We use induction on m. When m s 0, 20 holds since g t s 1. Assume1 1
Ž . Ž .that 20 holds for 2m y 1 m G 1 . Then

22 221 g t , . . . , t ' A q B G 1 q 4m m y 1 cos ar2 ,Ž . Ž . Ž . Ž .Ž .2 my1 2 2 m

where A s Ý2 m cos t and B s Ý2 m sin t . Hencejs2 j js2 j

g t , . . . , t s g ydr2, t , . . . , t , dr2Ž . Ž .2 mq1 1 2 mq1 2 mq1 2 2 m

2 2s 2 cos dr2 q A q BŽ .Ž .
s A2 q B2 q 4 cos dr2 cos dr2 q AŽ . Ž .Ž .22Ž .

22 2G A q B q 8m cos ar2Ž .Ž .
2G 1 q 4m m q 1 cos ar2 ,Ž . Ž .Ž .

Ž . Ž .that is, 20 holds. The first inequality in 22 follows by the facts that
Ž . Ž . Ž . Ž .A G 2m y 1 cos ar2 ) 0 and cos dr2 G cos ar2 ) 0, since 0 - a - p ,

Ž .and then cos t G cos ar2 ) 0 for j s 1, . . . , 2m q 1. The second inequalityj
Ž . Ž .in 22 follows by the inductive hypothesis 21 .
Ž . Ž .c As in b , we use induction on m G 0 to show that

223 g t , . . . , t G 1 q 2m cos ar2 ,Ž . Ž . Ž .Ž .2 mq1 1 2 mq1

Ž .for p F a - b . Using 9 and noting that p F a - b - 4pr3, we havem m

24 0 s 1 q 2m cos b r2 F 1 q 2m cos ar2 F 1.Ž . Ž . Ž .m

w x Ž .If d - p , then t , . . . , t g ydr2, dr2 implies that 20 holds. Then from1 2 mq1
Ž . Ž .20 and 24 we have

2g t , . . . , t G 1 q 4m m q 1 cos dr2Ž . Ž . Ž .Ž .2 mq1 1 2 mq1

2G 1 G 1 q 2m cos ar2 ,Ž .Ž .
Ž .that is, 23 holds. Thus we only need to consider p F d F a . Let K s

2 2' Ž .A q B . Then A F K, where A and B are defined below 21 . Induction on
Ž .m is then applied. When m s 0, 23 holds. If we assume that it holds for

Ž .2m y 1 G 1, then, from 24 and the inductive hypothesis, we have

1r2
25 K s g t , . . . , t G 1 q 2 m y 1 cos ar2 G 0.Ž . Ž . Ž . Ž .Ž .2 my1 2 2 m
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Ž . Ž . Ž .Since cos dr2 G cos ar2 , then, from the above inequality and 24 , we have

26 K q 2 cos dr2 G 1 q 2m cos ar2 G 0.Ž . Ž . Ž .
Ž .Therefore, by 22 ,

g t , . . . , t s A2 q B2 q 4 cos dr2 cos dr2 q AŽ . Ž . Ž .Ž .2 mq1 1 2 mq1

G K 2 q 4 cos dr2 cos dr2 q KŽ . Ž .Ž .27Ž .
2 2s K q 2 cos dr2 G 1 q 2m cos ar2 ,Ž . Ž .Ž . Ž .

Ž . Ž .that is, 23 holds. The first inequality in 27 holds since A F K and
Ž . Ž .cos dr2 F 0 from p F d F a - b - 4pr3. The second inequality in 27 ism

Ž .from 26 .
Ž . Ž . Ž . Ž .d Since 23 holds for a s p , then g t , . . . , t G 1 and d fol-2 mq1 1 2 mq1

lows. I

It is interesting to look at the special cases of Theorems 1 and 2 with n s 2
and n s 3.

Ž .COROLLARY 1. a If n s 2 and 0 - a - p , then an endpoint pair form an
F-optimal exact design.

Ž .b If n s 2 and p F a F 2p , then any diametrical pair form an orthogo-
nal design.

COROLLARY 2. For n s 3, F-optimal exact designs are:

Ž .a an endpoint pair and an endpoint, if 0 - a - p ;
Ž .b an endpoint pair and any other point, if a s p ;
Ž .c an endpoint pair and a midpoint, if p - a - 4pr3;
Ž .d if n s 3 and 4pr3 F a F 2p , then three equidistant points on a com-

plete circle form an orthogonal design.

An illustration of Theorems 1 and 2 is given in Figure 1 which provides
F-optimal exact designs for sample sizes n s 10 and n s 11 with different a
values.

Theorems 1 and 2 provide F-optimal exact designs on a circle or a circular
arc for any sample size and sampling range. In particular, Theorem 1 gives
orthogonal designs for all the situations in which orthogonality can be
achieved. As a by-product of these results, we obtain F-optimal approximate
designs which minimize

2 2

d t ' cos t dt q sin t dtŽ . Ž . Ž .H Hž / ž /
Ž .with respect to a probability measure an approximate design t on TT. Since

Ž .orthogonal designs attain the minimum value 0 of d t , they are also
F-optimal approximate designs. Other F-optimal approximate designs are
easily obtained by the following argument.
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Ž . Ž . Ž .FIG. 1. Examples of F-optimal exact designs. The diametrical pairs in b , e and f are
Ž .connected by line segments. The diamond points in f form an equidistant sampling on a

complete circle.
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In the approximate theory, the design problem is invariant with respect to
reflection across the midpoint of the arc, that is, t ª yt when TT s

1 Rw x Ž .yar2, ar2 . The symmetrized design t s t q t has a vanishing sine-2
2Ž . Ž . Ž Ž .. Ž .term, s t s 0. Hence d t s c t , and minimizing d t is the same as

< Ž . <minimizing c t . Thus F-optimal approximate designs are obtained by
placing half of the observations at each of the two support points

� 4"min ar2, pr2 .

Ž .REMARKS. i It is known that equidistant sampling is optimal for the
w .trigonometric model on the complete circle yp , p ; see, for example, Section

Ž .9.16 in Pukelsheim 1993 . The technique used in this paper might be helpful
w .for finding optimal trigonometric designs for proper circular arcs TT / yp , p .

Ž .ii The fact that optimality is achieved by two-point designs seems to
imply limitations of F-optimality. Fortunately, designs consisting of diamet-
rical pairs}of which there are many, provided a ) p}leave a wide choice
among optimal designs.

Ž .iii If the model is slightly wrong, optimal designs that are far from
equidistant will be in trouble because they make no provision for checking
model inadequacy. From the practical point of view, study of efficiency of
equidistant and related designs is important, as we will discuss in the next
section.

6. Efficiency comparisons. As a result of its simplicity and intuitive
appeal, equidistant sampling is widely used in practice for sampling circular
measurement data. It is important to consider its efficiency. Since the com-

ˆ 2 Ž Ž Ž ...mon variance of the parameter estimators u is s r n 1 y d t , it is natural
Ž .to define 1 y d t to be the efficiency of a sampling scheme for any fixed

Ž .sample size n. Recall from the proof of Lemma 1 a that equidistant sampling
ŽŽ . .on a complete circle is achieved when a s n y 1 rn 2p . Then, for any

ŽŽ . .n y 1 rn 2p F a F 2p , we can also have equidistant sampling on a com-
plete circle. Therefore, the efficiency of equidistant sampling is

n¡
1 y cos a1 n y 1ž /n y 11 y , if 0 - a - 2p ,2 a nn~ 1 y cosEff n , a sŽ . ž /E n y 1

n y 1
1, if 2p F a F 2p ;¢ n

that of F-optimal approximate designs is

sin2 ar2 , if 0 - a - p ,Ž .Eff a sŽ .FA ½ 1, if p F a F 2p ;
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and that of F-optimal exact designs is

Eff n , aŽ .F E

¡Eff a , if n s 2m ,Ž .FA

1
2sin ar2 1 y , if n s 2m q 1 and 0 - a F p ,Ž . 2ž /2m q 1Ž .~s 22m cos ar2 q 1Ž .Ž .

1 y , if n s 2m q 1 and p - a - b ,m22m q 1Ž .¢1, if n s 2m q 1 and b F a F 2p ,m

Ž .where b is given by 9 .m
Since F-optimal approximate designs attain maximum efficiency among

w xdesigns on the same experimental domain TT s yar2, ar2 , another type of
efficiency of a design can be defined by the ratio of its efficiency to that of
F-optimal approximate designs with the same a . This type of efficiency is
called standardized efficiency. Then, for equidistant sampling, its standard-
ized efficiency is

Stdeff n , aŽ .E

¡ n
1 y cos a1 ž /n y 1 21 y sin ar2 , if 0 - a - p ,Ž .2 an� 01 y cos ž /n y 1

n~s 1 y cos a1 n y 1ž /n y 11 y , if p - a - 2p ,2 a nn 1 y cos ž /n y 1
n y 1

1, if 2p F a F 2p .¢ n

Ž .If n s 2, then Stdeff 2, a s 1. For a F-optimal exact design, its standard-E
ized efficiency is

Stdeff n , aŽ .F E

1, if n s 2m,¡
1

1 y , if n s 2m q 1 and 0 - a F p ,22m q 1Ž .~s 22m cos ar2 q 1 ,Ž .Ž .
1 y if n s 2m q 1 and p - a - b ,m22m q 1Ž .¢1, if n s 2m q 1 and b F a F 2p .m

Numerical results show that for equidistant sampling and F-optimal exact
designs the above-defined efficiency and standardized efficiency do not vary
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much with sample size n when n G 10. Thus we can focus on their limits as
n ª `, and define those limits to be the efficiency and standardized efficiency
of these designs. This gives the efficiency of equidistant sampling to be

2sin ar2Ž .
Eff a s 1 y , 0 - a F 2p ,Ž .E ž /ar2

and its standardized efficiency

Stdeff a ' Eff a rEff aŽ . Ž . Ž .E E FA

2¡ 1 2
y , if 0 - a - p ,2 ž /asin ar2Ž .~s

22
21 y sin ar2 , if p F a F 2p .Ž .¢ ž /a

Ž . Ž .The efficiency of F-optimal exact designs is Eff a s Eff a and theirF E FA
standardized efficiency is 1.

Ž . Ž .It is interesting to note the monotonicity of Eff a , Stdeff a andE E
Ž . Ž . Ž xEff a s Eff a in a g 0, 2p . More precisely, we have the followingF E FA

proposition.

Ž . Ž . Ž .PROPOSITION. a For equidistant sampling, Eff a and Stdeff a areE E
Ž x Ž .both strictly increasing on 0, 2p , and lim Stdeff a s 1r3.a ª 0q E

Ž . Ž . Ž . Ž .b For F-optimal designs, Eff a s Eff a strictly increases on 0, pF E FA
w xand attains 1 if a g p , 2p .

Ž . Ž . Ž xPROOF. a The fact that sin x rx strictly decreases on 0, p leads to the
Ž . Ž x Ž . w xmonotonicity of Eff a on 0, 2p , and that of Stdeff a on p , 2p . SinceE E

2 2 4 Ž .sin xrx ) 1 y x r6 and cos x - 1 y x r2 q x r24, for any x g 0, pr2 , the
Ž . Ž . Ž .derivative of Stdeff a is positive on 0, p . Hence Stdeff a also strictlyE E

Ž . Ž .increases on 0, p . Part b is obvious. I

Ž . Ž .It can also be shown that, for any fixed n, Eff n, a , Eff n, a ,E F E
Ž . Ž . Ž x ŽStdeff n, a and Stdeff n, a are all increasing on 0, 2p but not alwaysE F E

. Ž .strictly increasing . Here the monotonicity of Stdeff a is of particularF E
interest since it indicates that the efficiency of equidistant sampling ap-
proaches that of F-optimal designs as the experimental domain TT increases
to a complete circle. Table 2 gives some selected values of efficiency and
standardized efficiency for equidistant sampling and some values of efficiency
for F-optimal designs. Standardized efficiency suggests a criterion for selec-
tion among available designs, and efficiency provides a method of choosing
the sample size. For example, if the sampling range is only 1r8 of a complete

Ž .circle, then, since Eff pr4 s 0.05, to achieve the same accuracy of theE
estimators as that for a complete circle when equidistant sampling is used,
the sample size should be almost 1r0.05 s 20 times that for a complete circle.
This provides an important guide in practice.
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TABLE 2
Efficiency comparisons of equidistant sampling versus F-optimal designs

7 3 5 7 3 5 1 3 1 1a 2p p p p p p p p p p p p4 2 4 8 4 8 2 8 4 8

Eff 1.00 1.00 1.00 1.00 1.00 0.96 0.85 0.69 0.50 0.31 0.15 0.038F E
Eff 1.00 0.98 0.91 0.78 0.59 0.49 0.39 0.28 0.19 0.11 0.05 0.013E

Stdeff 1.00 0.98 0.91 0.78 0.59 0.51 0.45 0.41 0.38 0.36 0.34 0.336E

APPENDIX

ˆ ˆ XŽ . Ž .PROOF OF LEMMA 2 c . Since u , u is normally distributed with mean3 4

Ž .X 2 Ž Ž Ž ...u , u and covariance matrix s r n 1 y d t I , then3 4 2

n 1 y d t r 2 n 1 y d tŽ . Ž .Ž . Ž .ˆ
2 2 2 2ˆ ˆs u q u ' U ; x v ,Ž .ž /3 4 22 2s s

2 Ž Ž .. 2 2 2Ž 2 . 2where v s n 1 y d t r rs , and x v denotes the noncentral x -distri-2
bution with 2 degrees of freedom and noncentrality parameter v 2. Then the
mean-squared error of r isˆ

r 2 2 r 2
2 2 1r2E r y r s E U q r y E UŽ . Ž . Ž .ˆ 2 vv

1 1
2s 2 r 1 q y u v ,Ž .2½ 5vv

Ž . Ž 1r2 . Ž .2where u v s E U . Now, minimizing E r y r is equivalent to minimiz-ˆ
2 'Ž . Ž Ž ..ing f v s 1 y vu v rv with respect to 0 - v F n rrs . Since v de-

Ž .creases as d t increases, then F-optimality is equivalent to maximizing v.
XŽ . Ž 2 XŽ . Ž .. 3Hence we need to show only that f v s y2 y v u v q vu v rv - 0,

or,

28 v 2 uX v y v u v q 2 ) 0 for any v ) 0.Ž . Ž . Ž .

Using the density of U represented by a mixture of x 2-distributions with
w Ž . x Ž .Poisson weights Lehmann 1991 , page 427 , we can compute u v and

obtain that

2 `v p 2k q 1 !!Ž .
1r2 2 ku v s E U s exp y v ,Ž . Ž . Ý( 2ž /2 2 2k !!Ž .ks0

Ž . Ž . Ž . Ž .where 2k !!s 2 ? 4 ? 6 ? ??? ? 2k and 2k q 1 !!s 1 ? 3 ? 5 ? ??? ? 2k q 1 , for
Ž . Ž .k s 1, 2, . . . . Let y1 !!s 1 and 0!!s 1. Then 28 becomes

2
` 2k y 1 !! 8Ž .

2 kq1 229 v - exp v .Ž . Ž .Ý 2ž / p2k !!Ž .ks0
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Ž .To show 29 , first we use induction on k and verify that
22k y 1 !! 1Ž .

30 F for k G 1.Ž . ž /2k !! k q 1Ž .
Ž .Then, using 30 and the Cauchy]Schwarz inequality, we have

2
` 2k y 1 !!Ž .

2 kq1vÝ 2ž /2k !!Ž .ks0

2
k kq1` 'v v 2

F Ý ž / ž /ž /' ' '2k !! 2k !! 2 k q 1Ž . Ž . Ž .ks0

` 2 k ` 2 kq2v v
F 2 Ý Ý2k !! 2k q 2 !!Ž . Ž .ks0 ks0

8
2 2F 2 exp v - exp v ,Ž . Ž .

p

Ž .that is, 29 holds, which concludes the proof. I

REMARK. Since r is a biased estimator of r, it would be interesting toˆ
Ž .know whether its bias is negligible. Let X and Y be N 0, 1 distributed.

2 2Ž . Ž . Ž < <. < Ž . <'Then, for v ) 0, u v s E X y v q Y ) E X y v G E X y v s v.Ž .
Hence,

u vŽ .
2 2 2''r - r s E r - E r s r 1 q 2rv - r 1 q 1rv .Ž . Ž . Ž .ˆ ˆ

v
2 2 Ž Ž Ž .. .The bias of r is therefore positive but less than rrv s s r n 1 y d t r ,ˆ

Ž .which is of order 1rn. Since srr is usually small less than 5% , the relative
Ž . Ž . Ž .bias E r rr y 1 is very small less than 0.05% if n G 10 and d t F 0.5.ˆ
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