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NONPARAMETRIC COMPARISON OF REGRESSION CURVES:
AN EMPIRICAL PROCESS APPROACH1

BY NATALIE NEUMEYER AND HOLGER DETTE

Ruhr-Universität

We propose a new test for the comparison of two regression curves
that is based on a difference of two marked empirical processes based
on residuals. The large sample behavior of the corresponding statistic is
studied to provide a full nonparametric comparison of regression curves. In
contrast to most procedures suggested in the literature, the new procedure
is applicable in the case of different design points and heteroscedasticity.
Moreover, it is demonstrated that the proposed test detects continuous
alternatives converging to the null at a rate N−1/2 and that, in contrast
to all other available procedures based on marked empirical processes, the
new test allows the optimal choice of bandwidths for curve estimation (e.g.,
N−1/5 in the case of twice differentiable regression functions). As a by-
product we explain the problems of a related test proposed by Kulasekera
[J. Amer. Statist. Assoc. 90 (1995) 1085–1093] and Kulasekera and Wang
[J. Amer. Statist. Assoc. 92 (1997) 500–511] with respect to accuracy in
the approximation of the level. These difficulties mainly originate from the
comparison with the quantiles of an inappropriate limit distribution.

A simulation study is conducted to investigate the finite sample properties
of a wild bootstrap version of the new test and to compare it with the so
far available procedures. Finally, heteroscedastic data is analyzed in order
to demonstrate the benefits of the new test compared to the so far available
procedures which require homoscedasticity.

1. Introduction. The comparison of two regression curves is a fundamental
problem in applied regression analysis. In many cases of practical interest (after
rescaling the covariable into the unit interval) we end with a sample of N = n1 +n2
observations,

Yij = fi(Xij ) + σi(Xij )εij , j = 1, . . . , ni, i = 1,2,(1.1)

where Xij (j = 1, . . . , ni) are independent observations with positive density ri on
the interval [0,1] (i = 1,2) and εij are independent identically distributed random
variables with mean 0 and variance 1. In (1.1) fi and σi denote the regression and
variance functions in the ith sample (i = 1,2). In this paper we are interested in
the problem of testing the equality of the mean functions, that is,

H0 :f1 = f2 versus H1 :f1 �= f2.(1.2)
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Much effort has been devoted to this problem in the recent literature [see, e.g.,
Härdle and Marron (1990), King, Hart and Wehrly (1991), Hall and Hart (1990),
Delgado (1993), Young and Bowman (1995), Bowman and Young (1996), Hall,
Huber and Speckman (1997), Munk and Dette (1998) or Dette and Neumeyer
(2001)]. Most authors concentrate on equal design points and a homoscedastic
error [see, e.g., Härdle and Marron (1990), Hall and Hart (1990), King, Hart
and Wehrly (1991) and Delgado (1993)]. Kulasekera (1995) and Kulasekera and
Wang (1997) proposed a test for the hypothesis (1.2) which is applicable under the
assumption of different designs in both groups, but requires homoscedasticity in
the individual groups. In principle this test can detect alternatives which converge
to the null at a rate N−1/2 (here N = n1 + n2 denotes the total sample size),
but in the same papers these authors mention some practical problems with the
performance of their procedure, especially with respect to the accuracy of the
approximation of the nominal level. To our knowledge the problem of testing
the equality of two regression curves in the general heteroscedastic model (1.1)
with unequal design points was first considered by Munk and Dette (1998)
who considered the fixed design case and proposed a consistent test which
can detect alternatives converging to the null at a rate N−1/4 under very mild
conditions for the regression and variance functions (i.e., differentiability is not
required). Recently Dette and Neumeyer (2001) proposed several tests for the
hypothesis (1.2) which are based on kernel smoothing methods and applicable in
the general model (1.1). These methods can detect alternatives converging to the
null at a rate (N

√
h)−1/2, where h is a bandwidth (converging to 0) required for

the estimation of nonparametric residuals.
It is the purpose of the present paper to suggest a new test for the equality

of the two regression curves f1 and f2 which can detect alternatives converging
to the null at a rate N−1/2 and is applicable in the general model (1.2) with
unequal design points and heteroscedastic errors. The test statistic is based on a
difference of two marked empirical processes based on residuals obtained under
the assumption of equal regression curves. We prove weak convergence of the
underlying empirical process to a Gaussian process generalizing recent results on
U -processes of Nolan and Pollard (1987, 1988) to two-sample U -statistics. The
asymptotic null distribution of the test statistic depends on certain features of the
data and the finite sample performance of a wild bootstrap version is investigated
by means of a simulation study and from a theoretical point of view.

We finally note that marked empirical processes have already been applied by
Delgado (1993) and Kulasekera (1995) and Kulasekera and Wang (1997) for test-
ing the equality of two regression functions. However, Delgado’s (1993) approach
sensitively relies on the assumption of equal design points and homoscedastic er-
rors because the marked empirical process is based on the differences of the ob-
servations at the joint design points. The method proposed in this paper uses two
marked empirical processes of the residuals for both samples, where the residuals



882 N. NEUMEYER AND H. DETTE

are obtained from a nonparametric estimate of the (under H0) joint regression func-
tion from the total sample. Moreover, in the case of equal design points the basic
statistic considered here essentially reduces to the test statistic considered by Del-
gado (1993). On the other hand the methods proposed by Kulasekera (1995) and
Kulasekera and Wang (1997) require a homoscedastic error distribution. Moreover,
these authors mention some practical problems because the performance of their
procedure depends sensitively on the chosen smoothing parameters for the estima-
tion of the regression curves and larger noises yield levels substantially different
from the nominal level. As a by-product of this paper we will prove that the prob-
lem with the accuracy of the approximation of the nominal level is partially caused
by a substantial mistake in the proof of Theorems 2.1 and 2.2 in Kulasekera (1995),
because this author ignores the variability caused by the nonparametric estimation
of the regression function in the application of Donsker’s invariance principle. We
present a correct version of Kulasekera’s result in Section 3.

A different method was proposed in a recent paper by Cabus (2000), who
used U -processes for the construction of a test statistic. However, her approach
assumes knowledge of the variance function and design density and is therefore
difficult to implement in practice. In order to avoid this drawback we investigate
a wild bootstrap version of Cabus’ test in Section 4. Finally, it is worthwhile to
mention an important difference between our method and Kulasekera’s (1995)
and Cabus’ (2000) approaches. The method proposed in this paper allows
“optimal” choices of the bandwidth (e.g., N−1/5 in the case of twice differentiable
functions) and therefore avoids undersmoothing of the regression estimate [see,
e.g., assumption A2 in Kulasekera (1995)]. This theoretical advantage is achieved
by the application of a difference of two marked empirical processes, which
basically yields a cancellation of lower order bias terms. As a consequence we
obtain a better approximation of the nominal level from a theoretical point of view,
which is reflected for finite samples in a simulation study presented in Section 4.

The remaining parts of the paper are organized as follows. Section 2 introduces
the marked empirical processes and the corresponding test statistics and gives their
asymptotic behavior. Some comments regarding the test of Kulasekera (1995) and
a clarification of its asymptotic properties are given in Section 3. The finite sample
behavior of a wild bootstrap version of the discussed procedures is studied in
Section 4, which also gives a result regarding the consistency of a wild bootstrap
version of the test proposed in this paper and discusses a data example. In this
example we demonstrate the potential benefits of our approach by reanalyzing
heteroscedastic data which were analyzed previously with testing procedures
assuming homoscedasticity. Finally, all proofs are deferred to Section 5.

2. A marked empirical process and its weak convergence. Recall the
formulation of the general two sample problem (1.1). We assume that the
explanatory variables Xij (j = 1, . . . , ni) are i.i.d. with density ri on the interval
[0,1] such that ri(x) ≥ c > 0 for all x ∈ [0,1] (i = 1,2). The regression functions
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f1, f2 and the densities r1, r2 are supposed to be d (≥ 2) times continuously
differentiable; that is,

ri, fi ∈ Cd([0,1]), i = 1,2.(2.1)

Throughout this paper let

r̂i(x) = 1

nih

ni∑
j=1

K

(
x − Xij

h

)
(2.2)

denote the density estimator from the ith sample (i = 1,2) and

r̂(x) = n1

N
r̂1(x) + n2

N
r̂2(x)

the density estimator from the combined sample X11, . . . ,X1n1,X21, . . . ,X2n2 .
For the sake of transparency we assume an equal bandwidth h for all estimators
satisfying

h → 0, Nh4d → 0, Nh2 → ∞,(2.3)

but we note that all results of this paper can be generalized to the case of different
bandwidths satisfying (2.3). In (2.2) the function K is a symmetric kernel with
compact support of order d ≥ 2; that is,

∫
K(u)uj du


= 1, j = 0,

= 0, 1 ≤ j ≤ d − 1,

�= 0, j = d

(2.4)

[see Gasser, Müller and Mammitzsch (1985)]. We assume that there exists a
decomposition of the nonnegative axis of the form

[0,∞) =
m⋃

j=1

[aj−1, aj )

(0 = a0 < a1 < · · · < am−1 < am = ∞) such that for some ε ∈ {−1,1} the function
εK is increasing on the interval [a2j , a2j+1) and decreasing on the interval
[a2j+1, a2j+2).

A straightforward argument shows that

r̂(x)
P→ r(x) := κ1r1(x) + κ2r2(x)(2.5)

as N → ∞, provided that sizes of the individual samples satisfy

ni

N
= κi + O

(
1

N

)
, i = 1,2,(2.6)
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where κi ∈ (0,1), i = 1,2. The Nadaraya–Watson estimator of the regression
function [see Nadaraya (1964) or Watson (1964)] from the combined sample is
defined by

f̂ (x) = 1

Nh

2∑
i=1

ni∑
j=1

K

(
x − Xij

h

)
Yij

1

r̂(x)

(2.7)

= (n1/N)̂r1(x)f̂1(x) + (n2/N)̂r2(x)f̂2(x)

r̂(x)

and consistently estimates

f (x) := κ1r1(x)f1(x) + κ2r2(x)f2(x)

r(x)
,

where

f̂i(x) = 1

nih

ni∑
j=1

K

(
x − Xij

h

)
Yij

1

r̂i(x)

is the curve estimator from the ith sample (i = 1,2). Note that under the null
hypothesis of equal regression curves we have f1 = f2 = f . For i = 1,2 we define
residuals

eij = n3−i

N

(
Yij − f̂ (Xij )

)̂
r(Xij )̂r3−i(Xij ),(2.8)

fij = N

ni

(
Yij − f̂ (Xij )

)
/ r̂i(Xij ),(2.9)

and consider the marked empirical processes

R̂
(1)
N (t) = 1

N

n1∑
j=1

e1j I {X1j ≤ t} − 1

N

n2∑
j=1

e2j I {X2j ≤ t},(2.10)

R̂
(2)
N (t) = 1

N

n1∑
j=1

f1j I {X1j ≤ t} − 1

N

n2∑
j=1

f2j I {X2j ≤ t},(2.11)

where t ∈ [0,1] and I {·} denotes the indicator function. The multiplication of the
residuals by the density estimators r̂(x)̂r3−i(x) and 1/ r̂i(x) is motivated by a
cancellation of the lower order bias terms in the marked empirical processes under
the null hypothesis of equal regression curves (see the following Proposition 2.1
and its proof and Theorem 2.2). The form of R̂

(2)
N is attractive because it essentially

reduces for equal design points (i.e., n1 = n2, X1j = X2j , j = 1, . . . , n1) to the
process considered by Delgado (1993). As pointed out by a referee the residual fij

is not defined in the case r̂i(Xij ) = 0, which may occur with positive probability
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if the kernel K also attains negative values. In such cases the residuals fij

should be multiplied by the factor I {̂ri(Xij ) �= 0}. Because the densities satisfy
ri(x) ≥ c > 0, these factors converge uniformly to 1 and the effect of the
multiplication is asymptotically negligible. The following proposition indicates
that the marked empirical processes defined in (2.10) and (2.11) are useful for
testing the hypothesis (1.2) of equal regression curves. The proof is given in
Section 5.

PROPOSITION 2.1. Assume that (2.1), (2.3), (2.4) and (2.6) are satisfied.

(i) Under the null hypothesis of equal regression curves we have

E
[
R̂

(�)
N (t)

] = O

(
1

Nh

)
+ O(h2d) = o

(
1√
N

)
, � = 1,2.

(ii) Under the alternative of unequal regression curves we have

E
[
R̂

(1)
N (t)

] = κ1κ2

∫ t

0

(
f1(x) − f2(x)

)
r(x)r1(x)r2(x) dx + O(hd),

E
[
R̂

(2)
N (t)

] = κ1κ2

∫ t

0

(
f1(x) − f2(x)

)
dx + O(hd).

Note that ∫ t

0

(
f1(x) − f2(x)

)
r(x)r1(x)r2(x) dx = 0 ∀ t ∈ [0,1]

if and only if the hypothesis (1.2) is valid. Consequently, a test for the hypothesis
of equal regression curves could be based on real valued functionals of the
processes (2.10) and (2.11) such as (i = 1,2)∫ 1

0

(
R̂

(i)
N

)2
(t) dt, sup

t∈[0,1]
∣∣R̂ (i)

N (t)
∣∣.

The asymptotic distribution of these statistics can be obtained by the continuous
mapping theorem [see, e.g., Pollard (1984)] and the following result which
establishes weak convergence of the processes R̂

(1)
N and R̂

(2)
N in the Skorokhod

space D[0,1].
THEOREM 2.2. Assume that (2.1), (2.3), (2.4) and (2.6) are satisfied. Then

under the null hypothesis of equal regression curves the marked empirical process√
NR̂

(1)
N defined by (2.10) converges weakly to a centered Gaussian process Z(1)

in the space D[0,1] with covariance function

H(1)(s, t)

(2.12)

=
∫ s∧t

0

(
σ 2

1 (x)κ2r2(x) + σ 2
2 (x)κ1r1(x)

)
κ1r1(x)κ2r2(x)r2(x) dx.
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Similarly, the process
√

NR̂
(2)
N defined by (2.11) converges weakly to a centered

Gaussian process Z(2) in the space D[0,1] with covariance function

H(2)(s, t) =
∫ s∧t

0

(
σ 2

1 (x)κ2r2(x) + σ 2
2 (x)κ1r1(x)

) 1

κ1r1(x)κ2r2(x)
dx.(2.13)

REMARK 2.3. It is worthwhile to mention that the statement of Theorem 2.2
does not depend on the specific smoothing procedure used in the construction
of the processes. For example, a local polynomial estimator [see Fan (1992) or
Fan and Gijbels (1996)] can be treated similarly but with a substantial increase
of mathematical complexity. Note that local polynomial estimators have various
practical and theoretical advantages such as better boundary behavior and they
require weaker differentiability assumptions on the design densities. We used
the Nadaraya–Watson estimator because for this type of estimator the proof of
the VC-property for certain classes of functions is much simpler compared to
local polynomial estimators [see, e.g., the proof of Lemma 5.3a]. Nevertheless,
Theorem 2.2 remains valid for local linear (or even higher order) polynomial
estimators and we used local linear smoothers in the simulation study and the data
example presented in Section 4.

REMARK 2.4. The tests obtained from the continuous mapping theorem
and Theorem 2.2 are consistent against local alternatives converging to the null
hypothesis at a rate 1/

√
N . This follows by a careful inspection of the proof

of Theorem 2.2, which shows that for local alternatives of the form f1(·) −
f2(·) = �(·)/√N the marked empirical processes

√
NR̂

(i)
N (·) (i = 1,2) converge

weakly to Gaussian processes with respective covariance kernels H(i)(·, ·) given
in Theorem 2.2 and means

µ(1)(t) = κ1κ2

∫ t

0
�(x)r(x)r1(x)r2(x) dx,

µ(2)(t) = κ1κ2

∫ t

0
�(x)dx,

respectively. Another approach to obtain tests which achieve nontrivial power
for N−1/2 distant alternatives is based on comparisons of smoothers with fixed
bandwidths. These tests will usually not detect alternatives where the regression
functions differ by an oscillating function. On the other hand one can construct
examples where nonparametric tests based on comparison of local smoothers
perform better than tests based on marked empirical processes [see Dette and
Neumeyer (2001)]. Because the main application of the test is to answer the
question if it is more appropriate to fit the two regression functions by one fit
obtained from the pooled sample or by separately smoothing the two samples,
some care is necessary with the interpretation of the corresponding p-value. In
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practice the statement of the resulting p-value should always be accompanied by
a corresponding fit of the data under the null hypothesis and the alternative. Of
course this remark applies to all goodness-of-fit tests proposed in the literature for
comparing regression curves. The corresponding curve estimators are already used
in the construction of the processes R̂

(1)
N and R̂

(2)
N and therefore easily available if

a test is based on these processes.

REMARK 2.5. The results can easily be extended to the comparison of
k regression curves in the model

Yij = fi(Xij ) + σi(Xij )εij , j = 1, . . . , ni, i = 1, . . . , k.

For a generalization of the statistic R̂
(1)
N , consider the residuals

e
(i)
j� = (

Yj� − f̂ (i)(Xj�)
)̂
r (i)(Xj�)

×
(

ni

ni + ni+1
r̂i(Xj�)I{j=i+1} + ni+1

ni + ni+1
r̂i+1(Xj�)I{j=i}

)
(i = 1, . . . , k − 1, j ∈ {i, i + 1}, � ∈ {1, . . . , nj }) where f̂ (i) and r̂ (i) denote
the Nadaraya–Watson and the density estimators from the combined ith and
(i + 1)st samples. If N = ∑k

i=1 ni denotes the total sample size, ni

N
= κi + O( 1

N
)

[κi ∈ (0,1); i = 1, . . . , k] and

R̂
(1)
Ni = 1

ni + ni+1

ni∑
�=1

e
(i)
i� I {Xi� ≤ t}

− 1

ni + ni+1

ni+1∑
�=1

e
(i)
i+1,�I {Xi+1,� ≤ t}, i = 1, . . . , k − 1,

then it follows that
√

NR̂
(1)
N (t) := √

N(R̂
(1)
N1(t), . . . , R̂

(1)
Nk−1(t))

T converges weak-

ly to a (k − 1)-dimensional Gaussian process (Z
(1)
1 , . . . ,Z

(1)
k−1)

T with covariance
structure

Cov
(
Z

(1)
i (t),Z

(1)
j (s)

) = kij (s ∧ t)

with kij = kji (j ≤ i) and

kij (u) =



∫ u

0

(
σ 2

i (x)κi+1ri+1(x) + σ 2
i+1(x)κiri(x)

)
× κiκi+1

(κi + κi+1)4 ri(x)ri+1(x)
(
r(i)(x)

)2
dx, if j = i,

−
∫ u

0
σ 2

j (x)
κj−1κjκj+1

(κj−1 + κj )2(κj + κj+1)2

× rj−1(x)rj (x)rj+1(x)r(j)(x)r(j−1)(x) dx, if j = i + 1,

0, if j > i + 1,
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where

r(i)(x) = κi

κi + κi+1
ri(x) + κi+1

κi + κi+1
ri+1(x), i = 1, . . . , k.

3. Some remarks on related tests. As pointed out in the Introduction, the
application of empirical processes has already been proposed by several authors.
Among many others we refer to An and Bing (1991) and Stute (1997), who
considered the problem of testing for a parametric form of the regression and to the
recent work of Delgado and González-Manteiga (2001), who used this approach
in the construction of a test for selecting variables in a nonparametric regression.
In the context of comparing regression curves empirical processes were already
applied by Delgado (1993), Kulasekera (1995) and Kulasekera and Wang (1997)
and recently in an unpublished report by Cabus (2000). Delgado considered equal
design points (i.e., n1 = n2; X1i = X2i ) and a homoscedastic error distribution
and the process R̂

(2)
N reduces in this case essentially to the process introduced by

Delgado (1993). Kulasekera (1995) and Kulasekera and Wang (1997) discussed
the case of not necessarily equal design points and homoscedastic (but potentially
different) errors in both samples. In this case these authors proposed a test also
based on a marked empirical process and investigated its finite sample performance
by means of a simulation study. In the same papers Kulasekera (1995) and
Kulasekera and Wang (1997) mention some difficulties with respect to the practical
performance of their procedure. They observed levels substantially different from
the nominal levels in their study and explained these observations by the sensitive
dependency on the bandwidth. We will demonstrate in this section and in the
following section that these deficiencies are on the one hand caused by the use
of incorrect (asymptotic) critical values and on the other hand by a nonnegligible
bias in the calculated residuals for finite samples.

To be precise, consider the model (1.1) in the case of a fixed design Xij = tij
(j = 1, . . . , ni ; i = 1,2) satisfying a Sacks and Ylvisaker (1970) condition,∫ tij

0
ri(t) dt = j

ni

; j = 1, . . . , ni, i = 1,2;(3.1)

let f̂i denote the Nadaraya–Watson estimator from the ith sample (i = 1,2) and
define residuals by

ẽ1i = Y1i − f̂2(t1i ), i = 1, . . . , n1,

ẽ2j = Y2j − f̂1(t2j ), j = 1, . . . , n2.

The corresponding partial sums are given by

µi(t) =

ni t�∑
j=1

ẽij√
ni

, 0 < t < 1; i = 1,2,(3.2)
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and the following result specifies the asymptotic distribution of these marked
empirical processes. For the appropriate asymptotic statement we require a
different bandwidth condition,

h → 0, Nh2d → 0, Nh2 → ∞.(3.3)

THEOREM 3.1. If the assumptions (2.1), (2.4), (2.6), (3.1) and (3.3) are
satisfied, then under the null hypothesis of equal regression curves the marked
empirical process µ1 defined in (3.2) converges weakly to a centered Gaussian
process with covariance function

m12(s, t) =
∫ R−1

1 (s∧t)

0

(
σ 2

1 (x)κ2r2(x) + σ 2
2 (x)κ1r1(x)

) r1(x)

κ2r2(x)
dx,(3.4)

where R1(t) = ∫ t
0 r1(x) dx denotes the cumulative distribution function corre-

sponding to the design density r1.
Similarly, the process µ2 converges weakly to a centered Gaussian process with

covariance function m21(s, t).

Note that Kulasekera (1995) considered a homoscedastic error and claimed
in his proof of Theorem 2.1 [Kulasekera (1995)] weak convergence of µi to a
centered Gaussian process with covariance function m̃i(s, t) = σ 2

i · (s ∧ t), which
is usually different from mi,3−i (s, t). For this reason some care is necessary if
the test of Kulasekera is applied. We finally remark that Kulasekera (1995) and
Kulasekera and Wang (1997) discussed several related tests and similar comments
apply to these procedures.

In the case of a random design, the processes (3.2) have to be modified because
in this case the observations are not necessarily ordered. A minor modification
given by

λ
(i)
N (t) = 1√

ni

ni∑
j=1

(
Yij − f̂3−i(Xij )

)
I {Xij ≤ t}, i = 1,2,(3.5)

could be considered, which yields a slightly simpler covariance structure of the
Gaussian process.

THEOREM 3.2. If the assumptions (2.1), (2.4), (2.6) and (3.3) are satisfied,
then under the null hypothesis of equal regression curves the marked empirical
process λ

(1)
N defined by (3.5) converges weakly to a centered Gaussian process

with covariance function m12(R1(s),R1(t)) where m12 is defined in (3.4)

and R1 denotes the distribution function of X1j . Similarly, the process λ
(2)
N

converges weakly to a centered Gaussian process with covariance function
m21(R2(s),R2(t)), where R2 is the distribution function of X2j .
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REMARK 3.3. Note that in contrast to the new tests presented in Section 2,
Kulasekera’s (1995) method requires a regression estimate with bandwidth h

satisfying Nh2d → 0 and the “optimal” choices for the bandwidth (e.g., N−1/5 in
the case of twice differentiable functions) cannot be used for this test [see, e.g.,
assumption A2 in Kulasekera (1995)]. A consequence of this undersmoothing
of the regression estimate is a substantially less precise approximation of the
nominal level for nonconstant regression functions if optimal bandwidths for curve
estimation are used in these procedures. This loss of accuracy can also be observed
for the corresponding bootstrap procedures (see our simulation study in Section 4).

A rather different method for the problem of comparing regression curves was
recently proposed by Cabus (2000), who considered the U -process

UN(t) = 1

n1n2h

n1∑
i=1

n2∑
j=1

(Y1i − Y2j )K

(
X1i − X2j

h

)
I {X1i ≤ t, X2j ≤ t}.(3.6)

Note that this approach is similar to a method introduced by Zheng (1996) in the
context of testing for the functional form of a regression. Cabus (2000) proved
weak convergence of the process

√
NUN to a centered Gaussian process with

covariance function

1

κ1κ2

∫ s∧t

0

(
σ 2

1 (x)κ2r2(x) + σ 2
2 (x)κ1r1(x)

)
r1(x)r2(x) dx

and assumed knowledge of the variance function and design density for the
construction of a test of equality of the regression functions. Using similar
arguments as given in Section 5, the consistency of a wild bootstrap version of
this test can be established. However, this procedure has the same problems with
respect to its finite sample performance as mentioned for Kulasekera’s approach
(see Remark 3.3 and the simulation study in Section 4). It requires undersmoothing
which results in a substantial loss in the approximation of the nominal level if the
regression functions are not constant and optimal bandwidths for curve estimation
are used (see the simulation study in the following section).

4. Wild bootstrap and finite sample properties. Throughout this section we
will study the finite sample properties of a test based on the Kolmogorov–Smirnov
distance

K
(i)
N := sup

t∈[0,1]
∣∣R̂ (i)

N (t)
∣∣, i = 1,2,(4.1)

which rejects the hypothesis of equal regression curves for large values of K
(i)
N .

In principle, critical values can be obtained from Theorem 2.2 and the continuous
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mapping theorem. However, it is well known [see, e.g., Hjellvik and Tjøstheim
(1995), Hall and Hart (1990)] that in similar problems of specification testing
the rate of convergence of the distribution of the test statistic is usually rather
slow. Additionally the asymptotic distributions of the Gaussian processes obtained
in Theorems 2.2, 3.1 and 3.2 usually depend on certain features of the data
generating process and cannot be directly implemented in practice. For this reason
we propose in this section the application of a resampling procedure based on the
wild bootstrap [see, e.g., Wu (1986)] and prove its consistency (see Theorem 4.1).
The finite sample properties of the resulting tests are then investigated by means
of a simulation study. To be precise, let f̂g(x) denote the Nadaraya–Watson
estimator of the regression function from the total sample defined in (2.7) using
the bandwidth g > 0, where this dependency has now been made explicit in our
notation. Define nonparametric residuals by

ε̂ij := Yij − f̂g(Xij ), j = 1, . . . , ni, i = 1,2,(4.2)

and bootstrap residuals by

ε∗
ij := ε̂ij Vij ,(4.3)

where V11,V12, . . . , V1n1,V21, . . . , V2n2 are bounded i.i.d. zero mean random
variables that are independent from the total sample

YN := {
Xij , Yij | i = 1,2, j = 1, . . . , ni

}
.(4.4)

We obtain the bootstrap sample

Y ∗
ij := f̂g(Xij ) + ε∗

ij(4.5)

and the corresponding marked empirical processes

R̂
(1)∗
N (t) = 1

N

2∑
�=1

n�∑
j=1

(−1)�−1(
Y ∗

�j − f̂ ∗
h (X�j )

)
(4.6)

× r̂h(X�j )
n3−�

N
r̂3−�,h(X�j )I {X�j ≤ t},

R̂
(2)∗
N (t) = 1

N

2∑
�=1

n�∑
j=1

(−1)�−1(
Y ∗

�j − f̂ ∗
h (X�j )

)N

n�

1

r̂�,h(X�j )
I {X�j ≤ t},(4.7)

where throughout this section the index ∗ means that the process has been
calculated from the bootstrap sample (4.5). Note that we use the bandwidth h

for the calculation of the test statistic (which is indicated by the extra index in
f̂ ∗

h and r̂h) and a bandwidth g for the calculation of the residuals. Let K
(i)∗
N

(i = 1,2) denote the statistic in (4.1) obtained from the bootstrap sample. Then the
hypothesis of equal regression curves is rejected if K

(i)
N ≥ k

∗(i)
N,1−α , where k

∗(i)
N,1−α
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denotes the critical value obtained from the bootstrap distribution, that is,

P
(
K

(i)∗
N ≥ k

∗(i)
N,1−α

∣∣ YN

) = α, i = 1,2.

The consistency of this procedure follows from the continuous mapping theorem
and the following result, which establishes asymptotic equivalence (in the sense of
weak convergence) of the processes

√
NR̂

(i)
N and

√
NR̂

(i)∗
N in probability condi-

tionally on the sample YN .

THEOREM 4.1. If the assumptions of Theorem 2.2 and the bandwidth
conditions

g → 0,
√

Ngh → ∞, Ng2d+1 = O(1),

(4.8)
g2d+1

h2d log2 N
→ ∞,

g2d

h
→ 0

are satisfied, then the bootstrapped marked empirical process
√

NR̂
(i)∗
N converges

under the null hypothesis of equal regression curves weakly to the centered
Gaussian process Z(i) (i = 1,2) of Theorem 2.2 in probability conditionally on
the sample YN .

For the sake of comparison we will also discuss the bootstrap version of the
tests based on the approaches proposed by Kulasekera (1995) and Cabus (2000).
More precisely, we use the generalization of Kulasekera’s approach to the random
design case and reject the hypothesis of equal regression curves for large values of
the statistic

LN = max
(

sup
t∈[0,1]

|λ(1)
N (t)|, sup

t∈[0,1]
|λ(2)

N (t)|
)
,(4.9)

where the processes λ
(1)
N (·) and λ

(2)
N (·) have been defined in (3.5). Similarly, we

consider the statistic

CN = sup
t∈[0,1]

|UN(t)|,(4.10)

where UN is the process introduced by Cabus (2000) and defined by (3.6). The
wild bootstrap version of these tests is essentially the same as explained in the
previous paragraph.

In our investigation of the finite sample performance of these procedures
we considered a uniform density for the explanatory variables X1i and X2j

(i.e., r1 ≡ r2 ≡ 1), homoscedastic errors in both samples given by σ 2
1 (t) = 0.5,

σ 2
2 (t) = 0.25 and the sample sizes (n1, n2) = (25,25), (25,50), (25,100),
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(50,25), (50,50), (50,100). For the regression functions we considered the
following scenario:

(i) f1(x) = f2(x) = 1,

(ii) f1(x) = f2(x) = exp(x),

(iii) f1(x) = f2(x) = sin(2πx),

(iv) f1(x) = 1; f2(x) = 1 + x,

(v) f1(x) = exp(x); f2(x) = exp(x) + x,

(vi) f1(x) = sin(2πx); f2(x) = sin(2πx) + x,

(vii) f1(x) = 1; f2(x) = 1 + sin(2πx),

(viii) f1(x) = exp(x); f2(x) = exp(x) + sin(2πx),

(ix) f1(x) = sin(2πx); f2(x) = 2 sin(2πx),

(4.11)

where the first three cases correspond to the null hypothesis of equal regression
curves. For the estimation of the regression functions from the total and individual
samples we used a local linear estimator [see Fan and Gijbels (1996)] with the
Epanechnikov kernel,

K(x) = 3
4 (1 − x2)I[−1,1](x).

All bandwidths for the estimation from the combined and individual samples were
chosen data adaptively. We investigated two selection rules. The first method is a
plug-in method [see Gasser, Kneip and Köhler (1991)] leading to bandwidths with
the optimal rate h = cN−1/5. For the consideration of a second (simpler) method,
we performed simulations for the simple rule of thumb,

h =
{
n1σ̂

2
2 + n2σ̂

2
1

(n1 + n2)2

}1/5

, hi =
(

σ̂ 2
i

ni

)1/5

, i = 1,2,

where σ̂ 2
i denotes the estimator of Rice (1984) for the integrated variance function∫ 1

0 σ 2
i (t)ri(t) dt for the ith sample (i = 1,2). The bandwidths in the bootstrap

steps were chosen slightly larger, that is, g = h5/6 (although this is not necessary
for the asymptotic theory). The results for both selection procedures are not
distinguishable and only the first case will be displayed.

The random variables Vij used in the generation of the bootstrap sample are
i.i.d. random variables with masses (

√
5+1)/2

√
5 and (

√
5−1)/2

√
5 at the points

(1 − √
5 )/2 and (1 + √

5 )/2 (note that this distribution satisfies E[Vij ] = 0;
E[V 2

ij ] = E[V 3
ij ] = 1). The corresponding results are listed in Tables 1 and 2 for the

statistics K
(1)
N ,K

(2)
N , respectively, which show the relative proportion of rejections

based on 1,000 simulation runs, where the number of bootstrap replications
was chosen as B = 200. We observe a sufficiently accurate approximation of
the nominal level in nearly all cases. A comparison of the tests based on
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TABLE 1
Rejection probabilities of a wild bootstrap version of the test based on K

(1)
N [see (4.1)] for various

sample sizes and the regression functions specified in (4.11). The errors are homoscedastic and
have variances σ 2

1 = 0.5, σ 2
2 = 0.25

n2: 25 50 100

n1 α: 2.5% 5% 10% 2.5% 5% 10% 2.5% 5% 10%

25 (i) 0.023 0.046 0.109 0.018 0.039 0.098 0.026 0.060 0.112
(ii) 0.029 0.052 0.106 0.028 0.058 0.112 0.037 0.061 0.121

(iii) 0.019 0.039 0.100 0.022 0.052 0.115 0.031 0.054 0.097

(iv) 0.449 0.568 0.686 0.557 0.665 0.781 0.596 0.703 0.898
(v) 0.484 0.607 0.716 0.567 0.676 0.777 0.584 0.701 0.808

(vi) 0.346 0.462 0.601 0.425 0.549 0.655 0.512 0.645 0.749

(vii) 0.214 0.322 0.477 0.260 0.404 0.554 0.294 0.408 0.558
(viii) 0.197 0.316 0.456 0.260 0.403 0.565 0.277 0.416 0.578

(ix) 0.108 0.184 0.312 0.230 0.325 0.458 0.296 0.435 0.586

50 (i) 0.023 0.052 0.114 0.021 0.044 0.098 0.031 0.042 0.111
(ii) 0.027 0.049 0.094 0.029 0.050 0.107 0.021 0.047 0.096

(iii) 0.027 0.047 0.096 0.025 0.046 0.089 0.029 0.053 0.096

(iv) 0.622 0.748 0.838 0.799 0.878 0.923 0.865 0.917 0.954
(v) 0.615 0.741 0.836 0.802 0.861 0.919 0.888 0.939 0.971

(vi) 0.535 0.661 0.759 0.734 0.717 0.883 0.827 0.881 0.932

(vii) 0.226 0.357 0.535 0.439 0.579 0.737 0.583 0.728 0.881
(viii) 0.199 0.329 0.534 0.452 0.379 0.745 0.490 0.719 0.855

(ix) 0.112 0.204 0.358 0.314 0.465 0.617 0.508 0.667 0.830

K
(1)
N and K

(2)
N shows that the application of the marked empirical process R̂

(2)
N

usually yields an improvement with respect to the power of approximately 5–10%
(see Tables 1 and 2) and in most cases also a better approximation of the nominal
level. Tables 3 and 4 show a few of the corresponding results for the wild
bootstrap tests based on the statistics LN and CN . The results of the first three
rows demonstrate that these procedures yield a less accurate approximation of the
nominal level, except in the case (i), where the regression functions are assumed
to be constant. In all other cases the level is underestimated. The reason for
these problems (as mentioned in Remark 3.3) is that in general the corresponding
partial sum processes for Kulasekera’s (1995) and Cabus’ (2000) tests have only
a stochastic expansion of order hd under the null hypothesis of equal regression
curves (except in the case, where f1 = f2 is constant). This nonnegligible bias
also appears if critical values are obtained by the wild bootstrap. The processes
R̂

(1)
N and R̂

(2)
N are based on a difference of two marked empirical processes and

this difference operation produces a stochastic expansion of order h2d under the
null hypothesis (see Proposition 2.1 and its proof ). This theoretical advantage is
partially supported by our simulation study. The wild bootstrap tests based on
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TABLE 2
Rejection probabilities of a wild bootstrap version of the test based on K

(2)
N [see (4.1)] for various

sample sizes and the regression functions specified in (4.11). The errors are homoscedastic and
have variances σ 2

1 = 0.5, σ 2
2 = 0.25

n2: 25 50 100

n1 α: 2.5% 5% 10% 2.5% 5% 10% 2.5% 5% 10%

25 (i) 0.027 0.057 0.119 0.024 0.052 0.109 0.028 0.055 0.107
(ii) 0.032 0.061 0.110 0.030 0.058 0.114 0.023 0.053 0.108

(iii) 0.031 0.052 0.105 0.033 0.059 0.103 0.025 0.054 0.108

(iv) 0.599 0.724 0.804 0.681 0.783 0.873 0.719 0.806 0.895
(v) 0.644 0.752 0.838 0.709 0.800 0.881 0.707 0.810 0.885

(vi) 0.523 0.634 0.745 0.599 0.699 0.794 0.633 0.749 0.837

(vii) 0.111 0.223 0.421 0.067 0.177 0.359 0.098 0.207 0.375
(viii) 0.112 0.226 0.409 0.111 0.201 0.372 0.128 0.239 0.404

(ix) 0.067 0.160 0.322 0.081 0.132 0.261 0.090 0.143 0.279

50 (i) 0.029 0.052 0.093 0.035 0.052 0.117 0.033 0.059 0.113
(ii) 0.023 0.047 0.112 0.034 0.051 0.107 0.031 0.056 0.109

(iii) 0.022 0.048 0.091 0.023 0.049 0.097 0.028 0.053 0.097

(iv) 0.761 0.845 0.915 0.919 0.950 0.982 0.953 0.974 0.990
(v) 0.726 0.814 0.883 0.911 0.948 0.975 0.958 0.979 0.992

(vi) 0.723 0.815 0.877 0.877 0.932 0.966 0.946 0.976 0.988

(vii) 0.176 0.308 0.525 0.391 0.574 0.777 0.490 0.651 0.802
(viii) 0.137 0.291 0.505 0.438 0.619 0.810 0.457 0.629 0.803

(ix) 0.117 0.265 0.476 0.317 0.513 0.692 0.321 0.480 0.677

TABLE 3
Rejection probabilities of a wild bootstrap version of the test based on LN [see (4.9)] for various
sample sizes and the regression functions specified in (4.11). The errors are homoscedastic and

have variances σ 2
1 = 0.5, σ 2

2 = 0.25

n2: 25 50 100

n1 α: 2.5% 5% 10% 2.5% 5% 10% 2.5% 5% 10%

25 (i) 0.029 0.054 0.097 0.028 0.057 0.114 0.036 0.058 0.110
(ii) 0.015 0.032 0.076 0.013 0.035 0.083 0.019 0.038 0.085

(iii) 0.010 0.036 0.080 0.019 0.038 0.076 0.021 0.043 0.082
(iv) 0.593 0.715 0.793 0.670 0.770 0.863 0.654 0.766 0.862

(vii) 0.090 0.152 0.302 0.033 0.134 0.269 0.089 0.181 0.327

50 (i) 0.024 0.052 0.101 0.024 0.056 0.117 0.035 0.068 0.107
(ii) 0.019 0.037 0.084 0.017 0.041 0.087 0.021 0.041 0.081

(iii) 0.014 0.029 0.081 0.021 0.039 0.079 0.019 0.038 0.086
(iv) 0.779 0.872 0.923 0.912 0.949 0.976 0.941 0.967 0.982

(vii) 0.123 0.234 0.399 0.350 0.539 0.692 0.401 0.615 0.731
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TABLE 4
Rejection probabilities of a wild bootstrap version of the test based on CN [see (4.10)] for various

sample sizes and the regression functions specified in (4.11). The errors are homoscedastic and
have variances σ 2

1 = 0.5, σ 2
2 = 0.25

n2: 25 50 100

n1 α: 2.5% 5% 10% 2.5% 5% 10% 2.5% 5% 10%

25 (i) 0.032 0.054 0.106 0.025 0.048 0.113 0.032 0.064 0.120
(ii) 0.014 0.038 0.081 0.019 0.037 0.079 0.022 0.046 0.091

(iii) 0.015 0.034 0.082 0.021 0.039 0.085 0.021 0.048 0.093
(iv) 0.590 0.791 0.804 0.627 0.739 0.863 0.626 0.744 0.821

(vii) 0.081 0.152 0.321 0.046 0.124 0.289 0.076 0.144 0.268

50 (i) 0.026 0.056 0.107 0.023 0.045 0.103 0.031 0.059 0.101
(ii) 0.019 0.038 0.084 0.020 0.041 0.091 0.022 0.043 0.091

(iii) 0.018 0.042 0.088 0.022 0.043 0.086 0.021 0.041 0.089
(iv) 0.781 0.860 0.919 0.886 0.925 0.963 0.909 0.955 0.976

(vii) 0.145 0.217 0.424 0.312 0.497 0.712 0.401 0.589 0.721

K
(1)
N and K

(2)
N yield a sufficiently accurate approximation of the nominal level

in all considered cases, while for small sample sizes, LN and CN yield only a
comparable approximation of the level for constant regression functions. (Even for
linear regression functions the error is substantial; these results are not displayed.)
For these reasons only the cases (iv) and (vii) are displayed in Tables 3 and 4 as
illustration for the performance of these tests under alternatives. Here we observe
in the case 1 = f1(x) = f2(x) − x a similar behavior as for the statistics K

(1)
N

and K
(2)
N while in the situation 1 = f1(x) = f2(x) − sin(2πx) of an oscillating

alternative the tests based on LN and CN have less power. In all other cases (f1, f2
not constant) the loss of power when applying the wild bootstrap tests based on LN

and CN is of similar order. This loss of power can be partially explained by the fact
that the tests of Kulasekera (1995) and Cabus (2000) underestimate the nominal
level. Based on our (limited) numerical experience, the wild bootstrap version of
the test based on K

(2)
N should be preferred to the procedure based on K

(1)
N and to

Kulasekera’s (1995) and Cabus’ (2000) tests because it approximates the nominal
level most accurately. We finally mention that (based on a further numerical study)
these differences are relatively stable with respect to different selection rules of the
bandwidth.

EXAMPLE 4.2. We conclude this section by illustrating the advantage of
our procedure with a data example involving heteroscedasticity. To this end we
reanalyze data measuring the concentration of sulfate in the rain of North Carolina,
which was obtained as a part of the National Atmospheric Deposition Program.
This data was investigated by Hall and Hart (1990), who compared the sulfate
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TABLE 5
Semiannual variance estimates of the rainfall data discussed by Hall and Hart (1990)

Variance estimate

Period 1 2 3 4 5 6 7 8 9 10

Coweeta 0.279 0.205 0.385 0.223 0.276 0.629 0.361 0.182 0.407 0.613

Lewiston 0.929 0.584 0.614 0.769 0.551 1.088 0.549 0.551 0.573 0.459

concentration as a function of time in the two towns, Coweeta and Lewiston. The
data available for the analysis were weekly observations of the concentration of
sulfate in the rain over a five-year period 1979–1983 [see Figure 1 in Hall and Hart
(1990)]. A residual analysis gave no indication that the error terms were correlated
over time. Because there were several weeks for which data was not available, Hall
and Hart (1990) only used the weeks with no missing data (189 weeks). There were
215 weeks of data in Lewiston and 220 weeks of data in Coweeta and consequently
these authors do not use 13% of the data [note that Kulasekera (1995) pointed
out that Hall and Hart’s (1990) test does not work with sufficient accuracy for
different design points and therefore there is no way to include the unused data
in the analysis with this test]. The test of Hall and Hart (1990) clearly rejects the
hypothesis of equal regression curves which is also obvious from Figure 1 in the
same reference. The same figure indicates that the two curves could only differ by
a simple shift and it is easy to see that a test for this hypothesis can be obtained by
applying Hall and Hart’s (1990) procedure to the data

Yij − Ȳi· .

Hall and Hart (1990) obtained for this procedure a p-value of 0.097 and argued
that this provides some evidence that the curves differ by more than a simple shift.
We would like to point out here that some care is necessary with this argument
because the test of Hall and Hart (1990) requires homoscedasticity, which is rarely
available in seasonal data. In order to investigate the question of heteroscedasticity,
we estimated the integrated variance functions∫

σ 2
i (t) dt, i = 1,2,

for the two locations semiannually using Rice’s (1984) estimator. The correspond-
ing estimates are shown for the two towns, Coweeta and Lewiston, in Table 5 and
clearly indicate a heteroscedastic structure in the data.

For this reason we investigate whether the conclusion that the two curves
differ by more than a shift is obtained by the application of a (inappropriate)
procedure requiring homoscedastic errors to heteroscedastic data (or even by
neglecting 13% of the data). To this end we applied the bootstrap test based
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on K
(2)
N (which works under heteroscedasticity and for unequal design points)

to the rainfall data considered by Hall and Hart (1990). The resulting p-value
obtained from B = 1,000 bootstrap replications is 0.405. We obtained nearly the
same p-value if we only used the 189 weeks, where data was available at both
locations. Consequently we conclude that there is in fact some evidence from the
data that the two curves differ only by a simple shift as suggested in Figure 1
of Hall and Hart (1990). The different conclusion obtained by these authors is
probably caused by ignoring heteroscedasticity in the data.

5. Proofs. For the sake of brevity we restrict ourselves to a consideration of
the process R̂

(1)
N defined in (2.10). The proofs for the process R̂

(2)
N are similar and

therefore omitted.

5.1. Proof of Proposition 2.1. The expectation of the residuals in (2.8) is
obtained as

E[eij I {Xij ≤ t}]

= E

[
E

[(
Yij r̂(Xij ) − f̂ (Xij )̂r(Xij )

)
× n3−i

N
r̂3−i(Xij )I {Xij ≤ t}

∣∣∣ X11, . . . ,X2n2

]]

= 1

Nh

2∑
�=1

n�∑
k=1

E

[
K

(
X�k − Xij

h

)(
fi(Xij ) − f�(X�k)

)
I {Xij ≤ t}

× 1

Nh

n3−i∑
ν=1

K

(
Xij − X3−i,ν

h

)]

= κ3−i(ni − 1)

Nh

∫ 1

0

∫ t

0
K

(
x − y

h

)(
fi(x) − fi(y)

)
ri(x)ri(y)

× 1

h

∫ 1

0
K

(
x − z

h

)
r3−i(z) dz dx dy

+ κ3−in3−i

Nh

∫ 1

0

∫ t

0
K

(
x − y

h

)(
fi(x) − f3−i (y)

)
ri(x)r3−i (y)

× 1

h

∫ 1

0
K

(
x − z

h

)
r3−i (z) dz dx dy

+ O

(
1

Nh

)
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and a Taylor expansion and a tedious calculation yield, under the hypothesis of
equal regression curves,

E
[
R̂

(1)
N (t)

]
= κ1κ2

∫ t

0

∫ 1

0

1

h
K

(
x − y

h

)
[f (x) − f (y)]r(y)

×
[
r1(x)

1

h

∫ 1

0
K

(
x − z

h

)
r2(z) dz

− r2(x)
1

h

∫ 1

0
K

(
x − z

h

)
r1(z) dz

]
dy dx + O

(
1

Nh

)
= O(h2d) + O

(
1

Nh

)
.

Similarly, we obtain under the alternative,

E[eij I {Xij ≤ t}] = κ3−i

∫ t

0

(
fi(x) − f3−i (x)

)
ri(x)r2

3−i(x) dx + O(hd)

and the definition of R̂
(1)
N yields

E
[
R̂

(1)
N (t)

] = κ1κ
2
2

∫ t

0

(
f1(x) − f2(x)

)
r1(x)r2

2 (x) dx

− κ2κ
2
1

∫ t

0

(
f2(x) − f1(x)

)
r2(x)r2

1 (x) dx + O(hd),

which establishes the assertion of the lemma for the process R̂
(1)
N .

5.2. Proof of Theorem 2.2. We begin with an auxiliary result, which shows
that the r̂3−i(Xij ) weights in the residuals eij can be replaced by r3−i(Xij ) without
changing the asymptotic properties of the test statistic. The proof follows by
similar arguments as given in Lemma 5.3 and is left to the reader.

LEMMA 5.0. Define

ēij = (
Yij − f̂ (Xij )

)̂
r(Xij )κ3−i r3−i(Xij )

and

R̄N (t) = 1

N

n1∑
j=1

ē1j I {X1j ≤ t} − 1

N

n2∑
j=1

ē2j I {X2j ≤ t}.

If the assumptions of Theorem 2.2 are satisfied, then

sup
t∈[0,1]

∣∣R̂ (1)
N (t) − R̄N(t)

∣∣ = op

(
1√
N

)
,

where the process R̂
(1)
N (t) is defined in (2.10).
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Recalling the definition of the residuals ēij ,

ēij = (
σi(Xij )εij r̂(Xij ) + f (Xij )̂r(Xij ) − f̂ (Xij )̂r(Xij )

)
κ3−ir3−i(Xij )

=
(
σi(Xij )εij r̂(Xij )

(5.1)

+ 1

Nh

2∑
�=1

n�∑
k=1

K

(
Xij − X�k

h

)(
f (Xij ) − f (X�k)

)

− 1

Nh

2∑
�=1

n�∑
k=1

K

(
Xij − X�k

h

)
σ�(X�k)ε�k

)
κ3−i r3−i(Xij ),

and observing f1 = f2 under H0 we obtain by a straightforward calculation the
decomposition

R̄N(t) = RN(t) + SN(t) + WN(t) + VN(t),(5.2)

where the processes RN,SN,WN and VN are defined by

RN(t) :=
2∑

�=1

κ3−�

N

n�∑
j=1

(−1)3−�σ�(X�j )ε�j r(X�j )r3−�(X�j )I {X�j ≤ t},(5.3)

SN(t) :=
2∑

�,i=1

(−1)�
κ3−�

N2h

ni∑
j=1

σi(Xij )εij

n�∑
k=1

K

(
Xij − X�k

h

)
(5.4)

× r3−�(X�k)I {X�k ≤ t},

WN(t) :=
2∑

�,i=1

(−1)�−1 κ3−�

N2h

n�∑
j=1

ni∑
k=1

K

(
X�j − Xik

h

)(
f (X�j ) − f (Xik)

)
(5.5)

× r3−�(X�j )I {X�j ≤ t},

VN(t) :=
2∑

i=1

(−1)i−1κ3−i

1

N

ni∑
j=1

σi(Xij )εij

(̂
r(Xij ) − r(Xij )

)
(5.6)

× r3−i(Xij )I {Xij ≤ t}.
The assertion of Theorem 2.2 now follows from the next lemma and the following
two auxiliary results, which will be proved below.

LEMMA 5.1. If the assumptions of Theorem 2.2 are satisfied, the process
TN(t) = √

NRN(t) converges weakly to a centered Gaussian process in the space
D[0,1] with covariance function given by (2.12).
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PROOF. With the notation

�ij (t) := σi(Xij )
[
(−1)i−1κ3−ir3−i(Xij )r(Xij )I {Xij ≤ t}](5.7)

(i = 1,2), we decompose the process TN as follows:

TN(t) = √
NRN(t) =

2∑
i=1

1√
N

ni∑
j=1

εij�ij (t).

For the covariance we obtain, by a straightforward calculation,

Cov(TN(t), TN (s)) = E

[
1

N

n1∑
j=1

σ 2
1 (X1j )ε

2
1j�1j (t)�1j (s)

+ 1

N

n2∑
j=1

σ 2
2 (X2j )ε

2
2j�2j (t)�2j (s)

]

= κ1κ
2
2

∫ 1

0
σ 2

1 (y)r2(y)r2
2 (y)I {y ≤ t}I {y ≤ s}r1(y) dy

+ κ2κ
2
1

∫ 1

0
σ 2

2 (y)r2(y)r2
1 (y)I {y ≤ t}I {y ≤ s}r2(y) dy

+ o(1)

= H(s, t) + o(1).

The central limit theorem for triangular arrays proves convergence of the finite
dimensional distributions of TN . Weak convergence now follows if

E
[(

TN(w) − TN(v)
)2(

TN(v) − TN(u)
)2] ≤ C(w − u)2

(5.8) for all 0 ≤ u ≤ v ≤ w ≤ 1

can be established [see Billingsley (1968), page 128, or Shorack and Wellner
(1986), pages 45–51]. To this end we note that for two independent samples of
i.i.d. bivariate centered random vectors (αi, βi)i=1,...,n1 and (γi, δi)i=1,...,n2 , the
inequality

E

[(
n1∑
i=1

αi +
n2∑

j=1

γj

)2(
n1∑
i=1

βi +
n2∑

j=1

δj

)2]

≤ n1E[α2
1β2

1 ] + 3n2
1E[α2

1]E[β2
1 ]

(5.9)
+ n2E[γ 2

1 δ2
1] + 3n2

2E[γ 2
1 ]E[δ2

1] + n1n2E[α2
1]E[δ2

1]
+ n1n2E[γ 2

1 ]E[β2
1 ] + 4n1n2E[α1β1]E[γ1δ1]

holds, which follows by similar arguments as stated in the proof of Theorem 13.1
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in Billingsley (1968). We now apply (5.9) for the random variables

αi = ε1i

(
�1i (w) − �1i (v)

)
, βi = ε1i

(
�1i (v) − �1i (u)

)
,

γj = ε2j

(
�2j (w) − �2j (v)

)
, δj = ε2j

(
�2j (v) − �2j (u)

)
.

(5.10)

A straightforward calculation yields

E[α2
1] =

∫ 1

0
σ 2

1 (x)
(
κ2r2(x)r(x)I {v < x ≤ w})2

r1(x) dx

=
∫ w

v
σ 2

1 (x)κ2
2 r2

2 (x)r2(x)r1(x) dx

≤ O(1)(w − v)

and similar arguments show that the terms E[β2
1 ], E[γ 2

1 ], E[δ2
1], E[α1β1],

E[γ1δ1], E[α2
1β

2
1 ] and E[γ 2

1 δ2
1] are of the same order. Now, a combination of these

results with (5.10) and (5.9) yields

E
[(

TN(w) − TN(v)
)2(

TN(v) − TN(u)
)2]

= 1

N2
E

[(
n1∑
i=1

αi +
n2∑

j=1

γj

)2(
n1∑
i=1

βi +
n2∑

j=1

δj

)2]

= O(1)(w − u)2,

which establishes (5.8) and completes the proof of Lemma 5.1. �

LEMMA 5.2. If the assumptions of Theorem 2.2 are satisfied, we have for the
processes SN defined by (5.4),

sup
t∈[0,1]

|SN(t)| = op

(
1√
N

)
.(5.11)

LEMMA 5.3. If the assumptions of Theorem 2.2 are satisfied we have for the
processes VN and WN defined by (5.6) and (5.5),

sup
t∈[0,1]

|VN(t)| = op

(
1√
N

)
,(5.12)

sup
t∈[0,1]

|WN(t)| = op

(
1√
N

)
.(5.13)
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In order to prove Lemmas 5.2 and 5.3 we need some basic terminology from
recent U -process theory. For more details we refer to Nolan and Pollard (1987,
1988) or Pollard (1984). Let F denote a class of real valued (measurable) functions
defined on a set S with envelope F . The covering number Np(ε,Q,F ,F ) of F
(with respect to the probability measure Q) is defined as the smallest cardinality
for a subclass F ∗ of F such that

min
f ∗∈F ∗ Q|f − f ∗|p ≤ εpQ(Fp) for all f ∈ F

and

J(t,Q,F ,F ) =
∫ t

0
log N2(x,Q,F ,F ) dx

is called the covering integral. The class F is called Euclidean, if there exist
constants A and V such that

N1(ε,Q,F ,F ) ≤ Aε−V whenever 0 < QF < ∞.

The class F is called VC-class if its class of graphs

D = {Gf | f ∈ F }
with

Gf := {(s, t) | 0 ≤ t ≤ f (s) or f (s) ≤ t ≤ 0}
forms a polynomial class (or VC-class); that is, there exists a polynomial p(·) such
that

#{D ∩ F | D ∈ D} ≤ p(#F)

for every fixed finite subset F of S. We finally note that VC-classes are Euclidean
[see Pollard (1984), Lemma II25] and that sums of Euclidean classes are Euclidean
[see Nolan and Pollard (1987), Corollary 17].

5.3. Proof of Lemma 5.3. We will restrict ourselves to the process VN

considered in (5.12); the remaining case (5.13) is very similar and left to the reader.
Recalling the definition of VN in (5.6) we obtain the decomposition,

VN(t) = V
(1)
N (t) + V

(2)
N (t) − V

(3)
N (t) − V

(4)
N (t) + op

(
1√
N

)
,(5.14)

where

V
(1)
N (t) = κ2

N2h

n1∑
j=1

n1∑
k=1

σ1(X1j )ε1j

(
K

(
X1j − X1k

h

)
− hr1(X1j )

)
(5.15)

× r2(X1j )I {X1j ≤ t},
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V
(2)
N (t) = κ2

N2h

n1∑
j=1

n2∑
k=1

σ1(X1j )ε1j

(
K

(
X1j − X2k

h

)
− hr2(X1j )

)
(5.16)

× r2(X1j )I {X1j ≤ t},

V
(3)
N (t) = κ1

N2h

n2∑
j=1

n1∑
k=1

σ2(X2j )ε2j

(
K

(
X2j − X1k

h

)
− hr1(X2j )

)
(5.17)

× r1(X2j )I {X2j ≤ t},

V
(4)
N (t) = κ1

N2h

n2∑
j=1

n2∑
k=1

σ2(X2j )ε2j

(
K

(
X2j − X2k

h

)
− hr2(X2j )

)
(5.18)

× r1(X2j )I {X2j ≤ t};

the remainder in (5.14) is obtained replacing κi by ni/N and vanishes uniformly
with respect to t ∈ [0,1]. The assertion of Lemma 5.3 now follows by showing
that all terms in (5.14) are of order op( 1√

N
) uniformly with respect to t ∈ [0,1].

LEMMA 5.3a. If the assumptions of Theorem 2.2 are satisfied we have for the
statistics V

(1)
N and V

(4)
N defined by (5.15) and (5.18),

sup
t∈[0,1]

∣∣V (1)
N (t)

∣∣ = op

(
1√
N

)
,

sup
t∈[0,1]

∣∣V (4)
N (t)

∣∣ = op

(
1√
N

)
.

PROOF. Both terms are treated exactly in the same way and we only consi-
der V

(1)
N which can be written as

V
(1)
N (t) = κ2

N2h

n1∑
j=1

n1∑
k=1,k �=j

σ1(X1j )ε1j

(
K

(
X1j − X1k

h

)
− hr1(X1j )

)
× r2(X1j )I {X1j ≤ t}

+ κ2

N2h

n1∑
j=1

σ1(X1j )ε1j

(
K(0) − hr1(X1j )

)
r2(X1j )I {X1j ≤ t}

=: IN (t) + I
(1)
N (t),(5.19)
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where the last line defines the processes IN and I
(1)
N . For the last named term we

obtain, by a straightforward calculation,

sup
t∈[0,1]

∣∣I (1)
N (t)

∣∣ = Op

(
1

Nh

)
= op

(
1√
N

)
,(5.20)

where we have used the assumptions for the bandwidth stated in (2.3). The
treatment of the remaining term IN in (5.19) is more complicated and requires
some basic results from the treatment of U -processes [see, e.g., Nolan and Pollard
(1987)]. To be precise, observe that

√
NIN − κ

3/2
1

2h
Un1(ϕ) = op(1)(5.21)

uniformly with respect to t ∈ [0,1], where Un1 is a U -process defined by

Un1(ϕ) :=
√

n1

n1(n1 − 1)

n1∑
i=1

n1∑
j=1
i �=j

ϕ(ξi, ξj )(5.22)

with ξi = (X1i , ε1i) and symmetric kernel

ϕ(ξi, ξj ) = κ2ε1j

(
K

(
X1i − X1j

h

)
− hr1(X1j )

)
× σ1(X1j )r2(X1j )I {X1j ≤ t}

(5.23)

+ κ2ε1i

(
K

(
X1i − X1j

h

)
− hr1(X1i )

)
× σ1(X1i )r2(X1i )I {X1i ≤ t}.

Following Nolan and Pollard (1988), we introduce the notation ϕ1(x) =
E[ϕ(ξ1, ξ2)|ξ2 = x] and obtain a Hoeffding decomposition for the process Un1 ;
that is,

Un1(ϕ) = Un1(ϕ̃) + 2√
n1

n1∑
i=1

ϕ1(ξi),(5.24)

where

ϕ̃(x, y) = ϕ(x, y) − ϕ1(x) − ϕ1(y)(5.25)

(note that E[ϕ(ξ1, ξ2)] = 0). Finally, consider a class of functions

F = {ϕh,t | t ∈ [0,1], h > 0},(5.26)

where ϕh,t : [0,1] × R × [0,1] × R → R is defined by

ϕh,t (x, y) = κ2x2

(
K

(
x1 − y1

h

)
− hr1(x1)

)
σ1(x1)r2(x1)I {x1 ≤ t}

(5.27)

+ κ2y2

(
K

(
x1 − y1

h

)
− hr1(y1)

)
σ1(y1)r2(y1)I {y1 ≤ t}.
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It can be shown by a tedious calculation and similar arguments as in Nolan and
Pollard [(1987), Lemma 16] and Pollard [(1984), Examples II26, II38] that the
class F and the induced class

PF = {
ϕ1 | ϕ1(x) = E[ϕ(ξ1, ξ2)|ξ2 = x], ϕ ∈ F

}
(5.28)

are Euclidean. Note that the proof of this property requires the special assumption
on the kernel K stated in the paragraph following (2.4) [see Pollard (1984),
Example II38 and Problem II28, who considered the case of a decreasing kernel
function on [0,∞), which is a special case of the situation considered here]. It
therefore follows that for γ > 0 the covering integral satisfies

J(γ,Q ⊗ Q,F ,F ) ≤ a1γ − b1(γ log γ − γ ),

J(γ,Q,PF ,PF ) ≤ a2γ − b2(γ log γ − γ )

(for given constants a1, b1, a2, b2) and consequently the assumptions of Theorem 5
in Nolan and Pollard (1988) are fulfilled. Now the second part in the proof of this
theorem shows

sup
ϕ∈F

|Un1(ϕ̃)| = Op

(
1√
N

)
.(5.29)

The assertion of the first part in Lemma 5.3a now follows from (5.29), (5.24),
(5.21), (5.19) and (5.20) if the estimate

sup
t∈[0,1]

∣∣∣∣∣ 1√
n1

n1∑
i=1

1

h
ϕ1,t,hn1

(ξi)

∣∣∣∣∣ = op(1)(5.30)

can be established, where

ϕ1,t,h(ξi) = ϕ1(ξi) = κ2ε1i

(∫
K

(
x − X1i

h

)
r1(x) dx − hr1(X1i )

)
(5.31)

× σ1(X1i )r2(X1i )I {X1i ≤ t}.
To this end we make the dependence of the bandwidth from the sample size explicit
by writing h = hn1 and introduce the notation,

Fn1 := {
ϕ1,t,hn1

∣∣ t ∈ [0,1]}.(5.32)

We use similar arguments as given in the proof of Theorem 37 in Pollard
[(1984), page 34]. To be precise, define

αn1 = 1√
n1h2d

n1

, δn1 =
√

ch2d+1
n1 ,
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where c is a constant chosen such that

P (ϕ2
1,t,hn1

) =
∫ t

0
σ 2

1 (z)

(∫
K

(
x − z

hn1

)
r1(x) dx − hn1r1(z)

)2

κ2
2 r2

2 (z)r1(z) dz

= h2
n1

∫ t

0
σ 2

1 (z)

(∫
K(u)

(
r1

(
z + hn1u

) − r1(z)
)
du

)2

κ2
2 r2

2 (z)r1(z) dz

≤ h2
n1

h2d
n1

c.

Let F1 denote the envelope of the class PF defined by (5.28) (note that Fn1 ⊂ PF
for all n1 ∈ N) and assume without loss of generality 0 < k1 < PF1 < k2. By the
strong law of large numbers, we have

P

(∣∣Pn1F1 − PF1
∣∣ >

k1

2

)
N→∞−→ 0,

where Pn1 is the distribution with equal masses at the points ξ1, . . . , ξn1 . Therefore
it is sufficient to prove the assertion (5.30) on the set {|Pn1F1 − PF1| ≤ k1

2 } for
which k1

2 < Pn1F1 < k1
2 + k2. The following calculations are restricted to this

set without mentioning this explicitly. Let P ◦
n denote the symmetrization of Pn

[see Pollard (1984), page 15]; then we obtain for εn1 = εδ2
n1

αn1(ε > 0),

P

(
sup

ϕ∈Fn1

∣∣Pn1(ϕ)
∣∣ > 8εn1

(
k1

2
+ k2

))

≤ 4P

(
sup

ϕ∈Fn1

∣∣P ◦
n1

(ϕ)
∣∣ > 2εn1

(
k1

2
+ k2

))
(5.33)

≤ 4P

(
sup

ϕ∈Fn1

∣∣P ◦
n1

(ϕ)
∣∣ > 2εn1Pn1F1

)
.

Conditioning on ξ = (ξ1, . . . , ξn1), it therefore follows that

P

(
sup

ϕ∈Fn1

∣∣P ◦
n1

(ϕ)
∣∣ > 2εn1Pn1F1

∣∣∣ξ)

≤ min
{

2N1
(
εn1,Pn1,Fn1,F1

)
exp

(
−1

2

n1ε
2
n1

(Pn1F1)
2

maxj Pn1g
2
j

)
,1

}
,

where the maximum runs over all m = N1(εn1,Pn1,Fn1,F1) functions of the
approximating class {g1, . . . , gm}. Integrating, observing that Pn1F1 >

k1
2 and



908 N. NEUMEYER AND H. DETTE

that PF is Euclidean yields

P

(
sup

ϕ∈Fn1

∣∣P ◦
n1

(ϕ)
∣∣ > 2εn1Pn1F1

)
(5.34)

≤ 2Aε−V
n1

exp
(
−1

8

k2
1ε2

n1
n1

δ2
n1

)
+ P

(
sup

ϕ∈Fn1

Pn1(ϕ
2) > δ2

n1

)
with positive constants A and V . The first term can be treated similarly as in
Pollard [(1984), page 34] and converges to 0. The treatment of the second term
is different because ϕ ∈ Fn1 does not necessarily imply |ϕ| ≤ 1. We obtain for the
expectation

E

∣∣∣∣ sup
ϕ∈Fn1

Pn1(ϕ
2)

∣∣∣∣ ≤ 1

n1
E

∣∣∣∣∣
n1∑
i=1

ε2
1i

(∫
K

(
x − X1i

hn1

)
r1(x) dx − hn1r1(X1i )

)2

× σ 2
1 (X1i )κ

2
2 r2

2 (X1i )

∣∣∣∣∣
= O

(
h2d+2

n1

)
and Markov’s inequality yields (using the definition of δn1)

P

(
sup

ϕ∈Fn1

Pn1(ϕ
2) > δ2

n1

)
= O

(
hn1

)
.(5.35)

A combination of (5.33)–(5.35) finally gives

P

(
1

δ2
n1

αn1

sup
ϕ∈Fn1

∣∣Pn1(ϕ)
∣∣ > ε

)
→ 0 if n1 → ∞,

which establishes the remaining estimate (5.30) [note that δ2
n1

αn1 = O(hn1/
√

n1)].
�

LEMMA 5.3b. If the assumptions of Theorem 2.2 are satisfied, we have for
the statistics V

(2)
N and V

(3)
N defined by (5.16) and (5.17),

sup
t∈[0,1]

|V (2)
N (t)| = op

(
1√
N

)
,

sup
t∈[0,1]

|V (3)
N (t)| = op

(
1√
N

)
.

PROOF. The proof essentially follows the arguments given in the proof of
Lemma 5.3a and we will restrict ourselves to indicating the main difference, which
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is a derivation of an analogue of the estimate (5.29). Because V
(2)
N and V

(3)
N

are U -processes formed from two samples, the results derived in the proof of
Theorem 5 of Nolan and Pollard (1988) are not directly applicable. For this reason
we indicate the derivation of an analogous result for two sample U -processes.
The application of this result to the two sample U -processes obtained from V

(2)
N

and V
(3)
N completes the proof of Lemma 5.3b and follows by exactly the same

arguments as given in the proof of Lemma 5.3a.
To be precise, let P,Q denote distributions on the spaces X and Y and consider

a class of real valued measurable functions F defined on X × Y such that
(P ⊗ Q)(ϕ) = 0 for all ϕ ∈ F . Assume that there exists an envelope F of F
such that (P ⊗ Q)(F ) < ∞. Let X1, . . . ,X2n ∼ P and Y1, . . . , Y2m ∼ Q denote
independent samples and σ1, . . . , σn and τ1, . . . , τm denote independent samples
(also independent of the Xi and Yj ) such that

P(σi = 1) = P(σi = −1) = 1/2,

P(τi = 1) = P(τi = −1) = 1/2.

Introducing the notation

ξi = I {σi = 1}X2i + I {σi = −1}X2i−1,

ξ ′
i = I {σi = 1}X2i−1 + I {σi = −1}X2i ,

ζj = I {τj = 1}Y2j + I {τj = −1}Y2j−1,

ζ ′
j = I {τj = 1}Y2j−1 + I {τj = −1}Y2j ,

we obtain again independent samples ξ1, . . . , ξn, ξ
′
1, . . . , ξ

′
n ∼ P and ζ1, . . . , ζm,

ζ ′
1, . . . , ζ

′
m ∼ Q.

For a function ϕ ∈ F consider the two-sample U -statistic,

Snm(ϕ) :=
n∑

i=1

m∑
j=1

ϕ(ξi, ζj ),(5.36)

and its standardized version,

Unm(ϕ) :=
√

n + m

nm
Snm(ϕ).(5.37)

Let

ϕ1(x) = E[ϕ(ξ1, ζ1)|ξ1 = x],
ϕ2(y) = E[ϕ(ξ1, ζ1)|ζ1 = y],

and define the kernel

ϕ̃(x, y) = ϕ(x, y) − ϕ1(x) − ϕ2(y);(5.38)
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then it follows that the statistic Unm(ϕ̃) is degenerate [note that E[ϕ(ξi, ζj )] = 0
by the definiton of F ]. Defining

Tnm(ϕ) :=
n∑

i=1

m∑
j=1

[
ϕ(ξi, ζj ) + ϕ(ξi, ζ

′
j ) + ϕ(ξ ′

i , ζj ) + ϕ(ξ ′
i , ζ

′
j )

]

=
n∑

i=1

m∑
j=1

ϕ(X2i , Y2j ) + ϕ(X2i , Y2j−1)(5.39)

+ ϕ(X2i−1, Y2j ) + ϕ(X2i−1, Y2j−1)

and Pn and Qm as the empirical distributions based on ξ1, . . . , ξn and ζ1, . . . , ζm,
respectively, it can be shown by similar arguments as in Nolan and Pollard (1988)
that the conditions

sup
n,m

E
[
J(1, Tnm,F ,F )2]

< ∞,(5.40)

J(1,P ⊗ Q,F ,F ) < ∞,(5.41)

sup
n

E
[
J(1,Pn,QF ,QF)2]

< ∞,(5.42)

sup
m

E
[
J(1,Qm,PF ,PF )2] < ∞,(5.43)

imply the estimate

E

[
sup
ϕ∈F

|Unm(ϕ̃)|
]

= O

(
1√
N

)
,

which gives

sup
ϕ∈F

|Unm(ϕ̃)| = Op

(
1√
N

)
.(5.44)

In the specific situation of V
(2)
N or V

(3)
N the assumptions (5.40)–(5.43) now follow,

because the classes F ,PF and QF are Euclidean (see the first part in the proof
of Lemma 5.3a). �

5.4. Proof of Lemma 5.2. Recalling the definition of SN in (5.4) and observing
the equality

2∑
�,i=1

(−1)�
κ3−�

hN

ni∑
j=1

σi(Xij )εij

1

h

∫ t

0
K

(
Xij − x

h

)
r3−�(x)κ�r�(x) dx = 0,
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it follows that SN is a linear combination of four terms of the form

2κ3−k

hn�nk

n�∑
i=1

ε�i

(
nk∑

j=1,i �=j

K

(
X�i − Xkj

h

)
r3−k(Xkj )I {Xkj ≤ t}

−
∫ t

0
K

(
X�i − x

h

)
rk(x)r3−k(x) dx

)
σ�(X�i),

which can either be represented as a degenerate one-sample U -process (� = k = 1
and � = k = 2) or a degenerate two-sample U -process (� = 1, k = 2 and � = 2,
k = 1). It now follows either by the arguments in the proof of Theorem 5 in Nolan
and Pollard (1988) or by its generalization in (5.40)–(5.44) that the corresponding
terms vanish at a rate Op( 1

Nh
) if the underlying class of indexing functions is

Euclidean. For example, in the case � = k = 1 the symmetric kernel is given by

ϕ(ξi, ξj ) = κ2ε1i

(
K

(
X1i − X1j

h

)
r2(X1j )I {X1j ≤ t}

−
∫ t

0
K

(
X1i − x

h

)
r1(x)r2(x) dx

)
σ1(X1i )

+ κ2ε1j

(
K

(
X1i − X1j

h

)
r2(X1i )I {X1i ≤ t}

−
∫ t

0
K

(
X1j − x

h

)
r1(x)r2(x) dx

)
σ1(X1j ),

where ξi = (X1i , ε1i) and the degenerate one-sample U -process is given by

U(1,1)
n1,n1

(ϕ) = 1

n2
1

∑
i �=j

ϕ(ξi, ξj ).

Note that ϕ1(x) = E[ϕ(ξ1, ξ2)|ξ2 = x] = 0 which implies ϕ̃ = ϕ and PF = {0},
which is obviously Euclidean. A cumbersome calculation shows that F is also
Euclidean and the arguments in the proof of Theorem 5 in Nolan and Pollard
(1988) yield

1

h
sup
ϕ∈F

∣∣U(1,1)
n1,n1

(ϕ)
∣∣ = 1

h
Op

(
1

N

)
= op

(
1√
N

)
.

The other three cases are treated exactly in the same way, establishing the
assertion of Lemma 5.2.

5.5. Proof of Theorems 3.2 and 3.3. The proof follows essentially the steps
given for the proof of Theorem 2.2 and therefore we restrict ourselves to the
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calculation of the asymptotic covariance structure of the process defined by (3.2).
A straightforward calculation yields

Cov
(
µ1(t),µ1(s)

) = 1

n1n
2
2h

2


n1s�∧
n1t�∑
i=1

n2∑
j,�=1

K

(
t1i − t2j

h

)
K

(
t1i − t2�

h

)
σ 2

1 (t1i )

r2
2 (t1i )

+ 1

n1n
2
2h

2


n1s�∑
i=1


n1t�∑
k=1

n2∑
j=1

K

(
t1i − t2j

h

)
K

(
t1k − t2j

h

)

× σ 2
2 (t2j )

r2(t1i )r2(t1k)
+ o(1)

= 1

h2

∫ R−1
1 (s∧t)

0

∫ 1

0

∫ 1

0
K

(
x − y

h

)
K

(
x − z

h

)

× σ 2
1 (x)

r2
2 (x)

r1(x)r2(y)r2(z) dx dy dz

+ n1

n2

1

h2

∫ R−1
1 (t)

0

∫ R−1
1 (s)

0

∫ 1

0
K

(
x − y

h

)
K

(
z − y

h

)

× σ 2
2 (y)r1(x)r2(y)r1(z)

r2(x)r1(z)
dy dx dz

+ o(1),

= m12(s, t) + o(1),

where m12 is defined by (3.4).

5.6. Proof of Theorem 4.1. The proof essentially follows the proof of Theo-
rem 2.2 and we will only sketch the main arguments. For the sake of simplicity we
restrict ourselves to the process R̂

(1)∗
N (the remaining case is treated exactly in the

same way) and obtain

sup
t∈[0,1]

∣∣R̂ (1)∗
N (t) − R̃

(1)∗
N (t)

∣∣ = op

(
1√
N

)
,(5.45)

where

R̃
(1)∗
N (t) = 1

N

2∑
�=1

n�∑
j=1

(−1)�−1(
Y ∗

�j − f̂ ∗
h (X�j )

)̂
rh(X�j )

(5.46)
× I {X�j ≤ t}κ3−�r3−�(X�j )
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and R̂
(1)∗
N is defined in (4.6). This shows that it is sufficient to prove the corre-

sponding statement for the process R̃
(1)∗
N , for which we obtain the decomposition

R̃
(1)∗
N (t) = R∗

N(t) + S∗
N(t) + W ∗

N(t) + V ∗
N(t),(5.47)

where the processes on the right-hand side are defined by

R∗
N(t) := κ2

N

n1∑
j=1

ε∗
1j r(X1j )r2(X1j )I {X1j ≤ t}

(5.48)

− κ1

N

n2∑
j=1

ε∗
2j r(X2j )r1(X2j )I {X2j ≤ t},

S∗
N(t) :=

2∑
i=1

1

N

ni∑
j=1

ε∗
ij

(
1

Nh

2∑
�=1

(−1)�κ3−�

n�∑
k=1

K

(
Xij − X�k

h

)
(5.49)

× r3−�(X�k)I {X�k ≤ t}
)
,

W ∗
N(t) :=

2∑
�,i=1

(−1)�−1 κ3−�

N2h

n�∑
j=1

ni∑
k=1

K

(
X�j − Xik

h

)(
f̂g(X�j ) − f̂g(Xik)

)
(5.50)

× r3−�(X�j )I {X�j ≤ t},

V ∗
N(t) :=

2∑
i=1

(−1)i−1κ3−i

1

N

ni∑
j=1

ε∗
ij

(̂
rh(Xij ) − r(Xij )

)
(5.51)

× r3−i(Xij )I {Xij ≤ t}.
We will prove at the end of this section the following result.

LEMMA 5.4. If the assumptions of Theorem 2.2 and (4.8) are satisfied we
have for all δ > 0,

P

(√
N sup

t∈[0,1]
|V ∗

N(t)| > δ
∣∣∣YN

)
= op(1),(5.52)

P

(√
N sup

t∈[0,1]
|S∗

N(t)| > δ
∣∣∣YN

)
= op(1),(5.53)

P

(√
N sup

t∈[0,1]
|W ∗

N(t)| > δ
∣∣∣YN

)
= op(1).(5.54)
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Observing Lemma 5.4 it follows that the processes

T ∗
N := √

NR∗
N

and
√

NR̂
(1)∗
N are (conditionally on YN) asymptotically equivalent in probability;

that is,

P

(
sup

t∈[0,1]
∣∣√NR̂

(1)∗
N (t) − T ∗

N(t)
∣∣ > δ

∣∣∣YN

)
= op(1).(5.55)

The following lemma shows that T ∗
N in (5.55) can be replaced by

T ′
N(·) :=

2∑
i=1

1√
N

ni∑
j=1

�ij (·)Vij εij ,(5.56)

where the quantities �ij are defined in (5.7).

LEMMA 5.5. If the assumptions of Theorem 2.2 and (4.8) are satisfied we
have

P

(
sup

t∈[0,1]
|T ∗

N(t) − T ′
N(t)| > δ

∣∣∣YN

)
= op(1).(5.57)

The assertion of Theorem 4.1 now follows from (5.57) and (5.55) which
demonstrate that it is sufficient to consider the asymptotic behavior of the
process T ′

N(·) defined in (5.56). But this process can be treated with the conditional
multiplier theorem in Section 2.9 of van der Vaart and Wellner (1996), which
establishes that conditionally on YN the process T ′

N converges to the same
Gaussian process Z(1) in probability as the process TN discussed in the proof of
Theorem 2.2. The proof of Theorem 4.1 is now concluded, giving some more
details for the proof of the auxiliary results in Lemmas 5.4 and 5.5.

PROOF OF LEMMA 5.4. For a proof of (5.52) we show

ZN := √
N sup

t∈[0,1]
|V ∗

N(t)| = op(1).(5.58)

The assertion is then obvious from Markov’s inequality; that is,

P
(
P(ZN > δ|YN) > ε) ≤ 1

ε
E[P(ZN > δ|YN)] = 1

ε
P(ZN > δ) = o(1).

To this end we note that ε∗
ij = Vij ε̂ij = Vij εij σi(Xij )+Vij (f (Xij )− f̂g(Xij )) and

obtain the decomposition

V ∗
N = V

∗(1)
N + V

∗(2)
N ,(5.59)
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where

V
∗(1)
N (t) = 1

N

2∑
i=1

(−1)i−1κ3−i

ni∑
j=1

Vij εij σi(Xij )
(
r̂h(Xij ) − r(Xij )

)
(5.60)

× r3−i(Xij )I {Xij ≤ t},

V
∗(2)
N (t) =

2∑
i=1

(−1)i−1 κ3−i

N

ni∑
j=1

Vij

(
f (Xij ) − f̂g(Xij )

)(
r̂h(Xij ) − r(Xij )

)
(5.61)

× r3−i(Xij )I {Xij ≤ t}.
The term in (5.60) can be treated by the same arguments given in the proof of
Lemma 5.3 for the term VN(·) (note that the only difference is the additional
factor Vij ), which gives

√
N sup

t∈[0,1]
∣∣V ∗(1)

N (t)
∣∣ = op(1).(5.62)

For the second term we use Cauchy’s inequality and obtain

E

[
sup

t∈[0,1]
∣∣V ∗(2)

N (t)
∣∣] ≤ O(1)

N

2∑
i=1

ni∑
j=1

E|Vij |(E[(
f (Xij ) − f̂g(Xij )

)2]

× E
[(

r̂h(X1j ) − r(X1j )
)2])1/2

= O

(
1

N
√

gh

)
= o

(
1√
N

)
,

which yields in combination with (5.62) the assertion (5.58) and completes the
proof of the first part of Lemma 5.4.

For a proof of the estimate (5.53) recall the definition of S∗
N in (5.49) and

observe

S∗
N = S

∗(1)
N + S

∗(2)
N ,

where

S
∗(1)
N (t) :=

2∑
i=1

1

N

ni∑
j=1

Vij εij σi(Xij )

× 1

Nh

2∑
�=1

(−1)�
n�∑

k=1

K

(
Xij − X�k

h

)
I {X�k ≤ t}κ3−�r3−�(X�k),
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S
∗(2)
N (t) :=

2∑
i=1

1

N

ni∑
j=1

Vij

(
f (Xij ) − f̂g(Xij )

)

× 1

Nh

2∑
�=1

(−1)�
n�∑

k=1

K

(
Xij − X�k

h

)
I {X�k ≤ t}κ3−�r3−�(X�k).

The first term can be treated as in the proof of Lemma 5.2, which yields
√

N sup
t∈[0,1]

∣∣S∗(1)
N (t)

∣∣ = op(1).(5.63)

The second term is estimated as follows:

sup
t∈[0,1]

∣∣S∗(2)
N (t)

∣∣ ≤
2∑

i=1

1

N

ni∑
j=1

|Vij |
∣∣f (Xij ) − f̂g(Xij )

∣∣{U(1)
Nij + U

(2)
Nij

}
,(5.64)

where

U
(�)
Nij = κ3−�

h
sup

t∈[0,1]

∣∣∣∣∣ 1

N

n�∑
k=1

K

(
Xij − X�k

h

)
r3−�(X�k)I {X�k ≤ t}

−
∫ t

0
K

(
Xij − z

h

)
κ�r�(z)r3−�(z) dz

∣∣∣∣∣
(� = 1,2). The terms U

(�)
Nij (i, � = 1,2) can be treated by Theorem 37 in Pollard

(1984). More precisely, for the first term we note

sup
t,x∈[0,1]

∣∣∣∣∣ 1

n1

n1∑
k=1

K

(
x − X1k

h

)
r2(X1k)I {X1k ≤ t} −

∫ t

0
K

(
x − z

h

)
r1(z)r2(z) dz

∣∣∣∣∣
= sup

ϕ∈Fn1

|Pn1ϕ − Pϕ|,

where Pn1 denotes the empirical distribution of the first sample X11, . . . ,X1n1 and

Fn1 =
{
ϕhn1 ,t,x

∣∣∣ϕhn1 ,t,x(y) = K

(
x − y

hn1

)
r2(y)I {y ≤ t}, x, t ∈ [0,1]

}
(note that we made the dependency of the bandwidth on the sample size explicit,
that is, h = hn1). Now Fn1 is a subset of a VC-class and the arguments used in
Theorem 37 of Pollard (1984) yield for the sequences

αn1 = √
gn1, δ2

n1
= c · hn1

the estimate

U
(1)
nij ≤ 1

hn1

sup
ϕ∈Fn1

∣∣Pn1ϕ − Pϕ
∣∣ = 1

hn1

op

(
δ2
n1

αn1

) = op

(√
gn1

)
.
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By a similar argument for the terms U
(2)
Nij , (5.64) simplifies to

sup
t∈[0,1]

|S∗(2)
N (t)| ≤ op

(√
gn1

) 2∑
i=1

1

N

ni∑
j=1

|Vij |
∣∣f (Xij ) − f̂g(Xij )

∣∣ = op

(
1√
N

)
,

where the last estimate follows from Markov’s inequality. A combination of this
estimate with (5.63) gives

√
N supt∈[0,1] |S∗

N(t)| = op(1) and the assertion (5.53)
follows again from Markov’s inequality. �

PROOF OF LEMMA 5.5. Defining (i = 1,2)

�̃ij (t) := (−1)i−1κ3−ir(Xij )r3−i(Xij )I {Xij ≤ t}(5.65)

and recalling the definition of T ′
N in (5.56) we obtain

T ∗
N(t) − T ′

N(t) =
2∑

i=1

1√
N

ni∑
j=1

�̃ij (t)Vij

(
f (Xij ) − f̂g(Xij )

)

=
2∑

i=1

1√
N

ni∑
j=1

�̃ij (t)Vij

(
f (Xij ) − f̂g(Xij )

) 1

r(Xij )

× (
r(Xij ) − r̂g(Xij )

)
+

2∑
i=1

1√
N

ni∑
j=1

�̃ij (t)Vij

(
f (Xij ) − f̂g(Xij )

) r̂g(Xij )

r(Xij )

= AN(t) + BN(t)(5.66)

[note that �ij (t) = �̃ij (t)σi(Xij ), by the definition of �ij in (5.7)]. The first term
is estimated as follows:

sup
t∈[0,1]

|AN(t)| ≤
2∑

i=1

1√
N

ni∑
j=1

sup
t∈[0,1]

∣∣∣∣�̃ij (t)

∣∣∣∣ 1

r(Xij )

∣∣∣∣f (Xij ) − f̂g(Xij )

∣∣∣∣
× ∣∣r(Xij ) − r̂g(Xij )

∣∣
= Op

(
1√
Ng

)
= op(1),

where we used Cauchy’s inequality and the fact that �̃ij (·) is uniformly bounded.
Now Markov’s inequality yields, conditionally on the sample YN ,

sup
t∈[0,1]

|AN(t)| = op(1).(5.67)
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The second term BN(t) in (5.66) consists of expressions of the form

B̃N (t) := 1

n1
√

N

n1∑
j=1

n1∑
k=1

�̃1j (t)
1

g
K

(
X1j − X1k

g

)(
f (X1j ) − f (X1k)

)
× V1j

1

r(X1j )
(5.68)

+ 1

n1
√

N

n1∑
j=1

n1∑
k=1

�̃1j (t)
1

g
K

(
X1j − X1k

g

)
ε1kσ1(X1k)

× V1j

1

r(X1j )
,

which are all treated similarly. We obtain

B̃N (t) = I1(t) + I2(t),(5.69)

where

I1(t) := 1

n1
√

N

n1∑
j=1

n1∑
k=1

κ2r2(X1j )I {X1j ≤ t}1

g
K

(
X1j − X1k

g

)
× (

f (X1j ) − f (X1k)
)
V1j ,

I2(t) := 1

n1
√

N

n1∑
j=1

n1∑
k=1

κ2r2(X1j )I {X1j ≤ t}1

g
K

(
X1j − X1k

g

)
ε1kσ1(X1k)V1j .

The processes I1(·) and I2(·) are treated as in the proof of Lemma 5.3a, writ-
ing I�(t) as a one-sample U -process 1

g
UN(ϕ) indexed by a Euclidean class of

functions which gives

sup
t∈[0,1]

|I�(t)| = op(1), � = 1,2.(5.70)

This implies

sup
t∈[0,1]

|BN(t)| = op(1),

and the assertion of Lemma 5.5 follows from (5.66), (5.67) and Markov’s
inequality. �
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WU, C. F. Y. (1986). Jacknife, bootstrap and other resampling methods in regression analysis (with

discussion). Ann. Statist. 14 1261–1350.
YOUNG, S. G. and BOWMAN, A. W. (1995). Nonparametric analysis of covariance. Biometrics 51

920–931.
ZHENG, J. X. (1996). A consistent test of functional form via nonparametric estimation techniques.

J. Econometrics 75 263–289.

FAKULTÄT FÜR MATHEMATIK

RUHR-UNIVERSITÄT BOCHUM

44780 BOCHUM

GERMANY

E-MAIL: natalie.neumeyer@ruhr-uni-bochum.de
holger.dette@ruhr-uni-bochum.de


