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CURRENT STATUS AND RIGHT-CENSORED DATA STRUCTURES
WHEN OBSERVING A MARKER AT THE CENSORING TIME1

BY MARK J. VAN DER LAAN AND NICHOLAS P. JEWELL

University of California, Berkeley

We study nonparametric estimation with two types of data structures.
In the first data structure n i.i.d. copies of (C,N(C)) are observed, where
N is a finite state counting process jumping at time-variables of interest and
C a random monitoring time. In the second data structure n i.i.d. copies
of (C ∧ T, I (T ≤ C),N(C ∧ T )) are observed, where N is a counting
process with a final jump at time T (e.g., death). This data structure includes
observing right-censored data on T and a marker variable at the censoring
time.

In these data structures, easy to compute estimators, namely (weighted)-
pool-adjacent-violator estimators for the marginal distributions of the unob-
servable time variables, and the Kaplan–Meier estimator for the time T till
the final observable event, are available. These estimators ignore seemingly
important information in the data. In this paper we prove that, at many contin-
uous data generating distributions the ad hoc estimators yield asymptotically
efficient estimators of

√
n-estimable parameters.

1. Introduction. In this paper we study nonparametric estimation with two
types of data structures. First, we discuss these two data structures in detail.
Subsequently, we provide an overview of the rest of the paper.

1.1. Current status data on a finite counting process. Consider a finite state
counting process N(t) = ∑k

j=1 I (Tj ≤ t), T1 < · · · < Tk , where Tj is the time-
variable at which a specified event occurs and where N jumps from value j − 1
to j at time Tj . The number of jumps k is fixed and known. We allow that there
is a positive probability that the counting process never reaches jump j0 for any
particular j0 ∈ {1, . . . , k}; since T1 < · · · < Tk , this implies that there is also a
positive probability that N never reaches jump j for j = j0, . . . , k: that is, we allow
multivariate distributions of (T1, . . . , Tk) with P (Tj = ∞) > 0 for j = j0, . . . , k.
In this manner we allow applications in which the number of jumps of N is random
on {1, . . . , k}.

We consider the data structure (C,N(C)) for a single random monitoring
time C. The only assumption is that C is independent of N : the cumulative
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distribution G of C, and the probability distribution F of N are unspecified. Note
that the distribution of N , denoted by F , is not a cumulative distribution function,
but a probability distribution that is identified by the multivariate cumulative
distribution of (T1, . . . , Tk).

Such data structures occur in cross-sectional studies where each subject is
monitored once. For example, in some carcinogenicity experiments, one can only
determine a discretized occult tumor size at time t in a randomly sampled mouse,
as measured by N(t), by sacrificing a mouse at time t . In this example, T1 might
represent time till onset of the tumor and T2, . . . , Tk might correspond with times
till increasing sizes of the tumor. Similarly, Tj might denote the age at which a
child has mastered the j th skill among a set of k skills ordered in difficulty. We
refer to Jewell and van der Laan (1995) for additional applications.

The distribution of (C,N(C)) depends on the distribution of �T = (T1, . . . , Tk)

only through the marginal distributions Fj of Tj , j = 1, . . . , k (see Section 2). In
this problem, the NPMLE of the distribution of Tj requires an iterative algorithm.
On the other hand, an ad hoc method for estimation of the distribution of Tj is
directly available: reduce the observation (C,N(C)) to a standard current status
observation (C,�j = I (Tj ≤ C)) on Tj . Then one can estimate the distribution
of Tj with the NPMLE based on the reduced current status observations, which
we will refer to as the reduced data NPMLE (RNPMLE). This estimator provides
regular and asymptotically linear estimators of pathwise differentiable functionals
of Fj such as µj = ∫

(1 − Fj)(u)r(u) du, for a given r , in the nonparametric
model under certain conditions [Groeneboom and Wellner (1992)]. Previous work
and examples of traditional current status data on a time variable T can be found
in Diamond, McDonald and Shah (1986), Jewell and Shiboski (1990), Diamond
and McDonald (1992), Keiding (1991) and Sun and Kalbfleisch (1993). In its
nonparametric setting, the current status data structure is also known as case I
interval censored data [Groeneboom and Wellner (1992)]. Current status data
commonly arise in epidemiological investigations of the natural history of disease
and in animal tumorigenicity experiments. Jewell, Malani and Vittinghoff (1994)
give two examples that arise from studies of Human Immunodeficiency Virus
(HIV) disease.

Note that the RNPMLE of Fj ignores the value of N(C), beyond information on
whether N(C) ≥ j or not. For example, if N(t) is tumor size in a carcinogenicity
experiment, then the simple current status estimator of the distribution of time,
T1, till onset of tumor would not distinguish between an observation (C,N(C))

with N(C) large and an observation (C,N(C)) with N(C) small but larger
than 0, while the latter observation seems to suggest that onset occurred
recently. Nonetheless, we establish that the RNPMLE yields efficient estimators of
pathwise differentiable parameters at a large class of continuous data generating
distributions of interest.
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1.2. Current status data on a finite counting process when the final event is right
censored. We also consider the data structure (T̃k ≡ C ∧ Tk,N(T̃k)) for a finite
state counting process N(t) = ∑k

j=1 I (Tj ≤ t), where Tk represents the final event
(say death) which is right censored by the monitoring time C, and k is known.
Note that this observation includes observing the failure indicator I (T̃k = Tk). For
example, consider a carcinogenicity experiment with mice in which T1 is time till
onset of colon tumor, T2 time to liver metastasis and T3 time to death from tumor,
where we assume that colon tumors do not cause death except through liver failure
secondary to metastasis. Here C is either a sacrificing time or time till death from
any unrelated cause.

Consider another example concerning estimation of the survival function of
the time T = J − I between time I at seroconversion and time J at death of a
hemophiliac patient infected with HIV. For this purpose we observe n i.i.d. subjects
in a fixed time-interval of 10 years. If we assume that the time I at seroconversion
of the subject is observed (which is approximately true for hemophiliacs), then
the subject’s survival time T is right censored by C ≡ 10 − I , where T will
play the role of Tk . We define Tj as the time till a given monotone “surrogate”
process Z(t) achieves a particular value among a set of k − 1 increasing values,
j = 1, . . . , k −1, where we assume that death T = Tk always and only occurs after
the value Z(Tk−1) has been reached. Let N(t) = ∑k

j=1 I (Tj ≤ t) be the counting
process. Here Z(t) measures the progression of the disease of the subject t years
after seroconversion; for example, Z(t) might be a measure of viral load of the
subject t years after seroconversion, where it may be reasonable to assume that the
viral load is a nondecreasing process in the absence of treatment.

Suppose that for every subject who did not die before the end of the study C one
measures the “surrogate” Z(C) at time C only. In other words, we observe failure
times only for subjects who fail before end of follow up and for every subject who
is alive at end of follow up we also have a marker indicating future prognosis. Note
that the observed data on a subject is given by (T̃ = T ∧C,Z(T̃ )). We only assume
that C is independent of Z. A seemingly ad hoc estimator of S(t) = P (T > t)

is the Kaplan–Meier estimator which simply ignores the marker information. In
this example, a natural question is whether one can improve on the Kaplan–Meier
estimator using the information in the surrogate process Z. In this paper we prove
that the Kaplan–Meier estimator is asymptotically efficient at many continuous
data generating distributions for which Fj have compact support.

A special case of this data structure has been treated in the literature. Consider
a carcinogenicity experiment with N(t) = ∑2

j=1 I (Tj ≤ t), T1 is time till onset
of tumor and T2 is time till death from tumor. Thus one observes (T̃2 ≡ C ∧
T2,N(T̃2)). This data structure has been considered in Kodell, Shaw and Johnson
(1982), Dinse and Lagakos (1982), Turnbull and Mitchell (1984), van der Laan,
Jewell and Peterson (1997), and recently Groeneboom (1998). The NPMLE for
this data structure requires an iterative algorithm: Turnbull and Mitchell (1984)
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implemented the NPMLE via the EM-algorithm (using an initial distribution with
point masses at each data point so that the EM-algorithm indeed converges to
the NPMLE), while Groeneboom (1998) implements the NPMLE by maximizing
the actual likelihood with a modern optimization algorithm. In this problem, an
ad hoc estimator of the distribution of T2 is the Kaplan–Meier estimator based
on the reduced data (T̃2,�2 = I (T̃2 = T2)). In Dinse and Lagakos (1982), the
Kaplan–Meier estimator of F2 was proposed and it was suggested that the NPMLE
might be more efficient than the Kaplan–Meier estimator. In van der Laan, Jewell
and Peterson (1997) it is shown that the Kaplan–Meier is efficient under a weak
condition on (F1,F2). Moreover, an isotonic regression estimator of F1 was
provided: note that estimation of F1 is complicated by the fact that for some
subjects one only observes T2 and thus that T1 < T2, where T2 cannot be viewed
as an independent monitoring time for T1. We note here that, in van der Laan,
Jewell and Peterson (1997), a simulation study was carried out which incorrectly
implements the NPMLE, so that finite sample comparisons between the Kaplan–
Meier estimator and the NPMLE remain open to study [specifically the derivation
of the score equations in van der Laan, Jewell and Peterson (1997) for the NPMLE
was not valid since the authors incorrectly assumed that the NPMLE F̂1 is strictly
smaller than the NPMLE F̂2].

1.3. Organization and overview of results. In Section 2 we prove, for the data
structure of Section 1.1, that if the Fj ’s are continuous with Lebesgue density
bounded away from zero on [0, τj ] and zero elsewhere, and G is also continuous,
then any estimator of a parameter µ = �(F) ∈ R that is regular and asymptotically
linear at PF,G is also asymptotically efficient. The complexity of the NPMLE is
discussed including that it is more efficient at many data generating distributions
with singular pairs Fj1,Fj2 ; for example, F1 discrete and F2 continuous.

In Section 3, we prove an analogous result for the nonparametric model
with the data structure (C ∧ Tk,N(C ∧ Tk)). This shows that the Kaplan–
Meier estimator of the distribution of Tk , based on the reduced data (T̃k,�k ≡
I (Tk ≤ C)), is asymptotically efficient at many continuous data generating
distributions, extending the result in van der Laan, Jewell and Peterson (1997)
for the case k = 2. Moreover, simple isotonic regression estimators for the
distributions Fj , j = 1, . . . , k − 1, are proposed that also yield asymptotically
efficient estimators of smooth functionals by our general result.

2. Current status data on a counting process.

2.1. Traditional current status data. Traditional current status data can be
viewed as current status data on a simple counting process as follows. Let T be
a univariate failure time of interest and define the process �(t) = I (T ≤ t) as the
counting process with one single jump at point T . Let Y = (C,�(C)) represent
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current status data on � at a monitoring time C. We assume that C is independent
of T [i.e., of �(·)]. The parameter of interest is the distribution F of T .

The properties of the NPMLE Fn of the distribution of T were established in
Groeneboom and Wellner (1992). Here the NPMLE is defined as the maximum
likelihood estimator over all discrete distributions with jumps at the monitoring
times. Beyond proving a limit distribution result for Fn, these authors also
established efficiency of smooth functionals of Fn with a closed form expression
of the limit variance so that Wald-type confidence intervals are directly available.
Huang and Wellner (1995) provide an alternative proof of asymptotic linearity of
the NPMLE of smooth functionals of F under weak conditions.

We refer to Bickel, Klaassen, Ritov and Wellner (1993) for definitions of
a regular, asymptotically linear and efficient estimator and influence curve
of an estimator. The semiparametric-information bound at PF,G is defined as the
infimum of parametric information bounds over a specified class of parametric
submodels. We choose as parametric one-dimensional submodels{

ε → PFε,h1 ,Gε,h2
:‖hj‖∞ < ∞, j = 1,2,

∫
h1 dF =

∫
h2 dG = 0

}
,

where dFε,h1(·) = (1 + εh1(·)) dF (·), dGε,h2(·) = (1 + εh2(·)) dG(·) and ε is
the unknown parameter with parameter space [−δ, δ] for some small δ > 0. The
tangent space at PF,G is now defined as the closure in L2

0(PF,G) of the linear
span of all the scores of these one-dimensional submodels, where, for a given
measure µ, we define L2

0(µ) = {h :
∫

h2 dµ < ∞,
∫

hdµ = 0} as the Hilbert space
endowed with inner product 〈h1, h2〉µ = ∫

h1(y)h2(y) dµ(y). Thus the tangent
space at PF,G is a sub-Hilbert space of L2

0(PF,G).
In this paper it is particularly important to realize that efficiency of an estimator

is a local property in the sense that a regular estimator can be efficient at a particular
PF,G and inefficient at another element of the model.

LEMMA 2.1. Consider the nonparametric model for Y = (C,�(C)), where
�(·) ≡ I (T ≤ ·), T has unspecified distribution F and C is independent of T with
unspecified distribution G. We observe n i.i.d. observations of Y = (C,�(C)).
Consider the parameter µ = ∫

(1 − F)(u)r(u) du for a given function r . Consider
the estimator µn = ∫

(1 − Fn)(u)r(u) du, where Fn is the NPMLE of F . We
have that µn is regular and asymptotically linear at any (F,G) for which F is
continuous with density fT > 0 on [0,M] and zero elsewhere (M < ∞), g(x) =
dG/dx > 0 on [0,M], and r is bounded on [0,M].

The influence curve of µn is given by

IC(Y | F,g, r) = r(C)

g(C)

(
F(C)(1 − �) − (1 − F(C))�

)
.(1)

The variance of IC is given by

VAR(IC) =
∫

r2(c)

g(c)
F (c)

(
1 − F(c)

)
dc.
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This lemma is proved in Huang and Wellner (1995).
We can also prove the following tangent space result.

LEMMA 2.2. Consider the nonparametric model for Y = (C,�(C)), where
�(·) ≡ I (T ≤ ·), T has unspecified distribution F , and C is independent of T with
unspecified distribution G. We observe n i.i.d. observations of Y = (C,�(C)).
Suppose that:

(1) F has a Lebesgue density f with f > 0 on [0, τF ) and, if τF < ∞ (τF = ∞
is allowed), then f = 0 on (τF ,∞), and

(2) G has a Lebesgue density g.

We allow F({∞}) > 0. Then the tangent space at PF,G equals L2
0(PF,G). This

implies that an estimator of a parameter µ(F ) which is regular and asymptotically
linear at PF,G is also asymptotically efficient if F,G satisfy (1) and (2).

In Gill, van der Laan and Robins (1997) it is proved that if one only assumes that
the conditional distribution of the observed data Y , given the full data T , satisfies
“coarsening at random” (CAR), then the tangent space at PF,G is saturated, that
is, equals L2

0(PF,G). The tangent space generated by G(· | T ) under the sole
assumption CAR equals TCAR = {v(Y ) ∈ L2

0(PF,G) :E(v(Y ) | T ) = 0}. Therefore,
the main idea of the proof below is to show that under the independent censoring
model G(· | T ) = G(·), the tangent space of the marginal distribution G equals
TCAR at a PF,G satisfying (1) and (2) of Lemma 2.2. The proof below will be an
ingredient of the proofs of our two main theorems.

PROOF OF LEMMA 2.2. Let A :L2
0(F ) → L2

0(PF,G), A(h)(Y ) =
EF(h(T ) | Y ) be the score operator for F and let A :L2

0(PF,G) → L2
0(F ),

A(V )(T ) = EG(V (Y ) | T ) be its adjoint. The closure of the range of a Hilbert
space operator equals the orthogonal complement of the null-space of its adjoint;
that is, R(A) = N(A)⊥, where R(A) is the closure of the range of the score
operator and N(A) is the null space of A. Thus L2

0(PF,G) = R(A) + N(A).
The data generating distribution is indexed by two locally variation-independent

parameters F and G, so that the tangent space at PF,G can be obtained as a sum
of two tangent spaces, namely the tangent space for F , which is given by R(A),
and the tangent space for G. For every h ∈ L2

0(G) with finite supremum norm, we
have that ε → (1 + εh2) dG is a one-dimensional submodel through G at ε = 0.
Thus the tangent space corresponding with submodels ε → PF,Gε equals L2

0(G).
Thus we have that the tangent space is given by R(A) + L2

0(G). We conclude that
it suffices to show that N(A) = L2

0(G).
We have

A(V )(T ) =
∫ T

0
V (c,0) dG(c)+

∫ ∞
T

V (c,1) dG(c).
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Thus
∫

V (c,�(c)) dG(c) = 0 F -a.e. implies that
∫ T

0
{V (c,0) − V (c,1)}g(c) dc =

∫ ∞
0

V (c,1) dG(c) for T ∈ [0, τF ).(2)

Differentiation w.r.t T yields V (C,0) = V (C,1) on [0, τF ) G-a.e. If τF < ∞
and c > τF , then c > T and thus V (c,�(c)) = V (c,1). Thus V (C,0) = V (C,1)

G-a.e. which proves N(A) = L2
0(G). �

It is of interest to note that one can represent FT (t) as a monotonic regression
of � on C since F(t) = E(�(C) | C = t). This suggests that one can estimate
FT with the estimator Fn(t) which minimizes

∑n
i=1(�(Ci) − FT (Ci))

2 over all
distribution functions FT . Fn(t) can be computed using the pool-adjacent-violator-
algorithm [see Barlow, Bartholomew, Bremner and Brunk (1972)] which, in fact,
yields the NPMLE.

2.2. Current status data on a counting process. Let the process of interest be
a counting process N(t) = ∑k

j=1 I (Tj ≤ t), T1 < · · · < Tk , where Tj is the time-
variable at which an event occurs and where N jumps from value j − 1 to j . Let
C be a monitoring time and consider the data structure Y = (C,N(C)). We observe
n i.i.d. copies of Y . We only assume that C is independent of N .

The distribution of (C,N(C)) depends on the distribution of �T only through
the marginal distributions Fj of Tj , j = 1, . . . , k. To be precise, we have (denoting
Si = 1 − Fi), for j ∈ {0, . . . , k},

PF,G(dc,N(C) = j) = I (j = 0)S1(c) dG(c) + I (j = k)Fk(c) dG(c)

+ I (j = 1){S2(c) − S1(c)}dG(c)

+ · · · + I (j = k − 1){Sk(c) − Sk−1(c)}dG(c).

Thus the distribution of Y = (C,N(C)) only identifies the marginal distributions
of Tj , j = 1, . . . , k.

The NPMLE does not exist in closed form and can only be computed with
an iterative algorithm. For a given j , we can reduce the observation (C,N(C))

to simple current status data (C,�j = I (Tj ≤ C)) on Tj , and estimate Fj with
the RNPMLE. Under the conditions stated in Lemma 2.1, with F = Fj and
G = G, this estimator provides regular and asymptotically linear estimators of
smooth functionals of the type µj = ∫

(1 − FTj
)(u)r(u) du, for a given r in the

nonparametric model. The following theorem proves that, at a data generating
distribution of Y satisfying a specified condition, any regular asymptotically linear
estimator will provide asymptotically efficient estimators of smooth functionals
of FTj

. We decided to state a condition (3) which is easy to understand, but our
proof shows that this can be weakened, for example, to allow the analogue of (3)
for the case where all distributions G,F1, . . . ,Fk are discrete with a finite number
of support points; that is, the support points of Fj are contained in the support
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points of Fj+1, j = 1, . . . , k − 1, and G is discrete with support contained in the
support of Fk.

THEOREM 2.1. Let T1 < T2 < · · · < Tk be time-variables corresponding to
the chronological events of interest. Define the counting process with jumps of
size 1 at these Tj ’s by

N(t) =
k∑

j=1

I (Tj ≤ t).

Let Y = (C,N(C)). Consider the following semiparametric model for Y : Let
C ∼ G be independent of �T ∼ F , but leave G and F unspecified. Then, the
distribution of Y only depends on the multivariate distribution F of �T =
(T1, . . . , Tk) through the marginal distributions F1, . . . ,Fk of T1, . . . , Tk .

Consider a data generating distribution PF,G in the model above, satisfying
the following condition (3): For certain τ1 < · · · < τk < ∞, let Fj have Lebesgue
density fj on [0, τj ] with

fj > 0 on [0, τj ] and fj = 0 on (τj ,∞), j = 1, . . . , k,

Fj > Fj+1 on (0, τj ], j = 1, . . . , k − 1,(3)

G has Lebesgue density g.

We allow that pj ≡ P (Tj = ∞) > 0 for j = j0, . . . , k and j0 ∈ {1, . . . , k}.
Then the tangent space at PF,G equals L2

0(PF,G) and is thus saturated.
This implies that any estimator of a real valued parameter of F that is a regular

and asymptotically linear estimator at PF,G is also asymptotically efficient if
PF,G satisfies (3). In particular, given j ∈ {1, . . . , k}, if PF,G satisfies (3), and
Fj , G satisfy the conditions of Lemma 2.1 for the RNPMLE of µFj

based on
(C, I (Tj ≤ C)) (thus with F = Fj and G = G), then the RNPMLE of µFj

is
asymptotically efficient.

2.2.1. Heuristic understanding of the difference between NPMLE and
RNPMLE. To understand the difference between the NPMLE and the RNPMLE,
we consider the special case k = 2 in detail. In this case N can have three possible
values:

N(C) =



0, if C < T1,
1, if T1 < C < T2,
2, if C > T2.

Let us assume that C has a Lebesgue density g. The likelihood of (C,N(C)) is
given by

pF1,F2,G

(
c,N(c) = j

) = S1(c)
I (j=0)(S2 − S1)(c)

I (j=1)F2(c)
I (j=2)g(c).
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We note that the density pF1,F2,G can be reparametrized as

pR,F2,G(c, δ) = R(c)I (j=0)
(
1 − R(c)

)I (j=1)
S2(c)

I (j∈{0,1})F2(c)
I (j=2)g(c),

where R(t) ≡ S1(t)/S2(t). Thus, if we ignore the relation between F2 and R, then
the NPMLE of F2 of the likelihood corresponding with PR,F2,G would actually
be equal to the reduced data NPMLE based on the reduced data (C, I (T2 ≤ C)).
However, F2 and R are related since S2R has to be a survival function. Therefore, it
is not possible to determine the NPMLE by separate maximization w.r.t. F2 and R,
which explains why the NPMLE and the RNPMLE of F2 differ.

Theorem 2.1 shows that this relation between F2 and R is not informative for
estimation of smooth functionals of F2 at a large class of data generating distri-
butions, since the RNPMLE, which ignores this relation, is still asymptotically
efficient for estimation of

√
n-estimable parameters. Our proof of Theorem 2.1 for

k = 2 shows that the efficient score operator (for the definition of an efficient score
operator, see the proof) of F2 equals the efficient score operator for F2 in the re-
duced data model based on (C,�2). This implies that, at (F1,F2) satisfying (3),
the efficient influence curve for any smooth functional of F2 equals the influence
curve of the RNPMLE as given in Lemma 2.1. Closer inspection of the proof for
k = 2 also shows that, if (e.g.) F2 is continuous while F1 is discrete on [0, τ1], or
F2 is discrete with support not containing the support of a discrete F1, then the ef-
ficient score operator for F2 is not the same as the efficient score operator for F2 in
the reduced data model, so that, in particular, the efficient influence curves (and in-
formation bounds) differ for the two models. Thus, at such (F1,F2), the RNPMLE
of smooth functionals of F2 is inefficient.

Here, we provide a likelihood-based explanation of this fact. Let Rn be the
NPMLE of R. The NPMLE of F2 maximizes the likelihood corresponding with
pRn,F2 over all F2 for which S2Rn is a survival function, while the RNPMLE
maximizes the likelihood over all distributions F2. Suppose now that the model
consists of discrete F1’s and continuous F2’s. This model, though smaller than
the model with F1,F2 being unspecified, has the same semiparametric efficiency
bound at a (F1,F2) in this smaller model as the efficiency bound in the original
model. This follows from the fact that the class of one-dimensional submodels as
needed to compute the tangent space can still be chosen the same. In this smaller
model, an R = S1/S2 will be discrete at the support points of F1, and the shape
of R between the support points equals the shape of 1/S2. As a consequence,
since R determines the shape of F2 between the support points, knowing R in the
smaller model helps enormously in estimating S2. In particular, for a given Rn,
maximizing the likelihood corresponding with pRn,F2 over F2 with S2Rn being
a survival function, is very different from maximizing this likelihood over all
possible distributions F2. This shows that the RNPMLE in the smaller model is
inefficient at such (F1,F2). Since the efficiency bound in the smaller model is
the same as the efficiency bound in the original model, this also shows that the
RNPMLE will also be inefficient at such (F1,F2).
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PROOF OF THEOREM 2.1. We need to prove that assumption (3) implies
that the tangent space at PF,G equals L2

0(PF,G), and is thus saturated. The data
generating distribution PF,G is indexed by F and G, where the dependence on F

is only through the marginals Fj , j = 1, . . . , k. Thus, the tangent space at PF,G

can be obtained as a sum of two tangent spaces, namely the tangent space for F

and the tangent space for G, where the latter equals L2
0(G). Let F,G be given

and satisfy (3). We now claim that the tangent space for F is given by the closure
of the sum of the k tangent spaces for Fj calculated as if the Fj ’s are variation-
independent parameters, j = 1, . . . , k. We will show this now. Let hj ∈ L2

0(Fj )

have finite supremum norm, and let Fj,ε,hj
be the one-dimensional perturbation

ε → ∫ ·
0(1+εhj ) dFj through Fj at ε = 0, j = 1, . . . , k. First, note that the support

of Fj,ε,hj
equals the support of Fj , j = 1, . . . , k. Since Fj > Fj+1 (strictly) on

(0, τj ] we have that, given an arbitrarily small δ1 > 0, there exists a neighborhood
ε ∈ (−δ, δ) with Fj,ε,hj

≥ Fj+1,ε,hj+1 on (δ, τj ] for all j = 1, . . . , k − 1. Thus,
PFj,ε,hj

,j=1,...,k,G satisfies the constraints Fj ≥ Fj+1, j = 1, . . . , k − 1, of our
model except on an arbitrarily small neighborhood of 0. Thus, by modifying hj on
an arbitrarily small neighborhood of 0, we can make ε → PFj,ε,hj

,j=1,...,k,G a true
one-dimensional submodel. Since a tangent space for F is obtained as the closure
in L2

0(F ) of the linear span of scores of all possible one-dimensional submodels,
it follows that the score of the unmodified ε → PFj,ε,hj

,j=1,...,k,G also belongs to
the tangent space. This proves our claim.

Let j ∈ {1, . . . , k} be given. For a given hj ∈ L2
0(Fj ), we consider the one-

dimensional submodel Fj,ε given by ε → (1 + εhj (t)) dFj (t) which goes through
Fj at ε = 0. For notational convenience, define the random variable R = N(C) +
1 ∈ {1, . . . , k + 1}, and let F−j be the (k − 1)-dimensional vector of c.d.f.’s
excluding Fj . This one-dimensional submodel Fj,ε implies a score for PFj,ε,F−j ,G

given by

A1(h1) = I (R = 1)

∫ ∞
c h1 dF1

S1(c)
− I (R = 2)

∫ ∞
c h1 dF1

(S2 − S1)(c)
if j = 1,

Aj (hj ) = I (R = j)

∫ ∞
c hj dFj

(Sj − Sj−1)(c)

− I (R = j + 1)

∫ ∞
c hj dFj

(Sj+1 − Sj )(c)
if j ∈ {2, . . . , k − 1},

Ak(hk) = I (R = k)

∫ ∞
c hk dFk

(Sk − Sk−1)(c)
− I (R = k + 1)

∫ ∞
c hk dFk

Fk(c)
if j = k.

If we define S0 ≡ 0 and Sk+1 ≡ 1, then, for j = 1, . . . , k,

Aj(hj ) = I (R = j)

∫ ∞
c hj dFj

(Sj − Sj−1)(c)
− I (R = j + 1)

∫ ∞
c hj dFj

(Sj+1 − Sj )(c)
,
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where we use that S1 − S0 = S1, and Sk+1 − Sk = Fk . Here Aj :L2
0(Fj ) →

L2
0(PF,G) is called the score operator of Fj , j = 1, . . . , k. The tangent space

for Fj is given by the closure of the range of Aj denoted by R(Aj). Define
AF :L2

0(F1) × · · · × L2
0(Fk) → L2

0(PF,G) by AF (h1, . . . , hk) = A1(h1) + · · · +
Ak(hk). Then, the tangent space for F equals R(AF ) so that the tangent space

at PF,G is given by R(AF ) + L2
0(G). Thus, to prove the theorem, it suffices to

show that R(AF ) + L2
0(G) = L2

0(PF,G) at any F,G satisfying (3).
The remaining task is to understand the range of AF . We decompose AF

as a sum of efficient score operators A∗
j , where A∗

j is defined as Aj minus
its projection, on the sum-space spanned by the ranges of the other score
operators A1, . . . ,Aj−1,Aj+1, . . . ,Ak , j = 1, . . . , k. We will prove that the
efficient score operator of Fj at a PF,G satisfying (3) equals A∗

j (hj ) = E(hj (Tj ) |
(C,�j = I (Tj ≤ C)), which is the score operator for the reduced current status
data structure (C,�j ), j = 1, . . . , k. Since the information bounds for smooth
functionals of Fj are, in both models, solely expressed in terms of the efficient
score operator for Fj , the latter result proves that an efficient estimator of µj

based on (C,�j ), j = 1, . . . , k, like the RNPMLE, is also efficient in the model for
the more informative data structure (C,N(C)) [e.g., Bickel, Klaassen, Ritov and
Wellner (1993)]. This proves that the RNPMLE actually yields efficient estimators.
Subsequently, we show that this special structure of the efficient score operators
implies that the tangent space at a PF,G satisfying (3) is saturated, proving the
more general statement of Theorem 2.1.

Derivation of the efficient score operators of Fj . Since E(Al(hl)Am(hm)(Y ))

is equal to 0 if | l − m |≥ 2, it will follow that the efficient score operators mainly
involve projections of the type �(Aj | R(Aj−1)) and �(Aj | R(Aj+1)). Therefore
we first obtain closed form expressions, in general, for these projection operators.

If the projection �(Aj (hj ) | R(Aj−1)) is actually an element of R(Aj−1), then
this projection is given by (compare with the formula X(X′X)−X′Y for the least
squares estimator):

�
(
Aj(hj ) | R(Aj−1)

) = Aj−1(A

j−1Aj−1)

−A
j−1Aj(hj ),(4)

where A
j−1 :L2

0(PF,G) → L2
0(Fj−1) is the adjoint of Aj−1 :L2

0(Fj−1) →
L2

0(PF,G), and (A
j−1Aj−1)

− stands for the generalized inverse of A
j−1Aj−1 :

L2
0(Fj−1) → L2

0(Fj−1). Similarly,

�
(
Aj(hj ) | R(Aj+1)

) = Aj+1(A

j+1Aj+1)

−A
j+1Aj(hj ).(5)

The adjoint A
l is defined by

〈Al(hl), η〉PF
= 〈hl,A


l (η)〉Fl

for all hl ∈ L2
0(Fl) and η ∈ L2

0(PF,G).
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It is easily shown that for l ∈ {1, . . . , k},

A
l (V )(Tl) =

∫ Tl

0
{V (c, l) − V (c, l + 1)}dG(c).

We have that

A
l Al(hl)(Tl) =

∫ Tl

0
φl(c)

∫ ∞
c

hl dFl dG(c),

where

φ1 = S2

S1(S2 − S1)
,

φl = Sl+1 − Sl−1

(Sl+1 − Sl)(Sl − Sl−1)
, l = 2, . . . , k − 1,

φk = Fk−1

(Sk − Sk−1)Fk

,

or, in fact, with our convention of S0 = 0 and Sk+1 = 1,

φl = Sl+1 − Sl−1

(Sl+1 − Sl)(Sl − Sl−1)
, l = 1, . . . , k.

Here φl(t) ≡ 0 if Sl(t) = 0.
If pl = P (Tl = ∞) > 0, then we can write

A
l Al(hl)(Tl) = −

∫ min(Tl ,τl)

0
φl(c)

∫ c

0
hl dFl dG(c)

+ I (Tl = ∞)hl(∞)pl

∫ ∞
τl

φl(c) dG(c).

Thus, given a K with K � G, a solution (if it exists) of A
l Al(hl) = K has to

satisfy: for G-a.e., c ∈ [0, τl],∫ c

0
hl dFl = −dK

dG

1

φl(c)
, l = 1, . . . , k,(6)

and, if pl = P (Tl = ∞) > 0, then the equation A
l Al(hl)(∞) = K(∞) yields

hl(∞) = 1

pl

∫ ∞
0 φl(c) dG(c)

{
K(∞) −

∫ τl

0
φl(c)

∫ τl

c
hl dFl dG(c)

}
.(7)

Thus, even when pl > 0, (6) is the principal equation to solve (and will imply our
conditions) since its solution hl on [0, τl] yields the complete solution hl(Tl) =
hl(Tl)I[0,τl](Tl) + I (Tl = ∞)hl(∞). This two-step method for solving for hl in
A

l Al(hl) = K first solves for hlI[0,τl] and then uses that, if pl > 0, hl(∞) is a
function of hlI[0,τl].
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We have, for l ∈ {1, . . . , k − 1},
A

l Al+1(hl+1) =
∫ Tl

0
[Al+1(hl+1)I (R = l) − Al+1(hl+1)I (R = l + 1)]dG(c)

= −
∫ Tl

0
Al+1(hl+1)I (R = l + 1) dG(c)

= −
∫ Tl

0

1

Sl+1 − Sl

∫ ∞
c

hl+1 dFl+1 dG(c).

We note that this element is indeed absolutely continuous w.r.t. G. Similarly, it
follows that, for l ∈ {1, . . . , k − 1},

A
l+1Al(hl) = −

∫ Tl+1

0

1

Sl+1 − Sl

∫ ∞
c

hl dFl dG(c).

Thus, hj−1,j ≡ (A
j−1Aj−1)

−A
j−1Aj(hj ) is the h satisfying

−
∫ c

0
hdFj−1 = − 1

Sj − Sj−1

∫ ∞
c

hj dFj

1

φj−1
for G-a.e., c ∈ [0, τj−1](8)

and, if pj−1 > 0, then h(∞) is a simple function of hI[0,τj−1] as given above.
Similarly, hj+1,j ≡ (A

j+1Aj+1)
−A

j+1Aj(hj ) is the h satisfying

−
∫ c

0
hdFj+1 = − 1

Sj+1 − Sj

∫ ∞
c

hj dFj

1

φj+1
for G-a.e., c ∈ [0, τj+1](9)

and, if pj+1 > 0, then h(∞) is a simple function of hI[0,τj+1]. If we can take a
derivative of the right-hand sides in (8) and (9) w.r.t. Fj−1 and Fj+1, then, in
terms of h, equations (8) and (9) have a solution. This is possible if Fj � Fl

(i.e., Fj is absolute continuous w.r.t. Fl) on [0, τl], l ∈ {j − 1, j + 1}, which holds
under assumption (3) since we assumed that all Fj have positive Lebesgue density
on [0, τj ]. The efficient score operator A∗

j also involves projections requiring
existence of solutions hl−1,l, hl+1,l for l different from j . Therefore, the assumed
condition (3) includes (via an easy to understand condition) the necessary and
sufficient conditions for the existence of hl−1,l, hl+1,l for all possible l, as needed
below.

This gives the following closed form expressions for the projections (4) and (5)
by simply replacing

∫ ∞
c h dFl in Al(h) by the expressions above. We have, for

j = 1, . . . , k − 1,

�
(
Aj(hj ) | R(Aj+1)

) = Aj+1(hj+1,j )

= −
∫ ∞
c hj dFj

(Sj+1 − Sj )
2φj+1

I (R = j + 1)

+
∫ ∞
c hj dFj

(Sj+2 − Sj+1)(Sj+1 − Sj )φj+1
I (R = j + 2)

(10)



RIGHT-CENSORED DATA STRUCTURES 525

and, for j = 2, . . . , k,

�
(
Aj(hj ) | R(Aj−1)

) = Aj−1(hj−1,j )

= −
∫ ∞
c hj dFj

(Sj − Sj−1)(Sj−1 − Sj−2)φj−1
I (R = j − 1)

+
∫ ∞
c hj dFj

(Sj − Sj−1)2φj−1
I (R = j).

(11)

For simplicity we derive the efficient score operators for the case k = 3. (The
proof generalizes to the general case.) First, define

Al
j = Aj − �

(
Aj | R(Al)

)
.

The efficient score operators A∗
j :L2

0(Fj ) → L2
0(PF ) are given by

A∗
3 = A3 − �

(
A3 | R(A1 + A2)

) = A3 − �
(
A3

∣∣R(A1
2)

)
,

A∗
2 = A2 − �

(
A2 | R(A1 + A3)

) = A2 − �
(
A2 | R(A1)

) − �
(
A2 | R(A3)

)
,

A∗
1 = A1 − �

(
A1 | R(A2 + A3)

) = A1 − �
(
A1

∣∣R(A3
2)

)
.

Calculation of A∗
2. Applying (10) and (11) with j = 2 gives us

�
(
A2(h2) | R(A1)

) = −
∫ ∞
c h2 dF2

(S2 − S1)(S1 − S0)φ1
I (R = 1)

+
∫ ∞
c h2 dF2

(S2 − S1)2φ1
I (R = 2)

and

�
(
A2(h2) | R(A3)

) = −
∫ ∞
c h2 dF2

(S3 − S2)2φ3
I (R = 3)

+
∫ ∞
c h2 dF2

(S4 − S3)(S3 − S2)φ3
I (R = 4).

Thus,

A∗
2(h2) =

∫ ∞
c h2 dF2

(S2 − S1)φ1
I (R = 1)

+
{

1

S2 − S1
− 1

(S2 − S1)2φ1

}∫ ∞
c

h2 dF2I (R = 2)

+
{

1

(S3 − S2)
2φ3

− 1

S3 − S2

}∫ ∞
c

h2 dF2I (R = 3)

−
∫ ∞
c h2 dF2

(S4 − S3)(S3 − S2)φ3
I (R = 4).
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Now, notice that

(S2 − S1)S1φ1 = S2,

(S4 − S3)(S3 − S2)φ3 = S4 − S2 = F2,

1

(S3 − S2)2φ3
− 1

S3 − S2
= − 1

F2
,

1

S2 − S1
− 1

(S2 − S1)2φ1
= 1

S2
.

Thus (using
∫ ∞

0 h2 dF2 = 0),

A∗
2(h2) =

∫ ∞
c h2 dF2

S2(c)
I (R ∈ {1,2}) +

∫ c
0 h2 dF2

F2(c)
I (R ∈ {3,4}).

Calculation of A∗
1. Formula (10) with j = 1 gives us

�
(
A2(h2) | R(A3)

) = −
∫ ∞
c h2 dF2

(S3 − S2)2φ3(c)
I (R = 3)

+
∫ ∞
c h2 dF2

(S4 − S3)(S3 − S2)φ3(c)
I (R = 4).

Thus,

A3
2(h2) = A2(h2) − �

(
A2(h2) | R(A3)

)

=
∫ ∞
c h2 dF2

(S2 − S1)(c)
I (R = 2)

+
{

1

(S3 − S2)
2φ3(c)

− 1

(S3 − S2)(c)

}∫ ∞
c

h2 dF2I (R = 3)

−
∫ ∞
c h2 dF2

(S4 − S3)(S3 − S2)φ3(c)
I (R = 4).

We now note that

(S4 − S3)(S3 − S2)φ3 = F2,

1

(S3 − S2)
2φ3(c)

− 1

(S3 − S2)(c)
= − 1

F2
.

Thus,

A3
2(h2) =

∫ ∞
c h2 dF2

(S2 − S1)(c)
I (R = 2) −

∫ ∞
c h2 dF2

F2(c)
I (R ∈ {3,4}).
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It is easily verified that the adjoint A3
2 :L2

0(PF ) → L2
0(F2) is given by

A3
2 (V ) =

∫ T2

0

{
V (c,2) − (S3 − S2)(c)

F2(c)
V (c,3) − F3(c)

F2(c)
V (c,4)

}
dG(c).

Subsequently, we can now verify that

A3
2 A3

2(h2) =
∫ T2

0
φ3

2(c)

∫ ∞
c

h2 dF2 dG(c),

where

φ3
2 = F1

F2(S2 − S1)
.

We need to find h23,1 ≡ (A3
2 A3

2)
−(K) with

K = A3
2 A1(h1) = −

∫ T2

0

∫ ∞
c h1 dF1

(S2 − S1)(c)
dG(c).

This solution has to satisfy on [0, τ2]:

−
∫ c

0
h23,1 dF2 = dK

dG
(c)

1

φ3
2(c)

= −F2

F1
(c)

∫ ∞
c

h1 dF1

and, as shown previously, h23,1(∞) is a simple function of h23,1I[0,τ2]. We note
that h23,1 exists under the assumption Fj ≡ Fk (i.e., Fj � Fk and Fk � Fj ) on
[0, τj ], j = 1, . . . , k − 1, which follows from (3). We conclude that

�
(
A1(h1) | R(A3

2)
) = A3

2(h23,1)

= − F2

F1(S2 − S1)

∫ ∞
c

h1 dF1I (R = 2)

+
∫ ∞
c h1 dF1

F1
I (R ∈ {3,4}).

Using F2/(F1(S2 − S1)) − 1/(S2 − S1) = −1/F1 and
∫ ∞
c h1 dF1 = − ∫ c

0 h1 dF1
yields

A∗
1(h1) = A1(h1) − �

(
A1(h1)

∣∣R(A3
2)

)

=
∫ ∞
c h1 dF1

S1(c)
I (R = 1) +

∫ c
0 h1 dF1

F1(c)
I (R ∈ {2,3,4}).

Calculation of A∗
3. This calculation is very similar to the one above for A∗

1 and
is omitted. We have

A∗
3(h3) =

∫ c
0 h3 dF3

F3(c)
I (R = 4) +

∫ ∞
c h3 dF3

S3(c)
I (R ∈ {1,2,3}).
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Proving that the tangent space is saturated. Given the expressions for the
efficient score operators derived above, we now prove that the tangent space
at a PF,G satisfying (3) is saturated. Under our assumption (3), the tangent
space equals L2

0(G) (scores generated by G) plus the closure of the range of
A∗ :L2

0(F1) × · · · × L2
0(Fk) → L2

0(PF ) defined by

(h1, . . . , hk) → A∗
1(h1) + · · · + A∗

k(hk),

where the marginal efficient score operators are given by A∗
j (hj ) = E(hj (Tj ) |

(C,�j = I (Tj ≤ C)), j = 1, . . . , k. The closure of the range of a Hilbert space
operator equals the orthogonal complement of the null-space of its adjoint, that is,
R(A∗) = N(A∗)⊥. Thus we need to show that N(A∗) = L2

0(G). The adjoint
A∗ :L2

0(PF ) → L2
0(F1) × · · · × L2

0(Fk) is given by

A∗(V ) = (
A∗

1 (V ), . . . ,A∗
k (V )

)
,

where it is easily verified that the adjoint A∗
j :L2

0(PF ) → L2
0(Fj ) of A∗

j is given
by

A∗
j (V ) = E

(
E

(
V (C,R) | C,�j

) | Tj

)
.

Consider the operator B
j :L2

0(C,�j ) → L2
0(Fj ) given by B

j (η) = E(η(C,�j ) |
Tj ), where L2

0(C,�j ) is the space of functions of (C,�j ) with finite variance and
zero mean (both taken w.r.t. PF,G). Using precisely the same proof as the proof of
Lemma 2.2, it follows that, if Fj has a Lebesgue density fj > 0 on [0, τj ], then
the null-space N(B

j ) = L2
0(G), that is, it consists of functions independent of �j .

Thus, under (3), A∗
j (V ) = 0 implies that E(V (C,R) | C,�j ) = E(V (C,R) |

C) ≡ φ(C), j = 1, . . . , k.
Setting �1 = 0 yields φ(C) = E(V (C,R) | C,�1 = 0) = V (C,1). Now, we

note that

P (R = m | �j = 1,C = c) = I (m ≥ j + 1)
P (R = m | c)

Fj (c)
, j = 1, . . . , k,

where P (R = m | c) = (Sm − Sm−1)(c). Thus, E(V (C,R) | C,�j = 1) is given
by

∑
m≥j+1

V (c,m)
(Sm − Sm−1)(c)

Fj (c)
= φ(c), j = 1, . . . , k.

For j = k, this equality gives V (c, k+1) = φ(c). For j = k−1, this equality gives
then

V (c, k)
(Sk − Sk−1)(c)

Fk−1(c)
=

(
1 − Fk(c)

Fk−1(c)

)
φ(c) = (Sk − Sk−1)(c)

Fk−1(c)
φ(c)

so that V (c, k) = φ(c). In this manner, we subsequently find φ(c) = V (c, k +1) =
V (c, k) = · · · = V (c,2). This shows that V (C,R) does not depend on R. This
completes the proof. �



RIGHT-CENSORED DATA STRUCTURES 529

3. Current status data on a counting process when final event is right
censored. The following theorem proves efficiency of any regular asymptotically
linear estimator at a specified rich sub-model.

THEOREM 3.1. Let N(t) be a counting process N(t) = ∑k
j=1 I (Tj ≤ t) for

random variables T1 < · · · < Tk . Let C be a random censoring time. For every
subject we observe the following data structure:

Y = (
T̃ = Tk ∧ C,� = I (Tk ≤ C),N(T̃ )

)
.

We assume that C is independent of (T1, . . . , Tk). The distribution of Y only
depends on the multivariate distribution F of (T1, . . . , Tk) through the marginal
distributions F1, . . . ,Fk of (T1, . . . , Tk).

Consider a data generating distribution PF,G in the model above satisfying the
following condition (12): For certain τ1 < · · · < τk < ∞, let Fj have Lebesgue
density fj on [0, τj ] with

fj > 0 on [0, τj ] and fj = 0 on (τj ,∞), j = 1, . . . , k,

Fj > Fj+1 on (0, τj ], j = 1, . . . , k − 1,(12)

G has Lebesgue density g.

We allow that pj ≡ P (Tj = ∞) > 0 for j = j0, . . . , k and j0 ∈ {1, . . . , k}.
Then, the tangent space at PF,G equals L2

0(PF,G) and is thus saturated. This
implies that an estimator of a real valued parameter of the distribution F which is
regular and asymptotically linear at PF,G is also asymptotically efficient if PF,G

satisfies (12). In particular, if Ḡ(t) > 0 and F,G satisfy (12), then the Kaplan–
Meier estimator Sk,KM(t) of Sk(t) = P (Tk > t), based on the i.i.d. data (T̃ ,�), is
asymptotically efficient.

3.1. Regular and asymptotically linear estimators. The important implication
of Theorem 3.1 is that, if we can construct an estimator of

√
n-estimable

parameters of Fj which is regular, then this estimator will be asymptotically
efficient at any F satisfying (12), j = 1, . . . , k. In this subsection, we provide
relatively simple regular and asymptotically linear estimators.

First, consider estimation of Sk(t) = P (Tk > t). It is well known that Sk,KM(t)

is a regular asymptotically linear estimator of Sk(t) whenever Ḡ(t) > 0. Second,
consider estimation of Sj (t) = P (Tj > t), j = 1, . . . , k − 1. Let �j ≡ I (Tj ≤ C).
Under independent censoring (we can weaken this to noninformative censoring
of Tk), we have

E(1 − �j | C = c, Tk > c) = Sj (c)

Sk(c)
≡ Rj (c).(13)
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So
Sj (c) = Sk(c)E(1 − �j | C = c, Tk > c)

= E(Sk(c)(1 − �j) | C = c, Tk > c).
(14)

In other words, estimating Sj can be viewed as estimating a monotonic regression
of Sk(C)(1 − �j) on the observed C’s. This suggests replacing Sk by the efficient
Kaplan–Meier estimator Sk,KM and minimizing

1

n

n∑
i=1

wi

{
Sk,KM(Ci)(1 − �ji) − Sj (Ci)

}2
I (Ci ≤ Tki)(15)

over the vector (Sj (Ci) : i = 1, . . . , n), under the constraint that Sj is monotone,
where wi , i = 1, . . . , n, is a given set of weights possibly assigning more mass
to observations with smaller variance. The solution Sj,n of this problem can
be obtained with the pool-adjacent-violator-algorithm (PAVA) [see, e.g., Barlow,
Bartholomew, Bremner and Brunk (1972)].

A simple calculation shows that

VAR{Sk(C)(1 − �j) | C = c, Tk > c}
= Sk(c)

2 VAR{1 − �j | C = c, Tk > c} = S2
k (c)Rj (c){1 − Rj(c)}.

(16)

Since Rj is not identified from the data at a better rate than Sj , a good set of
weights is wi = 1/S2

k,KM(Ci), i = 1, . . . , n [see van der Laan, Jewell and Peterson
(1997)].

It is beyond the scope of this paper to prove that smooth functionals of Sj,n

are regular and asymptotically linear. Since it is straightforward to prove such
a theorem for a standard histogram regression estimator of the regression of
Sk(C)(1 − �j) on the observed C’s, one expects that the more sophisticated
isotonic regression estimate Sj,n (which only differs because it selects its bins
adaptively) is regular and asymptotically linear under the same conditions. We note
that the choice of weights wi , i = 1, . . . , n, has no effect on the limit distribution
of smooth functionals of Sj,n.

3.2. Proof of Theorem 3.1. In the first part of the proof we establish that, if
condition (12) holds, then the efficient score operator of Fk equals the efficient
score operator of Fk in the reduced data model for (T̃k,�k), hereby establishing
a proof of the efficiency of the Kaplan–Meier estimator SKM(t). Subsequently,
exploiting this special form of the efficient score operator of Fk , we prove
saturation of the tangent space and thus Theorem 3.1.

Consider the data structure (T̃k = Tk ∧C,N(T̃k)), where N(t) = ∑k
j=1I (Tj ≤ t)

and T1 < T2 < · · · < Tk are ordered random variables. Let R = N(T̃k) + 1. The
density of the data is given by

P (dT̃k,R = j) =
k∏

m=1

(Sm − Sm−1)(T̃k)
R=m dFk(T̃k)

R=k+1 dG(t)R �=k+1Ḡ(t)R=k,
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where S0 ≡ 0 and Sk+1 ≡ 1. We refer to the beginning of the proof of Theorem 2.1
to show that the tangent space at a PF,G satisfying condition (12) is the closure
of the sum of the tangent spaces generated by Fj , j = 1, . . . , k and the tangent
space of G, treating Fj as locally variation-independent. We have that the score
operators Aj :L2

0(Fj ) → L2
0(PF,G) for Fj , j = 1, . . . , k − 1, are given by

Aj(hj ) =
∫ ∞
c hj dFj

(Sj − Sj−1)(c)
I (R = j) −

∫ ∞
c hj dFj

(Sj+1 − Sj )(c)
I (R = j + 1)

and

Ak(hk) = hk(T̃k)I (R = k + 1) +
∫ ∞
c hk dFk

(Sk − Sk−1)(c)
I (R = k).

Derivation of efficient score operator of Fk . We first determine the efficient
score operator for Fk. For notational convenience, we consider the case k = 3. We
have

A∗
3(h3) = A3(h3) − �

(
A3(h3)

∣∣R(A1
2)

)

where

A1
2 = A2 − �

(
A2 | R(A1)

)
.

Applying formula (11) gives

�
(
A2(h2) | R(A1)

) = −
∫ ∞
c h2 dF2

S2(c)
I (R = 1) +

∫ ∞
c h2 dF2

(S2 − S1)
2φ1(c)

I (R = 2),

where we need to assume that F2 � F1 on [0, τ1]. Thus, an easy calculation shows
that

A1
2(h2) =

∫ ∞
c h2 dF2

S2(c)
I (R ∈ {1,2}) −

∫ ∞
c h2 dF2

(S3 − S2)(c)
I (R = 3).

Another straightforward calculation shows that the adjoint A1
2 :L2

0(PF,G) →
L2

0(F2) of A1
2 :L2

0(F2) → L2
0(PF,G) is given by

A1
2 (V ) =

∫ T2

0

{
V (c,1)

S1

S2
(c) + (S2 − S1)

S2
(c)V (c,2) − V (c,3)

}
dG(c).

A straightforward calculation now shows that

A1
2 A1

2(h2) =
∫ T2

0

∫ ∞
c

h2 dF2
S3

S2(S3 − S2)
(c) dG(c).

We also have

A1
2 A3(h3) = −

∫ T2

0

∫ ∞
c h3 dF3

(S3 − S2)(c)
dG(c).
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This shows that h21,3 ≡ (A1
2 A1

2)
−A1

2 A3(h3) satisfies, on [0, τ2],

−
∫ c

0
h21,3 dF2 = −S2

S3
(c)

∫ ∞
c

h3 dF3,

and, if p2 = P (T2 = ∞) > 0, then h21,3(∞) is a simple function of h21,3I[0,τ2] as
shown above (7). Here we need to assume that this equation can be solved in h21,3.
This is true if F3 � F2 on [0, τ2]. Then

�
(
A3(h3) | R(A1

2)
) = A1

2(h21,3)

= −
∫ ∞
c h3 dF3

S3(c)
I (R ∈ {1,2})

+ S2(c)

S3(S3 − S2)(c)

∫ ∞
c

h3 dF3I (R = 3).

This proves that

A∗
3(h3) = h3(T̃3)I (R = 4) +

{
1

S3 − S2
− S2

(S3 − S2)S3

}
(c)I (R = 3)

+
∫ ∞
c h3 dF3

S3(c)
I (R ∈ {1,2})

= h3(T̃3)I (R = 4) +
∫ ∞
c h3 dF3

S3(c)
I (R ∈ {1,2,3}).

Thus, we have proved that, if Fk ≡ Fj on [0, τj ], j = 1, . . . , k−1, then the efficient
score A∗

k(hk) = E(hk(Tk) | T̃k,�k). The latter condition holds, in particular, if (12)
holds. This proves the statement of Theorem 3.1 regarding efficiency of the
Kaplan–Meier estimator SKM .

Saturated tangent space result. Note that, for a random variable Y , we
define L2

0(Y ) = {h(Y ) :Eh2(Y ) < ∞,Eh(Y ) = 0}. For simplicity, we prove
saturation for k = 3. Let A :L2

0(F1) × L2
0(F2) → L2

0(PF,G) be defined
by A(h1, h2) = A1(h1) + A2(h2). Then, the tangent space of F is given by
R(A1) + R(A2) + R(A3) = R(A1) + R(A2) ⊕ R(A∗

3). Thus, the tangent space
at PF,G is given by R(A)⊕R(A∗

3)⊕R(B), where B :L2
0(G) → L2

0(T̃3,�3) is the
score operator for the censoring mechanism G, given by B(h) = E(h(C) | T̃3,�3).
By factorization of the likelihood into F and G parts, we have that R(B) is or-
thogonal to F -scores. It is well known that R(A∗

3) ⊕ R(B) = L2
0(T̃3,�3). The

latter result simply states that the tangent space for the nonparametric right-
censored data model for (T̃3,�3), only assuming that C is independent of T ,
is saturated [e.g., Bickel, Klaassen, Ritov and Wellner (1993)]. Thus, we need
to prove that R(A) ⊕ L2

0(T̃3,�3) = L2
0(PF,G) which is equivalent to proving
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N(A) = L2
0(T̃3,�3), where A :L2

0(PF,G) → L2
0(F1) × L2

0(F2) is the adjoint
of A and N(A) denotes its null space.

First, we decompose A1 + · · · + Ak−1 into a sum of orthogonal operators
(efficient score operators in the model with Fk known). Let A′

1 = A1 − �(A1 |
R(A2)) and A′

2 = A2 − �(A2 | R(A1)). By (4), it follows that

A′
1(h1) =

∫ ∞
c h1 dF1

S1(c)
I (R = 1) −

∫ ∞
c h1 dF1

(S3 − S1)
I (R ∈ {2,3}),

A′
2(h2) =

∫ ∞
c h2 dF2

S2(c)
I (R ∈ {1,2}) +

∫ c
0 h2 dF2

(S3 − S2)(c)
I (R = 3),

where we need the equivalence assumptions Fj ≡ Fj+1 on [0, τj ] for j = 1, . . . , k,
again. A more compact manner of representing these operators A′

j :L2
0(Fj ) →

H(C,R) ≡ {V (C,R)I (R < 4) ∈ L2
0(PF,G) :V } is

A′
j (hj ) = E(hj (Tj ) | C,�j ,T3 > C)I (T3 > C), j = 1,2.(17)

Consider the operator A′ :L2
0(F1) × L2

0(F2) → H(C,R) defined by A′(h1, h2) =
A′

1(h1) + A′
2(h2). Proving N(A) = L2

0(T̃3,�3) is equivalent to proving
N(A′) = L2

0(T̃3,�3), where A′ is the adjoint of A′.
From the representation (17), the adjoint A′

j :H(C,R) → L2
0(Fj ) is given by

A′
j (V ) = E

(
E(V (C,R)I (T3 > C) | C,�j ,T3 > C) | Tj

)
, j = 1,2,

and thus, N(A′) = N(A′
1 ) ∩ N(A′

2 ).
Consider now a solution V I (T3 > C) ∈ H(C,R) satisfying A′

j (V I (T3 >

C)) = 0, j = 1,2. In order to prove V ∈ L2
0(T̃3,�3), it suffices to show

I (T3 > C)V = I (T3 > C)φ(C) for some φ. Using precisely the same proof as
the proof of Lemma 2.2, it follows that, if Fj has a Lebesgue density fj > 0 on
[0, τj ] and G has a Lebesgue density, then, for any function I (T3 > C)η(C,�j ),
E(I (T3 > C)η(C,�j ) | Tj ) = 0 implies η(C,1) = η(C,0). This proves that
E(V (C,R)I (T3 > C) | C,�j ,T3 > C) = E(V (C,R)I (T3 > C) | C,T3 > C) ≡
I (T3 > C)φ(C) does not depend on �j , j = 1,2.

Setting �1 = 0 yields I (T3 > C)φ(C) = E(V (C,R)I (T3 > C) | C,�j ,

T3 > C) = V (C,1)I (T3 > C). Now, we note that

P (R = m | �j = 1,C = c, T3 > c)

= I (m ≥ j + 1,m < 4)
(Sm − Sm−1)(c)

(S3 − Sj )(c)
, j = 1,2.

Thus, E(V (C,R)I (T3 > C) | C,�j = 1, T3 > C) is given by

I (T3 > C)
∑

m≥j+1,m<4

V (C,m)
(Sm − Sm−1)(C)

(S3 − Sj )(C)
= I (T3 > C)φ(C), j = 1,2.
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For j = 2, this equality gives I (T3 > C)V (C,3) = I (T3 > C)φ(C). For j = 1,
this equality gives

I (T3 > C)

{
V (C,2)

(S2 − S1)(c)

(S3 − S1)(C)
+ φ(C)

(S3 − S2)(C)

(S3 − S1)(C)

}
= I (T3 > C)�(C),

so that I (T3 > C)V (C,2) = I (T3 > C)φ(C). We have shown I (T3 > C) ×
V (C,1) = I (T3 > C)V (C,2) = I (T3 > C)V (C,3) which proves that V =
I (T3 < C)V1(T3) + I (T3 > C)φ(C) for some functions V1 and φ, and thus that
V ∈ L2

0(T̃3,�3). This completes the proof. �
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