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HEAVY TAIL MODELING AND TELETRAFFIC DATA1
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Huge data sets from the teletraffic industry exhibit many nonstandard
characteristics such as heavy tails and long range dependence. Various es-
timation methods for heavy tailed time series with positive innovations
are reviewed. These include parameter estimation and model identification
methods for autoregressions and moving averages. Parameter estimation
methods include those of Yule–Walker and the linear programming estima-
tors of Feigin and Resnick as well estimators for tail heaviness such as the
Hill estimator and the qq-estimator. Examples are given using call holding
data and interarrivals between packet transmissions on a computer net-
work. The limit theory makes heavy use of point process techniques and
random set theory.

1. Introduction. Classical queuing and network stochastic models con-
tain simplifying assumptions guaranteeing the Markov property and insuring
analytical tractability. Frequently, interarrivals and service times are assumed
to be iid and typically underlying distributions are derived from operations on
exponential distributions. At a minimum, underlying distributions are usually
assumed nice enough that moments are finite.

Increasing instrumentation of teletraffic networks has made possible the
acquisition of large amounts of data. Analysis of this data is disturbing since
there is strong evidence that the classical queuing assumptions of thin tails
and independence are inappropriate for this data. Video conference data and
packet counts per unit time in Ethernet traffic appear to exhibit long range
dependence and self-similarity [Beran, Sherman, Taqqu and Willinger (1995);
Beran (1994); Willinger, Taqqu, Leland and Wilson (1995)] while such phenom-
ena as file lengths, cpu time to complete a job, call holding times, interarrival
times between packets in a network and lengths of on/off cycles appear to be
generated by distributions which have heavy tails [Duffy, McIntosh, Rosen-
stein and Willinger (1993, 1994); Meier–Hellstern, Wirth, Yan and Hoeflin
(1991); Willinger, Taqqu, Sherman and Wilson (1997).

Although we will not dwell heavily on long range dependence in this survey,
it is instructive to quickly view in Figure 1 a video conferencing data set in
excess of 48,000 data. The top graph is the time series plot and the bottom plot
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Fig. 1. Autocorrelations of video conferencing data.

is the sample autocorrelation function (acf), graphed out to 700 lags. Usual
short range dependent data sets would show a sample correlation function
dying after only a few lags and then persisting within the magic 95% confi-
dence window determined by Bartlett’s formula [see, e.g., Brockwell and Davis
(1991)]. However the video conference data has an acf showing significant
correlations for hundreds of lags. This data also exhibits self-similarity; see
Beran, Sherman, Taqqu and Willinger (1995), Garrett and Willinger (1994).

It is logical and natural to question whether departures from classical queu-
ing assumptions matter that much. There is persistent skepticism about the
importance of correctly detecting heavy tails or long range dependence which
is founded on unverified faith in the robustness of classical assumptions and
perhaps, understandably, a bit of inertia. Also, mathematical analysts have
been slow to embrace these features since queues and networks with such
complex inputs are difficult to analyze mathematically. However there is sim-
ulation evidence [e.g., see Livny, Melamed and Tsiolis (1993)] that correctly
accounting for dependence and correctly modeling tail heaviness is crucial.
Resnick and Samorodnitsky (1997) verify that for a simple G/M/1 queue, a
stationary input with long range dependence can induce heavy tails for the
waiting time distributions and for the distribution of the number in the sys-
tem. The inputs in the Resnick and Samorodnitsky model are of the form of
interarrivals �Tn� of customers where �Tn� is stationary with a form of long
range dependence. The dramatic degradation of system performance exem-
plified by heavy tailed outputs compared with what would be predicted by a
model satisfying classical assumptions indicates that the phenomena of long
range dependence and heavy tails cannot be ignored if estimation of network
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capacity is the goal. This point will undoubtedly receive more systematic study
in the near future and it is expected that long range dependence and heavy
tails will be of critical importance for even crude first-order solutions of and
guidelines for a wide range of network engineering problems.

It is becoming increasingly clear that there are strong connections between
long range dependence and heavy tails, but these connections have not yet
been systematically explored. The Resnick and Samorodnitsky (1997) paper
suggests that long range dependent inputs to a queuing system can induce
heavy tailed outputs. It is also clear that heavy tails can induce long range
dependence. Consider the following example of an on/off model for packet
transmission of a source and destination pair fashioned after one described in
Willinger, Taqqu, Sherman and Wilson (1997) and discussed in Heath, Resnick
and Samorodnitsky (1997): we have a stationary alternating renewal process
[Resnick (1992)] with counting function �N�t�; t ≥ 0� and renewal times
�Sn; n ≥ 0�. A renewal interval consists of an on period which has distribu-
tion Fon and an off period with distribution Foff . Let the means of Fon and
Foff be µon and µoff , respectively. Set µ = µon+µoff . The process �N�t�� can be
constructed to be stationary by flipping a coin to decide if the process starts in
an on or off period, and then choosing the right residual distribution. The coin
chooses on with probability µon/�µon + µoff �. If the coin indicates for example
on, then after the initial residual period, we alternate independent off periods
with independent on periods. N�t� is the number of points corresponding to
termination of off periods in �0; t�. Next, we may define the stationary process
�Zt; t ≥ 0� so that Zt = 1 iff t is in an on period. If

1−Fon�t� = t−αL�t�; t→∞; 1 < α < 2

1−Foff �t� = o
(
1−Fon�t�

)
; t→∞;

where L�t� is slowly varying, then

Cov�Z0;Zt� ∼
µ2

off

�α− 1�µ3
t−�α−1�L�t�; t→∞:

The slow rate of decay of the covariance function is characteristic of long range
dependence.

The effects of heavy tails in the inputs to an associated reservoir model
are quite dramatic. Suppose the alternating renewal process controls inputs
to the reservoir; water flows into the reservoir at unit rate in on periods and
evaporates at rate r > µon/µ during off periods. Let X�t� be the contents of
the reservoir at time t. Then because of the regenerative nature of �X�t�� we
have

X�t� ⇒X�∞�

and it follows that the limit distribution of X�∞� is heavy tailed

P�X�∞� > x� ∼ �const�x−�α−1�L�x�:
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These results follow by standard results in the theory of regularly varying
functions; see Resnick (1987), de Haan (1970), Bingham, Goldie and Teugels
(1987), Geluk and de Haan (1987).

This model is a simplified idealization but effectively illustrates the simple
way in which heavy tails can induce long range dependence. Traffic on an
Ethernet system can be considered as a superposition of traffic from many
source–destination pairs. Willinger, Taqqu, Sherman and Wilson (1997) show
how superimposing independent copies of the Zt process and taking limits
in a suitable manner yields fractional Brownian motion [Samorodnitsky and
Taqqu (1994)] as a limit. This offers one plausible explanation for the observed
self-similar nature of Ethernet traffic.

This example serves as a reminder that for modeling the data the following
choices must be faced.

1. Is it better to use structural models such as on/off models where specific
physical features are accounted for? Structural models which successfully
capture relevant features have immediate connections to applications. Here
the engineering comfort level may be high and there may be some possibil-
ity of analytical work succeeding if such physical models are used as model
inputs.

2. Or should we use black box models from time series analysis? Such models
ignore physical structure but have a long tradition in data analysis. They
may be easier for analysts who do not have the close ties to engineers
required to intelligently construct structural models. Furthermore, such
models may be applicable across a broad range of disciplines.

If we use structural models, there is no guarantee we have correctly sum-
marized relevant features. Statistical verification of goodness of fit can be
challenging. The probability analysis may be easier but the statistics may be
harder. Time series models have an advantage of being applicable across a
broad range of disciplines. However, if we use time series models, we have
to decide whether to use linear or nonlinear models. Linear models are the
simplest, but there is no guarantee that in the heavy tailed world they form
a large flexible class. In traditional finite variance time series modeling based
on Hilbert space methodology, the Yule–Walker estimators guarantee that any
correlation structure may be mimicked out to any fixed number of lags by au-
toregressions of a suitable order [see Brockwell and Davis (1991), page 240]
and in this very limited sense linear models are sufficient for data analysis.
For infinite variance models, we have no such confidence that linear models
are adequately flexible and in fact the theoretical perspective offered by Rosin-
ski’s (1995) work as well as some data experience [Resnick (1997); Feigin and
Resnick (1996)] make this unlikely.

This is an important point because evidence is emerging that for heavy
tailed modeling there are significant differences in the behavior of key sum-
mary statistics depending on whether the model is linear or nonlinear. For
example, consider the sample autocorrelation function (acf). In the heavy
tailed case, it is best to define it as follows: if the stationary time series is
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�Xt; t = 0;±1;±2; : : :� then define for h = 0;1; : : :

ρ̂H�h� =
∑n−h
i=1 XtXt+h∑n

i=1X
2
t

:

This substitutes for the usual correlation function in finite variance time series
modeling. If the model is linear, the sample acf at lag h converges in probability
to a constant depending on h [Davis and Resnick (1985a,b, 1986)] but if the
model is nonlinear, Davis and Resnick (1996) show that the sample acf at lag h
may converge in distribution to a nondegenerate random variable depending
on h.

Sets of data displaying characteristics of heavy tails are encountered in di-
verse fields other than teletraffic engineering, for example in hydrology [Gum-
bel (1958); Castillo (1988)], economics and finance [Koedijk, Schafgans and de
Vries (1990); Janson and de Vries (1991)] reliability and structural engineer-
ing [Grigoriu (1995)]. Because of the diversity of applications and because
heavy tails are one of the causes of long range dependence, we expect interest
in the detection and modeling of heavy tailed phenomena to grow and hope the
survey which follows will contribute to understanding the uses and limitations
of the growing body of techniques.

Section 2 discusses some mathematical background of regular variation and
specifies the type of heavy tailed models we will study. Section 3 focuses on the
obvious steps in heavy tailed modeling: detecting heavy tails and detecting de-
pendencies. We describe various graphical techniques of an exploratory nature
which can be helpful but point out some limitations. Heavy tailed autoregres-
sive models have been successfully studied and relevant model selection and
estimation methods are summarized in Section 4, which also contains some
brief remarks on the bootstrap. An example is provided in Section 5. Section
6 contains some closing remarks.

2. Background for heavy tailed models.

2.1. Regular variation. What is a heavy tail? The bulk of statistical work
deals with light tails, which decay exponentially fast as typified by the normal
distribution tail, since by Mills’ ratio, as x→∞,

P�N > x� ∼ n�x�
x
= 1√

2π

exp�−x2/2�
x

→ 0:

Contrast this with a typical heavy tail such as possessed by the Pareto distri-
bution: X has a Pareto tail with index α > 0 if, for x > 0,

P�X > x� = x−α; x > 1:

More generally, we say X has a heavy tailed distribution F if

�2:1� P�X > x� = x−αL�x�;
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where L is slowly varying; that is, for x > 0,

�2:2� lim
t→∞

L�tx�
L�t� = 1:

Note that when X ≥ 0,

E�Xβ� <∞; β < α;

E�Xβ� = ∞; β > α:

Typical slowly varying functions include the following examples:

L�x� = c+ o�1�; x > 0;

= log x; x > 1;

= log�log x�; x large;

= 1/ log x; x > 1:

In the first example of L where L�x� = c + o�1�, the term o�1� may look
innocent and harmless but can wreak havoc and there can be a big difference
between detecting Pareto tails and detecting, say, tails of stable distributions
[Samorodnitsky and Taqqu (1994)] where

1−F�x� ∼ x−α; x→∞:
This point is illustrated by examples in Section 3.1.

Another way to express (2.1) is to say that 1−F is regularly varying with
index −α: a distribution F concentrating on �0;∞� has a tail 1−F�x� which
is regularly varying with index −α, α > 0 (written 1−F ∈ RV−α) if

�2:3� lim
t→∞

1−F�tx�
1−F�t� = x

−α; x > 0:

The distribution tail 1 −F is second order regularly varying with first-order
parameter −α and second-order parameter ρ (written 1−F ∈ 2RV�−α; ρ�) if
there exists a function A�t� → 0; t→∞ which ultimately has constant sign
such that the following refinement of (2.3) holds:

�2:4�
lim
t→∞
�1−F�tx�/�1−F�t��� − x−α

A�t�

=H�x� x= cx−α
∫ x

1
uρ−1 du; x > 0;

for c 6= 0. Note that for x > 0,

H�x� =





cx−α log x; if ρ = 0;

cx−α
xρ − 1
ρ

; if ρ < 0:

It follows that �A� ∈ RVρ and no other choices of ρ are consistent with A�t� →
0: See de Haan and Stadtmüller (1996), Geluk and de Haan (1987).
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Regular variation is the basic analytic theory underlying extreme value the-
ory and stable processes [de Haan (1970), Geluk and de Haan (1987), Bingham,
Goldie and Teugals (1987); Resnick (1987), Samorodnitsky and Taqqu (1994)].
Second-order regular variation has proven very useful and natural for estab-
lishing asymptotic normality of extreme value statistics (see the discussion in
Section 3 on the Hill estimator) and also for the study of rates of convergence
to extreme value and stable distributions [de Haan and Resnick (1996), de
Haan and Peng (1995a,b,c), Smith (1982)].

There is a well-developed technique for integrating regularly varying func-
tions called Karamata’s theorem which roughly says that when one integrates
a regularly varying function, one may treat the slowly varying function as a
constant.

2.2. Point processes and random measures. Mathematical and asymptotic
properties of heavy tailed models are analyzed with heavy reliance on weak
convergence theory and point process techniques. Occasionally mildly exotic
items like weak convergence of random closed sets are necessary [Feigin and
Resnick (1994)]. The central role of point processes for the mathematical anal-
ysis of heavy tailed phenomena is well documented [Resnick (1986, 1987,
1991)] and will not be emphasized here beyond some reminders about nota-
tion and one central result. In what follows M+�E� is the set of positive Radon
measures on a nice locally compact space E; Mp�E� is the set of point mea-
sures. M+�E� is metrized by the vague metric [cf. Kallenberg (1983), Resnick
(1987), Neveu (1976)]. We denote weak convergence of random elements or
probability measures by ⇒ and →v denotes vague convergence of measures
in M+�E�. For x ∈ E and A ⊂ E, define

εx�A� =
{

1; if x ∈ A;
0; otherwise.

A Radon point measure with points in E is denoted
∑
i εxi . The collection of all

such point measures is Mp�E�. The following two results giving weak conver-
gence results for special random measures provides the necessary theoretical
background.

Proposition 2.1. Let m =m�n� be a sequence satisfying m→∞; m/n→
0 as n→∞.

(i) Suppose for each n that �Zj�n�; j ≥ 1� are iid random elements of the
space E. The sequence of point processes

n∑
j=1

εZj�n�; n = 1;2; : : :

converges weakly to a limiting Poisson process on E with mean measure ν iff

E

( n∑
j=1

εZj�n��·�
)
= nP�Z1�n� ∈ ·�

v→ ν�·�:
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(ii) Suppose for each n that �Yj�n�; j ≥ 1� are iid random elements of the
space E. The sequence of random measures

m

n

n∑
j=1

εYj�n�; n = 1;2; : : :

converges weakly to a limiting nonrandom measure ν ∈M+�E�, iff

E

(
m

n

n∑
j=1

εYj�n��·�
)
=mP�Y1�n� ∈ ·�

v→ ν:

Part (i) of the proof is Proposition 3.21, page 154 in Resnick (1987) and part
(ii) is 3.57, page 161, Resnick (1987) and is also given in Resnick (1986).

An application of Proposition 2.1 of immediate interest to analysis of heavy
tailed phenomena is as follows: let �Zj; j ≥ 1� be iid and nonnegative with
common distribution F. Set E = �0;∞�; b�t� = F←�1 − 1/t� where F← is
the left continuous inverse of the monotone function F, Zj�n� = Zj/b�n�,
Yj�n� = Zj/b�m� and m = m�n� is a sequence satisfying m→∞, m/n→ 0
as n→∞. Also, the measure ν is given by ν��x;∞�� = x−α. We then have the
following equivalences to the regular variation condition given in (2.3).

1. We have in M+�E�,

nP

[
Z1

b�n� ∈ ·
]

v→ ν:

2. In M+�E�,

Nn x=
n∑
j=1

εZj/b�n� ⇒N∞;

where N∞ is a Poisson process on E with mean measure ν.
3. In M+�E�,

νn x=
m

n

n∑
j=1

εZj/b�m� ⇒ ν:

2.3. Heavy tailed time series models. We will try to model data with linear
time series models, but keep in mind that although this class of models is
relatively simple, there is no guarantee that it is adequate. In particular, this
choice of class excludes nonlinear models and such random coefficient models
as ARCH and GARCH, which are dearly beloved in economics. Linear time
series models is familiar territory but one often encounters the situation that
many statistical techniques are tried in the heavy tailed domain because they
work in the finite variance arena, and this is fairly weak justification.

We will deal with moving average processes of order infinity, written
MA(∞). These are specified as follows: let �Zt; −∞ < t <∞� be iid and non-
negative with common distribution F satisfying (2.3). For suitable constants
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�cj�, define

�2:5� Xt =
∞∑
j=0

cjZt−j; t = 0;±1; : : : :

Summability conditions must be assumed for the �cj� to guarantee that the
random series in (2.5) converges; the following is typically assumed:

∞∑
j=0

�cj�δ <∞ for some 0 < δ < α ∧ 1:

Note we assumeZj ≥ 0 but only assume cj ∈ R. It may be mildly puzzling and
even controversial to assume positive Z’s but the sort of data that we have in
mind to model is inherently positive, and if the support ofZi included negative
values, it would be difficult to preclude an Xt from taking negative values
with positive probability. Furthermore, there is an important practical reason
for the assumption: without this assumption limit distributions of important
statistics are a mess and the only practical alternative to assuming positivity
is to assume the distribution of the Z’s is symmetric, which seems more harsh
than assuming positivity.

Of course, the usual classical models are special cases of MA(∞) [cf. Brock-
well and Davis (1991)]. These include:

1. Autoregressions of order p, abbreviated AR(p):

Xt =
p∑
j=1

φjXt−j +Zt; t = 1; : : : ; n:

2. Finite order moving averages of order q, written MA(q):

Xt =
q∑
j=0

θjZt−j; t = 1; : : : ; n:

3. Autoregressive moving average processes with orders p;q written
ARMA(p;q):

Xt =
p∑
j=1

φjXt−j +
q∑
j=0

θjZt−j; t = 1; : : : ; n:

In each case, the process can be written as an MA�∞�.
Issues in a classical context when fitting time series models to data must

also be dealt with in the heavy tailed case. These include:

1. Model selection: Is ARMA a good choice of a parametric family and if so,
which ARMA should we choose; that is, how do we choose p and q?

2. Parameter estimation: After p and q are chosen, how do you estimate pa-
rameters f;u, α, and so on?

3. Confirmation: After model selection and estimation have been accom-
plished, how does one confirm that the fitted model is an adequate
description of what produced the data?
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4. Given a well-selected, estimated and confirmed model, what can you do
with it? Predict? There does not seem to be any practical prediction theory
for heavy tailed phenomena, but if a good fit to the data has been achieved,
synthetic data can be fed into a network model to try to estimate things
like the distribution of the time to buffer overflow.

3. First steps for heavy tailed modeling. Suppose one is inclined to try
fitting a heavy tailed model to a data set. The following seems like a rational
set of exploratory first steps:

1. Decide if the data could plausibly be explained by a heavy tailed model.
2. Try to assess if there is dependency in the data.

We take up these two steps in turn.

3.1. Are heavy tails present? To help with assessing whether heavy tails
are present and to estimate the index α in (2.3), various exploratory plotting
techniques are available. These are based on the Hill estimator and the qq–
plot. We begin with the Hill estimator, which is widely used.

3.1.1. The Hill estimator. Suppose X1; : : : ;Xn are iid from a distribution
F. Let

X�1� > X�2� > · · · > X�n�
be the order statistics. If F has an exact Pareto distribution,

1−F�x� = x−α; x > 1;

then taking logarithms logX1; : : : ; logXn yields a sample from an exponential
density with parameter α. Since the mean is α−1, the maximum likelihood
estimator (mle) of α−1 is the sample mean and thus

Hn =
1
n

n∑
i=1

logX�i�

is the mle of α−1: If instead of assuming a Pareto distribution, we only assume

1−F�x� = x−αL�x�; x→∞;
then we may pick k < n and define the Hill estimator [Hill (1975)] to be

Hk;n =
1
k

k∑
i=1

log
X�i�
X�k+1�

:

Note that k is the number of upper-order statistics used in the estimation.
The rough idea behind using only k upper-order statistics is that you should

only sample from that part of the distribution which looks most Pareto-like.
A more precise explanation is that conditional on X�k+1�, the sample

X�1�
X�k+1�

; : : : ;
X�k�
X�k+1�
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is distributed like the order statistics from a sample of size k from the distri-
bution with tail

1−F�xX�k+1��
1−F�X�k+1��

; x ≥ 1:

Because of (2.3), if X�k+1� is large, the regular variation condition implies that

1−F�xX�k+1��
1−F�X�k+1��

≈ x−α

and thus it seems sensible to do what we did in the Pareto case.
Here are the theoretical properties of the Hill estimator.

Proposition 3.1. Suppose �Xt� is stationary and the marginal distribu-
tion satisfies

P�X1 > x� = x−αL�x�; x→∞:
If either

(i) �Xt� is iid [Mason (1982)] or
(ii) �Xt� is weakly dependent [Rootzen, Leadbetter and de Haan (1990);

Hsing (1991)] or
(iii) �Xt� is an MA(∞) process [Resnick and Stărică (1995, 1996b)]

then if n→∞ and k→∞ but k/n→ 0, we have

�3:1� Hk;n

P→ α−1

and usually (one needs an extra unverifiable assumption on the distribution
such as second-order regular variation and a further restriction on k) Hill’s
estimator is asymptotically normal. For the iid case we have

�3:2�
√
k�Hk;n − α−1� ⇒N�0; α−2�:

Our purposes would not be served by worrying about the precision of the
statement of Proposition 3.1 but note the form of the asymptotics: we need to
let k→∞ but k/n→ 0. So k, the number of upper order statistics used in the
estimation, is considered a function of n, the sample size. We note that regular
variation is equivalent to consistency of the Hill estimator in a manner made
precise in Mason (1982) and second-order regular variation is equivalent to
asymptotic normality of Hill’s estimator in a manner made precise in Geluk,
de Haan, Resnick and Stărică (1997). The condition of second-order regular
variation controls the bias EHk;n − α−1: See also Csörgő and Mason (1985),
Davis and Resnick (1984), Dekkers and de Haan (1989), Hall (1982), Mason
(1988), Mason and Turova (1994), Resnick and Stărică (1997).

Proofs of the facts given in Proposition 3.1 can be based on the following
observation. Suppose the Hill estimator is based on the stationary observa-
tions �X1; : : : ;Xn�, which have marginal distribution G�x� = P�X1 ≤ x�, and
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quantile function

b�t� = G←�1− t−1�:
For this sequence of X’s, define the tail empirical process as in Section 2.2 by

νX;n�·� =
1
k

n∑
i=1

εXi/b�n/k��·�:

Suppose

νX;n�·�
P→ ν�·�

where ν�x;∞� = x−α; x > 0. Simple inversion and scaling arguments show
that it then follows that the same limit relation follows with b�n/k� replaced
by X�k�, the kth largest order statistic. Since

Hk;n =
∫ ∞

1
log y

1
k

n∑
i=1

εXi/X�k��dy�;

it appears that the convergence of the random measures can drag with it the
convergence of the integral functional Hk;n. This argument is the one given
in Resnick and Stărică (1995). The philosophy can also be adapted to verify
asymptotic normality at least when the sequence �Xn� is iid.

In practice, the Hill estimator is used as follows: we graph

��k;H−1
k;n�; 1 ≤ k ≤ n�

and hope the graph looks stable so you can pick out a value of α.
Sometimes this works beautifully but sometimes there are problems and it

pays to be on good terms with a higher power. Consider Figure 2, which shows
two cases where the procedure is heart-warming. The top row are time series
plots. The top left plot is 4045 simulated observations from a Pareto distri-
bution with α = 1 and the top right plot is 4045 telephone call holding times
indexed according to the time of initiation of the call. Both plots are scaled
by division by 1000. The range of the Pareto data is (1.0001, 10206.477) and
the range of the call holding data is (2288,11714735). Readers with teenagers
living at home or who use a modem to dial into remote computers will not be
surprised that call holding times can be heavy tailed. The bottom two plots are
Hill plots ��k;H−1

k;n�; 1 ≤ k ≤ 4045�, the bottom left plot being for the Pareto
sample and the bottom right plot for the call holding times. Both Hill plots
are gratifyingly stable after settling down and are in a tight neighborhood.
The Hill plot for the Pareto seems to nail α = 1 correctly and the estimate in
the call holding example seems to be between 0.9 and 1. (So in this case, not
only does the variance not exist but the mean appears to be infinite as well.)
The Hill plots could be modified to include a confidence interval based on the
asymptotic normality of the Hill estimator, but we have not done this.

The Hill plot is not always so revealing. Consider Figure 3, which has come
to be known as the Hill Horror Plot. The left plot is for a simulation of size
10,000 from a symmetric α-stable distribution with α = 1:7: One would be



HEAVY TAIL MODELING AND TELETRAFFIC DATA 1817

Fig. 2. Time series and Hill plots for Pareto �left� and call holding �right� data.

hard pressed to discern the correct answer of 1.7 from the plot. The middle
plot is for a sample of size 10,000 called perturb from the distribution tail

1−F�x� ∼ x−1�log x�10; x→∞;

so that α = 1. The plot exhibits extreme bias and comes nowhere close to
indicating the correct answer of 1. The problem of course is that the Hill esti-
mator is designed for the Pareto distribution and thus does not know how to
interpret information correctly from the factor �log x�10 and merely readjusts
its estimate of α based on this factor rather than identifying the logarithmic
perturbation. The third plot is 783 real data called packet representing inter-
arrival times of packets to a server in a network. The problem here is that
the graph is volatile and it is not easy to decide what the estimate should be.

Here is a summary of difficulties when using the Hill estimator.

1. How do you get a point estimate from a graph? What value of k do you use?
2. The graph may exhibit considerable volatility and/or the true answer may

be hidden in the graph.
3. The Hill estimate has optimality properties only when the underlying dis-

tribution is close to Pareto. If the distribution is far from Pareto, there may
be outrageous bias even for sample sizes such as 1,000,000.
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Fig. 3. The Hill Horror Plot.

For point 1, several previous studies advocate choosing k to minimize the
asymptotic mean squared error of Hill’s estimator [Hall (1982), Dekkers and
de Haan (1991), de Haan and Peng (1995d)]. There are several problems with
such formulas. First, they require one to know the distribution rather ex-
plicitly and thus, although interesting and welcome, are not a practical so-
lution although there is a possibility of adaptively modifying the procedure
which would improve on practicality. Second, the formulas are frequently only
asymptotic formulas and asymptotic equivalence is often not helpful for finite
samples. If k∗ = k∗�n� is the choice of k which minimizes the asymptotic mse,
then an equally acceptable asymptotic solution is

k∗1 =
(

1+ 1096

n

)
k∗:

Even if one accepts a value of k∗ for finite n from a displayed formula, this
does not always work well in practice.

For point 2, there are simple smoothing techniques which always help to
overcome the volatility of the plot, and plotting on a different scale frequently
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overcomes the difficulty associated with the stable example. These techniques
are discussed in the next paragraph. For the bias problem, there is no com-
pletely satisfactory resolution yet. Two possibilities under investigation are
the bootstrap and fitting within a smaller parametric family.

3.1.2. SmooHill: smoothing the Hill estimator. A simple smoothing tech-
nique [Resnick and Stărică (1997)], although powerless to correct bias, reduces
the volatility of the plot and the uncertainty about how to pick out an estimate
of α: Pick integer u (usually 2 or 3) and define the SmooHill estimator:

SmooHk;n x=
1

�u− 1�k
uk∑

j=k+1

Hj;n:

The asymptotic variance of the Hill estimator Hk;n is 1/α2. The asymptotic
variance of SmooHk;n is less, namely:

1
α2

2
u

(
1− log u

u

)
:

The bigger the u, the more the asymptotic variance is reduced. However, there
is a tradeoff between variance reduction and the fact that for large u fewer
points are plotted in SmooHill. Usually we pick u between n0:1 and n0:2 where
n is the sample size.

3.1.3. Alt plotting: changing the scale. As an alternative to the Hill plot,
it is sometimes useful to display the information provided by the Hill estima-
tion as

{(
θ;H−1

�nθ�; n
)
; 0 ≤ θ ≤ 1

}
;

where we write �y� for the smallest integer greater or equal to y ≥ 0. We
call such a plot the alternative Hill plot, abbreviated AltHill. The alternative
display is sometimes revealing since the initial order statistics get shown more
clearly and cover a bigger portion of the displayed space. This method was
suggested by C. Stărică and efforts are currently underway to quantify the
improvement.

We return now to the examples given in Figure 3. Figure 4 gives four views
of the Hill plot of the stable data where α = 1:7. The traditional Hill plot offers
little hope of correctly discerning the answer, but the alternate scale of AltHill
in the upper right seems to reveal the answer fairly clearly. The bottom left
plot is the SmooHill plot in alt scale and the bottom right presents both Hill
and SmooHill in alt scale together.

Figure 5 analyzes the packet interarrival data introduced for Figure 3 and
displays the Hill analysis in a manner parallel to the previous Figure 4. The
Hill plot might lead one to guess a value of α of about 0.8 until one notices with
unease that this occurs around k = 400 which means θ = log�400�/ log�783� =
0:899: Picking k midway between 1 and 783 or picking θ so close to 1 seem
unwise. Examining AltSmooHill makes α = 1:1 a more likely choice. The
sample size of 783 seems too small to provide much assurance of a correct
estimate.
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Fig. 4. Stable, α = 1:7.

3.1.4. Alternative estimators: qq-plotting. The following statement, while
not precise, is suggestive: the closer the underlying distribution F is to Pareto,
the better the Hill estimator seems to do. The qq-plot can help assess this. This
graphical technique is a commonly used method of visually assessing goodness
of fit and of estimating location and scale parameters. See for example Rice
(1988) and Castillo (1988). It can be adapted to the problem of detecting heavy
tails and for estimating the α. It rests on the simple observation that for a
sample of size n uniformly distributed on �0;1�, since the spacings are iden-
tically distributed, plotting i/�n+ 1� vs. the ith largest in the sample should
yield approximately a straight line of slope 1.

Suppose �X1; : : : ;Xn� are iid with distributionF. Pick k upper order statis-
tics

X�1� > X�2� > · · ·X�k�
and neglect the rest. Plot

�3:3�
{(
− log

(
1− j

k+ 1

)
; logX�j�

)
; 1 ≤ j ≤ k

}
:

If the data is approximately Pareto or even if 1−F is only regularly varying
and satisfies (2.3), this should be approximately a straight line with slope =
1/α. The slope of the least squares line through the points is an estimator
called the qq-estimator [Kratz and Resnick (1996)]. Computing the slope we
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Fig. 5. Hill plots for packet interarrivals.

find that the qq-estimator is given by

α̂−1
k;n =

[
1
k

k∑
i=1

(
− log

(
i

�k+ 1�

))
log

(
X�i�
X�k+1�

)

− 1
k

k∑
i=1

(
− log

(
i

k+ 1

))
Hk;n

]

×
[

1
k

k∑
i=1

(
− log

(
i

�k+ 1�

))2

− 1
k

k∑
i=1

(
− log

(
i

�k+ 1�

))2]−1

(3.4)

There are two different plots one can make based on the qq-estimator. There
is the dynamic qq-plot obtained from plotting ��k;1/α̂−1

k;n�; 1 ≤ k ≤ n�
which is similar to the Hill plot. Another plot, the static qq-plot, is obtained
by choosing and fixing k, plotting the points in (3.3) and putting the least
squares line through the points while computing the slope as the estimate of
α−1.

The qq-estimator is consistent if k→∞ and k/n→ 0 and under a second-
order regular variation condition and further restriction on k�n�, it is asymp-
totically normal with asymptotic variance 2/α2: This is larger than the asymp-
totic variance of the Hill estimator, but bias and volatility of the plot seem to be
more of an issue than asymptotic variance. The volatility of the qq-plot always
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seems to be less than that of the Hill estimator. As with the Hill estimator,
sensitivity to choice of k is an important issue.

Figure 6 compares the Hill plot with the dynamic qq-plot for the call holding
data and Figure 7 does the same thing for the packet interarrival data. Figure
8 gives two static qq-plots for the call holding data, one using k = 3500 and the
other using k = 1500, yielding estimates of α of 0.95 and 0.977, respectively.
For this data set, the estimators are unusually insensitive to the choice of k;
the Hill plots and the dynamic qq-plots are quite stable and the static qq-
plots do not change much as k varies. Figure 9 gives two static qq-plots for
the packet interarrival data. The data set is only 783 in length and now there
is some sensitivity to k.

3.1.5. De Haan’s moment estimator. The extreme value distributions
[Resnick (1987), de Haan (1970), Leadbetter, Lindgren and Rootzen (1983),
Castillo (1988)] can be parameterized as a one-parameter family

Gγ�x� = exp�−�1+ γx�−γ−1�; γ ∈ R; 1+ γx > 0:

When γ = 0, we interpret G0 as the Gumbel distribution

G0�x� = exp�−e−x�; x ∈ R:
A distribution whose sample maxima when properly centered and scaled con-
verges in distribution to Gγ is said to be in the domain of attraction of Gγ,

Fig. 6. Hill and qq-plots for call holding times.
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Fig. 7. Hill and qq-plots for packet interarrivals.

which is written F ∈ D�Gγ�. If γ > 0 and F ∈ D�Gγ�, then 1−F ∈ RV−1/γ: De
Haan’s moment estimator γ̂ [Dekkers, Einmahl and de Haan (1989), de Haan
(1991), Dekkers and de Haan (1991), Resnick and Stărică (1996a)] is designed
to estimate γ from a random sample in the domain of attraction of Gγ. When
γ > 0, this is the same thing as estimating γ = 1/α. Since the exponential,
normal, gamma densities and many others are in the D�G0�, the domain of
attraction of the Gumbel distribution, this provides another method of decid-
ing when a distribution is heavy tailed or not. If γ̂ is negative or very close to
zero, there is considerable doubt that heavy tailed analysis should be applied.

The moment estimator is defined as follows: let X�1� ≥X�2� ≥ · · · ≥X�n� be
the order statistics from a random sample of size n. Define for r = 1;2,

H
�r�
k;n =

1
k

k∑
i=1

(
log

X�i�
X�k+1�

)r

so that H�1�k;n is the Hill estimator. Define

�3:5� γ̂n =H
�1�
k;n + 1− 1/2

1− �H�1�k;n�2/H
�2�
k;n

:

Then, assuming F ∈ D�Gγ�, we have consistency

γ̂n
P→ γ;
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Fig. 8. Static qq-plots for call holding times.

as n → ∞ and k/n → 0. Furthermore under a second-order condition and a
further restriction on k,

√
k�γ̂ − γ� ⇒N;

where N is a normal random variable with 0 mean and variance

σ�γ� =





1+ γ2; if γ ≥ 0;

�1− γ�2�1− 2γ�
(

4− 8
1− 2γ
1− 3γ

+ �5− 11γ��1− 2γ�
�1− 3γ��1− 4γ�

)
; if γ < 0:

The asymptotic variance of the moment estimator exceeds that of the Hill
estimator when γ > 0, so from the point of view of asymptotic variance, there
is no reason to prefer it. However, the moment estimator discerns a light tail
more effectively than the Hill estimator, and thus it is often useful to apply
the moment estimator to see if γ ≤ 0, which would rule out heavy tail analysis.

Figure 10 compares the effectiveness of the moment estimator for discerning
a light tail (γ = 0) with that of of the Hill estimator α = ∞. The Hill estimator
does not seem very reliable for this purpose. Both estimators are applied to
the same random sample of size 1000 taken from an exponential distribution
with unit mean.
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Fig. 9. Static qq-plots for packet inter-arrivals.

Figure 11 shows the moment estimator applied to the call holding data on
the left and the packet interarrival data on the right. Keep in mind when
comparing these graphs with previous graphs that γ = 1/α.

3.2. Are dependencies present? Mature statistical computer packages have
built-in routines to graph the classical sample autocorrelation function (acf)
of the data given by

�3:6� ρ̂�h� =
∑n−�h�
i=1 �Xi − X̄��Xi+h − X̄�∑n

i=1�Xi − X̄�2
:

In the classicalL2 case where the variance of the marginal distribution is finite
and correlations exist, the sample correlation ρ̂�h� estimates the mathematical
correlation ρ�h� and in fact

ρ̂�h� P→ ρ�h�:
In the heavy tailed case where variances and even means may be infinite, there
is no point to the centering by X̄ and the following heavy tailed modification
is more appropriate:

�3:7� ρ̂H�h� =
∑n−�h�
i=1 XiXi+h∑n

i=1X
2
i

:
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Fig. 10. Unit exponential data.

If we have the heavy tailed model given by (2.5),

Xt =
∞∑
j=0

cjZt−j;

where �Zt� are nonnegative, iid and heavy tailed, the mathematical correla-
tions do not exist if α < 2. However ρ̂H�h� still converges to a limiting constant
[Davis and Resnick (1985a,b; 1986)]

�3:8� ρ̂H�h�
P→
∑∞
j=0 cjcj+h∑∞
j=1 c

2
j

x= ρ�h�:

The mean corrected function given in (3.6) also converges in probability to the
same limit. The limit law for ρ̂H�h� is complex and is established in Davis
and Resnick (1986, 1985b). The most tractable case is for α < 1 and is given
as follows.

Proposition 3.2. Suppose α < 1 and for some δ < α,

∞∑
j=0

j�cj�δ <∞:
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Fig. 11. Moment estimator applied to call holding and packet data.

Define the quantile functions

b�n� =
(

1
1−F

)←
�n�; b̃�n� =

(
1

P�Z1Z2 > ·�

)←
�n�:

Then for any l ≥ 1,
(
b̃�n�−1b�n�2�ρ̂H�h� − ρ�h��; 1 ≤ h ≤ l

)
⇒ �Y1; : : : ;Yl�;

in Rl where

Yh =
∞∑
j=1

�ρ�h+ j� + ρ�h− j� − 2ρ�j�ρ�h��Sj
S0
:

Here S0; S1; : : : are independent and S0 is one-sided stable of index α/2 and
S1; S2; : : : are iid, one-sided stable of index α.

Even in this simplest case, the limit distribution is quite complex. [Compare
this with the classical Bartlett formula where the sample acf has a limiting
normal distribution. See Brockwell and Davis (1991), page 221, ff, page 538,
ff.] In distribution, Yh can be reexpressed as

( ∞∑
j=1

�ρ�h+ j� + ρ�h− j� − 2ρ�j�ρ�h��α
)1/αU

V
;
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where U and V are independent, nonnegative stable random variables and
the index of V is α/2 and the index of U is α. So even if the value of α were
known, the percentiles of the distribution of Yh are not easy to obtain and
certainly impossible to obtain analytically.

Nonetheless, ρ̂H can be used as an exploratory tool to make preliminary
investigations of dependence. Note that if the MA(∞) process �Xt� is iid, so
that Xt = Zt, then cj = 0 for j ≥ 1 and for h ≥ 1,

ρ̂H�h�
P→ 0:

This give an exploratory indication of independence: if on graphing the sam-
ple heavy tailed acf, one finds only small values, then it may be possible to
model the data as iid. Similarly, if the sample acf is small beyond lag q, then
there is some evidence that MA(q) may be an appropriate model. Of course,
without firm knowledge of the quantiles of the limit distribution of ρ̂H�h�, it
is impossible to say with precision what small means.

Figure 12 shows the classical acf for the call holding data side by side with
the heavy tailed modification. The right graph of the heavy tailed sample
acf has a dotted line drawn at height h = 0:0035 and the interval �0; h� is
a 95% confidence window analogous to the one given by Bartlett’s formula
[Brockwell and Davis (1991)] in classical time series. The confidence window

Fig. 12. Call holding times.
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Fig. 13. Packet inter-arrivals.

is drawn based on the assumption that the data is independent and has Pareto
tails. According to Theorem 3.3 of Davis and Resnick (1986), h is given by

h = lα1/αn
−1/α

log n
;

where l is the quantile satisfying

P�U/V ≤ l� = 0:95

forU; V independent positive stable random variables with indices α and α/2.
In the case of the call holding data, we used the estimated value of α = 0:97:
The quantile l was estimated by simulation. The position of h relative to
the heights of the sample heavy tailed acf values casts serious doubts on the
assumption of independence. Figure 13 exhibits comparable graphs for the
packet interarrival data. The right heavy tailed graph does not offer evidence
against the hypothesis of independence.

4. Modeling dependent data. Modeling data which is not a realization
of an iid model presents great challenges. There is no guarantee that the sim-
ple linear ARMA models form a large enough subclass of the class of heavy
tailed models that hunting within this class will yield a model with an accept-
able fit to the data.
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From the theoretical point of view, there has been considerable success in
analyzing autoregressive models of order p, abbreviated AR(p). These are
models of the form

�4:1� Xt =
p∑
j=1

φjXt−j +Zt; t = 0;±1;±2; : : : ;

where �Zt� is iid and heavy tailed.
Several methods have been proposed for estimating the coefficients f =

�φ1; : : : ; φp�′. These methods are all consistent and asymptotic distributions
have been worked out. They include:

1. Yule–Walker estimators; after slight modification, these work for heavy
tailed autoregressions [Davis and Resnick (1985a,b; 1986)],

2. Spectral density estimators [Mikosch, Gadrich, Klüppelberg and Adler
(1995)],

3. Least gamma deviation estimators [Davis, Knight and Liu (1991)],
4. Linear programming (LP) estimators [Feigin and Resnick (1992, 1994,

1997); Feigin, Resnick and Stărică (1995); Feigin, Kratz and Resnick
(1996)].

The LP and least gamma deviation estimators have the best rate of con-
vergence. We will only deal with the Yule–Walker and LP methods. For both
methods we review model fitting and estimation.

4.1. The Yule–Walker method. The classical Yule–Walker method is based
on sample correlations. In the heavy tailed context, the heavy tailed sample
correlation function is the basis for fitting and estimation.

4.1.1. Yule–Walker estimation. Recall the definition of ρ̂H�h� and ρ�h�
from (3.7) and (3.8). Suppose 0 < α < 2 and that �Xt� is a stationary,
invertible autoregressive process of order p of the form given by (4.1) which
can be inverted and written as the MA(∞� process

�4:2� Xt =
∞∑
j=0

cjZt−j:

Write cj = 0 if j < 0 so that

ρ�−i� =
∑∞
k=i ckck−i∑∞
k=0 c

2
k

= ρ�i�:

Set

R = �Rij�pi; j=1 = �ρ�i− j��
p
i; j=1; r = �ρ�1�; : : : ; ρ�p��′

and we have the Yule–Walker equation

�4:3� Rf = r;
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where recall f is the p-vector of autoregressive coefficients in (4.1). Further-
more, for every m, the matrix

�4:4� Rm = �ρ�i− j��mi;j=1

is nonsingular, provided
∑
k c

2
k > 0. The heavy tailed Yule–Walker estimator

f̂
YW

of f satisfies

�4:5� R̂f̂
YW = ˆrH;

where

R̂ = �ρ̂H�i− j��pi; j=1; r̂H = �ρ̂H�1�; : : : ; ρ̂H�p��′:

Since r̂H →P r [Davis and Resnick (1985a)] and R̂ →P R as n → ∞, the
consistency of the heavy tailed Yule–Walker estimators follows.

Furthermore, in nice cases (e.g., when α < 1),

b̃�n�−1b�n�2�f̂YW −f�
has a limit distribution which is a function of the limit distribution obtained
for the sample correlation function [Davis and Resnick (1986)]. The rate of
convergence of this limit distribution as measured by b̃�n�−1b�n�2 is inferior
to that of the linear programming estimators.

4.1.2. Model selection based on sample correlations: pacf and AIC. Stan-
dard techniques for model selection based on sample correlations are available
for heavy tailed analysis after minor modification. Define

f∗m =
{ �φ1; : : : ; φm�′; if m ≤ p;
�φ1; : : : ; φp;0; : : : ;0�′; if m ≥ p

and

rm = �ρ�1�; : : : ; ρ�m��′:
For m > p we have

Rmf∗m = rm

and so

f∗m = R−1
m rm:

Recall that in classical time series analysis, the mth component on the right
would be the partial autocorrelation at lag m [Brockwell and Davis (1991),
page 102] and we call the mth component of the m-vector

�4:6� f̂
∗
m = R̂−1

m r̂m

the sample heavy tailed partial autocorrelation function (pacf) at lag m. For
m > p we have

f̂
∗
m

P→ f∗m
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in Rm so that for the mth component we have, when m > p,

φ̂∗m;m
P→ 0:

Again, in simple cases such as when α < 1, we have that for m > p,

b̃nb
2
n�f̂

∗
m −f∗m�

has a limit distribution depending on the limit achieved for the sample acf.
This of course means that the mth component b̃nb2

nφ̂
∗
m;m has a limit distri-

bution.
This yields an exploratory technique for diagnosing when an autoregression

might be a suitable candidate model for a data set. Graph the heavy tailed
sample pacf and if it dies after p lags, try fitting an AR(p). Again, because of
the complexity of the limit distribution, there is difficulty in deciding at what
lag the graph has died.

The classical AIC criterion for order selection is not consistent for selecting
finite variance models since it tends to overestimate the order. Brockwell and
Davis (1991) have a nice example where they simulate an AR(1) process and
then apply the AIC criterion, which insists that the simulated process is an
AR(2). However, the AIC criterion is consistent for heavy tails [Knight (1989a),
Bhansali (1988)]. Define

σ̂2�0� = 1
n

n∑
i=1

X2
i ;

σ̂2�m� = σ̂2�0�
m∏
j=1

�1− φ̂∗j; j�2; m ≥ 1:

The heavy tailed AIC function is defined by

AIC�k� = n log σ̂2�k� + 2k;

and the estimate of p is obtained by minimizing this function:

p̂ = argmin
k≤K

AIC�k�;

where K is an upper bound which is assumed to exist. As n → ∞, p̂ →P p,
the true order.

Graphing �AIC�k�; k ≥ 1� helps in determining the order. In Figure 14 we
display the heavy tailed pacf plot and the AIC plot ��k;AIC�k��; 1 ≤ k ≤ 15�
for 500 simulated data from the heavy tailed AR(2) process

�4:7� Xt = 1:3Xt−1 − 0:7Xt−2 +Zt;

where �Zt� are iid with standard Pareto distribution P�Z1 > x� = 1/x; x ≥ 1:
Both techniques are seen to work quite well. However, for real data, it may
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Fig. 14. Heavy tailed pacf and AIC for simulated AR(2).

be the case that even though AIC�k� has a nice minimum, residual analysis
of the model fitted by the AIC criterion reveals a lack of iid structure in the
estimated residuals, throwing into doubt the goodness of the fit.

4.2. Linear programming estimators. The linear programming (LP) esti-
mators were devised by Feigin and Resnick (1992, 1994) to capitalize on the
assumption that the residuals �Zt� in (4.1) are nonnegative. This work built
on ideas of Davis and McCormick (1989) and Andel (1989).

4.2.1. Linear programming estimation. Assume the innovations �Zt� in
(4.1) are nonnegative with a common distribution whose left endpoint is 0.
The LP estimators of the AR�p� coefficients f are

�4:8� f̂�n� = arg max
d∈Dn

d′1

where 1′ = �1; : : : ;1� and where the feasible region Dn is defined as

�4:9� Dn =
n⋂
t=1

{
d ∈ Rpx Xt −

p∑
i=1

δiXt−i ≥ 0
}
:

Here is a rapid review of one derivation of this estimator: suppose tem-
porarily that the common distribution of the Z’s is unit exponential so that

P�Z1 > x� = e−x; x > 0:
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In this case, conditionally on �X0 = x0; X−1 = x−1; : : : ;X−p+1 = x−p+1�, the
likelihood is proportional to [using I�·� for the indicator function]:

I

( n∧
t=1

(
Xt−

p∑
i=1

φiXt−i

)
≥0
)

exp
{
φ1

n∑
1

Xt−1+φ2

n∑
1

Xt−2+ · · · +φn
n∑
1

Xt−p

}

≈ I
( n∧
t=1

(
Xt −

p∑
i=1

φiXt−i

)
≥ 0

)
exp

{ p∑
i=1

φi

n∑
t=1

Xt

}
:

Assuming that
∑n
t=1Xt is ultimately positive, the corresponding maximum

likelihood estimator will thus be approximately determined by solving the
linear program (LP)

max
( p∑
i=1

φi

)

subject to

Xt ≥
p∑
i=1

φiXt−iy t = 1; : : : ; n:

The simplified approximate form of the objective function is justified by the
fact that

∑n
1 Xt−1/

∑n
1 Xt−i ≈ 1.

Now drop the assumption that the density of the Z’s is exponential. The
LP estimator still gives an estimation procedure with good properties which
is applicable to the heavy tailed case.

The consistency and asymptotic distribution for the LP estimator was es-
tablished in Feigin and Resnick (1992, 1994) and Feigin, Resnick and Stărică
(1995).

Theorem 4.1. Suppose �Xt� is a stationary autoregression given by (4.1)
where �Zt� are iid nonnegative innovation variables with common distribution
F, which has a regularly varying tail of index −α. Suppose also that for some
β > α,

EZ
−β
1 =

∫ ∞
0
u−βF�du� <∞:

Let f̂�n� be the linear programming estimator based on X1; : : : ;Xn given in
(4.8) and (4.9). Let �Ej; j ≥ 1� be iid unit exponential random variables and
define

0k = E1 + : : :+Ek; k ≥ 1;

so that �0k� are the points of a homogeneous Poisson process. Define bn by

bn =
(

1
1−F

)←
�n� = F←

(
1− 1

n

)
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and for �z� ≤ 1 set

C�z� =
∞∑
j=0

cjz
j = 1

8�z� ; 8�z� = 1−
p∑
i=1

φi�0�zi;

where �φi�0�; i = 1; : : : ; p� are the true autoregressive coefficients. Then

bn�f̂�n� −f�0�� = Op�1�

so the rate of convergence of f̂�n� to f�0� is bn. Furthermore, if for any p− 1
distinct indices �l1; : : : ; lp−1�, for which the set of p vectors

{
1; �clj; clj−1; : : : ; clj−p+1�y 1 ≤ j ≤ p− 1

}

does not contain the zero vector, the set is also linearly independent, then

bn�f̂�n� −f�0�� ⇒ L;

where L is nondegenerate,

�4:10� L d= arg max
d∈3

δ′1

and

�4:11� 3 = �d ∈ Rpx d′1 ≥ −1;d′vk ≤ 1; k ≥ 1�:
The points �vk� are specified as follows. Let �Ykl; k ≥ 1; l ≥ 0� be a doubly
infinite array of iid random variables which is independent of �0k� with the
distribution F. Then

vl =
( ∞∨
k=1

0
−1/α
k Y−1

kl

)
�cl−1; : : : ; cl−p�′ = Vl�cl−1; : : : ; cl−p�y l = 1;2; : : : :

Note that the asymptotic distribution is complicated and depends on a lim-
iting Poisson process and the unknown distribution of the autoregression. In
one case, however, namely if f�0� = 0 making Xt = Zt, the limit distribu-
tion considerably simplifies and this is the basis of a test for independence
discussed in the next subsection.

We applied the LP estimator and the Yule–Walker estimator to a sample of
size 100 from the AR(2) described in (4.7). The LP estimator yielded �φ1; φ2�
values of �1:30202;−0:7004143�, which is quite good performance in view of
the small sample size. The corresponding Yule–Walker were not nearly so
accurate and were �0:9084571;−0:4122331�.

4.2.2. Model selection and confirmation. The LP estimator can be used to
fashion a test for independence against autoregressive alternatives. Test if

φ1 = · · ·φp = 0

by rejecting when
p∨
i=1

∣∣φ̂i�n�
∣∣
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is large [Feigin, Resnick and Stărică (1995)]. This also provides a model selec-
tion tool since a well-fitted model should have the property that the estimated
residuals

Ẑt�n� x=Xt −
p∑
i=1

φ̂i�n�Xt−i; t = p+ 1; : : : ; n

are approximately iid and we may test this using the independence test.
It would not be possible to fix the size of the test if the limit distribution of

the LP estimator did not considerably simplify. Fortunately it does and under
the null hypothesis of f�0� = 0,

bnf̂�n� ⇒ L ≡ �V−1
1 ; : : : ;V−1

p �;
where for xi ≥ 0y i = 1; : : : ; p we have that

�4:12�
P�Vi ≤ xi; i = 1; : : : ; p�

= exp
{
−
∫
�y1;:::;yp�∈�0;∞�p

( p∧
l=1

ylxl

)−α
F�dy1� · · ·F�dyp�

}
:

This means that if we want a 0.05 level rejection region, we should reject when

P

[ p∨
i=1

�φ̂i�n�� > K�0:05�
]
= 0:05

and to find an approximate value of K�0:05� we write

�4:13�
P

[ p∨
i=1

�φ̂i�n�� > K�0:05�
]
≈ P

[ p∨
i=1

Li > bnK�0:05�
]

≤ pP�L1 > bnK�0:05��
= p exp�−c�bnK�0:05��α�;

where c = E�Z−α1 �: This yields

K�0:05� ≈ �− log�0:05/p�/c�1/α
bn

= �log�20p�/c�1/α
bn

:

We need to estimate α; c and bn. The qq-plot yields both b̂n and α̂ and then
we can get

ĉ = n−1
n∑
i=1

X−α̂i :

Figure 15 shows the implementation of the independence test for the data
set of packet interarrivals. The earlier discussion of the estimate of α was not
entirely conclusive so the test was conducted three times with various values
of α which are shown in the figure. We tested against the alternative for five
autoregressive coefficients. Because the subadditive approximation does more
damage for larger values of p, we limited ourselves to p = 5. The test fails



HEAVY TAIL MODELING AND TELETRAFFIC DATA 1837

Fig. 15. Tests for independence for packet interarrivals.

only for the improbably small estimate of α ≈ 0:7 and this coupled with the
heavy tailed acf and pacf plots indicates strong evidence for independence.
In the graphs, the dotted horizontal line represents K�0:05� and the vertical
lines represent �φ̂�n�i ; i = 1; : : : ;5�.

4.2.3. Left tail analysis. The linear programming estimators and test for
independence are designed to work under the assumption that either the right
tail is regularly varying as in (2.3) or that the left tail is regularly varying
[Feigin and Resnick (1994a)]. For the left tail case, the precise assumptions
that ensure consistency and an asymptotic distribution for the LP estimator
are as follows.

Condition M (Model specification). The process �Xtx t = 0;±1;±2; : : :�
satisfies the equations

Xt =
p∑
i=1

φiXt−i +Zt; t = 0;±1;±2; : : : ;



1838 S. I. RESNICK

where �Zt� is an independent and identically distributed sequence of ran-
dom variables with essential infimum (left endpoint) equal to 0 and common
distribution function F.

Condition S (Stationarity). The coefficients φ1; : : : ; φp satisfy the sta-
tionarity condition that the autoregressive polynomial 8�z� ≡ 1−∑p

1 φiz
i has

no roots in the unit disk �z x �z� ≤ 1�. Furthermore we assume 8�1� > 0; that
is, we require

p∑
i=1

φi < 1:

Condition L (Left tail). The distributionF of the innovationsZt satisfies,
for some α > 0:

lim
s↓0

F�sx�
F�s� = x

α for all x > 0y(4.14a)

E�Zβ
t � =

∫ ∞
0
uβF�du� <∞ for some β > α:(4.14b)

A notable success in the left tail case was given in Feigin, Resnick and
Stărică (1995) where the LP estimator was used to fit an autoregression to
the lynx data and the test for independence was used to fine tune the fit and
perform model confirmation.

Under regular variation of either the left or right tail of Z1, the rate of
convergence of the LP estimator is of the order of nq where q is the reciprocal
of the index of variation. For some phenomena, the distribution of Z1 may
have both tails regularly varying and in this case best results are obtained by
working with the heavier tail, that is, the tail with the smallest index. This
achieves the best rate of convergence.

Figure 16 displays four views of the Hill plot for 1/callholding, giving strong
indication that the left tail of the call holding data is regularly varying with
an index in the neighborhood of α = 4. Figure 17 gives a qq-plot yielding an
estimate of 3.52. Since the left tail parameter is so much bigger than the right
tail index, there is little temptation to switch to left tail analysis.

4.2.4. The bootstrap and LP estimation. A review of Theorem 4.1 affirms
that the limit distribution for the LP estimators cannot be calculated explicitly
except in the case of independence. To overcome this difficulty, a bootstrap
procedure can be devised [Feigin and Resnick (1997), Datta and McCormick
(1995)]. Caution: it remains to be seen how practical such procedures will be,
and right now there is a sizable gap between theory and practice.

The proof [Feigin and Resnick (1997)] of the validity of the bootstrap de-
pends heavily on a stochastic version of Karamata’s theorem where 1 −F is
replaced by νn�x;∞� where

νn�x;∞� =
m

n

n∑
t=1

εZt/b�m�
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Fig. 16. Hill plots for left tail of call holding data.

and also by a version of the Karamata theorem where 1 − F is replaced by
ν̂n�x;∞� where

ν̂n =
m

n

n∑
t=1

εẐt�n�/b�m�

and Ẑt�n�; t = 1;2; : : : are the estimated residuals.
The necessity for the bootstrap sample size to be m = o�n� makes use of

the bootstrap difficult in practice. Just as we had difficulty picking k when
using the Hill estimator, for the bootstrap we must pick m without reliable
guidelines. In connection with bootstrapping extremes and heavy tailed phe-
nomena, many authors have noticed that if the original sample is of size n, in
order for the bootstrap asymptotics to work as desired the bootstrap sample
should be of size m where m is a function of n and m/n → 0 as n → ∞.
See for example Athreya (1987), Giné and Zinn (1989), Hall (1990), Kinateder
(1992), Knight (1989b), LePage (1992) and Deheuvels, Mason and Shorack
(1993). Some perspective on this necessity to reduce the bootstrap sample size
to something of smaller order than the observed sample size is provided in the
discussion of the behavior of random measures in Proposition 2.1. See Feigin
and Resnick (1997) for a discussion.
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Fig. 17. qq-plots for left tail of call holding data.

4.2.5. Estimating α for autoregressions. Suppose you observe X1; : : : ;Xn

from a heavy tailed autoregression

�4:15� Xt =
p∑
i=1

φjXt−j +Zt; t = 0;±1;±2; : : : ;

where Zt ≥ 0 and

�4:16� P�Z1 > x� = x−αL�x�:
There are two possible ways to estimate α.

1. Apply the Hill estimator directly to X1; : : : ;Xn, that is,

Hk;n�X� =
1
k

k∑
i=1

�logX�i� − logX�k+1��:

This seems a sensible thing to do since the tail of X1 contains the same
information as the tail of Z1 by a result of Cline (1983), which says that

P�X1 > x� ∼ �const�P�Z1 > x�:
We know this works from Proposition 3.1.



HEAVY TAIL MODELING AND TELETRAFFIC DATA 1841

Fig. 18. Hill plots for an autoregression.

2. Alternatively we could estimate autoregressive coefficients f with a con-

sistent estimator f̂
�n�

and then estimate the residuals

Ẑt�n� =Xt −
p∑
i=1

φ̂
�n�
i Xt−i; t = 1; : : : ; p:

These estimate Z1; : : : ;Zn. If we apply Hill’s estimator to the estimated
residuals we should get a sensible procedure:

Hk;n�Ẑ� =
1
k

k∑
i=1

(
log Ẑ�n��i� − logZ�n��k+1�

)
:

Both are consistent estimators of α−1 [Resnick and Stărică (1995)]. Expe-
rience and asymptotic variance calculations [Resnick and Stărică (1996b)]
indicate that the second is surely a better procedure.

To compare these procedures we present three Hill plots in Figure 18. An
autoregression of length 1000 was simulated with φ1 = 1:3; φ2 = −0:7, using
iid Pareto random variables with α = 0:7. The left-hand Hill plot is for the
actual Pareto residuals used. The middle graph is a Hill plot for �Xt� and the
right-hand Hill plot is based on the estimated residuals. The middle plot seems
to be considerably worse than the right plot based on estimated residuals. The
dotted horizontal line in each case represents the true value of α.
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5. A data example. We consider a data set consisting of 3802 interarrival
times of isdn D-channel packets. Figure 19 gives the time series plot and
Figure 20 gives the acf and pacf plots in both classical and heavy tailed form.
Independence does not seem likely based on these graphs.

We next checked the heavy tailed nature of the data. The Hill estimator
was exceptionally stable and so were the qq-plots. Based on these diagnostics,
a value of α = 1:06 was estimated. The plots are given in Figure 21.

Based on the acf/pacf plots, it is unlikely that the data can be modeled
by independence, but to confirm this we applied the independence test with
p = 6. The independence hypothesis is rejected at the 5% level as shown in
Figure 22.

If we wish to try modeling the data using a heavy tailed autoregression, we
have to decide on the order. The pacf plot indicates p = 6 is likely and this is
confirmed by the AIC plot given in Figure 23.

We then estimated autoregressive coefficients using the LP estimator and
obtained coefficients

(
φ̂
�n�
1 ; : : : ; φ̂

�n�
6

)

= �0:00135;0:00186;−0:00033;−0:00003;0:00056;−0:00003�:

The estimated coefficients are rather small and it does not appear that the
autoregressive structure changes the data very much. However, applying the
independence test to the residuals as before with p = 6 (Figure 24) yields
better results and the independence hypothesis cannot now be rejected.

The satisfaction one feels at apparently finding a suitable fit for the data
is tempered by the acf plots in Figure 25 which splits the data into three suc-
cessive parts of length 1000 each and computes an acf plot for each. The plots
do not look very similar which could be an indication of lack of stationarity or,
more disturbing, could be an indication of nonlinearity in the data. Tools need
to be developed to cope with this possibility. This is discussed in greater detail
in Feigin and Resnick (1996), Resnick (1996) and Davis and Resnick (1997).
In any event, tests on estimated residuals should always be interpreted cau-
tiously since the estimation method used usually tries to whiten residuals.

6. Closing remarks. At this point in the development of the subject, it
is clear that there is an abundance of data which seems to need heavy tailed
modeling but there is not an abundance of heavy tailed models with a rich set
of accompanying data fitting techniques. It is difficult to get autoregressions
to fit given data sets, and although this class offers attractive features for
analysis, it is probably too small a class within the heavy tailed universe.
There is a crying need to develop tools which will work with a larger class.
The class of nonlinear models and the class of hidden Markov models are two
possible classes worthy of investigation. See Meier-Hellstern, Wirth, Yan and
Hoeflin (1991) for a closely related example.
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Fig. 19. Time series plot of isdn1.

Fig. 20. Acf and pacf, heavy and classical, for isdn1.
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Fig. 21. Hill and qq-plots for isdn1.

Fig. 22. Independence test on isdn1.
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Fig. 23. AIC plot for isdn1.

Fig. 24. Independence test for residuals of isdn1.
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Fig. 25. Acf of partitioned data.
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DISCUSSION

Robert J. Adler
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I shall break my comments into three sections: one on the general philoso-
phy of the paper, one of specific details and a final “public service announce-
ment.”
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General philosophy. Resnick is to be commended on having written a
paper that has not only forced him, in his own words, to organize his thoughts,
but is going to force a number of other people to do the same.

Unfortunately, many of these thoughts seem to be very negative. In partic-
ular, the Hill estimator, about which so much has been written over the last
decade, performs far less well in practice (to put it mildly) than it does in
theory; linear, ARMA time series models are of questionable versatility; and,
even if assumed, they seem to be difficult to identify and estimate. I will turn
to some of these in a moment, but, along with other difficulties, they lead one
to ask the following (only partly tongue-in-check) question:

Long before we had a theory for handling heavy tailed processes, we used
to use transformations, so that �Xt� was the data, �Zt� x= �φ�Xt�� was,
marginally, Gaussian. “Marginal” is important here, since, although any sta-
tionary series can be made marginally Gaussian, a point transformation of
this kind will not ensure full multivariate normality, which is what makes the
standard techniques so powerful.

One of the main objections to this approach was, of course, that the class
of processes that could be represented as point transformations of Gaussian
processes is of somewhat limited generality. However, as Resnick points out,
we really have very little idea how wide, for example, is the class of ARMA
processes among all stable processes, so that at this point it seems that we
have done little but to exchange one level of uncertainty for another.

Hence, one begins to wonder if the kind of effort directed into heavy tailed
processes over the past decade or so should not be redirected back towards a
more conventional approach of finding “better” transformations that will bring
data into a framework in which we have tools that we know we can trust.

As an example of where one might look, transformations of the form

Zt = φ�Xt; : : : ;Xt−k�
would be able to transform any heavy tailed (or other) time series into one
whose k-dimensional distributions were Gaussian, and perhaps one would
do better attempting to find optimal estimators of φ and then working with
precision technology on such an approximate Gaussian process rather than in
attacking �Xt� directly. (The neural networks community have, in fact, whole-
heartedly adopted this approach, although their language and motivation may
at times seem unfamiliar, and theoretical justification of their techniques is
generally lacking: See [7] for a very nice collection of papers in this vein and
[8] for a different approach to nonlinear (and so non-Gaussian) time series
modelling motivated by neural nets.)

On specific details. Many of the problems faced by the Hill and related
estimators of the tail decay parameter α can be overcome if one is prepared to
adopt a more parametric model, and assume, for example, stable innovations.
While parametric models clearly have their own problems, these may not be as
bas as one might initially expect. For example, Calder and Davis [3] describe
a time series analysis of some models with Pareto innovations, using both
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Pareto and stable techniques. Although the Pareto and stable distributions
are quite different everywhere other than in their tails it turns out that the
analyses (parameter estimates, etc.) were virtually identical, indicating that
most of the estimation was somehow being done “in the tail.”

One of the big advantages of assuming stable innovations is that in this
case there is a very accurate estimator of α (and the other stable parameters)
due to McCulloch [6]. (Interestingly, and in contrast to what Resnick reports
for Hill estimators, the McCulloch estimator seems to be marginally more
efficient when applied to the original data, rather than the fitted residuals.
Details of some simulation studies to this effect appear in [1].)

Overall, it seems that the time may have come to relegate Hill-like estima-
tors to the Annals of Not-Terribly-Useful Ideas.

Another issue that needs some understanding is the use of confidence win-
dows for testing ACF’s, whether they be “heavy tail modified” or not. Although
heavy tails seem at first to be pleasant to work with, since the sample corre-
lations approach their limit at a faster rate than in the Gaussian case, it is
also unfortunately true that the limiting distributions are approached much
slower than in the L2 case. This is well documented in a number of situations
(cf. [4] for references) although there does not seem to be much theory for the
time series setting.

The following table, abstracted from Table 4 of [1], shows the results of
10,000 simulations of symmetric, stable, white noise with α = 1:8 and differing
sample sizes n. It records the percentage of times when the ACF at lag one
lay outside the 95% confidence interval described in Resnick’s paper. Note how
very large the sample size n has to be before one gets close to the nominal 5%.

Percentage outside 95% confidence interval for correlation

α n = 103 n = 104 n = 106

1.8 10.55 8.65 6.56

It is not clear how to overcome this problem. The obvious approach, of
dropping asymptotic distributions and resorting to bootstrapping, is also beset
with slow convergence problems (e.g., [5]).

In any case, the punch line here is that asymptotic distributions have to
be taken with a heavy pinch of salt in the heavy tailed situation, and so
the negative feeling one gets from Resnick’s ACF/PACF analyses may not
be totally justified. It is clear, however, that this is an area in need of some
theoretical study.

A public service announcement. The reader who enjoyed Resnick’s pa-
per should also find the 23 papers in [2] illuminating. They cover a wide variety
of problems associated with heavy tailed processes, in a number of different
areas, from a practical viewpoint.
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Jan Beran

University of Konstanz

I would like to congratulate Sidney Resnick on the interesting review of
heavy tail modeling. The paper demonstrates convincingly that there is an
urgent need for developing statistical methods for heavy tailed stochastic pro-
cesses, including the possibility of long-range dependence. One reason why
heavy tail modeling may not be popular in practice is the lack of flexible yet
sufficiently simple time series methods. Even the question of how to estimate
the tail of a distribution optimally is not solved completely. Historically, the
main method is Hill’s estimator. However, as is shown in this paper, various
modifications have to be made in order to make it sufficiently reliable. For
dependent data the situation is even worse, since linear models appear to be
less general than for processes with finite moments. It is, however, not easy
to find sufficiently general models that could be, at the same time, useful
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for data analysis. Statistical models are often purely theoretical constructions
that approximate the stochastic behavior of a system, but have otherwise noth-
ing to do with the real data generating process. (Exceptions are models that
are based on specific facts from a subject science.) Simple statistical meth-
ods are therefore usually more successful in practice. In the following, a few
possibilities, regarding heavy tail and long memory estimation are discussed
briefly.

1. (Nonstandard) robust estimation. The problem of estimating the
tail of a distribution resembles semiparametric estimation of the pole of the
spectral density f for long-memory processes [see, e.g., Geweke and Porter-
Hudak (1993), Robinson (1996)]. The pole is assumed to be of the form f�λ� ∼
L�λ��λ�1−2H. The long-memory parameter H is estimated from the lowest m
periodogram ordinates with m → ∞ but m/n → 0. For the derivation of the
limiting distribution of Ĥ, assumptions on the slowly varying function L are
needed that are difficult to check in practice. The rate of convergence of Ĥ is√
m and thus slower than the parametric rate

√
n. Also, how to choose m has

been resolved only partially so far [see, e.g., Giraitis and Samarov (1996)]. The
reason for these problems is that the aim is to have an omnibus method that is
consistent although the unknown spectral density f is essentially completely
arbitrary, except for the behavior in an (unknown) neighborhood of the origin.
For many applications, this aim may be unnecessarily ambitious and perhaps
too pessimistic. Approximate consistency may often be sufficient for practi-
cal purposes, in particular since statistical models are only approximations
anyway. Moreover, one might have a priori knowledge about the approximate
qualitative shape of the spectrum. One may thus start with a reasonable but
simple parametric model and estimate H in a way that is robust against a
sufficiently large class of deviations from the assumed spectral shape. Graf
(1983) and Graf, Hampel and Tacier (1984) propose, for instance, to estimate
H by a huberized frequency-domain maximum likelihood method with frac-
tional Gaussian noise as the central model. For details see, for example, Beran
(1994), Chapter 7.3. The idea is to bound the score function by frequency de-
pendent upper and lower limit curves u�λ� and v�λ�. The functions u and v are
chosen to be equal to infinity and minus infinity, respectively, in a small neigh-
borhood of zero. Outside of this neighborhood, u and v are finite and mono-
tonically decreasing and increasing, respectively, with increasing frequency.
Boundedness for “high” frequencies makes sure that even under deviations
from the central parametric model, Ĥ has a relatively small bias. For frac-
tional Gaussian noise, the asymptotic bias is zero. Moreover, since all peri-
odogram ordinates are used, a

√
n rate of convergence is achieved. Thus, this

method yields estimates that achieve a parametric rate of convergence while
remaining almost consistent in a (hopefully) realistic neighborhood around
the assumed model. Note that fractional Gaussian noise can be replaced by
other parametric models.

This idea can be carried over to the estimation of the tail parameter α of the
distribution of a positive random variable. Starting with a central parametric



1854 DISCUSSION

model, an estimate of α can be defined by a huberized maximum likelihood
method. Here, huberizing has to be strong for small values and no huberizing
should be applied for extreme values. This is rather nonstandard, since usually
robust methods aim at bounding the influence of extreme observations. As an
example, take the Pareto distribution as the central parametric model. Under
this ideal model, logXi�i = 1; : : : ; n� are iid exponential. Thus, the MLE of
θ = α−1 can be written as the solution of

n∑
i=1

(
logXi

θ
− 1

)
= 0:(1)

To obtain a huberized estimate of θ, define for p ∈ �0;1� functions u�p� ≥ 0
and v�p� ≤ 0 that are bounded for p ≤ po < 1 where po is a fixed constant,
and such that u�p� and −v�p� are monotonically increasing in p. For p > po,
one may choose u�p� = −v�p� = ∞. Define now

g�x;py θ� =
[

log x
θ
− 1

]u�p�

v�p�
;(2)

where �y�uv = min�max�y; v�; u� and µ�p� = E�g�Z;py1�� where logZ is
standard exponential. Finally, let pi = Fn�Xi� be the empirical distribution
function at observations Xi and

ψ�Xi; piy θ� = g�Xi; piy θ� − µ�pi�:(3)

Then θ̂ is defined by

n∑
i=1

ψ�Xi; piy θ̂� = 0:(4)

How (4) works in practice and which huberizing functions u and v exactly
are suitable would need to be investigated in detail. Versions of (4) based on
the characteristic function may also be of interest. For time series, (4) can be
applied to estimate α of the residual process.

2. Hierarchical models and model choice. An alternative to robust
estimation is to use a hierarchichal class of parametric models with an ar-
bitrary number of parameters and choose the number of parameters by a
suitable model choice criterion. For example, a well-known method for esti-
mating the spectrum of a short-memory process is “autoregressive spectral
estimation” (see, e.g., the discussion and references in Priestley, chapter 7.8).
The true process is assumed to have an AR�∞�-representation. Finite order
AR�p�-spectra are used to approximate the true spectral density. The order of
the AR�p� process is chosen by criteria such as the AIC, the CAT and so on.
How to adapt this method to long-memory models (using, for instance, frac-
tional AR-models) is an open problem. Ideally, with suitable model selection, it
should be possible to obtain a consistent estimate of H. Note that, in contrast
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to semiparametric or robust estimation, this would allow also for modelling
the whole spectral density and not just the long-memory parameter. Also note
that models that are defined directly via the spectral density may be partic-
ularily useful in this context. For instance, for fractional exponential (FEXP)
models, generalized linear regression can be applied [Beran (1993)].

Similarily, the tails of a distribution may be estimated by approximating
the whole distribution or its characteristic function by parametric densities
or characteristic functions, respectively, with the number of parameters es-
timated by a model choice criterion. In contrast to semiparametric or robust
estimation, this would allow for modelling the whole distribution function and
not just the tails.

3. Heteroscedastic models. Simulated series of nonlinear models with
random heteroscedasticity, such as GARCH models [Bollerslev (1986), Engle
(1982)], often resemble sample paths of stable processes, at least visually. In
particular, the occurence of occasional (single or patches of) “outliers” is typi-
cal for GARCH models. These models are very popular in economics because
of their intuitive appeal and relative simplicity. Long-memory GARCH mod-
els are also known meanwhile [Baillie, Bollerslev and Mikkelsen (1996), Ling
and Li (1996); also se Ding and Granger (1996)]. Thus, GARCH models are
serious competitors to heavy tailed processes. Methods will need to be devel-
oped to distinguish convincingly between GARCH-type models and time series
processes with infinite moments. Also, GARCH models with stable innovation
distributions may be useful.
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As network researchers who have spent many long days in the past few
years poring over gigabytes of network-related measurements to try to get
some basic understanding of network traffic, we are very pleased to see this
article and to be able to comment on it. Historically, the field of networking and
communications research has suffered from a severe and constant shortage of
traffic measurements [11]; however, during the past five to ten years, an abun-
dance of enormous-sized data sets of high-quality network traffic measure-
ments have become available and keep on being collected in ever-increasing
quantities and from ever-faster networks. Unfortunately, the development of
statistical techniques and methods for efficiently dealing with this “flood” and
for effectively handling phenomena such as heavy tails and long-range depen-
dence, hitherto unknown in the networking arena, has not kept up with the
rate at which newer and larger data sets of traffic measurements are being
captured, nor with the pace at which the networks themselves change. Pro-
fessor Resnick’s paper is therefore extremely timely and highly welcome by
traffic analysts who are stymied by the many unfamiliar features that appear
in networking-related data sets, and typically lack even the most basic tools
to sensibly deal with them.

At the same time, Professor Resnick’s paper also serves as useful reminder
that collected data often determine the utility and relevance of one data anal-
ysis or modeling approach over another. To illustrate this, we first point out
to the interested statisticians and data analysts some of the features that
make data sets of traffic measurements from today’s networks unique and
challenging, especially when compared to available data sets from other areas
of science and engineering (e.g., hydrology, medicine, biophysics, economics,
finance). Given the special nature of the data at hand, we then argue—in con-
trast to Resnick—for abandoning the black box modeling approach from tra-
ditional time series analysis and focusing instead on structural models that
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take into account the context in which the data arose in the first place, namely
the highly intertwined hierarchies of networking functions that form the basis
of modern computer communication. While we readily admit that black box
models can be and are useful in other contexts, we strongly believe that they
are essentially of no use for our main purposes of trying to understand the
dynamic and complex nature of traffic in today’s packet networks and, subse-
quently, of exploiting this understanding to design, manage and control these
networks.

1. Not your usual data sets. Although Resnick points out that today’s
communication networks have recently become highly prolific providers of
large amounts of traffic data, he does not dwell further into what kinds of data
have actually been collected. We provide a more detailed account of the data
sets recently measured on current communication networks, such as Common
Channel Signaling Networks (CCSNs) used by the telephone system, Ethernet
Local Area Networks (LANs) ubiquitous in shared computing environments,
and IP links comprising the explosively growing global Internet. These are
not the usual data sets that statisticians have been dealing with in the past.
Our goal is to point out their unique features and properties, since these drive
the entire subsequent discussion.

Thanks to sophisticated measurement devices, themselves often full-blown
computers, the data sets collected from these networks are not only unique
with respect to size, but also in terms of the quality and amount of information
recorded for every observation. Depending on the network under considera-
tion, an observation can be a telephone call, a message or a packet. Today’s
properly designed and well-tested measurement devices record exactly the
bits and bytes that are transported over the network, resulting in complete,
accurate and error-free data. The only uncertainties come from time stamp res-
olution and the possibility of “dropping” a measurement because the recording
device is too slow. Both of these can be controlled by the diligent researcher.
Furthermore, once such a device has been built and tested, there are no lim-
itations on the length of the measurement periods, that is, on the amount of
data that can be collected from a “live” network (in practice, though, available
disc space often does impose a limit on the length of the period over which
traffic can be recorded continuously).

In this context, some numbers might be telling: half a day of monitoring a
single 56 kilobit/sec channel of an A-link to an end office in a CCS subnetwork
resulted in about 500,000 calls (January 1993); one hour of measuring traffic
on a 10 megabit/sec Ethernet LAN at Bellcore (August 1989) yielded about
1,500,000 packets; a 37-minute trace of traffic at the busy Internet exchange
point FIX-West consisted of more than 35,000,000 packets (June 1995); and a
week’s worth of Internet traffic into and out of the University of California at
Berkeley consisted of 439,000,000 packets and 89 gigabytes of data (January
1995).

In terms of the information recorded, for a CCS network a typical calling
record consists of call arrival time, call holding time, caller and callee number,
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and possibly further data associated with the caller profile. For an Ethernet
or Internet setting, the recorded information on a per-packet basis consists of
a time stamp and the full packet “header” information, including source and
destination address of the packet, size, protocol, protocol-specific information
such as sequencing position, and possibly the entire packet data contents,
giving all of the application details.

These high-quality and high-volume measurements result in data sets that
can easily extend into the giga- or even terabyte range. On the one hand, such
voluminous data sets pose obvious challenges for researchers interested in ex-
ploratory data analysis or “data mining,” where the latter phrase is used to
denote “sensible digging into data to try to reveal what they are saying” rather
than “torturing the data till they confess” (e.g., see the discussion in [2]). On
the other hand, they offer data analysts and modelers unique opportunities,
mainly because of the richness of available information at all levels of interest
(e.g., at the level of aggregate network traffic, at the level of individual sources
and destinations, at the transport protocol level, at the application level). Ex-
amples of some data sets from existing networks can be found in the Internet
Traffic Archive at http://www.acm.org/sigcomm/ITA/ .

2. Not your usual modeling world. Given the recent abundance of traf-
fic data, traffic modeling is faced with a number of pressing new problems.
Solving them will require a close collaboration between data analysts, applied
mathematicians and networking experts. To avoid any misunderstanding: for
us, the main objective of traffic analysis and modeling is to try to gain a good
understanding of the actual dynamics of network traffic and to make use of
this know-how when designing, managing and controlling existing or future
networks.

For the present discussion, it is also crucial to keep in mind that modern
communication networks are highly dynamic entities that undergo constant
changes (e.g., network topology, user population, services and applications,
network technologies, protocols). Just consider today’s Internet and compare it
with the network that existed four years ago (when it had practically no WWW
traffic), or two years ago (just before the decommissioning of the NSFNET),
or just a month or week ago (when it was still possible to connect to your
favorite sites). Such change is nothing new, either. For example, the USENET
Internet “news” system has exhibited striking, sustained exponential growth
of 75%/year since 1984 [12]. Even at fixed points in time, connection char-
acteristics vary significantly from site to site [13]. Furthermore, not only do
networks quickly change in many ways, so too can patterns of use of well-
established applications. For example, in October 1992 the median size of an
FTP file transfer measured at a large research institute was 4,500 bytes. This
statistic is presumably highly robust, as it was drawn from a sample of more
than 60,000 transfers. Yet only five months later, the median fell by more than
a factor of two, to 2,100 bytes, in a sample of more than 80,000 transfers [13].

Clearly, life for traffic data analysts and modelers is extremely challenging
and difficult. What does it mean in this setting to pick the “best-fitting” model
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for a given traffic trace, when the underlying data set keeps changing over
time, across the same network, across different networks, and so on? The task
is comparable to chasing a moving target—blindfolded! That is, the traffic data
analyst is asked to detect some unknown characteristic features in enormous-
sized empirical records, where the records are constantly augmented by new
traffic measurements from new (and generally faster) networks that carry new
(and typically more bandwidth-intensive) services and applications, and are
being clogged up by an exponentially growing (and increasingly diverse) user
population.

Successful traffic modeling for modern communications networks also has
to face the popular belief that since actual network traffic is commonly consid-
ered to be highly complex in nature, only complicated and highly parameter-
ized models are likely to result in accurate approximations of reality. However,
in network engineering practice, which is the ultimate application of traffic
modeling, such models are viewed as essentially useless, because there is no
hope of forming solid estimates for numerous parameters in such a changing
world. Instead, a traffic model is considered useful only if it (1) is simple and
accurate, (2) has a physical explanation in the network context and hence
provides new insights into the dynamics of network traffic, (3) can be inferred
from operational measurements, and (4) has measurable and practical im-
pact on system performance. Unfortunately, these practical criteria for traffic
modeling have all but been ignored in the past, where traffic modeling was
traditionally done without access to any data and where the resulting models
were primarily judged by how well they could be analyzed mathematically
and hardly ever by how relevant they are in engineering practice. In contrast,
the ever-increasing size of the latest data sets of traffic measurements from
today’s networks, the dynamic nature of these networks and the complexity
of the traffic they carry, all argue strongly in favor of modeling network traf-
fic based on the principle of parsimony, also known as Ockham’s Razor (e.g.,
see [6]).

The idea behind parsimonious modeling is to explain facts in as economical
a way as possible. As a result, the quest for parsimonious traffic models forces
the data analysts to concentrate on features that are common among the many
large data sets and hence robust under changing networking conditions (the
quest for “traffic invariants”); it offers the traffic modelers the opportunity
to build traffic models around these invariants and to come up with plausible
physical explanations for the empirically observed phenomena; and it provides
network researchers with an improved understanding of the complex nature
of network traffic, giving them tools to explore network performance without
being hit by the “curse of dimensionality” (i.e., a large number of parameters
that have little physical meaning). Naturally, this quest for parsimony will be
successful the more that data analysts, traffic modelers and network engineers
interact with one another.

2.1. Searching for traffic invariants: heavy tails. Despite its great diver-
sity, measured network traffic has revealed a number of surprises (and candi-
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date invariants) that make it specially interesting to data analysts and mod-
elers. One of these surprises, which is to a large degree the motivation be-
hind Professor Resnick’s article, is the prevalence of the infinite variance phe-
nomenon (also known as the Noah Effect), or more generally, of heavy tailed
distributions in networking-related activities (e.g., CPU processor time, file
size, video frame size, call holding times, interpacket times for interactive ap-
plications, burst sizes in data bulk transfer, WWW item sizes). On the one
hand, this observation is good news for network researchers who have seen
traditional (i.e., telephone network-based) traffic invariants either vanish or
change into highly variable and unpredictable quantities in the context of
other data networks (such as the Internet), where none of the following are
any longer constant: network size, topology, transfer rates, congestion levels,
dominant applications, traffic mixes across sites and over time, and connection
characteristics. Traffic analysts and modelers are desperate for traffic invari-
ants because they provide the basis for understanding the dynamic nature of
network traffic and are crucial in narrowing down the search space for mod-
els both consistent with measurements and useful in engineering practice.
To this end, heavy tails are a godsend: something not changing in a sea of
change.

On the other hand, the empirically observed omnipresence of heavy tails
has caused serious concerns among network researchers, not only because of
their inexperience with heavy tailed phenomena, but more importantly be-
cause of an almost complete lack of readily available and practically useful
tools and techniques for dealing with them. Here is where Professor Resnick’s
paper (especially Section 3) not only fills a real need, but does so admirably
well and in a surprisingly(?) frank manner. The paper not only surveys the
growing body of techniques for inferring and modeling heavy tailed phenom-
ena, but equally important, it emphasizes the limitations and illustrates the
pitfalls associated with a blind belief in these statistical techniques. Such
a combined good news/bad news survey is especially (but not exclusively!)
valuable for the field of engineering sciences, where one often encounters a
strong belief (blame the statisticians?) in the notions of universally applicable
statistical techniques and absolute numbers. Professor Resnick’s discussions
detailing the conditions under which the different Hill estimator techniques
“work” in theory and exploring the “gray area” where they should work in
theory but don’t work in practice, are as valuable for practitioners as are the
mathematical results (and his comment that the underlying assumptions are
essentially unverifiable in practice) showing that the Hill estimator has nice
theoretical properties. As practitioners, we cannot overemphasize Resnick’s
implicit warnings that (1) no statistical technique works in all cases, (2) you
have to know what you are doing and (3) relying on a portfolio of different
techniques is always preferable (often much more work, though) to sticking
with a single method. We wish that more importance would be given in the
statistical literature and in statistical teaching to exploring scenarios under
which a given technique works well or doesn’t, the pitfalls in using the tech-
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nique, and possible alternative methods for dealing with the same problem
(and their advantages and shortcomings).

Finally, our only criticism concerning Section 3 is that none of the presented
methods really exploits or makes use of the availability of the enormous-sized
data sets mentioned earlier. This obscures the different statistical regimes in
which network research operates. For example, Figure 1 shows on the left
a log-log complementary distribution plot for a data set of WWW transfer
sizes (226,386 observations), and on the right the upper 14% tail consisting
of those transfers exceeding 10 kilobytes (32,630 points). The line fitted to
these argues for a Pareto tail with α ≈ 1:35. Surely, there must be ways
of taking advantage of the fact that for measured network traffic data, the
upper heavy tails themselves contain more data points than the entire data
sets considered in this paper! (Note: we have 900 additional WWW data sets
like this one available for analysis.)

2.2. Black box models vs. structural models. Besides heavy tails, another
invariant feature that has been consistently observed in recent traffic data
sets is long-range dependence (LRD), also known as the Joseph Effect. The
mere mention of LRD usually causes strong (predominantly negative) reac-
tions from statisticians as well as mathematical modelers and is typically ac-
companied by endless philosophical discussions about the (im)possibility of in-
ferring “true” LRD from a finite data set (e.g., see [7, 5, 10]). In sharp contrast,
in the present context of network traffic analysis, there exist very pragmatic
reasons for moving beyond philosophical discussions towards the challenging
problem of providing phenomenological explanations. For real-world analysis,
the philosophical points are moot: the traditional theoretical framework based
on Poisson assumptions of fleeting correlations lies in shambles [9, 14], and

Fig. 1. Log-log complementary distribution plot of WWW transfer sizes: full dataset �left�; upper
tail �right�.
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networking practitioners find themselves giving serious consideration to LRD
models as good approximations if nothing more.

Searching for plausible physical explanations for empirically observed phe-
nomena such as LRD is intimately related to abandoning the black box mod-
els from traditional time series analysis in favor of structural models. The
unique feature of structural traffic models is that they are capable of explic-
itly accounting for the hierarchical nature of today’s network architectures
and hence can capture the intertwined mechanisms and modes (at the differ-
ent layers in the networking architecture) that determine the flow of packets
across a network. For example, above the physical layer (i.e., the raw media
such as copper or fiber over which data is sent) is the network interface or
“link” layer with its mechanisms and protocols controlling how packets are
sent over the media. Above it is the internetworking layer responsible for get-
ting a packet through a series of different networks (e.g., the Internet Protocol,
IP). At a yet higher level, the “transport” layer provides the functions needed
to exchange data between two applications (e.g., the Transport Control Proto-
col, TCP), such as assuring that packets are reliably delivered and/or arrive
at the application in the order they were sent. And above it, the application
layer incorporates services designed to support a range of applications (e.g.,
Telnet, FTP, WWW).

Accurate accounting of this multilevel hierarchy in measured network traf-
fic is possible because all the relevant information can be obtained unambigu-
ously from looking “inside” the collected packets—checking the header of each
recorded packet usually suffices. In contrast, (univariate) time series models
typically treat these packets as black boxes. That is, by focusing on the mere
existence of these packets (i.e., the corresponding time stamps, or the result-
ing time series of counts of packets) and not on their “meaning” as revealed
by their headers, they ignore most of the gathered information. Even when
replacing univariate by multivariate time series models, where the latter can
account for covariates associated with the individual packets, it is not clear
how the hierarchical and interconnected structure of network traffic can be
captured. On the other hand, successful structural modeling makes use of
potentially all of the recorded information at all layers of the network ar-
chitecture. It results in traffic models that are consistent with that data at
all levels of interest (e.g., internetworking layer, transport layer, application
layer). And it offers practical answers to the following:

1. The data analysts’ dilemma of making sense of the ever-increasing size of
available network traffic measurements.

2. The network researchers’ quest for traffic invariants.
3. The traffic modelers’ emphasis on model parsimony.
4. The network engineers’ insistence on models that are simple, physically

meaningful, and relevant to engineering practice.

It does so by “carefully mining the available data” in the sense of Cox
(see [2]), that is, determining to what extent important conclusions from the
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data lie on the surface; by “broadening the basis” in the sense of Tukey [15],
page 277 (see also [4]); that is, a traffic invariant is verified by checking against
a wide range of similar data sets; by applying the principle of parsimony and
abstracting out features of the data that do not significantly contribute to our
understanding of network traffic; by fully exploiting subject matter considera-
tions (achieved by close collaborations between network researchers and data
analysts) and by iterating these procedures, if deemed necessary.

The appeal for structural models in the network setting stems from the
observation that network hosts (e.g., computers, routers) behave in a highly
predictable fashion in a given mode (e.g., request/response vs. bulk transfer
vs. interactive vs. multimedia applications, file servers vs. clients). What can
change drastically is the behavior in the different modes. Yet all you have to
do to recognize the different modes is look inside the packet header—structural
modeling at its simplest. The data set “Packet” considered in the paper is
an example where all information concerning the different modes that gen-
erated this traffic trace has been ignored and where only the time series of
arrival times of the successive packets is considered. As such, the data set is
not terribly interesting for actual network engineering. On the other hand,
with structural modeling that makes use of all available information on a per-
packet basis, ISDN packet arrivals are known in advance to have a nontrivial
dependence structure, due to the nature of the dominant applications (e.g.,
word-processing) and the transport protocol used. In particular, the jump at
lag 6 in the autocorrelation function is almost certainly a result of the trans-
port protocol used or of fragmentation boundaries (if we were given the packet
headers we would immediately know which), and is of only minor interest for
network engineering (“statistically significant but practically irrelevant”). For
examples of successful structural modeling approaches in the context of net-
work traffic, we refer to the recent papers by Willinger, Paxson and Taqqu [16]
and Willinger, Taqqu, Sherman and Wilson [18, 17] Kurtz [8], and Crovella
and Bestavros [3]. These papers also elaborate on the connection between the
empirically observed phenomena of heavy tails and LRD at different levels
of the network structure and show, as alluded to by Professor Resnick, how
structural modeling is able to provide a unified framework within which both
phenomena can be explained.

Clearly, our strong preference for structural traffic models over black box
models clashes with Professor Resnick’s decision in Section 5 to stick with the
more traditional black box modeling approach from time series analysis. At
the same time, his arguments in favor of pursuing black box models (tradi-
tion; requires no subject matter expertise; applicable across a broad range of
disciplines) are not all that convincing, especially when recalling the title of
the article, which explicitly mentions the application area of interest. In fact,
as network researchers, we are more than willing to apply our networking
know-how when it comes to constructing sensible structural models; more-
over, we are much less concerned about the models’ potential applicability in
other areas of science, but worry immensely about the models’ usefulness and
practical relevance in the network context. This leaves Resnick with tradition
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as the remaining argument for black box models, and we would love to see
him argue for tradition in front of a group of Internet researchers.

3. Not your usual topics for future work. Judging from the recent
past, it is a safe to predict that network researchers will continue to be faced
with practically unlimited amounts of traffic measurements from the latest
packet networks. Our experience has been that traditional traffic modeling
(including conventional time series analysis) has little to offer for effectively
and sensibly dealing with this situation, and it has not been for want of trying.
Instead, we have found that the rather vaguely defined concepts of (1) careful
data mining, (2) broadening the basis, (3) insistence on model parsimony, and
(4) reliance on subject matter expertise do a much better job of addressing
the task of practical network traffic analysis and modeling. In the process,
one garners both feasible alternatives for dealing with the available data and
some basic understanding of the nature of actual network traffic (and, as a
result, useful traffic models).

All four concepts relate in one way or another to the basic problem of deal-
ing effectively with large, diverse data sets, and in all four cases, the main
research challenges center around the quest for techniques that scale (in the
number of available observations). Beran and Terrin’s [1] recent work is an
example that shows how a technique (i.e., Whittle’s method for estimating the
degree of LRD) that is computationally infeasible in the presence of a large
number of observations can be turned into a method that scales (and hence can
be applied even to large data sets) by proving new central limit-type results
and by exploiting modern high-performance computing and communication
capabilities. Similarly, [18] presents an algorithm for quickly generating frac-
tional Gaussian noise that also relies on a combination of new convergence
results for stochastic processes and a highly parallel computing architecture.
We strongly believe that such combinations of new probabilistic results and
advanced parallel or distributed computing capabilities will be a driving force
behind future progress in areas associated with the four mentioned concepts.

Another development in the area of network traffic analysis and modeling
that results from the ease with which large amounts of network traffic mea-
surements can be obtained these days is a steady shift away from statistical
inference, with its traditional emphasis on a single data set and on testing
models, and toward scientific inference. Scientific inference (as discussed for
example in [2]) typically involves many data sets (e.g., traffic collected on the
same network over different periods in time and at different points in the net-
work) and attempts to identify features in the data that generalize to different
conditions (e.g., different network loads, different mix of users or applications).
As a result, in modern network research, reproducibility (also referred to as
replication or repetition) of traffic measurements studies by other researchers,
in other, different networks and at different times is becoming an essential
part of model specification, model selection and model verification. In this
sense, network research is starting to adopt a concept that has a long tradi-
tion in the physical sciences but has been all but ignored in the social sciences
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and in the mainstream statistics literature. Put succinctly: how do we deal
with huge data sets? How do we deal with huge numbers of huge data sets?
How can we do reliable estimation in the presence of strong correlations and
infinite variance? How can we more formally assess heuristic arguments of
similarity in inference across different data sets?

Although it is worthwhile to always heed Hampel’s [5] advice that “no model
is ever correct—all are but better or worse approximations of reality” (the
same idea is often expressed in the well-known saying “All models are wrong,
but some are useful”), our decision as network researchers is obvious when
given a choice between a black box model that fits a single data set “perfectly,”
and a model that “works” under a wide range of networking conditions and
makes sense on physical grounds. However, we emphasize that our criticism
of the black box modeling approach and the underlying “Box-Jenkins machin-
ery” is subject-specific (but so is the paper under discussion) and should not
be interpreted as an argument in favor of writing off time series analysis al-
together. At the same time, it is very disconcerning to see that despite the
drastic changes in terms of available network traffic data, much work in this
area is still done “the same old way,” where data was a scarce resource and
where “squeezing the available data set dry” (see [2]) made sense. One can-
not help but be highly critical of such work when there is now plenty of data
to go around and when squeezing a single data set dry would become a re-
searcher’s lifetime job. Indeed, things change so fast on the networking scene
that spending too much time studying a particular dataset brings with it a
genuine risk of rendering the ultimate findings obsolete. Surely, there must
be other ways for dealing with the currently available data! In this sense, the
ideas put forward by Tukey in [15] that “data analysis, like calculations, can
profit from repeated starts and fresh approaches” and that “there is not just
one analysis for a substantial problem” are highly relevant to network traffic
analysis and modeling, especially now that the data at hand gives new mean-
ing to statistical inference and makes structural modeling a viable alternative
to traditional time series analysis.
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REJOINDER

Sidney I. Resnick

Cornell University

I am grateful to the discussants for the stimulating and informative com-
ments on the paper.

Drs. Willinger and Paxson argue strongly for abandoning black box time
series models in favor of structural models. Their criticisms deserve to be taken
quite seriously for at least two reasons. First, as industry insiders, they are in
an excellent position to judge what is useful, and second, one of the dirty little
secrets of heavy tailed ARMA modeling, is that there are few if any success
stories where real data with dependencies have been successfully modeled by
a linear time series model. There are many potential reasons for the failure of
linear models to successfully capture dependencies in heavy tailed data [see
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Feigin and Resnick (1996) and Resnick (1997) for some discussion] but suffice
it to say, there now exist both adequate theoretical results and software tools
for ARMA models so that if ARMA modeling were going to work, it would have
produced some successes by now.

Over the past years, it has been natural to experiment with traditional
time series models in nontraditional contexts, one of which was heavy tailed
phenomena. This yielded an abundance of research suggesting estimators for
coefficients in heavy tailed ARMA models, and this research was worthwhile.
You cannot know, for instance, that a heavy tailed autoregressive model will
not adequately fit a data set without reasonably sophisticated theoretical and
software tools giving estimation and goodness-of-fit techniques. Hopefully, the
theory and software developed for the ARMA process will provide a useful ba-
sis for examining other heavy tailed time series models such as nonlinear mod-
els, hidden Markov chain models and the GARCH models rightly mentioned
by Professor Beran. Ideally, these alternate models will have the flexibility
to capture dependencies across a broad range of fields, not only in teletraffic
engineering but also in finance and insurance where an abundance of large
heavy tailed data sets is available to those with proper contacts. See, for exam-
ple, Embrechts, Klüppelberg and Mikosch (1997), McNeil (1997) and Resnick
(1997). These data sets rival in quality and length those emerging in teletraf-
fic engineering and, for instance, the tick-by-tick data obtained for currency
exchange rates can be arbitrarily large.

The focus of Drs. Willinger and Paxon on structural models is absolutely
appropriate considering their obligations and goals. Some thought will have
to be given to either statistical or qualitative measures so that we have some
guidance in deciding when a parsimonious structural model is an adequate
description of reality. How do we know we can believe what a structural model
tells us? What if some predictions of a model match reality for the wrong rea-
sons? On–off transmission models are very appealing structural models but
how do we decide if it is satisfactory to neglect correlations in the data of
on–off times? Also, how does one balance the desire for simplicity and parsi-
mony with the fact that ever increasing supplies of data should make fitting
parametric models with larger numbers of parameters feasible?

Structural modeling of teletraffic data is certainly worthwhile, and we look
forward to the leadership industry experts provide in suggesting specific struc-
tural models for investigation. Academic researchers whose interests extend
to heavy tailed modeling in other fields besides teletraffic engineering may
wish to pursue other models as well. The mix of approaches is healthy and
likely to be fruitful.

The comments of Drs. Willinger and Paxon highlight the differences be-
tween doing research as an industry insider versus as an outsider. Academic
researchers need to ally themselves as closely as possible with the people close
to the source of the problems. Getting bootlegged data third or fourth hand is
not always a prescription for research success. Inevitable questions about the
data, lack of documentation and lack of completeness are all possible pitfalls
unless there is a close tie with the source.
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Professor Adler’s comments, as was to be expected, are sharp and pertinent.
Why not use transformations? The easy answer is that it did not occur to me.
The Jewish response (answer a question with a question) would be “Which
transformations should we use?” The fuller response is that if you grow up
in a Gaussian world, transformations may seem like a natural tool. If you
grow up in an extreme value world, the tails make the subject interesting and
special and obliterating tails by transforming is off-putting. This is more a
statement of prejudice than science, but I do not think it is the right way to
go. In any case, modeling dependence structure currently challenges the heavy
tailed time series researcher, and transformations are unlikely to clarify the
dependence structure.

Why not use stable? What do we do when we get estimates of α ∈ �3;4�, as
frequently happens in economics? A lot of heavy tailed data looks much more
Pareto than stable. However, this is definitely worth pursuing. One has to deal
with finding reliable goodness-of-fit tests to insure that modeling with stable
distributions is a good strategy, and one also has to investigate how robust a
stable designed procedure would be to departures from the stable assumption.
This could presumably be done and is worthwhile. Again, the issue is not so
much modeling the marginal distribution but rather successfully capturing
the tail and the dependence structure.

I am not ready to write off the Hill-like estimators. Using a Hill cocktail
of several procedures, refinements and graphical methods seems to provide a
reasonable estimate. Maybe further improvements will be forthcoming.

The comments by Professor Adler on rates of convergence are interesting.
I doubt the rate of convergence is slow in all cases and probably, if extreme
value theory is a guide [see de Haan and Resnick (1996)], the rate can be
anything depending on the second-order regular variation of the underlying
distribution. Stable does not behave particularly well for rates of convergence;
the Pareto distribution would do better.

Bootstrapping heavy tailed phenomena is not likely to yield practical tri-
umphs. If the sample size is n, you have to reduce the bootstrap sample size
to k = k�n� = o�n�, and then problems similar to what arises with the Hill
estimator occur. How do you choose k? I doubt this can be made practical.
More comments on this are in Feigin and Resnick (1997) and can be consulted
by those with stamina.

Professor Beran points out fascinating parallels between tail estimation and
spectral density problems involving estimating the Hurst parameter. I have
often wondered if there are deeper reasons for the parallels. Professor Beran
provides a useful service when he points out that there is much relevant lit-
erature in robust time series methods. Concerning heteroscedastic models, it
is known that the ARCH(1) model has a heavy Pareto tail. The proof is deep,
relying on results of Kesten (1973). [See also Goldie (1991), Vervaat (1979)
and Embrechts, Küppelberg and Mikosch (1997).] This result is probably true
in much greater generality [some evidence is in Embrechts, Samorodnitsky,
Dacorogna and Muller (1996)] and provides a class of models where input
variables are light tailed but output process marginals are heavy tailed. This
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is in contrast with the usual ARMA model assumptions where innovations
are heavy tailed and hence process marginals are heavy tailed. The usual
truncation of series methods that work for ARMA models fail for the random
walk-based methods applied to ARCH and much subtler techniques are re-
quired. Such models will undoubtedly be relevant for modeling finance data
which often have the charming feature that the data appear uncorrelated but
the absolute values or the squares of the data appear almost to exhibit long
range dependence.

I look forward to being in further touch with the discussants and other
interested parties about these topics of interest.
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