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MONTE CARLO SAMPLING IN DUAL SPACE FOR
APPROXIMATING THE EMPIRICAL

HALFSPACE DISTANCE1

BY GUENTHER WALTHER

Stanford University

The Kolmogorov]Smirnov distance is an important tool for construct-
ing confidence sets and tests in univariate problems. In multivariate
settings, an analogous role is played by the halfspace distance, which has
the merit of being invariant under linear transformations. However, the
evaluation of the halfspace distance between two samples is a computa-
tionally very intensive combinatorial problem even in moderate dimen-
sions, which severely restricts the use of the halfspace distance, especially
in resampling procedures. To approximate this distance in a fast and
data-dependent way, the notion of a dual measure is introduced. Based on
geometric concepts, it will be shown how the above problem can be put as
a density estimation problem using Monte Carlo sampling in a certain
dual space. A central limit theorem for the empirical halfspace distance is
derived and used as a gauge to compare the new procedure with a
traditional random search.

1. Introduction. In a univariate setting, the Kolmogorov]Smirnov dis-
tance serves as a standard tool to find confidence sets for a distribution and to
construct goodness-of-fit tests.

For d-dimensional probability measures F and G, an analogous role is
played by the halfspace distance

1.1 d F , G [ sup F H y G HŽ . Ž . Ž . Ž .
d� 4Hg halfspaces in R

w Ž .x Ž .see, e.g., Beran and Millar 1986, 1989 . Introduced by Wolfowitz 1954 ,
this distance has the advantage of being invariant under linear transforma-
tions, a property not enjoyed by the multivariate Kolmogorov]Smirnov
distance based on quarterspaces. A problem with the halfspace distance,
however, lies in its evaluation, even if F and G are empirical measures and
thus have finite support, a case that arises, for example, when bootstrapping
is employed. Looking at all halfspaces in Rd that have d points lying on their
boundaries entails a computational burden that is of the order nd, where n is
the number of points considered. This can easily lead to a prohibitive task
even in moderate dimensions, especially if a large number of bootstrap
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replications are involved. If F or G does not have finite support and no
tractable analytical expressions are at hand, the measures have to be approx-
imated by a finite sample.

Because of these problems one usually resorts to an approximation to the
Žhalfspace distance in lieu of using its exact value. Beran and Millar 1986,

.1987, 1989 show how a random search can be used to obtain an approxima-
tion that does not detract from vital properties of the underlying confidence
sets and tests. This approximation scheme first generates a direction, that is,
an element of the unit sphere, at random, then projects the data points on the
one-dimensional subspace spanned by this direction and finally computes
the one-dimensional Kolmogorov]Smirnov statistic of the projected data. Re-
peating this procedure for a large number of directions and retaining the
maximum separation obtained between the projected data yields an approxi-
mation to the halfspace distance. The problem with this approximation
scheme is that it wastes time to explore ‘‘uninteresting’’ directions. This
problem becomes especially acute in high dimensions and is shared by certain

w Ž .xprojection pursuit statistics see, e.g., Li and Cheng 1993 .
Section 3 introduces a new method to approximate the halfspace distance

in a fast and data-dependent way. The key concept is that of a dual measure,
which is motivated by the notion of a dual set in geometry and defined in
Section 2, where also some of its relevant properties are investigated. It is
shown how the problem of computing the empirical halfspace distance can be
put as a density estimation problem using an auxiliary Monte Carlo sample
in a certain dual space, and how this can be exploited by, for example, using

Ž .Fourier methods. In Section 4 a central limit theorem CLT for the empirical
halfspace distance is derived and necessary and sufficient conditions are
given for any approximation scheme to ensure the validity of the CLT for the
approximation to the empirical halfspace distance obtained by that scheme.
This result is used in Section 5 to compare the new procedure with a
traditional random search on a theoretical basis. A simulation study is
presented in Section 6. Most proofs are deferred to Section 7.

2. Dual measures.

2.1. Geometric preliminaries and notation. The setting used throughout
d ² : < <is Euclidean d-space R equipped with the standard inner product ? , ? ; ?

denotes the d-dimensional Lebesgue measure of a set as well as Euclidean
norm in Rd and absolute value in R, the meaning being clear from the
context; MM d denotes the set of probability measures on Rd; and F and Gm n
are the empirical measures pertaining to samples of size m and n from the
probability measures F and G, respectively. For the following definitions and

Ž .facts see, for example, Stoer and Witzgall 1970 .
Ž . dThe dual polar set of a set A g R is defined as

U d ² :� 4A [ x g R : x , a F 1 for all a g A .
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It follows from this definition that A;B implies BU ;AU and AUU s
� 4conv A j 0 , where conv denotes the convex hull. Thus, if A is a closed,Ž .

convex set containing the origin, then AUU s A and the mapping A ¬ AU is a
duality.

Ž .As an example, if B x denotes the closed ball with center x and radiusr
Ž Ž ..U Ž .r ) 0, then B 0 s B 0 . We will be mainly interested in the followingr 1r r

duality between points and halfspaces:
d � 4 � 4U � d ² : 4If a g R R 0 , then a s x g R : x, a F 1 is the closed halfspace

containing 0 in its interior whose bounding hyperplane has normal vector
< < < < � 4UUar a and distance 1r a from 0; a is the line segment joining 0 and a,

� 4U d Ž d .U � 4which can be identified with a. Further, 0 s R and R s 0 .

2.2. Motivation and definition. Let X be a random variable in Rd. For
a g Rd consider the inequality

² :2.1 a, X F 1,Ž .
which lies at the heart of the duality notion described above. As the inner

² :product ? , ? is symmetric, a natural thought is to let a also be random.
There is a canonical way in which the distribution of X induces a measure

Ž .via 2.1 that can be interpreted as a measure on a certain dual space and will
hence be called dual measure.

DEFINITION 2.1. Let F be a probability measure on Rd. Define the dual
U Žmeasure F as the infinite measure given by the density w.r.t. Lebesgue

d .measure on R
UU � 42.2 f x s F x .Ž . Ž .F

For convenience later on, in the presence of a random variable X with
distribution F, the above definition reads

U ² :2.3 f ? s P ? , X F 1 .Ž . Ž . Ž .F

As an illustration, Figures 1]3 show three different dual densities plotted
on the unit square in R2.

2.3. Basic properties and a representation theorem. The following proper-
ties of a dual density f U will be used in the sequel:F

PROPOSITION 2.2. Let F be a probability measure on Rd.

Ž . Ui There exists some universal constant p ) 0 such that f G p on someF
nondegenerate convex cone.

Ž . Uii The dual density f is upper semicontinuous and the set of discontinu-F
ity points of f U has Lebesgue measure 0.F

Clearly, 0 F f U F 1. So Proposition 2.2 shows that f U is a measurableF F
Ž .function and in fact is the density w.r.t. Lebesgue measure of an infinite but

s-finite measure FU.
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ŽŽ . .FIG. 1. Dual density of N 0, 0 , I .

Ž .PROOF OF PROPOSITION 2.2. Consider the setting 2.3 . There exists a
Ž . yd Uquadrant E with P X g E G p s 2 . Then yE s E is a convex cone
Ž . � 4U UU U Ž .satisfying statement i : e g E implies ye > E s E and hence f ye sF

Ž � 4U . Ž . Ž .P X g ye G P X g E G p. As for ii , the linear functional G defined on
1 ŽŽ x. ŽMM by G: P ¬ P y`, 1 is upper semicontinuous w.r.t. the topology of weak

.convergence by the Portmanteau theorem. So continuity of the function H
d 1 Ž² :.from R to MM defined by H: a ¬ LL a, X implies that the composition

U Ž .f s G(H is upper semicontinuous. The second assertion in ii is proven inF
Ž .Walther 1994 , where further properties of dual measures also are given. I

The basis for sampling from the dual measure as employed in the next
section is provided by the following local representation theorem.

ŽŽ . .FIG. 2. Dual density of N y3, 0 , I .
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1 Ž .FIG. 3. Dual density of d q d q d .Žy2, 0. Žy3, y3. Žy0.5, y1.3

THEOREM 2.3. Let B g Rd be a compact set, let X g Rd be a random
variable having distribution F and denote by FU ¬ the restriction of FU to B.B
Then

FU ¬ ? s c U x , ? G dx ,Ž . Ž . Ž .HB B B B

< � 4U <where the scaling constant c is given by c s E B l X , the Markov kernelB B
U< <� 4B l x l ?

U x , ? sŽ . UB < <� 4B l x
� 4U Ž < < .is the uniform distribution on B l x here ? denotes Lebesgue measure

and, except in the trivial case c s 0, the probability measure G is absolutelyB B
continuous w.r.t. F:

U� 4dG x B l xŽ .B s .U� 4dF x E B l XŽ .

Theorem 2.3 expounds the following concept: For a one-dimensional
distribution function F and real a write

F a s 1 x F dx s 1 a F dx .Ž . Ž . Ž . Ž . Ž .H HŽy` , ax w x , `.

Then the last term can formally be read as a mixture of uniform densities
Ž .albeit not probability densities .

3. Constructing an estimator in dual space. This section will show
how the dual measures introduced in the previous section can be used to
devise a fast and data-dependent approximation to the halfspace distance. It
follows from the previous section that, for a, b g Rd,

U U� 4 � 43.1 a g b iff b g a ,Ž .
which yields the following duality relation:

U U� 4 � 43.2 P X g a s P a g X .Ž . Ž . Ž .
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As our goal is the halfspace distance, we are interested in the quantity that
Ž .appears on the left-hand side of 3.2 . However, to compute an estimator, we

will work in the dual space with the quantity on the right-hand side.
U � � 4U d4To formulate the problem in the dual space denote by DD s F ? : F g MMd

the set of dual densities on Rd and consider DDU as a subset of the normedd
Ž Ž d . 5 5 . Ulinear space L R , ? . Then the distance on DD derived from the norm`` d

5 5? is the halfspace distance:`

5 U U 53.3 d F , G s f y fŽ . Ž . `F G

d d � 4Ufor F, G g MM . This is so because, for a g R , a ranges over all halfspaces
� 4U dwith 0 in their interiors, and 0 s R . Using continuity from above for

probability measures one concludes
U U� 4 � 4d F , G s sup F a y G aŽ .

dagR

Ž .and 3.3 follows.
Ž .Equation 3.3 shows that the problem of computing the halfspace distance

can be interpreted as a density estimation problem in dual space: the
Ž . < U U <halfspace at which d F , G is achieved is the dual of the mode of f y f .m n F Gm n

This motivates the following approach. Draw auxiliary samples of size k from
the densities f U and f U restricted to a compact set B and rescaled toF Gm n

probability densities there. Then use density estimation to obtain an estimate
< U U <of f y f . There are several possibilities to make use of this estimate: oneF Gm n

< U U <can start sampling from a density proportional to this estimate of f y f ,F Gm n

for example, by rejection sampling. Looking at the duals of these points yields
halfspaces that will be more concentrated on interesting regions than those
obtained by just a uniform random generation, thus giving a data-dependent
way to evaluate the halfspace distance.

Instead, we will take the even more promising approach of estimating the
< U U <mode of f y f and using the dual of the estimated mode as a pilotF Gm n

estimate at which to evaluate the empirical measures.
To see why it is advantageous to take this route, note that generating k

auxiliary points in the dual space corresponds to generating k halfspaces in
some random way. However, as opposed to the case where the empirical
measure of the halfspaces is computed, as in a traditional random search,
using density estimation in dual space does not require processing the
original sample. Moreover, if one uses the fast Fourier transform for the
density estimation, then the auxiliary sample has to be processed only once:
note that the computational burden of using the fast Fourier transform to
evaluate a density estimate on a grid depends essentially only linearly on the

wnumber of grid points as the sample has to be processed only once see, e.g.,
Ž . xWand 1994 for a detailed analysis . As each grid point in dual space

corresponds to a halfspace in the original space, the computational burden of
this estimation scheme in dual space depends essentially only on the number
of halfspaces examined. This is in contrast to the traditional random search
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described in Section 1, where the sample has to be projected anew in each
direction examined. A detailed comparison of these two search schemes is
given in Section 5.

To summarize the construction of the estimator based on i pilot estimates,
here is a description of the algorithm. Recall that we are given a sample
X , . . . , X from F and Y , . . . , Y from G.1 m 1 n

Fix a compact set B containing the origin, for example, a ball or a
hypercube.

1. Draw an auxiliary sample of size k from the density proportional to f U onFm

B; likewise for f U .G n
Ž2. Choose an evaluation set T e.g., the auxiliary sample from step 1 or a

ˆ U U.grid , and compute on T a kernel estimate f of f y f based on thek F Gm n

auxiliary sample from step 1.
ˆ< <ˆ3. Set t s arg max f .T k

< <4. Repeat steps 1]3 i times and evaluate F y G on the search set ofm n
�� 4U � 4U4ˆ ˆhalfspaces t , . . . , t .1 i

< <The maximum value of F y G found gives the estimate of the halfspacem n
distance.

The sampling from f U in step 1 can be executed in a straightforward wayFm

using the local representation Theorem 2.3:

� 41. Choose an integer i according to the uniform distribution on 1, . . . , m .
< � 4U < < <Accept i with probability B l X r B . Repeat until an integer i hasi

been accepted.
� 4U2. Sample from the uniform distribution on B l X , that is, generate ai
² :point u from the uniform distribution on B until u, X F 1.i

Then u comes from a distribution whose density is proportional to f U on B.Fm

One can easily combine the sampling and density estimation procedures for
f U with those for f U , which saves the time required to compute variousF Gm n

proportionality constants. The details, as well as other specifics of the algo-
rithm, will be given in the next sections for the specific situations treated
there.

The restriction to the set B means that we are only searching over the
�� 4U 4range of halfspaces a , a g B . If one does not have a priori knowledge to

justify this, one has to shift the data after each repetition in step 4 in a
certain direction to cover a different range of halfspaces. It can be arranged

Ž .that d different shifts d is the dimension suffice. To see in detail how this
Ž .can be done, in the following let B s B 0 be a ball centered at 0. Other setsr

Ž .B e.g., hypercubes can be dealt with using straightforward modifications.
We will shift the sample from its original position by ce , i s 1, . . . , d,i

� 4where c ) 0 will be determined later and e , . . . , e is the standard basis in1 d
Rd. Set e s 0 to incorporate the case where no shift occurs. Shifting the data0
by a vector s means shifting the coordinate system by ys. Hence, if a point

Ž .a g B 0 is generated in dual space, then its dual set is described in ther
� 4Ucoordinate system of the shifted data by the translated set a y s. If a s 0,
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this set is all of Rd, otherwise it is a halfspace not necessarily containing 0 in
its interior. When an appropriate choice of vectors ce is used to shift thei

Ž� 4U .data, then the boundaries ­ a y ce of these halfspaces range over alli
hyperplanes in Rd:

'LEMMA 3.1. If cr G 2 d , then
U d� 4 � 4­ a y ce : a g B 0 R 0 , i s 0, . . . , d s hyperplanes in R .� 4� 4Ž .Ž .i r

'Ž .Hence shifting the sample X, Y as described with c G 2 d rr guarantees
that one searches over all possible separating hyperplanes in Rd and thus

< Ž . Ž . <over all possible values of F H y G H , where H ranges over all halfs-m n
paces in Rd, as the empirical measures have finite support.

Concerning the implementation of this algorithm, note that the data would
of course not really be shifted, but rather the computer program would add
an appropriate constant to the data every time they are used.

There are other statistical problems involving the probability content of
Ž .halfspaces where the duality relation 3.2 may be successfully employed, for

w Ž .example, certain robust location estimators see, e.g., Nolan 1989, 1992 and
Ž .x wDonoho and Gasko 1992 , and projection pursuit statistics see, e.g., Li and

Ž .xCheng 1993 . Those topics will be treated elsewhere.

4. A CLT for the empirical halfspace distance. In the following we
will write Z s F y G, Z s F y G and use the usual conventions form , n m n

U Ž . U Ž . U Ž .signed measures, that is, f ? s f ? y f ? and so on. The next theoremZ F G
U Ž .states a functional CLT for the f ? -process and then establishes a CLT forZm , n

the empirical halfspace distance.

Ž .THEOREM 4.1. Let m s m n go to infinity together with n such that
Ž .lim nrm n s l G 0.nª`

U U d'Ž . Ž . Ž .a n f y f converges weakly, as a random element of L R , to aZ Z `m , n

Gaussian process W on Rd having mean 0 and covariance function
X ² : ² X:� 4 � 4EW t W t s lF q G x : x , t F 1 l x : x , t F 1Ž . Ž . Ž . Ž .

y l f U t f U tX y f U t f U tX .Ž . Ž . Ž . Ž .F F G G

Ž . Ž .b Assume the following: i there is a unique hyperplane that optimally
separates the probabilities F and G in the following sense: the function
Ž . <Ž .Ž� ² : 4. < Ž Ž . Ž ..g ? [ F y G x: x, ? F 1 satisfies inf g t y g t ) 0 for everyt f N 0

Ž . Ž .Ž� ² : 4.neighborhood N of some point t ; ii F q G x: x, t s 1 s 0.0 0
Ž . 5 5Then the functional T ? s ? has a stochastic differential on the set`

� U4 U Ž U .f y g: f, g g DD at f , that is, there exists a linear functional T f ; ?d Z Z
defined on the space spanned by differences of elements of DDU that satisfiesd

T f U y T f U s T FU ; f U y f UŽ .Ž . Ž .Z Z Z Z Zm , n m , n

5 U U 5qo f y f , n ª `Ž .`p Z Zm , n

4.1Ž .

and
5 U U 5f y f ª 0.`Z Z Pm , n
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Ž U . Ž U Ž .. Ž . Ž .The differential is given by T f ; ? s sign f t e ? , where e ? de-Z Z 0 t t0 0

notes the evaluation operator at t . In this case the empirical halfspace0
distance satisfies the CLT

'n d F , G y d F , GŽ . Ž .Ž .m n

ª N 0, l f U t 1 y f U t q f U t 1 y f U t .Ž . Ž . Ž . Ž .Ž . Ž .Ž .d F 0 F 0 G 0 G 0

Ž . Ž . Ž . Ž .c Without assumption ii , 4.1 continues to hold with the nonlinear

T f U ; ? s lim sup sign f U t e ? ,Ž . Ž . Ž .Ž .Ž .Z Z t
« x0 tgA«

� < U Ž . < 5 U 5 4where A s t: f t G f y « , and the empirical halfspace distance`« Z Z
satisfies the CLT

U'n d F , G y d F , G ª lim sup sign f t W tŽ . Ž . Ž . Ž .Ž . Ž .Ž .Žm n d Z
« x0 tgA«

Ž .Observe that for certain elliptically contoured distributions condition i is
always satisfied.

Ž .As explained in Section 1, for practical use the halfspace distance d F , Gm n
< Ž . Ž . <is usually replaced by an approximation sup F H y G H due toH g Sn

computational reasons, where the search set S of halfspaces is generated inn
some deterministic or stochastic way. Proposition 4.2 below gives a necessary
and sufficient condition on the search set S for the validity of the CLTn

'n sup F H y G H y d F , GŽ . Ž . Ž .m nž /
HgS4.2Ž . n

ª N 0, l f U t 1 y f U t q f U t 1 y f U tŽ . Ž . Ž . Ž .Ž . Ž .Ž .d F 0 F 0 G 0 G 0

Ž .under the assumption of Theorem 4.1 b . Observe that for each halfspace H
there exists a halfspace containing 0 in its interior whose bounding hyper-
plane separates the sample X , . . . , X , Y , . . . , Y in the same way as H does1 m 1 n

< Ž . Ž . <and hence results in the same value F H y G H . We will thereforem n
restrict our attention to search sets of halfspaces that contain 0 in their
interiors. Otherwise no restrictions whatsoever are placed on the search set.
It may be stochastic, obtained in a data-dependent or independent way, be of
any size and change arbitrarily with the sample size n.

U Ž . wTo simplify notation in the following, assume w.l.o.g. that f t ) 0 recallZ 0
U Ž . xthat f t / 0 . ThenZ 0

4.3 lim sup yf U t s sup yf U t - f U t a.s.,Ž . Ž . Ž . Ž .Ž .Ž .Z Z Z 0m , nn t t

Ž . Ž . Ž . Ubecause of 7.2 , i and ii , which implies continuity of f at t .Z 0
Ž .Hence the CLT 4.2 reads

U U'n sup f t y f tŽ . Ž .Z Z 0ž /m , n
U� 4tg H : HgS4.4Ž . n

ª N 0, l f U t 1 y f U t q f U t 1 y f U t .Ž . Ž . Ž . Ž .Ž . Ž .Ž .d F 0 F 0 G 0 G 0
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Also,

4.5 A s t : f U t G f U t y «� 4Ž . Ž . Ž .« Z Z 0

Ž .for small « because of 4.3 .
For clarity it is helpful in the following to switch occasionally from the

underlying probability measure P and the random variables X , . . . , X to1 m
m Ž d .m nthe m-fold product law F on the image space R , and analogously for G

and Y , . . . , Y . The notation f U , f U and FU will not be changed as the1 n F G Zm n m , n

meanings will always be clear.

PROPOSITION 4.2. Denote by m the law according to which the search setSn
Ž .S is generated. Then, under the assumption of Theorem 4.1 b , for the CLTn

Ž . m n4.2 to hold under the law F m G m m it is necessary and sufficient thatSn
� 4 Ž y1r2 .there exists a positive sequence l with l s o n , n ª `, such thatn n

� U 44.6 m A l H : H g S / B ª 1.Ž . Ž .S l nn n

Ž .Note that in the case of a deterministic search set, 4.6 requires that the
search set in dual space eventually hits A . For certain classes of distribu-ln

Ž .tions see, e.g., the next section , this yields clear-cut recipes for the construc-
tion of the search set. The proposition can also be shown to hold in the

Ž .general case of Theorem 4.1 c , but this will not be needed in the following.

5. Comparison with a traditional random search. The next two
Ž .subsections investigate conditions under which the CLT 4.2 holds for the

traditional uniform random search described in Section 1 and for the search
scheme using Monte Carlo sampling in dual space introduced in Section 3.
The results thus obtained will allow a comparison of the two schemes in
terms of computing time and quality of the approximation in Section 5.3.

5.1. The CLT for approximations with random search. In the following,
� 4 � 4a g b for positive sequences a , b shall mean lim b ra s `, andn n n n nª` n n

a 7 b shall mean that there exists constants 0 - c - c with c F b ra Fn n 1 2 1 n n
c for all n.2

Recall that for the uniform random search i directions e , . . . , e g Sdy1
n 1 in

are chosen i.i.d. according to the uniform distribution on the unit sphere
Sdy1. The search set S is then given byn

² :� 4 � 4S s H : H s x : x , e F t , t g R, e g e , . . . , e .� 4n 1 in

We are interested in necessary and sufficient conditions on the number of
Ž . Ž .directions i for the CLT 4.2 to hold under the assumptions Theorem 4.1 b .n

Proposition 4.2 shows that no general answer can be given as the behavior of
the sets A depends on the underlying distributions. We will thereforeln

restrict ourselves in the following to distributions F and G with f U and f U
F G

being twice continuously differentiable in a neighborhood of t . This smooth-0
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ness requirement is not as restrictive as it might look at first sight; it is, for
example, not necessary that F have a density in order for f U to meet thisF
condition: for example, let F be the uniform distribution on the unit circle in
R2. Then

1 1
U < <f t s 1 y arccos 1 t G 1 ,Ž . Ž .F ž /< <p t

which is twice continuously differentiable except on the unit sphere. The
underlying reason is that the projection of F inherent in the computation of
f U is a smoothing operation.F

If f U and f U are twice continuously differentiable in a neighborhood of t ,F G 0
< U < < U U < U Ž .then so is f s f y f in some neighborhood of t because f t / 0,Z F G 0 Z 0

and we get the expansion

X 2U U < <5.1 f t s f t q 1r2 t y t H t y t q o t y t .Ž . Ž . Ž . Ž . Ž . Ž .Z Z 0 0 0 0

Ž . < U <The linear term does not appear in 5.1 because f has a maximum at t .Z 0

Ž .THEOREM 5.1. Assume the conditions of Theorem 4.1 b and further that
f U and f U are twice continuously differentiable in a neighborhood of t withF G 0

Ž .the Hessian H in 5.1 being nonsingular. Then a necessary and sufficient
Ž . m ncondition for the CLT 4.2 to hold under the law F m G m m , where theSn

search set S is generated by uniform sampling as described above, is that then
number of directions i satisfiesn

i nyŽ dy1.r4 ª `, n ª `, d ) 1.n

5.2. The CLT for approximations with a pilot estimate in dual space. For
the approximation procedure using the pilot estimate in dual space, fix a
compact set B containing 0 in its interior and assume that the dual of the
unique maximizing halfspace falls into B. Shifting the data as described in
Section 3 allows for an analogous treatment in the general case.

Denote by

f U ? 1 ?Ž . Ž .F BU s5.2 f ? sŽ . Ž .F UH fB F

Žthe standardized dual density on B. Using Proposition 2.2 one readily checks
U . U sthat H f ) 0 for the aforementioned B . Likewise, F denotes the corre-B F

sponding probability measure. The dependence on B will be suppressed for
notational simplicity.

For the purpose of estimating f U and f U we will use kernels fromF G
the class KK of all compactly supported pth-order kernels, so that K g KKp p

Ž . j Ž . Ž .satisfies HK s 1 and HK t Ł t i dt s 0 for all coordinate vectors t i gis1
� 4 Ž . Ž .t , . . . , t and 1 F j - p. See, for example, Hardle 1990 or Silverman 1986¨1 d
for the use of higher-order kernels to reduce the bias.
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Žs . ydŽ . ŽŽ . . Ž .We will use the abbreviation f x s Hs K y y x rs f y dy for posi-
tive s and a real-valued function f on Rd. The dependence on K shall be
suppressed as the kernel used will be clear from the context. Also write

Ž . ŽŽ . .K ? s K ?y x rs . Finally, we will later require that K has polyno-x, s x, s

Ž .mial discrimination; see, for example, Pollard 1984 for background on
empirical process theory.

Recall steps 1 and 2 of the algorithm for the approximation procedures
given in Section 3: after drawing an auxiliary sample of size k from the
random measure FU s, a kernel estimate of f U can be obtained by computingm Fm

Ž U s. yd Ž U s.I F s K , where F denotes the stochastic empirical in dualF m k k x, s m km k

space, that is the empirical measure obtained by drawing k points i.i.d. from
U s U Ž . m Ž � 4U .the dual empirical measure F , I [ H f s 1rm Ý Vol B l X ,m F B F is1 im m

and s is a bandwidth to be chosen. As indicated in Section 3, it is advanta-k
geous to combine the auxiliary sampling and density estimation procedures
for f U with that for f U in order to avoid the computation of the scalingF Gm n

factors I and I . One can obtain an empirical of size k from the signedF Gm n

measure with density proportional to

5.3 f U s I f U s y I f sŽ . Z F F G Gm , n m m n n

on B by way of the following algorithm:

Without loss of generality assume m F n, so mrn F 1.
For i s 1, . . . , k do:

� 4Sample an integer p uniformly from 1, . . . , m q n .
< � 4U < < <If p F m, accept p with probability B l X r B . If p is accepted,p

< � 4U <set p s p and sample a point V uniformly from B l X .i p
Ž .Ž < � 4U < < <.If p ) m, accept p with probability mrn B l Y r B . If p ispym

<accepted, set p s p and sample a point W uniformly from B li
� 4U <Y .pym

Repeat until a point p is accepted.

Observe that given p F m, V is generated from the density f U s. Thus wei Fm
U s Ž . q

qobtain V , . . . , V i.i.d. from the density f , given X, Y , where N [1 N Fmk Ž .Ý 1 p F m denotes the total number of points V generated. Analogously,is1 i
U s Ž . y q

yW , . . . , W are i.i.d. from the density f , given X, Y , where N s k y N .1 N G n
Ž .Denote by m X, Y, k the random measure that generates the auxiliary

sample of size k according to the algorithm above, given the original sample
Ž .X, Y . Then

Um < < < <� 4Ý B l X r Bis1 i
m X, Y, k p F m sŽ . Ž . U Ui m n< < < < < < < <� 4 � 4Ý B l X r B q mrn Ý B l Y r BŽ .is1 i is1 i

IFms .
I q IF Gm n
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Hence the signed empirical measure

Nq Ny1
d ? y d ?Ž . Ž .Ý ÝV Wi iž /k is1 is1

comes indeed from a signed measure with density on B proportional to f U
Zm , n

Ž . Ž .in 5.3 , given X, Y .
U Ž .This leads to the following kernel estimator of f r I q I at x g B:Z F G

Nq Ny1
ydˆ5.4 f x [ d y d s K .Ž . Ž . Ý Ýk V W k x , si i kž /k is1 is1

In the following we will work with this estimator based on an auxiliary
sample of size k originating from the combined sampling scheme just de-
scribed. The results that will be obtained concerning the quality of the
approximation also apply to the simpler sampling and estimation scheme
using two auxiliary samples of size k as described earlier in this section and
in step 1 of the algorithm in Section 3. As already mentioned before, that
procedure is, however, computationally more intensive.

To derive a CLT it is necessary to let k depend on the sample size n, so we
ˆŽ .will use the notation k n in the future. The dependence of f on thek Žn.

Ž .original sample X, Y is suppressed for notational simplicity, but keep in
Ž .mind that the auxiliary sample is drawn conditionally on X, Y .

ˆAs described in step 2 of the algorithm in Section 3, the estimator f willk Žn.
be evaluated only on a finite evaluation set T s T . If the evaluation set T isn n

ˆ< <a deterministic grid with too big a mesh size, however, arg max f mayT k Žn.n

not get close enough to t . To overcome this we construct the elements of our0
search set by

ˆˆ5.5 t s arg max f q U ,Ž . k Žn. R nTn

where U is an independent random variable uniformly distributed on theR n

Ž .ball B 0 . Adding a small uniform random variable may not be necessary ifR n

T is obtained in a random way, but we will pursue a treatment as general asn

�� 4U � 4U4ˆ ˆpossible here. The search set of halfspaces t , . . . , t then consists of i1 i nn

� 4U Ž . Ž ..ˆindependent copies of t from 5.5 , conditional on X, Y , that is, each copy
is computed from a different auxiliary sample in dual space.

�� 4U � 4U4ˆ ˆTHEOREM 5.2. Let the search set of halfspaces S s t , . . . , t ben 1 in

generated as described above, with the evaluation set T putting at least onen
Ž .point within O r of t with probability tending to 1, where r is specifiedn 0 n

Ž .below, k n ª ` and K g KK such that K has polynomial discriminationp x, s

Ž . Uand is uniformly bounded. Under the conditions of Theorem 4.1 b with fF
U Ž .and f p times p G 2 continuously differentiable in a neighborhood of tG 0

Ž .and the Hessian H in 5.1 being nonsingular, a sufficient condition for the
Ž . m n Ž Ž Ž ...inCLT 4.2 to hold under F m G m m X, Y, k n is the existence of a
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positive sequence r ª 0 withn

log k nŽ .
2 d r pq4r c ,n k nŽ .

dy1r4n
y1r2q« 2n F r for some « ) 0 and i ª `.n n ž /rn

5.6Ž .

Ž .Then R in 5.5 can be chosen according ton

Ž .1r 3ddy1r4n
r g R F r i .n n n n ž /ž /rn

One sees that, unlike in the case of a random search in Theorem 5.1, the
Žsmoothness of the dual densities reflects on the size of the search sample at

least in terms of the sufficient conditions of Theorem 5.2; we did not prove
.necessity of those conditions : a large p allows for r shrinking to 0 faster, son

i can increase more slowly.n

5.3. A comparison of the two search schemes. Sections 5.1 and 5.2 give a
way to compare the performance of the uniform random search with the
search scheme using a pilot estimate in dual space. We will look at three
different versions of the latter scheme, using different sizes for the auxiliary
samples and different evaluation methods for the pilot estimate. All three are
set up in such a way that the computational burden of computing the pilot
estimate and evaluating the halfspace distance at its dual is of the same
order as that of the halfspace evaluation in one direction for the uniform
random search. So the complete search procedure of computing the search set
�� 4U � 4U4ˆ ˆt , . . . , t and evaluating the halfspace distance on this search set1 in

entails a computational burden that is of the same order as performing a
uniform random search in i directions.n

Computing the one-dimensional Kolmogorov]Smirnov statistic of the m q
n projected data requires sorting, which cannot be done faster than in
Ž . w Ž . xO n log n steps see, e.g., Knuth 1973 , Chapter 5 . Projecting the data takes
Ž . Ž .O n steps, so the overall burden for the uniform random search is O n log n

for each of the i directions.n
1r2 ˆŽ . < <First, let k n s n and compute f at the location of the auxiliaryk Žn.

Ž Ž ..sample only. Evaluating the density estimate at one point takes O k n
Ž Ž .2 . Ž .steps, so the overall burden is O k n s O n , which also includes generat-

ing the auxiliary sample according to the algorithm given in Section 5.2
ˆw Ž Ž ..x < <burden O k n , finding the maximum of f at the locations of thek Žn.

w Ž Ž ..xauxiliary sample O k n and evaluating F and G at the dual of them n
w Ž .xcomputed pilot estimate O n . So the computational burden for each of the

i elements in the search set is indeed of at most the same order as that ofn
the uniform random search in each of the i directions. Shifting the data asn
described in Section 3 introduces only a constant factor. If we choose r cn
ny1r2 d, one readily checks that, with probability tending to 1, at least one

Ž .point of the auxiliary sample falls into B t . Hence, by Theorem 5.2 ther 0n
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Ž . yŽ dy2.r4CLT 4.2 will hold if i satisfies i n ª `. So, compared with then n
uniform sampling of Theorem 5.1, the computational complexity is reduced by

Ž .one dimension. Condition 5.6 is satisfied for this choice of r if 1rp q 2rd -n
1r2 and y1r2 q « - y1rd, which necessitates p ) 2 and d ) 4.

The next scheme is set up to achieve as high a dimension reduction as
Ž . Žpossible. Let k n s n log n and let T be a grid on B which preferablyn

. y1r dshould be a hypercube here with mesh size r s n in each direction.n
Ž .Evaluating the densities at the O n points of T with the fast Fouriern

Ž dŽ 1r d ..transform takes O n log n steps, so the overall burden including gener-
ating the auxiliary sample and finding the maximum on T is up to log-termsn

Ž . Ž . yŽ dy4.r4comparable to O n log n . Condition 5.6 becomes i n ª ` andn
2rp q 4rd - 1, y1r2 q « - y2rd, which necessitates p ) 2, d ) 4. So the
complexity is reduced by up to three dimensions.

By choosing r larger one can relax the conditions on d and p at the costn
Ž .of saving less computing time. Letting k n s n and T be a grid of mesh sizen

y1r2 d Ž .r s n in each direction gives a burden of O n , which is caused by then
generation of the auxiliary sample. Evaluating the densities on T by the fastn

Ž 1r2 dŽ 1r2 d ..Fourier transform takes only O n log n steps. By choosing r thisn
large we need to satisfy i nyŽ dy2.r4 ª `, 1rp q 2rd - 1 and y1r2 q « -n
y1rd, which now necessitates p ) 1, d ) 2.

One also sees that in the case p s 2 one may attain computational savings
of almost three dimensions for large d by choosing r slightly larger thann
ny1r d.

Another informative way to compare the two approximation schemes is to
compute the probability of getting close to the empirical halfspace distance.
For this purpose we need not impose any smoothness or other assumptions
on the underlying distributions F and G. Also, we will use a very simple
implementation of the estimate scheme in dual space to see how this case
compares with the uniform random search. We take a simple uniform kernel

Ž . Ž < Ž . <. Ž .on the unit ball to estimate the dual densities, K ? s 1r B 0 1 ? , with1 B Ž0.1
d 2 Ž . Ž .a bandwidth s shrinking to 0 slowly enough: s a c log k n rk nk Žn. k Žn. k Žn.

� 4for a bounded sequence a . The evaluation set T is taken to be then n
auxiliary sample. It is not necessary here to add a uniform random variable

ˆ< < Ž .to arg max f in 5.5 .T k Žn.n
< Ž . Ž . < Ž .We are interested in the event sup F H y G H ) d F , G y « ,H g S m n m nn

where « ) 0 and S is the respective search set.n
The next proposition compares the two search schemes with regard to this

criterion:

Ž .PROPOSITION 5.3. Let nrm ª l G 0, n ª `, k n ª `. Then under the
uniform random search scheme m using i directions as described in SectionS nn

Ž .5.1, given X, Y ,
inm sup F H y G H ) d F , G y « s 1 y 1 y b « ,Ž . Ž . Ž . Ž .Ž .S m n m n m , nž /n

HgSn

« ) 0,
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where

dy1 dy1b « s m s g S : sup F A s, t y G A s, tŽ . Ž . Ž .Ž . Ž .m , n m n½ž
tgR

) d F , G y « ,Ž .m n 5 /
Ž . � ² : 4 dy1 Ž .A s, t s x: x, s F t , m denotes normalized d y 1 -dimensional Haus-

dorff measure on the unit sphere Sdy1 in Rd, and

lim sup b «Ž .m , n
nª`

dy1 dy1F m s g S : sup F A s, t y G A s, t G d F , G y «Ž . Ž . Ž .Ž . Ž .½ 5ž /
tgR

F m m Gn -a.s.Ž .
In the case where the search set S is obtained by computing i copies of then n

Ž Ž ..pilot estimate in dual space under the search scheme m X, Y, k n as de-
Ž .scribed in Section 5.2 and above, given X, Y ,

inm X, Y, k n sup F H y G H ) d F , G y «Ž . Ž . Ž . Ž .Ž .Ž . m n m nž /
HgSn

ins 1 y 1 y p « , « ) 0,Ž .Ž .m , n

where
Uˆ� 4p « s m X, Y, k n F y G tŽ . Ž . Ž .Ž . Ž .Žm , n m n

5.7 ) d F , G y « ª 1, n ª `,Ž . Ž . .m n

F m m Gn -a.s. for all « ) 0.Ž .

One sees that the probability of approximating the empirical halfspace
distance up to a prescribed error with a given number of trials is much higher
with the second scheme if the sample size n is large. This is exactly the
situation where one is in need of a computationally efficient method.

6. A simulation study. This section presents a small simulation study
to assess the behavior of the two search schemes in a computing environment
commonly in use at the time this article is being written.

We will consider situations in two and three dimensions. In R2, samples
are drawn from the distributions

F s 1r2 N y1, y2 , I q N y1, 2 , IŽ . Ž . Ž .Ž . Ž .Ž .
and

G s 1r2 N 1, y2 , I q N 1, 2 , I .Ž . Ž . Ž .Ž . Ž .Ž .
Ž . Ž .One then verifies that d F, G s 2F 1 y 1 s 0.682 . . . with the optimally

separating hyperplane given by x s 0. In R3 we will use1

F s 1r2 N y1, y2, 0 , I q N y1, 2, 0 , IŽ . Ž . Ž .Ž . Ž .Ž .
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and
G s 1r2 N 1, y2, 0 , I q N 1, 2, 0 , I .Ž . Ž . Ž .Ž . Ž .Ž .

Ž . Ž .In this situation one also has d F, G s 2F 1 y 1 s 0.682 . . . and the opti-
mally separating hyperplane satisfies x s 0. Using mixture distributions1
complicates the task of finding an approximation to the halfspace distance,
because a halfspace H separating away a component of the mixture gives

< Ž . Ž . <also a high value of F H y G H and may detract search schemes from
finding the correct separating hyperplane.

Ž . y1r2We will use equal sample sizes n s m and k n s n for the auxiliary
Ž .sample in dual space, where we restrict ourselves to the compact set B s B 02

and employ the shifting mechanism given in Section 3. A Gaussian kernel is
used to estimate the dual density, using the points of the auxiliary sample as

Ž .y1rŽdq4.evaluation set. We let the bandwidth shrink with a rate of k n ,
Ž . ˆas recommended in Silverman 1986 . Once a pilot estimate t is found in

< < � 4Uˆdual space, F y G is evaluated not only at the halfspace t , but them n
Kolmogorov]Smirnov statistic is computed for the projected data along the

< <ˆ ˆdirection tr t . This version of the search scheme allows reuse of the code for
the uniform random search. The sorting algorithm employed there is the
Ž .O n log n algorithm M01CAF from the NAG library of FORTRAN subrou-

tines. The random number generators are also taken from there.
< � 4U <Here are the explicit formulae for computing B l X in the case d s 2

and d s 3, as required in the algorithm that generates the auxiliary sample
in Sections 3 and 5.2. Using Fubini’s theorem one computes the volume
< � 4U < Ž .B l X in the two-dimensional case with B s B 0 asr

1¡
2 < <r p , if X F ,

r
U ~� 4B l X s

p 1 1 1
2r q 1 y q arcsin , otherwise,( 22¢ < < < <ž /2 X r X< <r X

and in the three-dimensional case as

4 1¡
3 < <r p , if X F ,

3 rU ~� 4B l X s 22 r 1
3p r q y , otherwise.3¢ ž /< <3 X < <3 X

After samples of size n are generated from F and G, a uniform random
search is run with 30 random directions. Then 30 pilot estimates are com-
puted via Monte Carlo sampling in dual space and the samples are evaluated
in the resulting directions. This whole process, including the generation of
samples from F and G, is repeated for 1000 runs. For each of the two search
schemes, the 30 evaluations in the directions given by the respective search

< Ž . Ž . <sets, ev s sup F H y G H , k s 1, . . . , 30, yield the estimates ofk H g ? ? ? m n
ˆthe halfspace distance d s max ev , i s 1, . . . , 30, where i de-i ks1, . . . , i k n nn n
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Ž .FIG. 4. Average relative error versus time d s 2, n s 100,000 .

notes the size of the search set. The relative errors

d̂ y 2F 1 y 1 r 2F 1 y 1 , i s 1, . . . , 30,Ž . Ž .Ž . Ž .ž /i nn

were recorded. The averages of each of these 30 relative errors, obtained over
1000 runs, together with their respective computing times are plotted in
Figures 4 and 5. All computing times refer to a SUN SPARCstation 1 q
workstation.

The first example in Figure 4 treats the case d s 2 and n s 100,000. Each
of the i evaluations took about 5.7 seconds for the uniform random searchn
and 7.2 seconds for the search in dual space and the evaluation in the
direction found.

For the second case d s 3, n s 100,000 in Figure 5, the respective times
are 5.9 seconds and 8.1 seconds.

The examples show that the approximations using a pilot estimate in dual
space converge much faster to the halfspace distance than those obtained by
a uniform random search.

7. Proofs.

PROOF OF THEOREM 2.3. One checks that all relevant maps are measur-
Ž .able. Using the duality relation 3.1 and Fubini, one obtains the following for
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Ž .FIG. 5. Average relative error versus time d s 3, n s 100,000 .

a measurable set A ; Rd:

U UU � 4 � 4F ¬ A s F a da s 1 x g a dF x daŽ . Ž .Ž .H H HB
AlB AlB

U� 4s 1 a g x da dF xŽ .Ž .HH
AlB

U U� 4 � 4B l x l A B l x
s c dF x . IŽ .UHB � 4B l x cB

� 4UPROOF OF LEMMA 3.1. a is a halfspace if a / 0, so the set on the LHS
� ² : 4consists only of hyperplanes. Conversely, let H s x: x, u s t for real t
< <and a unit vector u be a given hyperplane. If t G 1rr, set a s urt g

Ž . � 4 Ž� 4U . � 4U � ² : 4B 0 R 0 . Then ­ a y ce s ­ a s ­ x: x, urt F 1 s H.r 0 '< < <² : < < <In the case t - 1rr observe that u, e s u G 1r d for some j gj j
� 4 d 2 < ² : <1, . . . , d , as Ý u s 1. Hence r c u, e q t G 1 and thusis1 i j

² : � 4a [ ur c u , e q t g B 0 R 0 .Ž .Ž .j r
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Further,

u uU� 4­ a y ce s ­ x : x , F 1 y ce ,Ž .j j¦ ; ¦ ;½ 5² : ² :c u , e q t c u , e q tj j

1 1
² :s ­ x : x , u F t½ 5² : ² :c u , e q t c u , e q tj j

s H . I

Ž .PROOF OF THEOREM 4.1. Part a can be proved similarly to Proposition 1
Ž .in Beran and Millar 1986 . For later use we rewrite the stochastic equiconti-

Ž . Ž .nuity property 4.2 in Beran and Millar 1986 for the present setting: for
every « ) 0 and h ) 0 there exists g ) 0 such that

U U'lim sup P sup n f t y f tŽ . Ž .Ž .Z Zm , nž
nª` Ž .G g7.1Ž .

X XU U'y n f t y f t ) h - « ,Ž . Ž .Ž .Z Zm , n /
Ž . �Ž X. Ž .Ž� ² : 4 � ² X: 4. 4where G g s t, t : F q G x: x, t F 1 ` x: x, t F 1 - g .

Ž .We will also use a theorem of Wichura 1970 to the effect that there exist& &
U U U˜ ˜Ž . Ž . Ž . Ž .representations f and W with LL f s LL f , LL W s LL W andZ Z Zm , n m , n m , n&

U U ˜'5 Ž . 5 Ž . Ž .n f y f y W ª 0 a.s. For part b note that assumption i implies`Z Zm , n

< U Ž . <f t ) 0 and thus t / 0. AlsoZ 0 0

5 U U 57.2 « [ f y f ª 0 a.s., n ª `,Ž . `n Z Zm , n

by the Glivenko]Cantelli theorem for halfspaces.
Ž . Ž .We will deduce b from the general part c . To see the problem arising in

the general case, observe that

5 U 5 < U <7.3 f s sup fŽ . `Z Zm , n m , n
A2« n

Ž . 5 < U < < U < 5by i and because f y f F « , so our analysis can be localized to`Z Z nm , n

A . In the general case, however, the stochastic equicontinuity property2 « n

Ž . < U <7.1 is not applicable at t with respect to the neighborhood A : f may0 2 « Zn

be continuous at t while f U changes sign due to an atom of F or G at0 Z
< < 2t r t ; or mass at that point may cancel in F y G while the discontinuities0 0

U U U U' 'Ž . Ž .in the limits of the sample paths of n f y f and n f y f do notF F G Gm n

cancel, but add up.
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Ž . 5 U 5In the general case c observe that when « - f r4 then`n Z

U U U U U UT f ; f y f F lim sup sign f t f t y inf f tŽ . Ž . Ž .Ž . Ž .Z Z Z Z Z Zž /m , n m , n« x0 A«A«

U U5 5F lim sup f t y f q «Ž . `Z Zž /m , n« x0 A«

F T f U y T f UŽ .Ž .Z Zm , n

U U< < 5 5s sup f y f by 7.3Ž .`Z Zm , n
A2« n

7.4Ž .

U UF sup f t y f tŽ . Ž .ž /Z Zm , n
A2« n

s sup sign f U t f U t y f U t .Ž . Ž . Ž .Ž .ž /Z Z Zm , n
A2« n&

U ˜Ž .Switch to the representation f , W and setZm , n &
U U U'C s n sign f t f t y f tŽ . Ž . Ž .ž /n Z Z Zm , n

and
R s sup C y lim sup C .n n n

« x0A A2« «n

Ž .Then 7.2 and the fact that the convergence of sup C is uniform in « giveA n«

U ˜7.5 lim sup sup C F lim sup sign f t W s lim lim sup C a.s.Ž . Ž .Ž .n Z n
nª`« x0 « x0nª` A A A2« « «n

Ž . Ž .So R s o 1 as R G 0, and therefore 7.4 yieldsn p n

7.6 T f U y T f U s T f U ; f U y f U q o ny1r2 .Ž . Ž . Ž .Ž . Ž .Z Z Z Z Z pm , n m , n

Ž .The CLT for the empirical halfspace distance is a consequence of 7.6 and
Ž .7.5 .

Ž5 5 . wUsing the fact that LL W has a density see, e.g., Beran and Millar`
U U y1'Ž . x Ž 5 5 . Ž .1986 , Proposition 2 , one concludes n f y f s O 1 . Together`Z Z pm , n

Ž . Ž .with 7.6 this proves 4.1 in the general case.
The assertions for the smooth case will follow once it is shown that

U U U'lim sup sign f t n f t y f tŽ . Ž . Ž .Ž .ž /Z Z Zm , n« x0 A«7.7Ž .
U U U'y sign f t n f t y f t s o 1 .Ž . Ž . Ž . Ž .Ž .Z 0 Z 0 Z 0 pm , n

Ž . Ž .As a consequence of i , there exists a function r ? with
7.8 lim r « s 0 and A ; B t .Ž . Ž . Ž .« r Ž« . 0

« x0
U Ž . UTogether with f t / 0 and the continuity of f at t , which follows fromZ 0 Z 0

Ž . U Ž . U Ž . Ž .ii , this allows us to eliminate sign f t and sign f t in assertion 7.7 .Z Z 0
Ž . Ž .Then 7.7 will follow from 7.1 upon verify that, for given g ) 0,

² : ² :� 4B t ; t : F q G x : x , t F 1 ` x : x , t F 1 - g� 4Ž . Ž .� 4Ž .r 0 0

Ž .if r is small enough. This inclusion is a consequence of ii . I
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PROOF OF PROPOSITION 4.2. The last inclusion in the previous proof and
Ž . Ž .7.1 show that the continuity assumption ii allows us to write a stochastic

U U'Ž . Ž Ž . Ž ..equicontinuity condition at t for the process W t s n f t y f t :0 m , n Z Zm , n

For every « ) 0 and h ) 0 there exists a Euclidean neighborhood U of t0
such that

lim sup P sup W t y W t ) h - « .Ž . Ž .m , n m , n 0ž /
nª` tgU

Therefore

7.9 W t y W t ª 0 in probability as n ª `Ž . Ž . Ž . Ž .m , n n m , n 0

� 4for every sequence of random variables t converging to t in probability, asn 0
wŽ . xis readily verified or looked up in Pollard 1984 , page 140 .

For the necessity part of the proposition, let

t s arg max U f U tŽ .n t g �H : H g S 4 Zn m , n

and suppose first

7.10 t ª t in F m m Gn m m -probabilityŽ . Ž .n 0 Sn

is not valid. Then, along a subsequence n ,s

mŽn s. n s < <F m G m m t : t y t ) r ) h for some r , h ) 0.� 4ž /ž /S n n 0n s ss

U U' Ž Ž . Ž ..cTogether with sup n f t y f t ª y` a.s., which is a conse-t g B Ž t . Z Z 0r 0 m , n

Ž . Ž . Ž .quence of 7.2 and 7.8 , one sees that along n , that LHS in 4.4 convergess
Ž mŽn s. n s .to y` with F m G m m -probability at least h, contradicting theSn s

Ž . Ž .CLT 4.4 . So 7.10 holds. Now write

U U U U' 'n sup f t y f t s n f t y f tŽ . Ž . Ž . Ž .Ž .Z Z 0 Z n Z nž /m , n m , n
U� 4tg H : HgS7.11Ž . n

U U'q n f t y f tŽ . Ž .Ž .Z n Z 0

and suppose

U Um n 'lim sup F m G m m t : n f t y f t - y«Ž . Ž .� 4Ž .Ž . Ž .S n Z n Z 0n7.12 nŽ .
) 0 for some « ) 0.

Ž . Ž .The distribution of the first term in 7.11 converges to the law of W t by0
Ž . Ž . Ž . Ž .7.9 , 7.10 and Theorem 4.1 a . The second term in 7.11 is nonpositive, so
Ž .7.12 forbids that the sum of the two terms converges in distribution to

Ž . Ž .W t , contradicting the CLT 4.4 and therefore0

U Um n 'lim F m G m m t : n f t y f t - y« s 0 for all « ) 0.Ž . Ž .� 4Ž .Ž . Ž .S n Z n Z 0nnª`
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One readily checks that one can replace « in the above equation with some
sequence « x0, son

lim F m m Gn m m t : f U t G f U t y l s 1� 4Ž . Ž .Ž .Ž .S n Z n Z 0 nnnª`

for some l s o ny1r2Ž .n

Ž .and condition 4.6 follows.
Ž . X U Ž .UConversely, if 4.6 holds, let t s arg max f t and observen t g �H : H g S 4 Zn

XU U' 'm 0 G n f t y f t G y n lŽ . Ž .Ž .Ž .S Z n Z 0 nn

s m tX g AŽ .S n ln n
7.13Ž .

� U 4s m A l H : H g S / B ª 1.Ž .S l nn n

Ž . Ž X Ž .. Ž X .It follows from 7.8 that m t g B t G m t g A ª 1. HenceS n r Ž l . 0 S n ln n n n

7.14 tX ª t in m -probability.Ž . n 0 Sn

Write

U U'n sup f t y f tŽ . Ž .Z Z 0ž /m , n
t

U U'G n sup f t y f tŽ . Ž .Z Z 0ž /m , n
U� 4tg H : HgSn

X X XU U U U' 'G n f t y f t q n f t y f t .Ž . Ž . Ž . Ž .Ž .Ž .Z n Z n Z n Z 0m , n

Ž . Ž .The term in the first line converges in distribution to W t by Theorem 4.1 b0
Ž . Ž .and 4.3 . The sum in the third line converges also in distribution to W t by0

Ž . Ž . Ž . Ž .7.9 , 7.14 , Theorem 4.1 a and 7.13 , which asserts convergence to 0 in
probability of the second term. Hence the term in the second line must also

Ž . Ž . Ž .converge in distribution to W t and the CLT 4.2 as stated in 4.4 follows.0
I

< Ž . Ž . <PROOF OF THEOREM 5.1. For the purpose of evaluating F ? y G ? the
search set S is equivalent ton

² :� 4 � 4H : H s x : x , e F t , t G 0, e g e , . . . , e , ye , . . . , ye .� 41 i 1 in n

� 4 � 4The set of duals of these halfspaces is given by span e j ??? j span e ,1 in

disregarding the special case of halfspaces with 0 on their boundaries and all
of Rd, which do not play a role in the treatment of the CLT.

Ž .Reparametrize so that 1r2 H s yI, where I denotes the identity matrix.
Ž . Ž .Then by 5.1 there exist positive constants c and c such that B t ;1 2 c « 0'1

A ; B for small « . Proposition 4.2 yields as necessary and sufficient« c «'2

Ž .condition for the validity of the CLT 4.2 the existence of a positive sequence
Ž y1r4.l s o n withn

� 4 � 4m B t l span e j ??? j span e / B ª 1.Ž . Ž .ž /S l 0 1 in n n
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Ž . � 4The condition B t l span e / B is equivalent to e belonging to a spheri-l 0 i in
dy1 Ž .cal cap on S whose d y 1 -dimensional volume v can be shown ton

satisfy v 7 l dy1. Hencen n

� 4 � 4m B t l span e j ??? j span e / BŽ . Ž .ž /S l 0 1 in n n

i dy1 dy1n < <s 1 y 1 y p where p s v r S 7 lŽ . Ž .n n n n7.15Ž .
s 1 y exp i log 1 y pŽ .Ž .n n

ª 1 iff i log 1 y p ª y` .Ž .n n

yŽ dy1.r4 y1 Ždy1.r4 yŽdy1.r4 1rŽdy1.Ž .'Let i n ª ` and set l s i n n . Then l sn n n n
Ž y1r4.o n and

y1 Ždy1.r4 yŽdy1.r4'i log 1 y p F yi p ª y` as p 7 i n n .Ž .n n n n n n

Ž . Ž yŽ dy1.r4. Ž .Conversely, assume 7.15 holds with p s o n . As log 1 y x )n
Ž .y2 x for small positive x, we get i log 1 y p ) y2 i p and hence i p ªn n n n n n

`, which implies i nyŽ dy1.r4 ª `. In

PROOF OF THEOREM 5.2. The important ideas and statements of the proof
Ž .will be given. For the details see Walther 1994 .

As K g KK and f U is p times continuously differentiable in a neighbor-p F
hood of t , a Taylor expansion shows that there exists a neighborhood N of t0 0

Žs .U U Up< < Ž .where sup f y f s O s , s ª 0, and the same holds for f . TogetherN F F G
Ž . d 2with Theorem 5.1 in Romano 1988 one can show that s a ck Žn. k Žn.

Ž . Ž . � 4 Ž .log k n rk n for a bounded and k n ª `, n ª `, implies that theren
Ž .exists a neighborhood N t of t such that0 0

Uˆsup f x y f x r I q IŽ . Ž . Ž .k Žn. Z F G
Ž .xgN t lB07.16Ž .

y1r2q«y1r2q« pg max a , n , k n , sŽ .ž /k Žn. k Žn.

Ž Ž .. Ž m n.in m X, Y, k n -probability F m G -a.s. for all « ) 0, and if in addition
s ª 0, thenk Žn.

Uˆ7.17 sup f x - f t r I q I y dŽ . Ž . Ž . Ž .k Žn. Z 0 F G
CŽ Ž ..xg N t lB0

Ž Ž .. Ž m n.with m X, Y, k n -probability tending to 1, F m G -a.s. for some d ) 0.
ˆ< Ž . <We are now in a position to establish a rate at which arg max f xT k Žn.n

can converge to t if the evaluation set T is chosen appropriately:0 n

PROPOSITION 7.1. Under the assumptions of Theorem 5.2, if s d a 2 ck Žn. k Žn.
Ž . Ž . Ž . � 4 � 4log k n rk n as k n ª `, then for all positive sequences r , R withn n
Ž . Ž y1r2q« Ž .y1r2q« p . 2r s o R , r ª 0 and max a , n , k n , s F r eventu-n n n k Žn. k Žn. n
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ally, for some « ) 0,

ˆ ˆinf f y sup f ) 0k Žn. k Žn.
Ž .B t Cr 0 Ž .B tn R 0n

Ž Ž .. Ž m n.with m X, Y, k n -probability tending to 1, F m G -a.s.

Ž . Ž .PROOF. Reparametrize so that 1r2 H s yI in 5.1 , which then implies
U 2 U U 1 2< Ž . < < < < Ž . < < Ž . < < <that f t y 2 t y t F f t F f t y t y t for t in some neigh-Z 0 0 Z Z 0 02

< U Ž . < < U Ž . <borhood of t . Outside that neighborhood f t F f t y c for some c ) 00 Z Z 0
U U 12 2Ž . < < < < Ž .Cby assumption i . Hence inf f y sup f G y2r q min c, RB Ž t . Z B Ž t . Z n n2r 0 R 0n n

2Ž .G 3r I q I for large n, and thereforen F G

ˆ ˆinf f y sup fk Žn. k Žn.
Ž .B t Cr 0 Ž .B tn R 0n

< U <G inf f r I q IŽ .Z F G
Ž .B tr 0n

U U< <y max f t r I q I y d , sup f r I q IŽ . Ž . Ž .Z 0 F G Z F Gž /
C Ž .B tR 0n

y1r2q«y1r2q« py 2 max a , n , k n , sŽ .ž /k Žn. k Žn.

with m X, Y, k n -probability tendingŽ .Ž .
m nto 1, F m G -a.s. by 7.16 , 7.17Ž . Ž . Ž .

and because B t ; N t eventuallyŽ . Ž .r 0 0n

< U < < U <G min inf f y f t q d I q I ,Ž . Ž .Z Z 0 F Gž Ž .B tr 0n

U U 2< < < <inf f y sup f I q I y 2rŽ .Z Z F G n/Ž .B t Cr 0 Ž .B tn R 0n

eventuallyŽ .
UG 0 eventually, because ii implies that f is continuous at t . IŽ . Z 0

2r p 2 Ž .To prove Theorem 5.2 now set s s r and a s r . Then r s o R ,k Žn. n k Žn. n n n
d 2 Ž . Ž . Ž y1r2q« Ž .y1r2q« p . 2s a c log k n rk n and max a , n , k n , s F rk Žn. k Žn. k Žn. k Žn. n

w Ž .eventually for some « ) 0 so the condition on r in 5.6 is chosen to let rn n
decrease to 0 as fast as possible while obeying the conditions of Proposition

x Ž .7.1 . As the evaluation set T has one point within O r of t with proba-n n 0
ˆ< < Ž .bility tending to 1, Proposition 7.1 gives arg max f g B t with pro-T k Žn. R 0n n

Ž . Ž .ˆ y1 y1r4bability tending to 1. Using 5.5 this implies that t g B t withr R n 0n n

Ž y1r4 2 .d Ž .probability at least c r n rR for some c ) 0 if k n is large enough. Son n
� 4 Ž . Žˆ ˆ y1 y1r4the probability that the set t , . . . , t hits B t is at least 1 y 1 y1 i r R n 0n n n

Ž y1r4 2 .d .inc r n rR , which converges to 1, because if R is chosen as noted inn n n
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Theorem 5.2, then

d dy1r4 y1r4r n r nn n
i log 1 y c F yi cn n2 2ž / ž /ž /R Rn n

y2r3d dy1r4 y1r4n n
F yi c in nž / ž /ž /r rn n

1r3dy1r4n
s yc i ª y`.n ž /ž /rn

Ž .The assertion of the theorem now follows from Proposition 4.2, using 5.1 as
in the proof of Theorem 5.1. I

The following lemma will be needed for the proof of Proposition 5.3:

LEMMA 7.2. Denote by MM d the set of probability measures on Rd thats
concentrate on a finite number of singletons. Then:

Ž . � < U < d4 � < U < d4i The set f : F, G g MM is dense in f : F, G g MM in theFyG s FyG
5 5? -norm.`

Ž . dii The following continuity property holds at each a g R : for every
« ) 0, h ) 0 there exists r ) 0 such that

U U7.18 inf sup f a y f x F « .Ž . Ž . Ž .Z Z
Ž .zgB a Ž .h xgB zr

UH f t dtŽ .B Ž x . Zr U5 5iii lim sup sup - f for all « ) 0.Ž . `ZB xŽ .Crª0, r)0 rxgA«

Ž .PROOF. Part i can be deduced from large sample theory: as a conse-
� < U < d4quence of the Glivenko]Cantelli theorem for halfspaces, f : F g MM isF s

� < U < d4 Ž .dense in f : F g MM . As for ii , note that for fixed d ) 0 the map K:F
Ž² : .a ¬ P a, X - 1 q d is lower semicontinuous by the Portmanteau theo-

Ž . Ž .rem. Hence there exists a ball centered at a where K ? G K a y « and
Ž .y1 U Ž . ŽŽ . .therefore on some ball centered at z s 1 q d a: f ? G K 1 q d ? GF

Ž . U Ž . Ž .K a y « G f a y « . Using Proposition 2.2, ii follows.F
Ž . Ž . dAs for iii , use part i of the lemma to find F , G g MM that satisfys s s

5 < U < < U < 5f y f - «r4. One checks that as F and G concentrate on a`FyG F yG s ss s

finite number of singletons, those give rise to a partition of Rd into a finite
number of polyhedral sets such that f U is constant in the interior of eachF yGs s

such set and the values of f U on the boundary coincide with those in theF yGs s

interior of one of the adjacent polyhedral sets. This implies the existence of
Ž . Ž . dconstants a s a F , G ) 0 and r s r F , G such that for all x g R ands s 0 0 s s
< U Ž . < < U Ž . < Ž .r F r one has f ? F f x on a subset of B x with Lebesgue0 F yG F yG rs s s s
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< Ž . <measure at least a B x . Thusr
UH f t dtŽ .B Ž x . FyGrsup

B xŽ .C rxgA«

U U5 5f x q «r2 a B x q f 1 y a B xŽ . Ž . Ž . Ž .Ž . `FyG r FyG rF sup
B xŽ .C rxgA«

r small enoughŽ .
«

U U5 5 5 5F f y « q a q f 1 y a by the definition of AŽ . Ž .` `FyG FyG «ž /2
«a

U5 5s f y . I`FyG 2

PROOF OF PROPOSITION 5.3. A straightforward calculation gives the asser-
wŽ . Ž .xtion for the uniform random search; see also Beran and Millar 1986 , 1.6 .

The inequality concerning lim sup b follows from Fatou’s lemma andnª` m , n
the Glivenko]Cantelli theorem for halfspaces.

As for the second scheme, note that
Ž .sU k Žn.f xŽ .Zˆsup f x y ª 0Ž .k Žn. I q IŽ .xgB F G

Ž Ž .. Ž m n.in m X, Y, k n -probability F m G -a.s. This follows from Theorem 5.1 in
Ž . Ž . Ž .Romano 1988 and Theorem 4.1 a ; see Walther 1994 for the details. So

ˆ C< Ž . < Ž Ž ..when f x is evaluated on A l B, with m X, Y, k n -probability tend-k Žn. « r2
5 U 5 Ž .ing to 1 the result will be smaller than f r I q I y h for some h ) 0,`Z F G

because
Ž .Ž . rrU U U< < 5 5lim sup sup f x F lim sup sup f x - fŽ . Ž . `Z Z Z

C Crª0, r)0 rª0, r)0xgA lB xgA lB« r2 « r2

ˆŽ . Ž . < <by Lemma 7.2 iii . On the other hand, by the continuity property 7.18 , fk Žn.
will eventually be evaluated at a point in A l B where the resultŽ I qI .hr3F G

5 U 5 Ž .will eventually be bigger than f r I q I y hr2. So the evaluation`Z F G
C ˆpoints in A l B will not be chosen as points of maxima and hence t falls« r2

Ž Ž ..in A with m X, Y, k n -probability tending to 1. The Glivenko]Cantelli« r2
Ž .theorem for halfspaces 7.2 completes the proof. I
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