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ASYMPTOTIC ESTIMATION THEORY OF MULTIPOINT LINKAGE
ANALYSIS UNDER PERFECT MARKER INFORMATION1

BY OLA HÖSSJER

Stockholm University

We consider estimation of a disease susceptibility locus τ at a chro-
mosome. With perfect marker data available, the estimator τ̂N of τ based
on N pedigrees has a rate of convergence N−1 under mild regularity
conditions. The limiting distribution is the arg max of a certain compound
Poisson process. Our approach is conditional on observed phenotypes, and
therefore treats parametric and nonparametric linkage, as well as quantitative
trait loci methods within a unified framework. A constant appearing in the
asymptotics, the so-called asymptotic slope-to-noise ratio, is introduced as a
performance measure for a given genetic model, score function and weight-
ing scheme. This enables us to define asymptotically optimal score functions
and weighting schemes. Interestingly, traditional N−1/2 theory breaks down,
in that, for instance, the ML-estimator is not asymptotically optimal. Fur-
ther, the asymptotic estimation theory automatically takes uncertainty of τ

into account, which is otherwise handled by means of multiple testing and
Bonferroni-type corrections.

Other potential applications of our approach that we discuss are general
sampling criteria for planning of linkage studies, appropriate grid size of
marker maps, robustness w.r.t. choice of map function (dropping assumption
of no interference) and quantification of information loss due to heterogeneity
(with linked or unlinked trait loci).

We also discuss relations to pointwise performance criteria and pay
special attention to weak genetic models, so-called local specificity models.

1. Introduction. Linkage analysis is concerned with localization of disease
susceptibility genes. This is done by studying genetic linkage between observed
quantities related to the disease and a number of marker genes, located at known
positions along the chromosomes. Statistically, this entails carrying out a number
of tests, which might give evidence that disease gene(s) are located at some
chromosomal regions. Once such evidence is found, it is of interest to know the
precision of the estimate of the disease locus.

For parametric methods based on likelihoods and a fixed number of markers,
it is well known that the disease locus estimator follows standard asymptotics
for ML-estimators [cf., e.g., Ott (1999), Chapter 5]. For instance, for a single
marker, the recombination fraction estimator is asymptotically normal with
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convergence rate N−1/2, where N is the number of pedigrees. On the other hand,
misspecification of the parametric model may result in inconsistent estimators, as
noticed, for example, by Clerget-Darpoux, Bonaïti-Pellié and Hochez (1986).

In this article, we investigate the asymptotic behavior of disease locus estimators
under perfect marker information, corresponding to a dense set of markers, when
all (or sufficiently many) pedigree members are being typed. Under rather mild
regularity conditions, the convergence rate is N−1, with a nonstandard limiting
distribution, which is the arg max of a compound Poisson process. This fast rate of
convergence for confidence intervals has previously been noted in the genetics
literature by several authors. Kong and Wright (1994) establish a special case
of our result for backcross designs, and mention the possibility of generalizing
this to other situations. Darvasi, Weinreb, Minke, Weller and Soller (1993) and
Darvasi and Soller (1997) show by simulations that the lengths of confidence
intervals are inversely proportional to the sample size for backcross and F2 designs
and Dupuis and Siegmund (1999) give theoretical justification of their results
using an asymptotic expansion of the expected length of the confidence interval.
Kruglyak and Lander (1995) give analytical expressions for the distribution
function of confidence interval lengths for affected relative pairs in nonparametric
linkage (NPL).

Our approach is conditional on observed phenotypes and treats parametric and
nonparametric linkage, as well as quantitative trait loci (QTL) methods within
a unified framework. Further, arbitrary pedigree structures are allowed for. The
basic tool is arg max theory of stochastic processes and Markov properties of
the inheritance vector process.

We argue that a certain asymptotic slope-to-noise ratio, analogous to the
inverse of the asymptotic variance for N1/2-consistent estimators, is an appropriate
performance criterion for the whole sample in terms of estimation accuracy. This
criterion enables us to derive asymptotically optimal weighting schemes and score
functions, given a certain genetic model.

The paper is organized as follows: In Sections 2 and 3 we define concepts
from linkage analysis, needed for the rest of the paper. Parametric, nonparametric
and QTL score functions are introduced in Section 4. In Section 5, a general
arg max result for stochastic processes is derived, which is then used in our linkage
application in Section 6. Optimal weighting schemes and score functions are
considered in Section 7, and relation to analogous pointwise criteria is described in
Section 8. Particular attention is given to weak genetic models in Section 9. A local
(efficacy related) version of the asymptotic slope-to-noise ratio is introduced, and
locally optimal score functions and weighting schemes are derived. In Section 10
we discuss further consequences of our work, and finally, proofs and some
technical regularity conditions are collected in the Appendix.

2. Some concepts from linkage analysis. Our objective is to locate that locus
of a particular chromosome of length l that causes or contributes to a particular
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inheritable disease. To this end we have family data consisting of N pedigrees
P1, . . . ,PN , with Pi having ni individuals. For some subset P̄i of Pi , we
have registered a vector Yi = (Yik; k ∈ P̄i ) of disease phenotypes, where Yik

measures some genetically influenced characteristic(s) of the kth individual of Pi .
In principle, the phenotypes can be both continuous (quantitative) or discrete
(usually binary) random variables; in the former case, for example, blood pressure
or body weight and in the latter case disease status. We may also associate a vector
of covariates to each individual.

Suppose there is a disease-causing locus τ on some chromosome. The objective
of linkage analysis is to test

H0 : τ = ∞,

H1 : τ ∈ [0, l],(2.1)

where τ = ∞ means that the disease locus is located on another chromosome. For
each locus t ∈ [0, l] we define a (pointwise) test statistic ZN(t). It measures the
degree of compatibility between the inheritance patterns observed at t (by studying
the inheritance of a number of marker genes with known positions) and the disease
phenotypes. Large positive values of ZN(t) give evidence that τ is located on the
same chromosome as t in its close vicinity. An overall (nonlocal) test statistic for
H0 versus H1 is

sup
0≤t≤l

ZN(t),(2.2)

with

τ̂N = arg max
0≤t≤l

ZN(t)(2.3)

the corresponding estimate of τ . Of course, τ̂N makes sense only under H1. In this
paper, we will focus on the properties of τ̂N as N grows.

In order to define ZN(t) we must first specify what is meant by an inheritance
pattern of a pedigree. We assume that Pi has fi founders (individuals without
ancestors in the pedigree) and ni − fi nonfounders. If each nonfounder k has both
parents included in the pedigree, there are two meioses (production of ova and
sperm cells) deciding which grandparental alleles k will receive at different loci on
the chromosome. Thus the whole pedigree Pi contains mi = 2(ni − fi) meioses.
The inheritance vector vi(t) = (vi1(t), . . . , vimi

(t)) of Pi at locus 0 ≤ t ≤ l is a
binary vector of length mi such that vij (t) equals 0 or 1 depending on whether
meiosis j transmits a grandpaternal or grandmaternal allele, j = 1, . . . ,mi . Hence
vi(t) specifies the mode of inheritance across Pi at locus t . The objective of
linkage analysis is to test, for each locus t of interest, if vi(t) is independent of
the observed phenotypes Yi , i = 1, . . . ,N . A priori, without using information
from the phenotypes, one has

P
(
vi(t) = w

) = 2−mi(2.4)
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for all w ∈ Z
mi

2 , 0 ≤ t ≤ l and i = 1, . . . ,N , where Z
mi

2 is the additive vector space
over the field of two elements. This reflects the Mendelian mode of inheritance.
Observation of Yi gives the a posteriori distribution of vi(t),

P
(
vi(t) = w|Yi

) = P (Yi|vi(t) = w)∑
w′∈Z

mi
2

P (Yi|vi(t) = w′)
.(2.5)

Let S : Zmi

2 → R be a score function which to each inheritance vector w ∈ Z
mi

2
assigns a number S(w) = S(w;Pi , Yi) which measures how compatible w is with
the observed disease phenotypes Yi . The score function S(·) depends on both the
pedigree structure Pi , the observed phenotypes Yi and sometimes also on a set of
known (i.e., beforehand estimated) parameters. Then

Z̄i(t) := S
(
vi(t)

)|Yi(2.6)

is the family score of the ith pedigree at locus t , defined conditionally on the
observed phenotypes.

The test statistic ZN(·) is defined according to

ZN(t) = 1√
N

N∑
i=1

γiZ̄i(t), 0 ≤ t ≤ l,(2.7)

where γi is the weight assigned to the ith pedigree and is chosen larger for
more informative pedigrees in order to increase the accuracy of the estimate τ̂N ,
or alternatively the power of the test based on (2.2). It is clear from (2.6) and (2.7)
that the arg max τ̂N is not a single point but rather a finite union of bounded
intervals. This turns up in the asymptotic behavior of τ̂N as N → ∞ and will
be discussed more extensively in Section 6.

Information about vi(t) is attained by typing members of Pi and observing the
inheritance pattern of a number of marker genes located along the chromosome.
Notice that (2.7) requires that S(vi(t)) is known along the chromosome. This
requires a dense set of genetic markers and that sufficiently many pedigree
members (“sufficiently” depends on the pedigree structure) are genotyped. Even
with perfect marker data, the phase of all founders is typically unknown; that
is, it is not known which allele of a founder comes from the father and which
from the mother. This means that we can never distinguish a fixed inheritance
vector w ∈ Z

mi

2 from w +uik , k = 1, . . . , fi , where the addition is componentwise
modulus two and uik ∈ Z

mi

2 is one for all meioses originating from founder
number k and zero otherwise. However, for most score functions of practical
interest one has

S(w) = S(w + uik), k = 1, . . . , fi,(2.8)

for any w ∈ Z
mi

2 and i = 1, . . . ,N . Thus, as long as (2.8) holds, the unknown phase
of founders does not cause a problem.
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3. The genetic model. In order to determine the distribution of the family
score (2.6), we need to specify the conditional distribution vi(t)|Yi given in (2.5).
It depends on the type φi of Pi , which includes the graphical structure of Pi ,
the phenotype vector Yi and genetic model parameters. Introduce Pφit (w) =
P (vi(t) = w|Yi), to emphasize that this conditional probability only depends
on φi , t and w. Under H0, Pφit (·) has a uniform distribution (2.4) over Z

mi

2 , since
vi(t) is then independent of Yi . Assuming that H1 holds, we first derive Pφit at
the disease locus as follows: Let Gik = (G

p
ik,G

m
ik) be the genotype of the kth

individual in Pi at locus τ . For ease of exposition, we restrict ourselves to biallelic
disease loci, although the setup is equally valid in the multiallelic case. Thus we
assume that the paternally and maternally transmitted alleles G

p
ik and Gm

ik both
belong to {a,A}, where A is the disease-causing allele and a the normal allele.
Let Fi ⊂ Pi be the set of founders for Pi and GiFi

= (Gik)k∈Fi
their genotypes.

If w is the inheritance vector of Pi , we let Gi = Gi(GiFi
,w) be that collection

of genotypes in the pedigree which can be uniquely inferred from GFi
and w.

Then (2.5) implies

Pφiτ (w) ∝ P
(
Yi|vi(τ ) = w

) = ∑
GiFi

P (Yi|Gi)P
(
GiFi

)
,(3.1)

where the sum ranges over all founder genotype configurations.
The joint probability P (GiFi

) of the founder genotypes requires a population
genetic model. For instance, under random mating, the genotypes of the founders
are independent, that is,

P (GiFi
) = ∏

k∈Fi

P (Gik).(3.2)

Random mating also implies Hardy–Weinberg equilibrium, which means that each
factor in (3.2) can be determined from the allele frequencies p = P (A) and
q = P (a) = 1 − p of the disease and normal allele(s) according to P (AA) = p2,
P (Aa) = 2pq and P (aa) = q2.

The conditional distribution of phenotypes given genotypes can be described
with various degrees of generality. In the simplest case, one assumes conditional
independence of individual phenotypes given genotypes, meaning that the first
factor of (3.1) can be written as

P (Yi|Gi) = ∏
k∈P̄i

P (Yik|Gik),(3.3)

where the product ranges over pedigree members with known phenotype. The
factors P (Yik|Gik) are referred to as penetrances and depend on the model being
used. Formula (3.3) can be generalized to incorporate environmental effects and
contributions from other loci (unlinked to τ ) as well.
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EXAMPLE 1 (Binary phenotypes). We let Yik = 1 for an affected individual
and 0 for an unaffected one. Then the penetrances

P (Yik|Gik) =




g
Yik

0 (1 − g0)
1−Yik , Gi = (aa),

g
Yik

1 (1 − g1)
1−Yik , Gi = (Aa),

g
Yik

2 (1 − g2)
1−Yik , Gi = (AA),

(3.4)

depend on three numbers g0, g1 and g2, which denote the probabilities of
observing Yik = 1 for an individual with zero, one or two disease alleles. The
penetrance parameters of the genetic model are ψ = (g0, g1, g2).

EXAMPLE 2 (Gaussian phenotypes). We assume that Yik|Gik ∈ N(m|Gi | +∑r
j=1 βjxikj , σ

2), where |Gik| is the number of disease alleles of Gik , σ 2 is
the residual (environmentally caused) variance, xik = (xik1, . . . , xikr ) is the set of
covariates of individual k in Pi and (β1, . . . , βr) are regression coefficients. Then
the penetrance factor is not a probability but a density,

P (Yik|Gik) = 1√
2πσ

exp

(
− 1

2σ 2

(
Yik − m|Gik | −

r∑
j=1

βjxikj

)2)
,(3.5)

and the vector of penetrance parameters is ψ = (m0,m1,m2, β1, . . . , βr, σ
2).

Let Pφit be a 2mi -dimensional row vector containing all probabilities Pφit (w),
w ∈ Z

mi

2 . By combining (3.1)–(3.3), we arrive at an expression for Pφiτ . In order to
evaluate Pφit at other loci along the chromosome, we will assume that vi(·) evolves
as two independent time homogeneous Markov processes on Z

mi

2 with the same
intensity matrix in either direction from τ , and with Pφiτ as initial distribution.
Thus

Pφit = PφiτQφi |t−τ |,(3.6)

where Qφih = {Qφih(w
′,w)}w′,w is a 2mi × 2mi transition matrix corresponding

to lag h. The entries of Qφih are described by assuming that the components
of vi(·) evolve as independent Markov processes on {0,1}, with jumps occuring
according to a Poisson process with constant intensity λ (Haldane’s model of
no interference). Each jump of vij (·) corresponds to a crossover of the j th
meiosis of Pi between grandpaternal and grandmaternal chromosomes. When the
genetic map distance is measured in centiMorgans (meaning that on the average
0.01h crossovers occur between two loci at distance h), one has λ = 0.01. The
recombination fraction between two loci at distance h cM from each other is
the probability that a certain meiosis transmits alleles from different grandparents
at the two loci. Under Haldane’s model it is given by

θh = P
(
vij (τ ± h) 	= vij (τ )

) = 1
2

(
1 − exp(−2λh)

)
.(3.7)
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Since the components of vi(·) evolve independently, we obtain

P
(
vi(t) = w|vi(τ ) = w′) = θ

|w′−w|
|t−τ | (1 − θ|t−τ |)mi−|w′−w|(3.8)

as an expression for Qφi |t−τ |(w,w′), where |w′ − w| = ∑mi

j=1 |w′
j − wj | is the

Hamming distance between w′ and w.

4. Examples of score functions.

4.1. Parametric linkage. Following Kruglyak, Daly, Reeve-Daly and Lander
(1996), let us introduce

Vi(t) =
{
vi(t) +

fi∑
k=1

αkuik; α1, . . . , αfi
∈ {0,1}

}
,(4.1)

the equivalence class of all 2fi inheritance vectors that can be formed by starting
from vi(t) and then changing phase of any founders in Pi . Under perfect marker
information, the available data is Yi and Vi(·) = {Vi(t); 0 ≤ t ≤ l} and the
likelihood function is Li(t) = P (Yi,Vi(·)|τ = t). Suppose we wish to test H0

against the pointwise alternative H1(t) : τ = t . It is shown in Hössjer (2001a) that
the likelihood ratio of Pi can be written as

Li(t)

Li(∞)
= 2miPφiτ

(
vi(t)

)
.(4.2)

The key ingredient in the proof is to verify that Vi(·), which is a function of
the Markov process vi(·), is itself a Markov process [cf. also Proposition 1 in
Dudoit and Speed (1999)]. The lod score, defined as the base 10 logarithm of the
likelihood ratio of the whole data set, thus equals

log10

∏N
i=1 Li(t)∏N

i=1 Li(∞)
=

N∑
i=1

log10
(
2miPφiτ

(
vi(t)

))
.(4.3)

Apart from a factor N1/2, the lod score is identical to ZN(t) in (2.7), with uniform
weights λi ≡ 1 and a score function

Slod(w) = log10
(
2mPφτ (w)

)
(4.4)

for a pedigree P of type φ with m meioses. This connection between score
functions and likelihood analysis was noted by Kruglyak, Daly, Reeve-Daly and
Lander (1996) in the context of incomplete marker information.
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4.2. Nonparametric linkage. The parametric score function (4.4) requires
knowledge of the genetic model. For many complex diseases this is not known.
For models with binary phenotypes, as in Example 1, nonparametric linkage uses
score functions based on allele sharing among affected individuals, which neither
requires knowledge of the disease allele frequency nor penetrance parameters. If
the affected individuals in the pedigree share more alleles from the same founders
identical by descent at locus t than what could be expected under H0, this gives
evidence for linkage. An example of such a score function was introduced by
Whittemore and Halpern (1994). Given two pedigree members k1 and k2 of Pi ,
let IBDik1k2 = IBDik1k2(w) denote the number of founder alleles shared identical
by descent by k1 and k2 in Pi when the inheritance vector is w. With P aff

i ⊂ Pi

the set of affected pedigree members with known phenotype, we then define

Spairs(w) = Spairs(w;Pi, Yi) = ∑
k1<k2∈P aff

i

IBDik1k2(4.5)

as the total number of alleles shared pairwise IBD among affecteds.

4.3. Quantitative trait loci. Consider Example 2, where the phenotypes Yik

are conditionally Gaussian, given the genotypes. It is common to use multivariate
normal distributions and variance components theory in order to map quantitative
trait loci (QTL) [cf., e.g., Almasy and Blangero (1998)]. An alternative procedure
is proposed in Commenges (1994) and Hössjer (2001b), using a score function

Sadd(v) = ∑
k1<k2∈P̄i

rik1rik2IBDik1k2,(4.6)

with P̄i the set of pedigree members with known phenotype. Notice that Sadd
is a weighted version of Spairs, with rik = Yik − m − ∑

j βjxikj the residual of
individual k and

m = q2m0 + 2pqm1 + p2m2,(4.7)

the average genetic effect. The score function Sadd requires no multivariate
normality assumptions, and yet it is asymptotically equivalent to the variance
components technique described above for local alternatives and additive models
m1 = (m0 + m2)/2 [cf. Hössjer (2001b) for details]. Notice that Sadd requires
estimation of m and {βj }rj=1, but not of any variance components. Such estimation
can be achieved using methods from segregation analysis. For a model without
covariates only m = E(Yik) needs to be estimated, and this can easily be done
from population data.

5. An asymptotic arg max result. We regard ZN(·) as a random element
of D[0, l], the space of right continuous functions [0, l] → R with left-hand
limits, which we equip with the Skorohod topology and the associated Borel
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sigma algebra. We will first develop a more general asymptotic arg max result
(Theorem 1), which is then specialized to our linkage application (Theorem 2)
in the next section. For simplicity we assume

τ ∈ (0, l),(5.1)

corresponding, in the linkage application, to the disease locus being located at
an inner point of the chromosome. We tacitly assume in this section that τ̂N is
uniquely defined with probability 1. Although this is not the case in the linkage
application, we discuss in Section 6 how to circumvent this difficulty.

The rate at which τ̂N tends to τ is critically dependent on the local behavior
of the mean value and (co)variance functions of ZN(·) around τ . Essentially, we
assume, as t → τ , that N−1/2(E(ZN(τ )) − E(ZN(t))) = a|t − τ |α + o(|t − τ |α)

and Var(ZN(t) − ZN(τ)) = σ 2|t − τ |2β + o(|t − τ |2β), for some constants
1/2 ≤ β < α, β ≤ 1 and a,σ 2 > 0. As we will see below, this implies a rate of
convergence N−d of τ̂N − τ towards zero as N → ∞, where

d = d(α,β) = 1

2(α − β)
.

The rationale for this can be seen by transforming ZN(·) − ZN(τ) both on the
horizontal and vertical scales according to

Z̃N(s) = κ2N
βd(

ZN(τ + κ1sN
−d) − ZN(τ)

)
(5.2)

with s ∈ S̃N := Nd([0, l] − τ )/κ1, κ1 = (σ/a)1/(α−β) and κ2 = aβ/(α−β) ×
σ−α/(α−β). Then notice that(

a

σ

)2d

Nd(τ̂N − τ ) = arg max
s∈S̃N

Z̃N (s).(5.3)

We extrapolate Z̃N (·) outside S̃N , so that it becomes a random element of
D(−∞,∞) (but otherwise arbitrarily), and endow it with the Skorohod topology.
The transformation ZN → Z̃N is made in such a way that E(Z̃N(s)) → −|s|α and
Var(Z̃N(s)) → |s|2β as N → ∞. Thus, under appropriate regularity conditions,

Z̃N(·) L→ Z̃(s) := W(s) − |s|α,(5.4)

where W(·) ∈ D(−∞,∞) satisfies E(W(s)) = 0 and Var(W(s)) = |s|2β . The
standard Brownian motion B(·) is the most well-known example of such a
limiting distribution W(·), and more generally fractional Brownian motion, which
corresponds to 1/2 < β ≤ 1. Non-Gaussian limiting processes W(·) are also
possible; see the discussion at the end of this section.

We are now ready to formulate an asymptotic result for τ̂N :



1084 O. HÖSSJER

THEOREM 1 (Asymptotic arg max result, general case). Suppose (5.1) holds
and consider a sequence {ZN(·)}N of stochastic processes satisfying (G1)–(G5) in
the Appendix. Then, asymptotically as N → ∞, the arg max of ZN(·) satisfies(

a

σ

)2d

Nd(τ̂N − τ )
L→ arg max

s∈R

(
W(s) − |s|α)

,(5.5)

with W as defined in (G3).

The classical parametric convergence rate N−1/2 corresponds to d(2,1) = 1/2.
It occurs for instance in regular ML or M-estimation with i.i.d. data. Other rates
of convergence are treated by Kim and Pollard (1990) and Arcones (1994, 1998).
Theorem 1 differs from the results of Kim and Pollard and Arcones in that we
only consider a one-dimensional (real-valued) index set and use different types of
regularity conditions, tailored for the linkage application in Section 6. Further,
our regularity conditions automatically give consistency and the asymptotic
distribution.

Notice that α = 1 and β = 1/2 yield N−1-convergence. This has been noted in
the change point literature, with W(·) a certain partial sum process [cf. Siegmund
(1986) and Dümbgen (1991)] and for isotone functional estimation at a point of
discontinuity [cf. Anevski and Hössjer (2002b)]. In the latter case W(·) is either a
certain discretized Brownian motion (regression) or a centered Poisson process
(density estimation). In the present paper (Section 6), as well as in Kong and
Wright (1994), W(·) is a centered compound Poisson process.

6. Asymptotics in linkage analysis. Let us now specialize Theorem 1 to our
linkage application. The type of a pedigree P can be represented as

φ = (P , P̄ , Y,genetic model),(6.1)

where P̄ ⊂ P consists of those pedigree members with known phenotypes and
Y = (Yk, k ∈ P̄ ). The genetic model can be represented with various degrees of
complexity. In the simplest case we have

genetic model = (
p,ψ,Pψ

( · |(aa)
)
,Pψ

( · |(Aa)
)
,Pψ

( · |(AA)
))

,(6.2)

where p is the disease allele frequency, ψ is the vector of penetrance parameters
and {Pψ(·|genotype)} describes the conditional distribution of the phenotype given
all possible genotypes. More complex genetic models can be defined by allowing,
for example, for multiallele disease loci and multilocus models.

Assume there are finitely many pedigree graphs, say K1, possible, and let X
be the sample space, that is, the set of permissible values of the phenotypes. For
instance, X = {0,1} and R in Examples 1 and 2, respectively. Then we define the
type space,

� = {
φ; P ∈ {1, . . . ,K1}, P̄ ∈ {P ′ ⊂ P ; |P ′| ≥ 2},

Y ∈ XP̄ ,genetic model ∈ {1, . . . ,K2}},(6.3)
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where we have coded the K1 and K2 possible pedigree graphs and genetic models
as positive integers.

We can allow for heterogeneity by letting K2 = 2, with one of the two genetic
models corresponding to a disease locus unlinked to τ . Another possibility is to let
the sample space depend on the genetic model, thereby slightly generalizing (6.3),
so that several X are allowed for. For instance, when the phenotypes of some
families are discretized, we need to represent this with several genetic models in
the sense of (6.2).

EXAMPLE 3 (Sib pairs). To make (6.1) more concrete, we consider a
population with pedigrees P = {1,2,3,4}, consisting of parents 1, 2, and
offspring 3, 4. Suppose only sib pairs have known phenotypes in the population
and that only one genetic model is of concern. Then P̄ = {3,4}, Y = (Y3, Y4),
and the type vector can be simplified to φ = Y . For a binary genetic model, as
in Example 1, the type space is � = {(0,0), (0,1), (1,0), (1,1)}, although, by
symmetry, (0,1) and (1,0) are equivalent. Since affected sib pairs are by far
most powerful for genetic linkage for most binary genetic models of interest, it
is common to reduce the type space to � = {(1,1)}, meaning that all pedigrees
in the population are of the same type. Thus the method of ascertainment of the
pedigree has reduced the type space.

For the Gaussian genetic model of Example 2, the type space is � = R
2. Risch

and Zhang (1995, 1996) found that extremely discordant or concordant sib pairs
were most powerful for linkage, suggesting that one should reduce the type space
to a subset of R

2.
If we also include the possibility that one or two parents can have a known

phenotype, the type space consists of binary sequences of length between 2 and 4
(discrete case) or it equals R

2 ∪ R
3 ∪ R

4 (continuous case). By symmetry, we
equate the two possible cases when one parent has known phenotype.

More generally, since only finitely many pedigree structures and genetic models
are allowed, we assume that the type space

� =
K⋃

k=1

�k

is a finite union of disconnected sets of (possibly) varying dimension. Let dk be
the dimension �k. Then �k is a point if dk = 0 or �k = Jk1 × · · ·× Jkdk

if dk ≥ 1,
where each Jki is a (finite, half-infinite or infinite) one-dimensional interval. We
assume that P , P̄ and the genetic model are fixed throughout each �k. If m(φ)

is the number of meioses of pedigree type φ, it thus follows that m(·) is constant
over each �k . For a continuous trait, the phenotype vector Y varies over �k, so that
�k = χ |P̄ |, where χ is an interval. Hence dk = |P̄ | is a number between 2 and |P |.
In the binary case, the phenotype vector Y ∈ {0,1}P̄ is kept fixed at each �k so
that dk ≡ 0 and � becomes a finite set of points.
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Now � is topologized by introducing the metric d(φ1, φ2), which is set to
|φ2 −φ1|/(1 + |φ2 −φ1|) if φ1 and φ2 belong to the same component �k , with | · |
the Euclidean norm of R

dk . Otherwise, we put d(φ1, φ2) = 1.
Let φi be the type of Pi and

νN = 1

N

N∑
i=1

δφi

the empirical measure defined by the sample {Pi}Ni=1, where δφ is a point mass
at φ.

(L1) νN →L ν as N → ∞ for some Borel measure ν on �; that is, νN(· ∩
�k) →L ν(· ∩ �k) in terms of weak convergence of measures on R

dk , for
each 1 ≤ k ≤ K .

Notice that (L1) includes the case when {φi} are drawn randomly from ν, and
the weak convergence in particular implies that νN(�k) → ν(�k) for each k.

We will use the pedigree type φi of Pi to specify weights in (2.7) according to

γi = γ (φi),(6.4)

for some weight function γ :� → (−∞,∞) that should be large in absolute
value for types corresponding to “informative pedigrees.” The fact that negative
weights are allowed will be commented on in Section 10.2. Our next assumption,
corresponding to (G1), is:

(L2) For each t 	= τ ,
∫

γ (φ)µt(φ) dν(φ) <
∫

γ (φ)µτ(φ) dν(φ),

where µt(φi) = E(Z̄i(t)) is the mean value of the ith family score at t ∈ [0, l].
We will now investigate how the mean and variance functions of each family

score Z̄i(·) scale locally around τ . To facilitate this, we introduce some additional
notation: The conditional distribution Pφt in (3.6) and the score function S =
{S(w); w ∈ Z

m
2 } can both be interpreted as row vectors of dimension M , where

m = m(φ) and M = M(φ) = 2m, or as elements of R
M . To highlight that the

vector S actually depends on φ, we sometimes write S = Sφ . In Lemma 1 of the
Appendix, it is proved that

µt(φ) = µτ(φ) − a(φ)|t − τ | + o(|t − τ |)(6.5)

and

Var
(
Z̄i(t) − Z̄i(τ )

) = σ 2(φ)|τ − t| + o(|t − τ |)(6.6)

as t → τ , where a(φ) and σ 2(φ) are constants. The “mean slope” a(φ) is defined
by

a(φ) = λ

(
m

∑
w

S(w)Pφτ (w) −
m∑

j=1

∑
w

S(w)Pφτ (w + ej )

)
= λSbT

φ ,(6.7)
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where ej ∈ Z
m
2 is a unit vector with one in the j th position and zeros elsewhere,

bφ
T is the transpose of

bφ = −PφτAφ(6.8)

and Aφ = λ−1 dQφh/dh|h=0 is λ−1 times the infinitesimal generator of the
Markov process (3.8). Further, the local variance σ 2(φ) is given by

σ 2(φ) = λ
∑

w∈Z
m
2

Pφτ (w)

m∑
j=1

(
S(w + ej ) − S(w)

)2

= λSBφST ,

(6.9)

where Bφ is a symmetric M × M-matrix defined by

Bφ = diag(PφτAφ) − diag(Pφτ )Aφ − Aφ diag(Pφτ ).(6.10)

The elements of Aφ are found by combining (3.7) and (3.8) and differentiating
w.r.t. h,

Aφ(w,w′) =



−m, w′ = w,

1, |w′ − w| = 1,

0, |w′ − w| > 1.

(6.11)

Hence the elements of bφ are bφ(w) = mPφτ (w) − ∑m
j=1 Pφτ (w + ej ). Similarly,

the elements of Bφ have the form

Bφ(w′,w) =




mPφτ (w) +
m∑

j=1

Pφτ (w + ej ), w′ = w,

−(
Pφτ (w

′) + Pφτ (w)
)
, |w′ − w| = 1,

0, |w′ − w| > 1.

Equations (6.5) and (6.6) are crucial for establishing the local scaling of the
linkage score process ZN(·) in (2.7). In fact, we will prove below that Theorem 1
can be applied with α = 1 and β = 0.5, giving a surprisingly fast rate of
convergence N−1, since d(1,0.5) = 1. Further, the constants a and σ 2 appearing
in Theorem 1 are weighted averaged versions of the quantities a(φ) and σ 2(φ),
defined by

a =
∫

γ (φ)a(φ) dν(φ)(6.12)

and

σ 2 =
∫

γ 2(φ)σ 2(φ) dν(φ),(6.13)

respectively.
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We will need some additional regularity conditions. For this we introduce
σ 2

H0
(φ) = Var0(S) = E0[(S − E0(S))2] as the variance under H0 for S = Sφ(v).

Subscript 0 here means that expectation is taken when v ∈ Z
m(φ)
2 has a uniform

inheritance distribution (2.4).

(L3) The constants a and σ 2 are both positive.
(L4) Let m be the value of m(·) on �k . Then φ → Sφ(w) is continuous on �k for

each w ∈ Z
m
2 .

(L5) Let Y ∈ X be the phenotype of a certain individual. Then Pψ(Y |(aa)),
Pψ(Y |(Aa)) and Pψ(Y |(AA)) are all continuous functions of Y on X, for
each (of finitely many possible) penetrance vectors ψ .

(L6) The weight function γ (·) is continuous on �.
(L7) The expression supN

∫
γ 2(φ)σ 2

H0
(φ)>A γ 2(φ)σ 2

H0
(φ) dνN(φ) tends to zero as

A → ∞.

Notice that (L4)–(L6) are automatically satisfied for finite sample spaces X,
and (L5) can easily be generalized to incorporate two-locus and multiallelic
genetic models. Further, (L7) is a technical uniform integrability condition that
permits νN to be replaced by ν in certain integrals. It is automatically satisfied if,
for example, γ 2σ 2

H0
is bounded, which is the case for finite �.

The “consistency conditions” (L2) and (L3) can sometimes be checked by
means of the following result:

PROPOSITION 1 [A sufficient condition for (L2) and (L3)]. Consider a
fixed pedigree type φ. Suppose that the score function w → Sφ(w) is a strictly
increasing function of Pφτ (w) and that Pφτ (w) 	= 2−m for at least some w. Then

µt(φ) < µτ (φ) for all t 	= τ(6.14)

and

a(φ) > 0.(6.15)

The inequalities are reversed if Sφ is a strictly decreasing function of Pφτ . Finally,
σ 2(φ) > 0 follows if Sφ(w) 	= Sφ(w′) for some pair (w,w′) with |w′ −w| = 1 and
Pφτ (w) > 0.

The lod score function (4.4) obviously satisfies the monotonicity requirement
of Proposition 1, as do Sφ = Pφτ and Sφ = −P −1

φτ . The latter two score functions
will be shown to have pointwise optimality properties in Section 8.

Before formulating the asymptotic arg max result, we need to specify the
limiting distribution Z̃ in (5.4). Let m̄N = ∫

� m(φ)dνN(φ) denote the average
number of meioses of a family type picked at random from {φi}Ni=1. Then
dν̄N(φ) = m(φ)dνN(φ)/m̄N is a measure on � corresponding to a randomly
picked meiosis from {φi}Ni=1. The union of all crossovers in {φi}Ni=1 evolves as
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a Poisson process with intensity Nλ̄N , where λ̄N = m̄Nλ. The corresponding
asymptotic quantities m̄, ν̄ and λ̄ are defined by replacing νN by its asymptotic
limit ν. Next, we define a type-crossover space according to

� =
K⋃

k=1

�k × Z
m(�k)
2 × Z

m(�k)
2 ,

where m(�k) is the constant value of m(·) on �k. An element ξ = (φ,w,w′) ∈ �

corresponds to a crossover of a pedigree of type φ, so that the inheritance vector
is changed from w to w′ (and consequently |w − w′| = 1). We equip � with
the metric d̃(ξ1, ξ2) = d̃((φ1,w1,w

′
1), (φ2,w2,w

′
2)), which is set to d(φ1, φ2) if

φ1 and φ2 belong to the same �k and (w1,w
′
1) = (w2,w

′
2). In all other cases, we

put d̃(ξ1, ξ2) = 1. Define a measure ν̃N on the Borel sigma algebra on � generated
by d̃(·, ·) according to

dν̃N(ξ) = dν̄N(φ)Pφτ (w)1{|w′−w|=1}/m(φ),

which is the probability distribution of crossovers for the given sample at τ .
The corresponding asymptotic measure ν̃ is defined by replacing ν̄N by ν̄ in the
definition of ν̃N . Next, we define a random variable X :� → R according to

X(ξ) = γ (φ)
(
Sφ(w′) − Sφ(w)

)
,(6.16)

which measures the change [after weighting with γ (φ)] of the score function
corresponding to a crossover ξ . Thus, if ξ ∼ ν̃, it is easy to see from (6.7) and
(6.9) that X = X(ξ) satisfies E(X|φ) = −γ (φ)a(φ)/(λm(φ)) and E(X2|φ) =
γ 2(φ)σ 2(φ)/(λm(φ)). After averaging out φ, we find that

E(X) =
∫

E(X|φ)dν̄(φ) = −a/λ̄,

E(X2) =
∫

E(X2|φ)dν̄(φ) = σ 2/λ̄.

(6.17)

Define next doubly infinite sequences T = {Tj }−1
j=−∞ ∪ {Tj }∞j=1, with 0 < T1 <

T2 < · · · and 0 > T−1 > T−2 > · · · , and ξ = {ξj }−1
j=−∞ ∪ {ξj }∞j=1, of time points

and crossovers, respectively. Let � = {ω} be the space of all such pairs of
sequences ω = (T , ξ). We define the metric

ρ(ω1,ω2) = ρ
(({T1j }, {ξ1j }), ({T2j }, {ξ2j }))

= ∑
j 	=0

2−|j | |T2j − T1j |
1 + |T2j − T1j | + ∑

j 	=0

2−|j | d̃(ξ2j , ξ1j )

1 + d̃(ξ2j , ξ1j )

on �. A measure ν̌ on the Borel sigma algebra of � can be specified as follows:
Assume that {Tj }−1−∞ and {Tj }∞1 evolve as two independent Poisson processes with
intensity λ̄, and that {ξj }−1−∞∪{ξj }∞1 is an i.i.d. sequence of crossovers with ξj ∼ ν̃.



1090 O. HÖSSJER

Define a mapping z :� → D(−∞,∞) according to

z(s) = z
(
s; (T , ξ)

) =




κ2
∑

Tj ∈(0,κ1s]
Xj , s ≥ 0,

κ2
∑

Tj ∈(κ1s,0]
Xj , s < 0,

(6.18)

with Xj = X(ξj ), κ1 = σ 2/a2 and κ2 = a/σ 2. The distribution of the limiting
process Z̃, defined generally in (5.4), can now be expressed by the measure ν̌ ◦ z−1

in the linkage application. This means, in view of (6.17), that

E
(
Z̃(s)

) = κ1κ2λ̄E(X)|s| = −|s|,
Var

(
Z̃(s)

) = κ1κ
2
2 λ̄E(X2)|s| = |s|.

(6.19)

Thus, since Z̃ has independent increments on disjoint intervals, the centered
process W(s) = Z̃(s) + |s| has the same covariance function as a standard
Brownian motion B .

Notice that the arg max of neither ZN nor Z̃ is unique; they are both unions
of finitely many intervals. In order to make the arg max unique, we define, for
any u ∈ [0,1], a new arg maxu-functional as follows: Let z ∈ D(J ), where J is any
(finite or infinite) subinterval of R. Then

arg maxuz = F−1
z (u),

where Fz is the right-continuous inverse of the distribution function Fz(x) =
|(−∞, x] ∩ arg max z|/| arg max z|, where arg max z is the set of all maxima for z

and | · | is the Lebesgue measure. To be precise, this definition requires that
arg max z be nonempty and | arg max z| be finite, which holds with probability 1
for all processes of interest to us.

With τ̂N (u) = arg maxu ZN , we are now ready to formulate the following
theorem.

THEOREM 2 (Asymptotic arg max result, linkage case). Consider the genetic
model described in Sections 2 and 3 with disease locus estimator τ̂N and test
statistic process ZN(·) as in (2.3) and (2.7). Then, if (2.8), (L1) and (L4)–(L6)
hold, it follows that

Z̃N
L→ Z̃(6.20)

as N → ∞, where Z̃ is the two-sided compound Poisson process z(·; (T , ξ))

defined in (6.18) with (T , ξ) ∼ ν̌. If also (L2), (L3) and (L7) hold, as well as (L8)
in the Appendix, it follows that

a2

σ 2 N
(
τ̂N(u) − τ

) L→ arg maxuZ̃(6.21)

for each u ∈ [0,1], with a2 and σ 2 as defined in (6.12) and (6.13), respectively.
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Notice that the weak convergence (6.20) holds under both H0 and H1. In
particular, it does not require the consistency conditions (L2) and (L3). Further,
(6.21) implies that τ̂N converges to τ at rate N−1. The limiting distribution is
nonstandard, expressed as the arg max of the compound Poisson process Z̃. The
constant

ASLNR(ν) := a2

σ 2 = (
∫

γ (φ)a(φ) dν(φ))2∫
γ 2(φ)σ 2(φ) dν(φ)

(6.22)

appearing in (6.21) will be referred to as the asymptotic slope-to-noise ratio of τ̂N .
We will use it as a performance criterion for the estimation procedure, since the
right-hand side of (6.21) involves the arg max of a stochastic process whose two
first moments are fixed. Still, the distribution of Z̃ depends on both the weighting
scheme and the score function. Further discussion and motivation of ASLNR(ν)

as a performance criterion can be found in Hössjer (2001a).
Further simplification of the limit distribution is possible in the limit

ASLNR(ν) → 0, corresponding to weak genetic models. Then W(·) →L B(·) on
D(−∞,∞). The arg max functional of B(s) − |s| is unique with probability 1,
and an explicit expression for its distribution is obtained by Siegmund (1986).

7. Optimal weights and score functions.

7.1. Optimal weights. Let us keep the score function fixed and vary the
weights. This means that the functions a(·) and σ 2(·) in (6.7) and (6.9) are fixed,
whereas γ (·) varies. By the Cauchy–Schwarz inequality, the weight function that
maximizes ASLNR(ν) in (6.22) is given by

γ (φ) ∝ a(φ)

σ 2(φ)
,(7.1)

corresponding to an asymptotic signal-to-noise ratio

ASLNR(ν) =
∫

a2(φ)

σ 2(φ)
dν(φ) =

∫
ASLNR(δφ) dν(φ),(7.2)

which is a weighted average of the asymptotic slope-to-noise ratios of all pedigree
types.

In practice we only know νN , not ν. However, the optimal weighting
function (7.1) is independent of the weighting measure ν applied to the type space.
In particular, (7.1) optimizes ASLNR(νN), and so (7.2) implies

SLNRN ≤
N∑

i=1

ASLNR(δφ),(7.3)
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where

SLNRN = NASLNR(νN)

= (
∑N

i=1 γ (φi)a(φi))
2∑N

i=1 γ 2(φi)σ 2(φi)
,

(7.4)

is the slope-to-noise ratio of the observed sample. This quantity grows at a rate N

as the number of pedigrees increases. The maximal value of SLNRN is attained
when there is equality in (7.3), which happens iff the optimal weight function (7.1)
is used.

EXAMPLE 4 (Information loss due to heterogeneity). Suppose the population
consists of two pedigree types φI and φII , with only φI linked to τ . Then PτφII (·) is
uniform, and hence aII = a(φII) = 0. If rN = dνN(φI ) is the proportion of linked
families in {Pi}Ni=1, then

SLNRN = N
(γIaI rN)2

γ 2
I σ 2

I rN + γ 2
IIσ

2
II(1 − rN)

= NrN
a2
I

σ 2
I + (γII/γI )

2σ 2
II(1 − rN)/rN

,

with γI = γ (φI ) and so on. The optimal weighting function (7.1) reduces to
γII = 0, that is, ignorance of the unlinked families. The corresponding optimal
slope-to-noise ratio is SLNRopt

N = NrNa2
I /σ

2
I . In practice, one cannot distinguish

the two subpopulations, and hence γI = γII . Therefore, the relative information
loss due to heterogeneity can be quantified as

SLNRN

SLNRopt
N

= 1

1 + (σII/σI )2(1 − rN)/rN
,

which is smaller, equal to or larger than rN depending on whether σ 2
II/σ

2
I is larger

than, equal to or smaller than 1.

EXAMPLE 5 (Numerical values for nuclear families). Table 1 illustrates values
of ASLNR(δφ) and the optimal weight function (7.1) for a number of nuclear
families with binary phenotypes and a varying number of affected (unaffected)
children when Spairs [cf. (4.5)] is used as score function. Two dominant and
two recessive models (with and without phenocopies) are included. As seen
in the table, the presence of phenocopies reduces ASLNR(δφ) as well as the
optimal weights. Further, ASLNR(δφ) varies more between families than do
the optimal weights.
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TABLE 1
Value of mean slope a = a(φ), local variance σ 2 = σ 2(φ), asymptotic slope-to-noise ratio

ASLNR(δφ) and optimal weight γ = a(φ)/σ 2(φ) for a number of nuclear families with two
parents (having unknown phenotypes) and k children, of which l are affected and k − l unaffected.
Two dominant models [g0 = 0 or 0.1, (g1, g2) = (0.8,0.9)] and two recessive ones [g0 = 0 or 0.1,

(g1, g2) = (0.1,0.9)] are considered. Numbers for the models without phenocopies (g0 = 0) are at
the upper part of the table. The disease allele frequency p equals 0.1, the map distance is measured

in Morgans (λ = 1) and the score function is Spairs

Dominant models Recessive models

k l a σ 2 ASLNR γ a σ 2 ASLNR γ

2 2 1.95 8.00 0.48 0.24 3.00 8.00 1.13 0.37
3 2 2.35 8.00 0.69 0.29 3.09 8.00 1.19 0.39
3 3 2.73 10.23 0.73 0.27 4.81 11.93 1.94 0.40
4 2 2.56 8.00 0.82 0.32 3.10 8.00 1.20 0.39
4 3 3.63 10.96 1.20 0.33 5.30 12.33 2.28 0.43
4 4 2.89 11.33 1.74 0.26 5.70 14.57 2.22 0.39
5 2 2.68 8.00 0.89 0.34 3.08 8.00 1.18 0.38
5 3 4.18 11.41 1.53 0.37 5.26 12.51 2.44 0.42
5 4 4.32 12.99 1.44 0.33 6.84 15.91 2.95 0.43
5 5 2.60 11.49 0.59 0.23 5.63 15.56 2.04 0.36

2 2 1.17 8.00 0.17 0.15 0.66 8.00 0.05 0.08
3 2 1.27 8.00 0.20 0.16 0.53 8.00 0.04 0.07
3 3 1.86 9.52 0.36 0.20 2.21 9.80 0.50 0.22
4 2 1.24 8.00 0.19 0.16 0.42 8.00 0.02 0.05
4 3 2.27 9.85 0.52 0.23 1.97 9.61 0.40 0.20
4 4 2.19 10.53 0.46 0.21 4.02 12.65 1.28 0.32
5 2 1.12 8.00 0.16 0.14 0.33 8.00 0.01 0.04
5 3 2.47 10.02 0.61 0.25 1.68 9.37 0.30 0.18
5 4 2.94 11.40 0.76 0.26 4.19 12.83 1.36 0.33
5 5 2.21 10.96 0.44 0.20 4.89 14.56 1.64 0.34

7.2. Optimal score functions. We will now investigate which score function
maximizes ASLNR(ν). Now ASLNR(ν) can be written as

ASLNR(ν) = (
∫

γ (φ)σ (φ)ASLNR(δφ)1/2 dν(φ))2∫
γ 2(φ)σ 2(φ) dν(φ)

,(7.5)

and γ (φ)σ (φ) can be viewed as an effective weight of pedigree type φ, which has
been normalized for multiplicative scaling of the score function. Given γ (·)σ (·),
ASLNR(ν) is optimized by separately optimizing ASLNR(δφ) for each pedigree
type φ. Thus we may consider a fixed pedigree type.

When choosing score function for a pedigree of type φ, it will be convenient
to restrict ourselves to the space R

M
0 = {b ∈ R

M; ∑
w∈Z

m
2

b(w) = 0}, where
m = m(φ) and M = 2m. Observe that S ∈ R

M
0 is equivalent to the average family
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score being zero [cf. (8.1) below]. This is no essential restriction, since adding
constants to the score function does not affect τ̂N .

Let bφ = {bφ(w)} ∈ R
M
0 and Bφ = {Bφ(w′,w)} be as in (6.8) and (6.10). Define

the scalar product 〈·, ·〉φ : RM
0 × R

M
0 → R through

〈S,b〉φ = SBφbT /4 = ∑
w′∈Z

m
2

∑
w∈Z

m
2

S(w′)Bφ(w′,w)b(w)/4.(7.6)

This is possible, since by (6.9), the matrix Bφ is positive definite on R
M
0 × R

M
0 . It

follows from (6.7) and (6.9) that

ASLNR(δφ) = 4λ
〈bφB−1

φ , S〉2
φ

〈S,S〉φ ,(7.7)

where B−1
φ is the inverse of Bφ , viewed as an operator on R

M
0 . The optimal score

function in R
M
0 becomes

Sopt ∝ bφB−1
φ = −PφτAφB−1

φ .(7.8)

Thus we may define a “generalized Fisher information,”

I (δφ) := 4λ
〈bφB−1

φ , bφB−1
φ 〉2

φ

〈bφB−1
φ , bφB−1

φ 〉φ
= λbφB−1

φ bT
φ = λPφτAφB−1

φ AφP T
φτ(7.9)

for pedigree type φ, which is the value of ASLNR(δφ) corresponding to the
optimal score function (7.8). Notice that ASLNR(δφ) is unaffected if we replace
the score function S with S + δ1 for any δ ∈ R and 1 = (1, . . . ,1). Thus it is no
restriction to assume S ∈ R

M
0 . An asymptotic Fisher information

I (ν) =
∫

I (δφ) dν(φ)

is obtained by replacing ASLNR(δφ) by I (δφ) in (7.2). It is the value of
ASLNR(ν) obtained when using an optimal score function (7.8) and optimal
weights (7.1). It is easy to see that the optimal weight function is uniform
(λ(φ) ∝ 1) when Sopt is used. For the given sample, we have

SLNRN ≤ IN := NI (νN) =
N∑

i=1

I (δφi
),(7.10)

with equality when Sopt and uniform weights are employed. The right-hand side
of (7.10) quantifies the degree of information present in data. Of course, the genetic
model must be known in order to reach this information upper bound. Since
this is rarely the case for complex diseases, it is of interest to define asymptotic
efficiencies. Let

eff(δφ) := ASLNR(δφ)

I (δφ)
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denote the asymptotic efficiency of pedigree type φ. Asymptotic efficiency
corresponding to ν is defined analogously and the efficiency of the given sample is

effN = SLNRN

IN

=
N∑

i=1

ri eff(δφi
),

a weighted average of the individual pedigree efficiencies with weights ri =
I (δφi

)/
∑N

j=1 I (δφj
) proportional to the Fisher information.

8. Pointwise criteria. In this section, we discuss two pointwise criteria, and
compare them with the asymptotic slope-to-noise ratio (7.4). Throughout this
section, we assume that the family scores are centered, so that

E
(
Z̄i(t)|H0

) = 2−mi
∑

w∈Z
mi
2

S(w) = 0.(8.1)

The first criterion is the H0-normalized signal-to-noise ratio,

SNRN = E2(ZN(τ )|H1)

Var(ZN(t)|H0)
= (

∑N
i=1 γ (φi)µ(φi))

2∑N
i=1 γ 2(φi)σ

2
H0

(φi)
,(8.2)

where µ(φ) = µτ (φ) is the mean under H1 at the disease locus for a pedigree of
type φ and σ 2

H0
(φ) = Var0(S) the variance under H0. Comparing (8.2) with the

definition of SLNRN in (7.4), we have essentially replaced a(φ) and σ 2(φ) by
µ(φ) and σ 2

H0
(φ). In particular, this means that the optimal weight function (7.1)

now becomes γ (φ) ∝ µ(φ)/σ 2
H0

(φ). In order to derive an optimal score function,
a rewriting of the kind (7.5) reveals that it suffices to maximize

SNR(δφ) = µ2(φ)

σ 2
H0

(φ)
= (S,2miPφτ )

2
φ

(S,S)φ
= (S,2miPφτ − 1)2

φ

(S,S)φ
(8.3)

for each pedigree type φ = φi , with (S, b)φ = 2−mi
∑

w S(w)b(w) and 1 =
(1, . . . ,1) a row vector with ones only. In the last step of (8.3), we used (8.1).
Thus, an optimal score function is S ∝ Pφτ − 2−mi 1. For estimation purposes, we
may ignore the centering constant of the score function and simply put S ∝ Pφτ .

Our second pointwise criterion is

SNRN = (E2(ZN(τ )|H1)

Var(ZN(τ )|H1)
= (

∑N
i=1 γ (φi)µ(φi))

2∑N
i=1 γ 2(φi)σ

2
H1

(φi)
,(8.4)

which differs from (8.2) in that we replaced σ 2
H0

(φ) by

σ 2
H1

(φ) = Var
(
S
(
vi(t)

)|H1
) = ∑

w∈Z
mi
2

S2(w)Pφτ (w) − µ2(φ),
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the variance of the family score under H1 if φ = φi . Thus, in analogy with the
SNRN criterion, the optimal weight function is γ (φ) ∝ µ(φ)/σ 2

H1
(φ). In order to

find the optimal score function, we must maximize SNR(δφ) = µ2(φ)/σ 2
H1

(φ) for
each φ = φi , which is equivalent to maximizing

µ2(φ)

µ2(φ) + σ 2
H1

(φ)
= [S,1]2

φ

[S,S]φ = [S,1 − P −1
φτ /c]2

φ

[S,S]φ ,(8.5)

where [S,b]φ = ∑
w S(w)b(w)Pφτ (w), P −1

φτ is a row vector obtained by pointwise

inverting the elements of Pφτ and c = 2−mi
∑

w P −1
φτ (w). The right-hand side

of (8.5) follows from (8.1), which can be written as [S,P −1
φτ ]φ = 0. Thus, it follows

easily that S ∝ 1 − P −1
φτ /c yields an optimal score function. In the estimation

framework, this can be simplified to S ∝ −P −1
φτ . Of course, this argument requires

that Pφτ (w) 	= 0 for all w, and in any case the optimal score function is very
sensitive to small variations in {Pφτ (w)} when these are close to zero.

Both SNRN and SNRN are related to the asymptotic pointwise power of the
(idealized) test statistic ZN(τ) [cf. Sham, Zhao and Curtis (1997) and Nilsson
(1999)]. These authors also derive the optimal weighting schemes defined above.

9. Local specificity models. When mapping a disease susceptibility gene,
a larger data set is needed if there is weak dependence between the phenotypes
and inheritance vectors. The strength of this dependence is referred to as the
specificity component of linkage analysis in Thompson (1997). In this section, we
will consider local specificity models, corresponding to a weak genetic component
at τ .

Following Whittemore (1996), it is possible to define a one-parameter family of
genetic models {Pφτε(·)}ε≥0, where

Pφτε(w) := P
(
vi(τ ) = w|Yi, ε

) = 2−m
(
1 + εkSloc(w)/k!) + o(εk)(9.1)

as ε → 0, k is a fixed positive integer and m = m(φ) is the number of
meioses corresponding to a pedigree of type φ = φi . The scalar parameter ε

measures the strength of the genetic component. The smaller ε is, the less
information about the inheritance vector is contained in Yi . The score function
Sloc ∈ R

M , M = 2m, must satisfy
∑

w Sloc(w) = 0 because of the constraint∑
w Pφτε(w) = 1. Notice that Sloc(w) may be interpreted as a likelihood score

function dk log Pφτε(w)/dεk|ε=0, and hence it can be shown to be locally optimal
as ε → 0 in a pointwise sense when testing H0 versus H1(t) for a fixed t [cf. Cox
and Hinkley (1974)].

One way of achieving (9.1) is to assume that the disease allele frequency is
kept fixed while the vector of penetrance parameters ψ = ψ(ε) varies with ε.
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For instance, for binary phenotypes, as in Example 1, one can vary the penetrance
probabilites (g0, g1, g2) with ε in such a way that the prevalence Kp = P (Yik = 1)

is kept fixed. It is shown in McPeek (1999) and Hössjer (2001b) that (9.1) holds,
with k = 1 for inbred pedigrees (containing loops) and k = 2 for outbred pedigrees
(with no loops). For instance, in the additive case (g1 = (g0 + g2)/2),

Sloc ∝ Spairs − E0(Spairs)

for outbred pedigrees with P̄i consisting of affecteds only, with Spairs as defined
in (4.5). As another illustration, consider the Gaussian model in Example 2 and
assume for simplicity that there are no covariates. Then the vector of penetrance
parameters is ψ = (m0,m1,m2, σ

2). Assume further that the residual variance σ 2

is fixed while (m0,m1,m2) varies with ε, given the constraint that the overall
population mean m = E(Yik) in (4.7) is kept fixed. For outbred pedigrees and
additive models (m1 = (m0 + m2)/2) it turns out that (9.1) holds with k = 2 and

Sloc ∝ Sadd − E0(Sadd),

with Sadd as defined in (4.6).
Local expansions (9.1) can also be performed for rare disease models. Then the

vector of penetrance parameters is kept fixed whereas the disease allele frequency
p = ε tends to zero. Examples of locally optimal score functions obtained in this
case are Srobdom [McPeek (1999)] and its generalization to arbitrary phenotype
models [Hössjer (2001b)].

Consider now a fixed pedigree of type φ. Define quantities aε(φ), σ 2
ε (φ), Bφε

and 〈·, ·〉φε as in (6.7), (6.9), (6.10) and (7.6) for model Pφτε . Then introduce
[provided the kth derivative of the remainder term in (9.1) is negligible as ε → 0]

SLE(δφ) = (dkaε(φ)/dεk|ε=0)
2

σ 2
0 (φ)

= λ
〈S,Sloc〉2

φ0

〈S,S〉φ0
,(9.2)

as the slope efficacy of the score function S for pedigree type φ, with k as in (9.1).
In the second step of (9.2) we used the fact that Bφ0 = −2−m+1Aφ , where m =
m(φ), so that 〈S,b〉φ0 = 2−m−1S(−Aφ)bT and dkaε(φ)/dεk = 2λ〈S,Sloc〉φ0.

Let ASLNRε(δφ) be the asymptotic slope-to-noise ratio (7.7) when the
specificity parameter is ε. Naturally, ASLNR0(δφ) = 0, since ε = 0 in (9.1) results
in a uniform inheritance distribution and then estimation of τ makes no sense. If
we Taylor expand ASLNRε(δφ) w.r.t. ε we obtain

ASLNRε(δφ) = SLE(δφ)

k! εk + o(εk).(9.3)

Hence the slope efficacy essentially determines ASLNRε(δφ) for small ε. It is easy
to see that SLE(δφ) is maximized by taking S = Sloc in (9.2). Thus Sloc is locally



1098 O. HÖSSJER

optimal, even in our estimation framework. This can also be seen by replacing
Bφ by Bφε in (7.8). Then the optimal score function Sopt satisfies

Sopt ∝ −(Pφτε − 2−m1)AφB−1
φε

∝ (
Sloc + o(1)

)
Aφ

(
Aφ + o(1)

)−1 = Sloc + o(1)

as ε → 0.
Local Fisher information and efficiencies are defined analogously as the

corresponding “fixed ε”-quantities in Section 7.2. In particular, the local efficiency
of the score function S for pedigree type φ becomes

leff(δφ) := 〈S,Sloc〉2
φ0

〈S,S〉φ0〈Sloc, Sloc〉φ0
,

which can be interpreted as the square of the correlation coefficient between
S and Sloc in the metric induced by 〈·, ·〉φ0.

Notice that the two pointwise criteria introduced in Section 8 become equivalent
as ε → 0, since in the limit the two variance normalizations in (8.2) and (8.4) are
the same. The pointwise efficacy for pedigree type φ becomes

E(δφ) = (dkµτε(φ)/dεk|ε=0)
2

σ 2
H0

(φ)
= (S, Sloc)

2
φ

(S,S)φ
,(9.4)

where µτε(φ) is the value of µτ(φ) for model Pφτε . Compared to (9.2), we have
thus essentially replaced the scalar product 〈·, ·〉φ0 by (·, ·)φ . Let SNRε(δφ) be
the signal-to-noise ratio (8.3) when the specificity parameter is ε. Then a Taylor
expansion (9.3) holds with SNRε(δφ) and E(δφ) in place of ASLNRε(δφ) and
SLE(δφ). Thus it follows, in view of (9.4), that Sloc is locally optimal also in terms
of the pointwise SNR-criterion. This suggests that the information loss inherent in
the pointwise SNR-criterion is less crucial for small ε.

10. Outlook.

10.1. Incomplete marker information. Theorem 2 has potential applications to
planning how many markers are needed for estimating the disease locus. Suppose
we wish to use an equally spaced grid of fully polymorphic markers with grid
size δ. Then, with AN = ASLNR(νN), a rough upper bound for δ is SLNR−1

N =
(NAN)−1, which is of the order N−1, with the constant of proportionality
depending on the informativeness of the pedigrees in the population. In order to
find this constant, one may consider an asymptotic scenerio with δ = cN−1, as
is done by Kong and Wright (1994) for backcrosses. Another robust approach is
to use the generalized estimating equations method of Liang, Huang and Beaty
(2000) and Liang, Chiu and Beaty (2001). Their method yields

√
N -consistent
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estimators of τ when the population is a mixture of finitely many types and the
marker genes are fully polymorphic (but their number does not grow with N ).
However, it is still seen as an open problem to find consistent estimators of τ for
arbitrary pedigree structures and varying degree of heterozygosity of the markers.

10.2. Sampling criteria. Define CELOD(t) as the expected value of the lod
score in (4.3), conditional on observed phenotypes. This quantity is discussed,
for example, in Sections 5.10 and 9.7 of Ott (1999), as an important criterion
for planning linkage studies when phenotypes have been observed. In our context
of perfect marker information CELOD(t) = ∑N

i=1 µt(φi), with µt(φ) as defined
below (L2), using the lod score function (4.4). It follows from Proposition 1
that µ(φ) = µτ(φ) > µt(φ) for any t 	= τ , and thus (L2) holds for lod score
analysis when the assumed parametric model is true, since γ (·) ≡ 1. Hence, the
maximal conditional expected lod score is given by MCELOD = CELOD(τ ) =∑N

i=1 µ(φi), motivating that µ(φ) is a useful sampling criterion for detecting
linkage. However, a pointwise sampling criterion more related to the power to
detect linkage is

SNR(δφ) = (µ(φ) − µH0(φ))2

σ 2
H0

(φ)
.(10.1)

This agrees with (8.3), apart from the fact that we no longer assume µH0(φ) =
E0(Sφ) = 0. In fact, Jensen’s inequality implies that for the lod score function
µH0(φ) = 2−m

∑
w log10(2

mPφτ (w)) < 0, unless Pφτ (w) ≡ 2−m.
An example of (10.1) was furnished by Liang, Huang and Beaty (2000) and

Liang, Chiu and Beaty (2001). Extending work of Risch and Zhang (1995, 1996),
they considered family scores conditionally on phenotypes for, for example,
sib pairs. Using the number of alleles shared IBD by the sib pair as score
function, they proposed |µ(φ)− 1| as sampling criterion, both for quantitative and
binary phenotypes. Here φ = (Y3, Y4) is the type of the pedigree, as described
in Example 3. Since µH0(φ) = 1 and σ 2

H0
(φ) = 1/2, we obtain |µ(φ) − 1| =√

SNR(δφ)/2, proving that |µ(φ) − 1| is equivalent to SNR(δφ) as sampling
criterion.

In this paper, we have seen that ASLNR(δφ) = a2(φ)/σ 2(φ) is a natural
performance criterion for a pedigree of type φ, in terms of accuracy to locate τ ,
rather than SNR(δφ) which is tailored for (pointwise) ability to detect linkage.
Naturally, the two criteria are related. For instance, for sib pairs we have a(φ) =
4λ(µ(φ) − 1) [cf. Proposition 1 in Liang, Chiu and Beaty (2001)]. Hence, in this
case |µ(φ) − 1| is equivalent to using a2(φ) as sampling criterion. Therefore,
a2(φ)/σ 2(φ) can be viewed as a normalized version of a2(φ), where also the
amount of local fluctuations of the family scores around τ is accounted for. Notice
that negative values of a(φ) need not contradict (L3), even for a population with
only one pedigree type. This is so since the weight functions λ(·) may take on
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negative values. In fact, the optimal weight function (7.1) stipulates that a(φ)

and λ(φ) should have the same sign.
It is an interesting research topic to analyze further which sampling designs

can be derived using SNR(δφ) or ASLNR(δφ). Both criteria are valid for arbitrary
pedigree structures and handle lod socres, NPL and QTL score functions within a
unified framework.

10.3. Allowing for interference. In (3.7), we assumed Haldane’s map function
h → θh, corresponding to no chiasma interference. Zhao and Speed (1996) showed
that any valid map function can arise by modeling the crossover process of a fixed
meiosis as a thinning (with probability 1/2) of an underlying chiasma process,
the latter modeled as a stationary renewal process with interarrival distribution F .
If F(0) = 0 we must have θ0 = 0 and dθh/dh|h=0 = λ, which gives a local
Markov property P (vij (τ + h) = 1 − w|vij (τ ) = w) = λh + o(h), w = 0,1.
If further Yij and vij (−τ) = {vij (t); t 	= τ } are conditionally independent given
vij (τ ), we conjecture that the asymptotics of Theorem 2 carry over, at the
expense of more technical arguments. The reason is that the rescaled sequence
of crossovers {TNj }j 	=0 (obtained from crossovers at τ + TNjN

−1) asymptotically
follows a Poisson process. Thus our asymptotic theory is robust w.r.t. choice of
map function.

10.4. Linked trait loci. Suppose that the second locus in Example 4 is linked
to the first, with position τ ′ ∈ [0, l]. The mean value function t → µt(φII) is
then peaked at τ ′ rather than τ . The question is in what way this affects the
asymptotic behavior of τ̂N , the estimator of τ . Let aII = dµt(φII)/dt|t=τ and
σ 2

II = limh→0 h−1(Var(Z̄i(τ + h) − Z̄(τ ))), for any i ∈ II. Then we conjecture
that Theorem 2 can be extended to

(rN)
a2

σ 2

(
τ̂N (u) − τ

) L→ arg maxuZ̃,

where r = lim rN is the limiting proportion of pedigrees from I , a = γIaI , σ 2 =
γ 2
I σ 2

I +(1−r)γ 2
IIσ

2
II/r and s → Z̃(s) is a compound Poisson process with variance

function |s| and mean value function −|s| + εs, where ε = (1 − r)γIIaII/(rγI aI ),
provided |ε| < 1 is assumed. Thus τ̂N is still an N -consistent estimator of τ ,
though with a nonvanishing asymptotic bias.

APPENDIX: PROOFS

A.1. Regularity conditions of Theorem 1.

(G1) lim infN→∞ inf0≤t≤l;|t−τ |≥δ N−1/2(E(ZN(τ )) − E(ZN(t))) > 0 for each
δ > 0.

(G2) limN→∞ lim supt→τ N−1/2|E(ZN(τ )) − E(ZN(t) − a|t − τ |α)|/|t −
τ |α = 0, for some constants α,a > 0.
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(G3) There exists a process W(·) on D(−∞,∞), with E(W(s)) = 0 and
Var(W(s)) = |s|2β for some constant 1/2 ≤ β ≤ 1, such that

P
(
arg max

(
Z̃(·)) is bounded

) = 1,

with Z̃(·) as defined in (5.2).
(G4) Let ŝNL and ŝL denote the arg max, restricted to [−L,L], of Z̃N(·) and Z̃(·),

respectively. Then ŝNL →L ŝL as N → ∞ for each 0 < L < ∞.
(G5) Let Z0

N(t) = ZN(t) − E(ZN(t)). Then, for each ε > 0,

lim
L→∞ lim sup

N→∞
P

(
sup

s∈SN,|s|≥L

Nβd
(|Z0

N(τ + sN−d) − Z0
N(τ )|/|s|α) ≥ ε

)
= 0,

where SN = Nd([0, l] − τ ).

Condition (G2) concerns the local scaling of the mean function of ZN . The local
scaling of the variance function is not stated explicitly, but is implicit in (G3). The
Nd -consistency of τ̂N will follow from (G1), (G2) and (G5). Condition (G5) was
used by Anevski and Hössjer (2002a) in the context of functional estimation under
order restrictions.

PROOF OF THEOREM 1. Let ŝN denote the arg max in (5.3) and ŝ the arg max
of Z̃(·) on (−∞,∞). Our objective is to prove ŝN →L ŝ as N → ∞. In view
of (G4), it suffices to verify that

lim
L→∞P (ŝL 	= ŝ) = 0(A.1)

and

lim
L→∞ lim sup

N→∞
P (ŝNL 	= ŝN ) = 0.(A.2)

Formula (A.1) follows immediately from (G3). Further, (G1) and (G2) imply that
η0 = − lim supN→∞ sup

s∈S̃N\{0} E(Z̃N(s))/|s|α satisfies 0 < η0 < 1. Combining
this with (G5), we obtain

lim
L→∞ lim sup

N→∞
P

(
Z̃N (s) ≤ −η|s|α for all s ∈ S̃N , |s| ≥ L

) = 0,

for any 0 < η < η0, and this implies (A.2). �

PROOF OF PROPOSITION 1. Notice first that σ 2(φ) > 0 follows immediately
from (6.9), since at least one term in this double sum is guaranteed to be positive.
In order to prove (6.14) and (6.15), we will use the following algebraic result:
Given two real-valued sequences {xi}2m

i=1 and {yi}2m

i=1, we have

2m∑
i=1

xiyi =
2m∑
i=1

x(i)y(ji) ≤
2m∑
i=1

x(i)y(i),(A.3)
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where {x(i)} and {y(i)} are the order statistics of the respective sequences. Further,
divide {1, . . . ,2m} into K disjoint groups I1, . . . , IK such that x(i) is constant when
i ∈ Ik . Then equality holds in (A.3) iff ji and i belong to the same Ik for all i.

Rewrite a(φ) as a(φ) = ∑m
j=1(

∑
w Pφτ (w)Sφ(w) − ∑

w Pφτ (w)Sφ(w + ej )).
We establish (6.15) by indentifying {Pφτ (w)}w and {Sφ(w)}w with the
x- and y-sequences in (A.3). Since {Pφτ (w)}w is not constant K ≥ 2. Sup-
pose a(φ) = 0. Then we must have equality in (A.3) “m times,” meaning that
w ∈ Ik ⇒ w + ej ∈ Ik , j = 1, . . . ,m. By induction this implies Ik = {1, . . . ,2m},
contradicting the fact that K ≥ 2. Formula (6.14) is proved using

µt(φ) = ∑
w

Sφ(w)Pφt (w)

= ∑
w

Sφ(w)
∑
w′

Pφτ (w
′)Qh(w

′,w)

= ∑
w′′

θ
|w′′|
h (1 − θh)

m−|w′′| ∑
w

Sφ(w)Pφτ (w + w′′)

< µτ (φ)
∑
w′′

θ
|w′′|
h (1 − θh)

m−|w′′| = µτ(φ),

where w′′ = w′ − w and h = |t − τ |. The strict inequality follows since∑
w Sφ(w)Pφτ (w + w′′) < µτ (φ) for at least some w′′, arguing as for a(φ) above.

�

LEMMA 1. The functions

a(·), σ 2(·) and σ 2
H0

(·) are continuous on �,(A.4)

{µt(·)}0≤t≤l are equicontinuous on �,(A.5)

and further,

ν̃N
L→ ν̃ as N → ∞.(A.6)

Let φ = φi and m = m(φ). Define ah(φ) = h−1(E(Z̄i(τ ) − Z̄i(τ + h)),
σ 2

h (φ) = h−1 Var(Z̄i(τ + h) − Z̄i(t)), µ̄(φ) = sup0≤t≤l |µτ (φ) − µt(φ)|, �φh =
h−1(Qφ0 −Qφh)+λAφ and ‖�φh‖ = maxw,w′ |�φh(w,w′)|. [The symbols ah(φ)

and σ 2
h (φ) are different from aε(φ) and σ 2

ε (φ) in Section 9.] Then, there exist
positive constants C0(m), C1(m), . . . such that

‖�φh‖ ≤ C0(m)h,(A.7)

|ah(φ) − a(φ)| ≤ C1(m)hσH0(φ),(A.8)

|σ 2
h (φ) − σ 2(φ)| ≤ C2(m)hσ 2

H0
(φ),(A.9)

|a(φ)| ≤ C3(m)σH0(φ),(A.10)
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µ̄(φ) ≤ C4(m)σH0(φ),(A.11)

σ 2(φ) ≤ C5(m)σ 2
H0

(φ).(A.12)

PROOF. Without loss of generality, we may assume (throughout the proof) that
the score function is centered so that E0(S) = 0. We first prove the (equi)continuity
of the functions in (A.4) and (A.5). Let m be the value of that (L5), (2.5) and
(3.1) imply that φ → Pφτ (w) is continuous on �k for each w ∈ Z

m
2 . Therefore

φ → Bφ is continuous on �k as well, and so (L4) gives continuity of σ 2(·), since
σ 2(φ) = SφBφST

φ . The remaining functions in (A.4) are handled similarly.
Now (3.6), the fact that Qφh is constant on �k and the just verified continuity

of φ → Pφτ (w) imply that {φ → Pφt (w)}0≤t≤l is an equicontinuous family of
functions on �k for each w ∈ Z

m
2 . Since µt(φ) = ∑

w Sφ(w)Pφt (w), (A.5) follows.
In order to prove (A.6), notice first that (L1) and the fact that m(·) is constant

on each �k proves ν̄N →L ν̄. This, together with the continuity φ → Pφτ (w)

proves (A.6).
If follows from (3.8) and the definition of Aφ that

�φh(w,w′) =




h−1θ
|w′−w|
h (1 − θh)

m−|w′−w|, |w′ − w| ≥ 2,

h−1(
λh − θh(1 − θh)

m−1)
, |w′ − w| = 1,

h−1(
1 − (1 − θh)

m − mλh
)
, w′ = w.

Using the facts that 0 ≤ θh ≤ 1/2, θh ≤ λh, |1 − e−x − x| ≤ x2/2, |(1 − x)m−1 −
1| ≤ (m − 1)x and (1 − x)m−1 − 1 + mx| ≤ m(m − 1)x2/2 when x > 0, it follows
after some elementary calculations that (A.7) holds with C0(m) = λ2m(m + 1)/2.

To verify (A.8), we notice that ah(φ) = h−1S(Qφ0 − Qφh)P T
φτ . Together

with (6.7), this implies that ah(φ) − a(φ) = S�φhP T
φτ . Then, it follows from∑

w Pφτ (w) = 1, the Cauchy–Schwarz inequality and (A.7) that

|ah(φ) − a(φ)| ≤ ‖�φh‖∑
w

|S(w)| ≤ 2m‖�φh‖σH0(φ)

≤ 2mC0(m)hσH0(φ).

In order to prove (A.9), put δi = Z̄i(τ + h) − Z̄i(τ ) and write

σ 2
h (φ) − σ 2(φ) = (

h−1E(δ2
i ) − σ 2(φ)

) − h−1E2(δi) =: i − ii.

Use (6.9), (3.8), condition on Z̄i(τ ) when evaluating E(δ2
i ) and E(δi) and use the

Markov property of vi(·) in the right direction from τ , to find that

i = h−1(
θh(1 − θh)

m−1 − λh
)∑

w

Pφτ (w)
∑

w′;|w′−w|=1

(
S(w′) − S(w)

)2

+ h−1
m∑

k=2

θk
h(1 − θh)

m−k
∑
w

Pφτ (w)
∑

w′;|w′−w|=k

(
S(w′) − S(w)

)2
.
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Use the facts that |θh(1 − θh)
m−1 − λh| ≤ m(λh)2 and

∑m
k=2 θk

h(1 − θh)
m−k ≤

2θ2
h ≤ 2(λh)2, since θh < 0.5. This yields

|i| ≤ (m + 2)λ2h
∑
w

Pφτ (w)
∑
w′

(
S(w′) − S(w)

)2

≤ 2(m + 2)(2m + 1)2mλ2hσ 2
H0

(φ) := C21(m)hσ 2
H0

(φ),

where in the last step we used (S(w′) − S(w))2 ≤ 2(S2(w′) + S2(w)) and∑
w Pφτ (w) = 1. A similar analysis proves |ii| ≤ C22(m)hσ 2

H0
(φ), and thus (A.9)

follows, with C2(m) = C21(m) + C22(m).
Next, (A.10) follows from (6.7) and the Cauchy–Schwarz formula, since

|a(φ)| ≤ 2mλ
∑

w |S(w)| ≤ 2mλ2mσH0(φ). Formula (A.12) is proved simi-
larly, using (6.9). To verify (A.11), notice that µτ(φ) − µt(φ) = S(Qφ0 −
Qφ|t−τ |)P T

φτ . Therefore |µτ(φ) − µt(φ)| ≤ ∑
w |S(w)| ≤ 2mσH0(φ), making use

of |Qφ0(w,w′) − Qφh(w,w′)| ≤ 1. From this (A.11) follows. �

A.2. Additional regularity condition for Theorem 2. Let FX = µ̃ ◦ X−1 be
the distribution of X(ξ) in (6.16). Decompose FX into a discrete and continuous
part according to FX = ∑∞

k=1 εkδxk
+ (1 − u)G where ε1 ≥ ε2 ≥ · · · are the sizes

of the atoms of FX, u = ∑∞
k=1 εk and G is continuous. Let Ck = X−1(xk) and

C = ⋃∞
k=1 Ck . Then impose the following:

(L8) As N → ∞, ν̃N (C) → ν̃(C) and ν̃N (Ck) → ν̃(Ck) for each k.

Notice that (A.6) only implies lim supN ν̃N(Ck) ≤ ν̃(Ck), since each Ck is closed.
The extra conditions in (L8) are needed to ensure that vertical ties for Z̃N(·)
and Z̃(·) occur asymptotically with the same probability.

PROOF OF THEOREM 2. We will prove (6.21) by applying Theorem 1 with
α = 1, β = 1/2 and a and σ 2 as in (6.12) and (6.13). For this we need to establish
(G1)–(G5). Formula (6.20) will be proved in conjunction with (G4). Since m(·) is
bounded, we let Ck = maxm Ck(m) denote the maximum of the constants Ck(m)

appearing in Lemma 1.
We first establish (G1). Write

N−1/2(E(
ZN(τ) − ZN(t)

)) =
∫

γ (φ)
(
µτ(φ) − µt(φ)

)
dν(φ)

+
∫

γ (φ)
(
µτ(φ) − µt(φ)

)
d(νN − ν)(φ)

=: I + II.

The integrand of II is bounded by |γ (φ)|µ̄(φ) in absolute value, uniformly in t .
Notice further that

∫
γ 2(φ)σ 2

H0
(φ) dν(φ) < ∞ because of (L7) and Theorem 5.3

in Billingsley (1968). Since the square of the integrand in II is bounded
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by C2
4γ 2(φ)σ 2

H0
(φ) [cf. (A.11)], the equicontinuity formula (A.5), (L6) and

Theorems 5.1 and 5.4 in Billingsley (1968) prove that limN→∞ sup0≤t≤l |II| = 0.
Since µt(φ) = −SQφ,|t−τ |Pφτ , it is easy to see that µt(φ) is continuous in t . Now
the integrands of I and II are the same, so the discussion above concerning upper
bounds of the integrand implies that I is continuous in t because of dominated
convergence. Since I > 0 for each fixed t 	= τ because of (L1), it follows that
inft;|t−τ |≥δ I = 0 for each δ > 0, and this completes the proof of (G1).

In order to prove (G2), put aNh = h−1N−1/2E(ZN(τ ) − ZN(τ + h)). Then

aNh−a =
∫

γ (φ)
(
ah(φ)−a(φ)

)
dνN(φ)+

∫
γ (φ)a(φ) d(νN −ν)(φ) =: III+IV .

Notice that the second power of the integrand in IV is less than C2
3γ 2(φ)σ 2

H0
(φ)

because of (A.10). Then (A.4), (L6), (L7) and Theorems 5.1 and 5.4 of Billingsley
(1968) imply limN→∞ IV = 0. Next, |III| ≤ C1h

∫ |γ (φ)|σH0(φ) dνN(φ) because
of (A.8). Therefore limN→∞ lim suph→0 |III| = 0 follows from (L7), and this
establishes (G2). We next prove (G4) and (6.20). It follows from (2.7), (5.2) and
(6.18), that

Z̃N (s) = z(s;ωN),(A.13)

with ωN = (T N, ξN) = ({TNj }j 	=0, {ξNj }j 	=0). Here τ +TNjN
−1 is the j th (−j th)

crossover for any meiosis taking place in P1, . . . ,PN to the right (left) of τ as
j > 0 (j < 0). Formally and w.l.o.g., we assume that τ + TNjN

−1 is defined
also outside [0, l]. Further, ξNj = (φNj ,wNj ,w

′
Nj ) means that the crossover at

τ + TNjN
−1 occurs for a pedigree of type φNj so that the inheritance vector

changes from wNj to w′
Nj (in the direction from τ ).

Let arg maxuL z denote the arg maxu-functional applied to z, when restricted
to supp(z) ∩ [−L,L]. Define the mapping �uL :� → R according to �uL(ω) =
arg maxuL z(·;ω). Our objective is to prove that

ŝNL(u)
L→ ŝL(u)(A.14)

as N → ∞, where ŝNL(u) = �uL(ωN), ŝL(u) = �uL(ω) and ω ∼ ν̌.
The rationale for (A.14) is that ωN is close to ω in distribution. By means

of a coupling argument, our first step in proving (A.14) is to replace ωN with
another random element of �. Put ω̃N = (T , ξ̃N), where the components of
ξ̃N = {ξ̃Nj }j 	=0 = {(φNj , w̃Nj , w̃

′
Nj )}j 	=0 are i.i.d. with marginal distribution ν̃N .

We may now couple ξN with ξ̃N (i.e., choose a version of ξN with its prescribed
distribution) as follows: Let {ij }j 	=0 be i.i.d. random variables with the uniform
distribution on {1, . . . ,N}, such that the crossover at τ + TNjN

−1 occurs in Pij ,
that is, φNj = φij . If j > 0, we let k be the largest positive integer less than j such
that ik = ij , provided such an integer exists. Then define, by induction w.r.t. j > 0,

(
wNj ,w

′
Nj

) =
{(

w̃Nj , w̃
′
Nj

)
, if ib 	= ij , b = 1, . . . , j − 1,(

w′
Nk,w

′
Nj

)
, otherwise,
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where, in the latter case, w′
Nj is chosen uniformly among the m(φNj ) inheritance

vectors at Hamming distance 1 from w′
Nk . The definition of (wNj ,w

′
Nj ) for j < 0

is analogous. It is clear that, for any positive integer K ,

P
((

wNj ,w
′
Nj

) = (
w̃Nj , w̃

′
Nj

)
, j = −K, . . . ,−1,1, . . . ,K

) → 1(A.15)

as N → ∞. Notice next that {TNj }∞j=1 and {TNj }−∞
j=−1 evolve as two independent

Poisson processes with intensity λ̄N . (We assume here that TNj is defined in this
way when τ + TNjN

−1 /∈ [0, l].) Therefore, we can choose a version of T such
that T N = (λ̄N/λ̄)T , and hence

�uL(ωN) = (λ̄N/λ̄)�uL

(
(T , ξN)

)
.(A.16)

Now λ̄N → λ̄ follows from (L1), and hence (A.15) and (A.16) together imply that
P (|�uL(ωN) − �uL(ω̃N)| > ε) → 0 for any ε > 0 as N → ∞. Thus (A.14) will
follow if we prove

�uL(ω̃N)
L→ �uL(ω).(A.17)

Fix 0 < ε < 1. There exists a compact set K ⊂ � with ν̃(K) ≥ 1 − ε. In view of
(L4), (L6) and (6.16), we can pick some δ > 0 such that d̃(ξ1, ξ2) ≤ δ and ξ1 ∈ K

imply |X(ξ2) − X(ξ1)| ≤ ε. Now
∑∞

k=1 |ν̃N (Ck) − ν̃(Ck)| ≤ ε for all N large
enough, because of (L8). This and (A.6) imply that we may construct a coupling
between two random variables ξ̃N ∼ ν̃N and ξ ∼ ν̃ such that for all N large enough
P (d̃(ξ, ξ̃N) ≤ δ) ≥ 1 − ε and P ((ξ, ξ̃N) ∈ ⋃∞

k=1((Ck × Uk) ∪ (Uk × Ck))) ≤ ε,
where Uk = � \ Ck. Thus, with probability at least 1 − 3ε, it holds that ξ̃N and ξ

both belong to either the same Ck or to U = � \ C, where C = ⋃∞
1 Ck . In the

former case ξ̃N = ξ , and in the latter case |X(ξ̃N ) − X(ξ̃ )| ≤ ε.
Next we couple the i.i.d. sequences ξ and ξ̃N by coupling the individual

components ξj and ξ̃Nj as described above. Let Aj be the event that a coupling

exists between ξj and ξ̃Nj . Then {Aj } are independent with P (Aj) ≥ 1 − 3ε.
Let M ∈ Po(2L/(λ̄κ1)) denote the number of jumps Tj within [−L,L], and

j1, . . . , jM the corresponding indices. It is clear that M is independent of (ξ̃ , ξ̃N).
Let DL denote the arg max of z(s;ω) restricted to [−L,L], and define M ′ as
the number of jumps Tj contained in D̄L, the convex hull of the closure of DL,
plus any of the two endpoints −L and L that belong to D̄L. Put �L = 0 if
DL = [−L,L], and otherwise

�L = sup
|s|≤L

z(s;ω) − sup
s∈[−L,L]\DL

z(s;ω).

Condition now on M and assume that
⋂M

k=1 Ajk
holds. If M ′ > 2, we must have

M ′ ≥ 4, and then the sum of the jumps Xj = X(ξj ) corresponding to the M ′ − 2
inner points of D̄L is zero. It is possible to show that with probability 1, all of
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the corresponding M ′ − 2 crossovers ξj lie in C. Hence, by construction of the
coupling, ξ̃Nj = ξj for all these M ′ − 2 crossovers. Now

P

(
{�L = 0} ∩ {�uL(ω) 	= �uL(ω̃N)}

∣∣∣M,

M⋂
k=1

Ajk

)
= 0.(A.18)

This is clear if M = 0, since then �uL(ω) = �uL(ω̃N) = (2u − 1)L. If M > 0,
{�L = 0} implies that all M jumps Xjk

equal zero. This has probability zero if
F({0}) = 0. Otherwise, Ck = {0} for some k, and then by the construction of the
coupling �uL(ω) = �uL(ω̃N) = (2u − 1)L. Now (A.18) and the construction of
the coupling imply

P

(
�uL(ω) 	= �uL(ω̃N)

∣∣∣M,

M⋂
k=1

Ajk

)

≤ P

(
0 < �L ≤

M∑
k=1

∣∣XNjk
− Xjk

∣∣∣∣∣M,

M⋂
k=1

Ajk

)

≤ P

(
0 < �L ≤ Mε

∣∣∣M,

M⋂
k=1

Ajk

)
,

where XNj = X(ξ̃Nj ), and thus |XNj − Xj | ≤ ε given Aj . This implies that
P (�uL(ω) 	= �uL(ω̃N)|M) ≤ (1 −P (

⋂M
1 Ajk

))+P (0 < �L ≤ Mε|M). Let K be
a fixed positive number. After averaging out M and using P (Ajk

) ≥ 1 − 3ε, we
find that

P
(
�uL(ω) 	= �uL(ω̃N)

) ≤ 3E(M)ε + P (0 < �L ≤ Kε) + P (M > K).

This implies (A.17), since we may first choose K as large as we please, and then
ε arbitrarily small.

In order to prove (6.20), notice that ω → z(·;ω) is a continuous functional
from � to D(−∞,∞). But ωN →L ω follows from (A.15), T N = (λ̄N/λ̄)T

and (A.18), and hence the continuous mapping theorem implies (6.20).
For the proof of (G5) we refer to Hössjer (2001a). The main idea is to write

SN \ (−L,L) as a union of intervals of polynomially increasing size, and the
supremum is first taken over each such subinterval separately. The proof of (G3),
finally, is very similar to that of (G5). �
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