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SEQUENTIAL ESTIMATION FOR THE AUTOCORRELATIONS
OF LINEAR PROCESSES
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Sookmyung Women’s University

This paper considers sequential point estimation of the autocorrela-
tions of stationary linear processes within the framework of the sequential
procedure initiated by Robbins. The sequential estimator proposed here is
based on the usual sample autocorrelations and is shown to be risk effi-
cient in the sense of Starr as the cost per observation approaches zero. To
achieve the asymptotic risk efficiency, we are led to study the uniform inte-
grability and random central limit theorem of the sample autocorrelations.
Some moment conditions are provided for the errors of the linear processes
to establish the uniform integrability and random central limit theorem.

1. Introduction. Let �Xty t ∈ Z�;Z = �0;±1;±2 : : :�, be a stationary
linear process defined on a probability space ��;F ;P� of the form:

Xt =
∞∑
i=0

aiεt−i; t ∈ Z;(1.1)

where the real sequence �ai� satisfies the absolute summability condition∑∞
i=0 �ai� < ∞ and �εty t ∈ Z� are unobservable iid random variables with

Eε1 = 0 and Eε2
1 = σ2 ∈ �0;∞�. The linear processes form a general class of

stationary processes covering ARMA (autoregressive and moving average) and
infinite-order autoregressive models. Applications to economics, engineering
and the physical sciences are extremely broad, and a vast amount of literature
is devoted to the study of linear processes under a variety of circumstances;
for instance, see Rosenblatt (1985), page 26. Moreover, the model (1.1) gives
easy access to asymptotic studies of parameter estimates such as the sample
mean, autocovariance and autocorrelation. Most standard texts like Fuller
(1976) and Brockwell and Davis (1990) put the linear process in the central
position for asymptotic studies. See also Phillips and Solo (1993).

In time series, an accurate estimation of the autocorrelations is crucial, for
example, in selecting an appropriate ARMA model. In this paper we consider
the problem of estimating the autocorrelations within the framework of the
sequential method initiated by Robbins (1959). Compared to iid cases, the
literature on sequential estimation in time series emerged somewhat recently.
See Sriram (1987, 1988), Fakhre-Zakeri and Lee (1992, 1993) and Lee (1994).
For the history of iid cases, see the references cited in these papers.

As one can see in the literature on sequential estimation, the loss function is
often the sum of quadratic loss for the discrepancy between target parameters
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and their estimates and sampling costs equal to the unit cost multiplied by the
sample size. In order to develop the theory and thereby compute the risk, it
is necessary to know a priori whether the expected value of the quadratic loss
(after normalization) converges to a limit as the sample size increases. Thus
it is natural to seek sufficient conditions under which moment convergence
is guaranteed. For autocorrelations, Fuller [(1976), pages 240–242], and Lom-
nicki and Zaremba (1957) obtained the moment convergence results assuming
the sixth and eighth moments of ε1 in (1.1), respectively. In this paper we will
focus on the uniform integrability rather than the moment convergence result
itself, only assuming a fourth moment of ε1.

In Section 2 we propose sequential procedures to deal with point estimation
and then state the main results of this paper. Some preliminary lemmas are
given in Section 3 and the proofs of the theorems are given in Section 4. Finally,
in the Appendix we establish the asymptotic normality of the autocorrelation
vector when the sample size itself is random. This may be of independent
interest.

2. Main results. Let X1; : : : ;Xn be n consecutive observations following
the model (1.1), and denote by γ�k� and ρ�k� the autocovariance and auto-
correlation at lag k, respectively. As estimates of γ�k� and ρ�k�, we use the
sample autocovariances and autocorrelations

γ̂n�k� = n−1
n−k∑
t=1

XtXt+k; 0 ≤ k ≤ n− 1;(2.1)

and

ρ̂n�k� = γ̂n�k�/γ̂n�0�;(2.2)

respectively. It is well known that these random sequences are strongly con-
sistent estimates of the true parameters when the indices k are fixed. Also,
it is known that if r̂n�r� = �ρ̂n�1�; : : : ; ρ̂n�r��′ and r�r� = �ρ�1�; : : : ; ρ�r��′,
r = 1;2; : : : ; then under the moment condition Eε4

1 <∞ we have, as n→∞,

n1/2�r̂n�r� − r�r�� →D �Y1; : : : ;Yr�′;(2.3)

where

Yk =
∞∑
i=1

�ρ�k+ i� + ρ�k− i� − 2ρ�k�ρ�i��Zi;(2.4)

with Zi being iid N �0;1� random variables [cf. Brockwell and Davis (1990)
Theorem 7.2.1, page 221]. The following procedures will rely heavily on the
fact (2.3).

Let us consider the problem of estimating the unknown correlations
ρ�1�; : : : ; ρ�r� by the sample autocorrelations ρ̂n�1�; : : : ; ρ̂n�r� defined in (2.2),
subject to the loss function

Ln =
r∑
k=1

Ak�ρ̂n�k� − ρ�k��2 + cn;(2.5)
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where the preassigned Ak reflects the importance of quadratic error at lag k
and c denotes the cost per observation. Note that the Ak are not necessarily
equal. One may wish to put large values of Ak for the first few terms and
minimize the others.

Provided that Eε4α
1 < ∞ for some α ≥ 1, it follows from Theorem 1 below

that

E�ρ̂n�k� − ρ�k��2 = w2�k�/n+ o�n−1� as n→∞;(2.6)

where

w2�k� =
∞∑
i=1

�ρ�k+ i� + ρ�k− i� − 2ρ�k�ρ�i��2:(2.7)

Then, denoting τ2 =∑r
k=1Akw

2�k�, the associated risk is

Rn = ELn = n−1τ2 + cn+ o�n−1�;(2.8)

which is minimized by

n0 ' c−1/2τ;(2.9)

with corresponding risk

Rn0
' 2cn0;(2.10)

where, for any real sequences �un�; �vn�, the notation un ' vn indicates that
un/vn→ 1 as n→∞. However, since τ2 is unknown, there is no fixed sample
size procedure that achieves the risk (2.10). Thus we follow the sequential
procedure that Robbins (1959) has proposed.

From now on, assume α > 1 and let �hny n = 1;2; : : :� be a sequence of
positive integers such that, as n→∞,

hn→∞ and hn = O�nβ� for some β ∈ �0; �α− 1�/2α�:(2.11)

The expression (2.7) suggests that as an estimate of w2�k� it is reasonable to
employ

ŵ2
n�k� =

hn∑
i=1

�ρ̂n�k+ i� + ρ̂n�k− i� − 2ρ̂n�k�ρ̂n�i��2:(2.12)

Setting

τ̂2
n =

r∑
k=1

Akŵ
2
n�k�;(2.13)

define the stopping rule, in analogy of n0, by

Nc = inf�ny n ≥ c−1/2�τ̂n + n−λ��;(2.14)

where n−λ; λ > 0, is the delay factor which has to be chosen later [cf. Chow and
Yu (1981)]. It will be shown later that under certain conditions the proposed
stopping rule is asymptotically risk efficient in the sense of Starr (1966), that
is to say, RNc

/Rn0
→ 1 as c→ 0:
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The following are the main theorems asserted by the performance of the
sequential methods described above.

Theorem 1 (Uniform integrability). Assume that Eε4α
1 < ∞ for some α ≥

1. Then, for fixed k = 1, 2; : : : ; we have that ��n1/2�ρ̂n�k� − ρ�k���2αy n ≥ 1� is
uniformly integrable. Hence, in particular, we have as, n→∞,

En�ρ̂n�k� − ρ�k��2 → w2�k�;(2.15)

where w2�k� is the number in (2.7).

Theorem 2. Suppose that Eε4α
1 < ∞ for some α > 1 and λ ∈ �0; α�α −

2αβ− 1�/�α− 1��. Then, as c→ 0,

Nc/n0 → 1 a.s.;(2.16)

E�Nc/n0 − 1� → 0;(2.17)

N1/2
c �r̂Nc

�r� − r�r�� →D N �0; 0� asymptotic normality;(2.18)

RNc
/Rn0

→ 1 asymptotic risk efficiency;(2.19)

where 0 is the r× r matrix whose �k; l�th entry equals

w�k; l� =
∞∑
i=1

�ρ�k+ i� + ρ�k− i� − 2ρ�k�ρ�i��

× �ρ�l+ i� + ρ�l− i� − 2ρ�l�ρ�i��:
(2.20)

3. Preliminary lemmas. Throughout the sequel, �� · ��p denotes the norm
in Lp��;F ;P�.

Definition 3.1. The sequence of random variables �zty t ∈ Z� is said to be
m-dependent if, for any r < s with s− r > m, �: : : ; zr−1; zr� and �zs; zs+1; : : :�
are independent.

Lemma 3.1. Suppose that ξ1; ξ2; : : : are m-dependent, m ≥ 1, and strictly
stationary random variables with mean 0 and E�ξ1�p <∞, p ≥ 2. In addition,
assume that ξ1; : : : ; ξm are independent random variables. Then, for all n ≥ 1,

∣∣∣
∣∣∣max
1≤j≤n

�ξ1 + · · · + ξj�
∣∣∣
∣∣∣
p
≤ Cp��ξ1��pn1/2;

where the positive constant Cp depends only on p (regardless of m).

Remark. An example of �ξj� satisfying the assumptions of Lemma 3.1 is
�εjεj+m�, where εj are iid with Eε1 = 0 and E�ε1�p <∞.
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Proof. For simplicity, we only consider the case n = 2mk + ν0, where
k ∈ �0;1; : : :� and ν0 ∈ �1; : : : ;m − 1�. The other cases can be treated in a
similar way. Define, for each ν ∈ �1; : : : ;m�, x1�ν� = ξ1 + · · · + ξν, y1�ν� =
ξm+1+· · ·+ξm+ν; : : : ; xk�ν� = ξ2�k−1�m+1+· · ·+ξ2�k−1�m+ν, yk�ν� = ξ�2k−1�m+1+
· · ·+ξ�2k−1�m+ν and xk+1�ν� = ξ2mk+1+· · ·+ξ2mk+ν. Set x = max1≤j≤k �x1�m�+
· · · + xj�m��, y = max1≤j≤k �y1�m� + · · · + yj�m��, zj = max1≤ν≤m−1 �xj�ν��,
z = max1≤j≤k+1 zj, wj = max1≤ν≤m−1 �yj�ν�� and w = max1≤j≤kwj.

Note that max1≤j≤n �ξ1+· · ·+ξj� ≤ x+y+z+w; and thus ��max1≤j≤n �ξ1+
· · · + ξj� ��p ≤ 2���x��p + ��z��p� because x = y in distribution and ��z��p ≥ ��w��p.
Since x1�m�; : : : ; xk�m� are iid with mean 0 by assumption, it follows from
Doob’s maximal inequality and the Marcinkiewicz-Zygmund inequality [cf.
Theorem 2 and Corollary 2 of Chow and Teicher (1988), pages 367–368] that

��x��p ≤ Bp��x1�m���pk1/2 ≤ B2
p��ξ1��p�mk�1/2;(3.1)

where Bp is a positive constant. On the other hand, using the same inequal-
ities, we can show that ��z��p ≤ �Emax1≤j≤k+1 �zj�p�1/p ≤ 2Bp��ξ1��p�km�1/2.
This together with (3.1) yields ��x��p+ ��z��p ≤ max�B2

p;2Bp���ξ1��pn1/2, which
completes the proof. 2

Lemma 3.2. Assume that the ξj satisfy the conditions of Lemma 3.1. Then,
for all M = 1;2; : : : ;

∣∣∣∣
∣∣∣∣sup
n≥M

∣∣∣∣n
−1

n∑
j=1

ξj

∣∣∣∣
∣∣∣∣
∣∣∣∣
p

≤ Dp��ξ1��pM−1/2;

where Dp is the positive constant that depends only on p.

Proof. We first consider the case where m <M. Define, for t ∈ �0;1; : : :�
and ν ∈ �1; : : : ;M�, xt�ν� = ξ2tM+1+ · · ·+ ξ2tM+ν and yt�ν� = ξ�2t+1�M+1+ · · ·+
ξ�2t+1�M+ν: Set xt�0� = yt�0� = 0. For convenience, assume that n = 2kM+ ν0,
where k ≥ 1 and ν0 ∈ �0; : : : ;M− 1�. Then we have

∣∣∣∣n
−1

n∑
j=1

ξj

∣∣∣∣ = n
−1

∣∣∣∣
k−1∑
j=0

�xj�M� + yj�M�� + xk�ν0�
∣∣∣∣

≤M−1/2�Q1 +Q2� +R;
(3.2)

where

Q1 = sup
u≥1

∣∣∣∣u
−1

u−1∑
j=0

�M−1/2xj�M��
∣∣∣∣;

Q2 = sup
u≥1

∣∣∣∣u
−1

u−1∑
j=0

�M−1/2yj�M��
∣∣∣∣

and

R = sup
k≥1
�2kM�−1 max

0≤ν≤M−1
�xk�ν��:
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Note that, due to Lemma 3.1, xj�M� are iid random variables with mean 0,
such thatE�M−1/2x0�M��p ≤ Cpp��ξ1��pp <∞. Thus, it follows from the maximal
inequality of reverse martingales [cf. Theorem 3 of Chow and Teicher (1988),
page 369] that ��Q1��p ≤ Cp��ξ��p. Similarly, ��Q2��p ≤ Cp��ξ1��p. Since

ERp ≤ �2M�−p
( ∞∑
k=1

k−p
)
E max

1≤ν≤M−1
�x1�ν��p ≤ �C

′
p�p��ξ1��ppM−p/2; C′p > 0;

where the last inequality follows from Lemma 3.1, we have that
∣∣∣∣
∣∣∣∣sup
n≥M

∣∣∣∣n
−1

n∑
j=1

ξj

∣∣∣∣
∣∣∣∣
∣∣∣∣
p

≤ max�Cp;C
′
p���ξ1��pM−1/2:(3.3)

The result for the case where M ≤m can be established by Lemma 3.1, the
argument in (3.3) and the Marcinkiewicz–Zygmund inequality. 2

The following lemma is a direct result of Lee (1994), Lemma 2.

Lemma 3.3. Suppose that ξ1; ξ2; : : : are m-dependent strictly stationary
random variables such that ξ1 ≥ 0 a.s. and µ = Eξ1 ∈ �0;∞�. Then, for θ < µ,
there exists B > 0 such that

P

(
n−1

n∑
j=1

ξj ≤ θ
)
≤ e−Bn for all n

and

P

(
n−1

n∑
j=1

ξj ≤ θ for some n ≥M
)
≤ Ce−BM for all M ≥ 1;

where C = �1− e−B�−1.

4. Proofs of theorems. Throughout the sequel, we denote, for k =
0;1; : : : ;

γ∗n�k� = n−1
n∑
t=1

XtXt+k(4.1)

and

ρ∗n = γ∗n�k�/γ∗n�0�:(4.2)

Lemma 4.1. Assume that the random variables εt in (1.1) satisfy the mo-
ment condition Eε4α

1 <∞ for some α ≥ 1. Then we have, as M→∞,

sup
k

∣∣∣
∣∣∣sup
n≥M
�γ∗n�k� − γ�k��

∣∣∣
∣∣∣
2α
= O�M−1/2�:(4.3)
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Proof. As with (2.12) of Fakhre-Zakeri and Lee (1992), without additional
assumptions on �aj�, we can write

γ∗n�k� − γ�k� =
∞∑
u=0

auau+k

{
n−1

n∑
j=1

�ε2
j−u − σ2�

}

+
∑

ν 6=u+k
auaν

{
n−1

n∑
j=1

εj−uεj+k−ν

}
:

(4.4)

Thus, by Minkowski’s inequality and the stationary property, we have

∣∣∣
∣∣∣sup
n≥M
�γ∗n�k� − γ�k��

∣∣∣
∣∣∣
2α
≤
∞∑
u=0

�auau+k�
∣∣∣∣
∣∣∣∣sup
n≥M

∣∣∣∣n
−1

n∑
j=1

�ε2
j − σ2�

∣∣∣∣
∣∣∣∣
∣∣∣∣
2α

+
∑

ν 6=u+k
�auaν� sup

l6=0

∣∣∣∣
∣∣∣∣sup
n≥M

∣∣∣∣n
−1

n∑
j=1

εjεj+l

∣∣∣∣
∣∣∣∣
∣∣∣∣
2α
:

(4.5)

First, note that
∣∣∣∣
∣∣∣∣sup
n≥M

∣∣∣∣n
−1

n∑
j=1

�ε2
j − σ2�

∣∣∣∣
∣∣∣∣
∣∣∣∣
2α
= O�M−1/2�(4.6)

by Theorem 3 of Chow and Teicher (1988), page 369. Second, notice that
�ε1εj+ly j=1;2; : : :� are �l�-dependent random variables and �ε1ε1+l; : : : ; εlε2l�
are independent. Then it follows from Lemma 3.2 that

sup
l6=1

∣∣∣∣
∣∣∣∣sup
n≥M

∣∣∣∣n
−1

n∑
j=1

ε1εj+l

∣∣∣∣
∣∣∣∣
∣∣∣∣
2α
≤ Dp��ε1��22αM−1/2:(4.7)

Combining (4.6) and (4.7), we can see that the right-hand side of (4.5) is
O�M−1/2� uniformly in k. This establishes (4.3). 2

Lemma 4.2. Suppose that Eε4α
1 < ∞ for some α ≥ 1. Then the following

hold:

(i) For each k = 0; : : : ; r,
∣∣∣
∣∣∣sup
n≥M
�γ̂n�k� − γ�k��

∣∣∣
∣∣∣
2α
= O�M−1/2� as M→∞:

(ii) If �hn� is a sequence of real numbers satisfying the property in (2.11),
then

max
0≤k≤2hn

��γ̂n�k� − γ�k���2α = O�n−1/2� as n→∞:

Proof. The lemma follows from Lemma 4.1 immediately due to the fact
that γ̂n�k� = ��n− k�/n�γ∗n−k�k�. 2
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The following two lemmas are concerned with uniform integrability. We
only state them without proof.

Lemma 4.3(a). Let ζ > 0 and let �En� be a family of Borel sets in F .
Assume that �Wnjy n ≥ 1�, j = 1; : : : ; J; are the families of random variables
such that �Wζ

njy n ≥ 1� is uniformly integrable. Then if, for all A ∈ F ,

nζP�En ∩A� ≤K
J∑
j=1

��WnjI�A���ζζ for some K > 0;

where I�·� denotes the indicator function, it holds that �nζI�En�y n ≥ 1� is
uniformly integrable.

Lemma 4.3(b). Let W be a random variable with E�W�ζ <∞, ζ > 0. Then,
for A ∈ F and δ > 0, we have

P��W� > δ;A� ≤ δ−ζE�W�ζI�A�:

Lemma 4.4. Suppose that Eε4α
1 < ∞ for some α ≥ 1. Then, for each k =

0; : : : ; r, �nα�γ̂n�k� − γ�k��2αy n ≥ 1� is uniformly integrable.

Proof. We first show that �nα�γ∗n�k� − γ�k��2αy n ≥ 1� is uniformly inte-
grable. In view of (4.4), we split n1/2�γ∗n�k� − γ�k�� into In and IIn, where

In =
∞∑
u=0

auau+k

{
n−1/2

n∑
j=1

�ε2
j − σ2�

}

and

IIn =
∑

ν 6=u+k
auaν

{
n−1/2

n∑
j=1

εj−uεj+k+ν

}
:

Note first that ��In�2αy n ≥ 1� is uniformly integrable, since, for each u,
��n1/2∑n

j=1�ε2
j−u − σ2��2αy n ≥ 1� is uniformly integrable [cf. (4.8) of Gut

(1988), page 18]. Next, to show the uniform integrability of ��IIn�2αy n ≥ 1�,
use Minkowski’s inequality and Lemma 3.2 to obtain

��IIn��4α ≤
( ∞∑
u=0

�au�
)2

Cα��ε1��24α for some Cα > 0;

which in turn implies that ��IIn�2αy n ≥ 1� is uniformly integrable. Since
�nα�γ∗n�k� − γ̂n�k��2αy n ≥ 1� is uniformly integrable, the lemma is estab-
lished. 2
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Proof of Theorem 1. Tentatively fix δ > 0; δ will be chosen properly
later. Decompose nα�ρ̂n�k� − ρ�k��2α into In and IIn, where

In = nα�ρ̂n�k� − ρ�k��2αI�γ̂n�0� ≥ δ�
and

IIn = nα�ρ̂n�k� − ρ�k��2αI�γ̂n�0� < δ�:
Note that

ρ̂n�k� − ρ�k� = γ̂−1
n �0���γ̂n�k� − γ�k�� + �γ�0� − γ̂n�0��ρ�k��;(4.8)

and, accordingly,

In ≤ 4αδ−2α�nα�γ̂n�k� − γ�k��2α + nα�γ̂n�0� − γ�0��2α�:
Thus it follows from Lemma 4.4 that �Iny n ≥ 1� is uniformly integrable for
each δ > 0.

To deal with IIn, note that

IIn ≤ 4αnαI�γ̂n�0� < δ�:(4.9)

Let δ be a positive number less than γ�0�=∑∞j=0 a
2
jσ

2 and let m be a positive
integer with

∑m
j=0 a

2
jσ

2 > δ. Define Xt�m� =
∑m
j=0 ajεt−j, γ̂n;m�0� =

n−1∑n
t=1X

2
t �m� and γm�0�=

∑m
j=0 a

2
jσ

2. Let η > 0 be such that 3η <
min�γ�0� − γm�0�; γ�0� − δ� and δ0 = δ + η. Denoting En = ��γ̂n�0� −
γ̂n;m�0�� > η�, write nαI�γ̂n�0� < δ� = IIIn + IVn, where IIIn = nαI�γ̂n�0� <
δ;En� and IVn = nαI�γ̂n�0�<δ;Ec

n�: To obtain the uniform integrability of
IIIn, in view of Lemma 4.3(a), consider

nαP�γ̂n�0� < δ; �γ̂n�0� − γ̂n;m�0�� > η;A�;(4.10)

where A is a Borel set in F . By using Lemma 4.3(b), we can show that (4.10)
is bounded by

�3/η�2α���n1/2�γ̂n�0� − γ�0��I�A���2α2α + ��n1/2�γ̂n;m�0� − γm�0��I�A���2α2α�;
whence, in view of Lemmas 4.4 and 4.3(a), �IIIny n ≥ 1� is uniformly inte-
grable. On the other hand, �IVny n ≥ 1� is uniformly integrable since applying
Lemma 3.4 to �X2

t �m��, we obtain EIVn ≤ nαP�γ̂n;m�0� < δ0� ≤ e−Bn, B > 0:
Hence �nα�ρ̂n�k�−ρ�k��2αy n ≥ 1� is uniformly integrable. This together with
(2.3) and (2.4) implies (2.15). 2

The following lemmas are aimed at proving Theorem 2.

Lemma 4.5. Suppose that Eε4α
1 < ∞ for some α ≥ 1. Then we have the

following:

(i) For each k = 0; : : : ; r,
∣∣∣
∣∣∣sup
n≥M
�ρ̂n�k� − ρ�k��

∣∣∣
∣∣∣
2α
= O�M−1/2� as M→∞:(4.11)
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(ii) As n→∞,

max
1≤k≤2hn

��ρ̂n�k� − ρ�k���2α = O�n−1/2�:(4.12)

Proof. Fix δ > 0 and let E denote the event on which γ̂n�0� < δ for some
n ≥M. From (4.8), we can write

∣∣∣
∣∣∣sup
n≥M
�ρ̂n�k� − ρ�k��

∣∣∣
∣∣∣
2α
≤ B�M;δ� + 2�P�E��1/2α;

where

B�M;δ� = δ−2α
(∣∣∣
∣∣∣sup
n≥M
�γ̂n�k� − γ�k��

∣∣∣
∣∣∣
2α
+
∣∣∣
∣∣∣sup
n≥M
�γ̂n�0� − γ�0��

∣∣∣
∣∣∣
2α

)
:

Since B�M;δ� = O�M−1/2� for each δ > 0 by (i) of Lemma 4.2, (4.11) will be
true if there exists δ > 0, such that

�P�E��1/2α = �P�γ̂n�0� < δ for some n ≥M��1/2α = O�M−1/2�:(4.13)

Let δ, δ0, γ̂n;m�0� and γm�0� be the same as in the arguments between (4.9)
and (4.10). Denoting KM = �supn≥M �γ̂n�0� − γ̂n;m�0�� > η�, write P�γ̂n�0� <
δ for some n ≥M� ≤ Qn1 +Qn2, where Qn1 = P�KM� and Qn2 = P�γ̂n�0� <
δ for some n ≥ M; Kc

M�. Note that, from Markov’s inequality and (i) of
Lemma 4.2,

Qn1 ≤ �3/η�2α
(∣∣∣
∣∣∣sup
n≥M
�γ̂n�0� − γ�0��

∣∣∣
∣∣∣
2α

2α
+
∣∣∣
∣∣∣sup
n≥M
�γ̂n;m�0� − γm�0�

∣∣∣
∣∣∣
2α

2α

)

= O�M−α�
(4.14)

[(i) of Lemma 4.2 is also true for γ̂n;m�0�]. Meanwhile, Qn2 is bounded by

P�γ̂n;m�0� < δ0 for some n ≥M�

≤
∞∑

n=M
P�γ̂n;m�0� < δ0� = O�e−BM�; B > 0;

where the last equality follows from Lemma 4.5. Combining this and (4.14),
we obtain (4.13), and therefore (4.11) is established.

Now, we are going to verify (4.12). Observe from (4.8) that, for all δ > 0,

max
1≤k≤2hn

��ρ̂n�k� − ρ�k���2α

≤ 2δ−1 max
0≤h≤2hn

��γ̂n�k� − γ�k���2α + 2�P�γ̂n�0� < δ��1/2α:
(4.15)

In view of (4.13), there exists δ > 0, such that �P�γ̂n�0� < δ��1/2α = O�n−1/2�:
Hence, the right hand side of (4.15) is O�n−1/2� by (ii) of Lemma 4.2. This
completes the proof. 2
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Lemma 4.6. Let w2�k� and ŵ2
n�k� be as defined in (2.7) and (2.12), respec-

tively. If E�ε1�4α <∞ for some α ≥ 1, then, for k = 1; : : : ; r,

P��ŵ2
n�k� −w2�k�� > δ� = O�n−αh2α

n � for all δ > 0;(4.16)

and, consequently,

P��τ̂2
n − τ2� > δ� = O�n−αh2α

n � for all δ > 0:(4.17)

Proof. Split ŵ2
n�k� −w2�k� into In and IIn, where

In =
hn∑
i=1

(
�ρ̂n�k+ i� + ρ̂n�k− i� − 2ρ̂n�k�ρ̂n�i��2

− �ρ�k+ i� + ρ�k− i� − 2ρ�k�ρ�i��2
)
;

IIn =
∞∑

i=hn+1

�ρ�k+ i� + ρ�k− i� − 2ρ�k�ρ�i��2:

Note that IIn → 0 as n → ∞; and thus P��ŵ2
n�k� − w2�k�� > δ� is no more

than P��In� > δ/2� for all sufficiently large n. By simple algebra, we can see
that, for all sufficiently large n, ��In��2α ≤ 48hn max1≤j≤2hn ��ρ̂n�j� − ρ�j���2α:
Therefore, P��In� > δ/2� = O�n−αh2α

n � by (ii) of Lemma 4.5, which establishes
(4.16). The argument (4.17) is a direct result of (4.16). 2

Lemma 4.7. Assume that Eε4α
1 < ∞ for some α > 1. Then, for B ∈ F and

a positive integer M, we have

E sup
n≥M
�ρ̂n�k� − ρ�k��2I�B� ≤KM−1�P�B���α−1�/α for k = 1; : : : ; r;

where K is independent of B;M and r.

Proof. The lemma is established by (i) of Lemma 4.5 and Hölder’s in-
equality. 2

Throughout the sequel, we denote b = c−1/2; n1 = �b1/�1+λ� and n2 = ��1 −
ζ�n0�, 0 < ζ < 1.

Lemma 4.8. Assume that E�ε1�4α <∞; α > 1: Then as c→ 0,

P�Nc ≤ n2� = O
(
c�α−2αβ−1�/2�1+λ�):

Proof. Note that Nc ≥ n1 by definition. Similar to the arguments in the
proof of Fakhre–Zakeri and Lee (1992), Lemma 3, we can write

P�Nc ≤ n2� ≤ P��τ̂2
n − τ2� ≥ ζ�2− ζ�τ2 for some n ∈ �n1; n2��

≤
∞∑

n=n1

O�n−αh2α
n � = O

(
n
−�α−2αβ−1�
1

)
;
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where the last step follows from Lemma 4.6 and Lemma 2 of Fakhre–Zakeri
and Lee (1992), page 190. This completes the proof. 2

Lemma 4.9. The family �Nc/n0� is uniformly integrable.

Proof. The proof is essentially the same as that of Lemma 6 of Fakhre–
Zakeri and Lee (1992), page 192, and is omitted for brevity. 2

Proof of Theorem 2. By Lemma 4.6, for any δ > 0, we have

∞∑
n=1

P��τ̂2
n − τ2� > δ� =

∞∑
n=1

O�n−α+2αβ� <∞;

so that τ̂2
n → τ2 a.s. as n→∞. Then it follows from the definition of Nc that

Nc/n0 → 1 a.s., which in turn implies (2.17) and (2.18) in view of Lemma 4.9
and Theorem A.1 in the Appendix, respectively. Thus it remains to show (2.19).

Since

RNc

Rn0

'
E
∑r
k=1Ak�ρ̂Nc

�k� − ρ�k��2 + cENc

2cn0

and

c ' τ2/n2
0;

it is sufficient, therefore, to show that, for each k = 1; : : : ; r,

En0�ρ̂Nc
�k� − ρ�k��2 → w2�k� as c→ 0:(4.18)

First, note that, by Theorem A.1 and (2.16), for any ζ ∈ �0;1�,

n
1/2
0 �ρ̂Nc

�k� − ρ�k��I�Nc ≥ �1− ζ�n0� →D N �0;w2�k�� as c→ 0:(4.19)

Now, by Lemma 4.7, we have, for B ∈ F ,

n0E�ρ̂Nc
�k� − ρ�k��2I�Nc ≥ �1− ζ�n0�I�B�

≤ n0E sup
n≥��1−ζ�n0�

�ρ̂n�k� − ρ�k��2I�B�

≤K�n0/��1− ζ�n0���P�B���α−1�/α

≤K′P�B��α−1�/α for some K′ > 0:

Hence it follows that �n0�ρ̂Nc
�k� − ρ�k��2I�Nc ≥ �1 − ζ�n0�� is uniformly

integrable, which together with (4.19) yields

En0�ρ̂Nc
�k� − ρ�k��2I�Nc ≥ �1− ζ�n0� → w2�k� as n→∞:

Therefore, to assert (4.18), we only need to show that

En0�ρ̂Nc
�k� − ρ�k��2I�Nc ≤ ��1− ζ�n0�� → 0 as c→ 0:(4.20)
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Putting n2 = ��1 − ζ�n0� and D = �Nc ≤ n2� and using Lemma 4.7, we
obtain

En0�ρ̂Nc
�k� − ρ�k��2I�D� = En0 max

n1≤n≤n2

�ρ̂n�k� − ρ�k��2I�D�

≤K�n0/n1��P�D���α−1�/α

= �n0/n1�O�cα�α−2αβ−1�/2�α−1��1+λ��;

(4.21)

where the last equality is from Lemma 4.8. Therefore, from the definitions
n0 ' τc−1/2 and n1 ' c−1/2�1+λ�, (4.21) becomesO�c−λ�α−1�+α�α−2αβ−1�/2�α−1��1+λ��.
This together with the fact that λ < α�α− 2αβ− 1�/�α− 1� implies (4.18). 2

APPENDIX

In this appendix we are concerned with the asymptotic normality of the
sample autocorrelation vector r̂n�r� in (2.3) when the sample size itself is
random. In Proposition A.1, we deal with the issue in the situation where the
sequence �aj� in (1.1) satisfies the condition as in Theorem 3.7 of Phillips and
Solo (1993), page 979. Then we consider the general linear process case in
Theorem A.1. In the sequel, �Nn� denotes a family of positive integer-valued
random variables such that Nn/n→P N as n→∞, where P�0<N<∞�=1:

Proposition A.1. Let �Xt� be the linear process in (1.1) with Eε4
1 < ∞

and �aj� satisfying the condition

Sx
∞∑
j=0

ja2
j <∞:(A.1)

Then we have, as n→∞,

N1/2
n �r̂Nn

�r� − r�r�� →D N �0; 0�;(A.2)

where 0 is the matrix in (2.18).

Theorem A.1. Let �Xt� be the linear process in (1.1) with Eε4
1 <∞: Then

we obtain the random central limit theorem in (A.2).

To assert Proposition A.1, we need a series of lemmas. Lemma A.1 is a
direct result of Gut (1988), Theorem 2.2, page 11, and Lemma A.2 can be
proved without difficulties. So, the proofs are omitted for brevity.

Lemma A.1. Let �Wn� be a sequence of random variables that goes to 0
with probability 1. Then WNn

goes to zero in probability.

Lemma A.2. If Wn are identically distributed random variables with
EW2

n <∞, it holds that Wn/n
1/2 → 0 a.s. as n→∞:



2246 S. LEE

Lemma A.3. Assume that �εt� are iid random variables with mean 0 and
variance σ2 ∈ �0;∞�. Then for M = 1;2; : : : ;

(
N−1/2
n

Nn∑
t=1

εtεt−1; : : : ;N
−1/2
n

Nn∑
t=1

εtεt−M

)
→D N �0; σ4IM� as n→∞;

where IM denotes the M×M identity matrix.

Proof. By the Cramér–Wold device, it suffices to show that, for all u =
�θ1; : : : ; θM�′, θi ∈ R,

N−1/2
n

Nn∑
t=1

( M∑
j=1

θjεjεt−j

)
→D N

(
0;

m∑
i=1

θ2
iσ

4
)

as n→∞:

Put Yn = n−1/2∑n
t=1 ξt, where ξt =

∑M
i=1 θjεtεt−j. To prove the lemma, we

only have to check that Yn satisfies the conditions in Theorem 5 of Durret
and Resnick (1977), page 217. By using Theorems 1 and 2 of Rényi (1960) and
Lemma 3 of Blum, Hanson and Rosenblatt (1963), page 391, one can show that
Yn satisfies the conditions. Without detailing the related algebra, we establish
the lemma. 2

The following lemma can be proved in a similar way.

Lemma A.4. Assuming the conditions of Lemma A.3 and, in addition,
Eε4

1 <∞, we have, as n→∞,

(
N−1/2
n

Nn∑
t=1

�ε2
t − σ2�;N−1/2

n

Nn∑
t=1

εtεt−1; : : : ;N
−1/2
n

Nn∑
t=1

εtεt−M

)

→D N �0;diag�var ε2
1; σ

4IM��:

Lemma A.5. Assume that �αj� is a sequence of real numbers with∑∞
j=−∞ �αj� < ∞ and εt are iid random variables with mean 0 and finite

variance σ2 > 0. Then, for a positive integer M and δ > 0, we have, for some
K > 0,

lim sup
n→∞

P

(∣∣∣∣
∑

�j�≥M
αj

{
N−1/2
n

Nn∑
t=1

εtεt−j

}∣∣∣∣ > δ
)
≤
(
Kσ4

δ2

)( ∑

�j�≥M
�αj�

)2

:(A.3)

Furthermore, if, in addition, we assume Eε4
1 <∞, then, for some K > 0,

lim sup
n→∞

P

(∣∣∣∣
∑

�j�≥M
αj

{
N−1/2
n

Nn∑
t=1

�ε2
t − σ2�

}∣∣∣∣ > δ
)

≤
(
K var ε2

1

δ2

)( ∑

�j�≥M
�αj�

)2

:

(A.4)
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Proof. The proof of (A.3) essentially follows the same arguments as in (9)–
(14) of Fakhre-Zakeri and Farshidi (1993). As for our concern, replace Su�j� in
their paper (page 94) by S̃u�j� =

∑u
t=1εtεt−j. Then use Lemma 3.2 to show that

Emax In; r; l�S̃u�j��2 is bounded by B2��l+1�/2r�σ4, which finally asserts (A.4)
[cf. (13) of Fakhre-Zakeri and Farshidi (1993)]. The proof of (A.4) is similar to
that of (A.3). 2

Let r∗n�r� be the r × 1 random vector with the kth component being ρ∗n�k�
in (4.2). For m = 1;2; : : : ; denote γ∗n;m�k� = n−1∑n

t=1Xt�m�Xt+k�m�, where
Xt�m� =

∑m
j=0 ajεt−j and γm�k� =

∑m−k
j=0 ajaj+kσ

2. In addition, put ρ∗n;m�k� =
γ∗n;m�k�/γ∗n;m�0�, ρm�k� = γm�k�/γm�0�, r∗n;m�r� = �ρ∗n;m�1�; : : : ; ρ∗n;m�r��′ and
rm�r� = �ρm�1�; : : : ; ρm�r��′:

Proof of Proposition A.1. Note that, from Lemmas A.1 and A.2,

N1/2
n �ρ̂Nn

�k� − ρ∗Nn
�k�� →P 0 as n→∞:(A.5)

Hence we can see that (A.2) will hold once

N1/2
n �r∗Nn

�r� − r�r�� →D N �0; 0� as n→∞:(A.6)

Following the expression (29) of Phillips and Solo (1993), page 981, we can
write

n1/2�ρ∗n�k� − ρ�k�� ∼
(
n−1

n∑
t=1

X2
t

)−1 ∞∑
j=1

[
α�k; j�n−1/2

n∑
t=1

εtεt−j

]
;(A.7)

where α�k; j� = fk+j�1� + fk−j�1� − ρ�k��fj�1� + f−j�1�� and fj�1� are the
numbers defined in their paper (see page 980). From Lemma 2.1 and (24)–(28)
of their paper (page 972) and Lemmas A.1 and A.2, one can check that under
S the argument in (A.7) can be rewritten as

n1/2�ρ∗n�k� − ρ�k�� = γ−1�0�
∞∑
j=1

[
α�k; j�n−1/2

n∑
t=1

εtεt−j

]
+ 1n�k�;(A.8)

where 1n�k� → 0 as n → ∞ a.s. Moreover, we have that
∑∞
j=0 �α�k; j�� < ∞

for each k.
To establish (A.7), consider the random vector

Zn�M� = γ−1�0�
( M∑
j=1

[
α�1; j�n−1/2

n∑
t=1

εtεt−j

]

+ 1n�1�; : : : ;
M∑
j=1

[
α�r; j�n−1/2

n∑
t=1

εtεt−j

]
+ 1n�r�

)′
:

Note that, from Lemmas A.1 and A.3, ZNn
�M�→DZM∼N �0; 0M�; where 0M

is theM×Mmatrix with the �i; j�th entry equal to
∑M
l=1 α�i; l�α�l; j�σ4γ−2�0�,
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and that 0M → 0 as M → ∞. Hence, in view of (A.7) and (A.8) and Propo-
sition 6.3.9 of Brockwell and Davis (1990), page 207, it suffices to show that,
for k = 1; : : : ; r,

lim
M→∞

lim sup
n→∞

P

(∣∣∣∣
∑
j≥M

[
α�k; j�N−1/2

n

n∑
t=1

εtεt−j

]∣∣∣∣ > δ
)
= 0 for all δ > 0:

Since the above can be proved by Lemma A.5, the proposition is established. 2

Proof of Theorem A.1. Note that the sequence �ajy 0 ≤ j ≤m� satisfies
the condition in (A.1). Applying Theorem A.1 to �Xt�m�y t ≥ 1�, we have, for
each m, N1/2

n �r̂Nn;m
�r� − rm�r�� →D N �0; 0m� as n → ∞, where 0m is an

r× r matrix whose �k; l�th entry is

wm�k; l� =
∞∑
i=1

�ρm�k+ i� + ρm�k− i� − 2ρm�k�ρm�i��

× �ρm�l+ i� + ρm�l− i� − 2ρm�l�ρm�i��:

Thus, by (A.5),

N1/2
n �r∗Nn;m

�r� − rm�r�� →D N �0; 0m� as n→∞:(A.9)

Since, as m→∞, wm�k; l� → w�k; l�, which is defined in (2.20), 0m converges
to 0 as m → ∞: Therefore, in view of (A.5), (A.9) and Proposition 6.3.9 of
Brockwell and Davis (1990), it suffices to show that, for k = 1; : : : ; r,

lim
m→∞

lim sup
n→∞

P�N1/2
n �ρ∗Nn

�k� − ρ�k� − ρ∗Nn;m
�k� + ρm�k�� > δ� = 0

for all δ > 0.

In view of (4.8), which is also true for ρ∗n;m�k� and γ∗n;m�k�, first establish
the random central limit theorem for γ∗Nn;m

�0�; : : : ; γ∗Nn;m
�r� by applying the

arguments in Remarks 3.9 of Phillips and Solo (1993) to �Xt�m�� and using
Lemmas A.1. A.2 and A.4 [see Proposition 7.3.3 of Brockwell and Davis (1990)
for ordinary central limit theorems]. Then it suffices to check that, for k =
0; : : : ; r,

lim
m→∞

lim sup
n→∞

P�N1/2
n �γ∗Nn

�k�−γ�k�−γ∗Nn;m
�k�+γm�k�� > δ� = 0 for all δ > 0:

The above, however, can be verified by using the argument in (4.4) and
Lemma A.5. Without detailing the related algebra, we establish the theo-
rem. 2
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