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LARGE SAMPLE THEORY OF INTRINSIC AND EXTRINSIC
SAMPLE MEANS ON MANIFOLDS. I

BY RABI BHATTACHARYA1 AND VIC PATRANGENARU

Indiana University and Georgia State University

Sufficient conditions are given for the uniqueness of intrinsic and
extrinsic means as measures of location of probability measures Q on
Riemannian manifolds. It is shown that, when uniquely defined, these are
estimated consistently by the corresponding indices of the empirical Q̂n.
Asymptotic distributions of extrinsic sample means are derived. Explicit
computations of these indices of Q̂n and their asymptotic dispersions are
carried out for distributions on the sphere Sd (directional spaces), real
projective space RPN−1 (axial spaces) and CPk−2 (planar shape spaces).

1. Introduction. The aim of this article is to develop nonparametric statis-
tical inference procedures for measures of location of distributions on general
manifolds, which are complete as metric spaces. Although the main applications
are to distributions on (i) spheres Sd (spaces of directions), (ii) real projective
spaces RP N−1 (axial spaces) and (iii) complex projective spaces CP k−2 (planar
shape spaces), a general theory for both compact and noncompact manifolds is
sought. In this introduction a summary of the main results is presented, along with
a brief review of the literature on the subject.

A natural index of location for a probability measure Q on a metric space M

with the distance ρ is the so-called Fréchet mean which minimizes F(p) =∫
ρ2(p, x)Q(dx), if there is a unique minimizer. In general, the set of all

minimizers is called the Fréchet mean set. In the case M is a d-dimensional
connected C∞ Riemannian manifold with a metric tensor g and geodesic
distance dg , we will assume that (M,dg) is complete and we will refer to the
Fréchet mean (set) as the intrinsic mean (set). We say that the intrinsic mean
exists if there is a unique minimizer, and denote it by µI(Q). It is shown in
Theorem 2.1 that (i) the intrinsic mean set is compact, (ii) for each point m in
the intrinsic mean set, the Euclidean mean of the distribution on the tangent space
at m of the inverse of the exponential map is zero and (iii) in the case of simply
connected M of nonpositive curvature, the intrinsic mean exists if F is finite; a
particular case of this result, when M is a Bookstein’s shape space of labeled
triangles, with a Riemannian metric of constant negative curvature is due to Le and
Kume (2000). From a result of Karcher (1977) it follows that if the distribution is
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sufficiently concentrated then the intrinsic mean exists. For planar shape spaces
CP k−2, a useful necessary and sufficient condition for the existence of an intrinsic
mean is proved by Le (1998) for distributions Q which are absolutely continuous
(w.r.t. the volume measure) with a density that is a function only of the distance
from a given point.

An important question on the estimation of location is that of consistency.
Theorem 2.3 says that if M is a metric space such that all closed bounded subsets
of M are compact then, with probability 1, given any ε > 0, the Fréchet sample
mean set based on a random sample from Q will be within a distance less than ε

from the Fréchet mean set of Q for all sufficiently large sample sizes. Thus
if M is a complete Riemannian manifold and if the intrinsic mean exists then,
almost surely, all measurable choices from the intrinsic sample mean set converge
uniformly to the intrinsic mean of Q. In particular, this generalizes and strengthens
the strong consistency result for compact M that follows from an earlier result of
Ziezold (1977). [Also see Kent and Mardia (1997) and Le (1998).]

Much of the literature in the field deals with special cases of what we call the
extrinsic mean, perhaps because of the technical difficulties involved in proving the
existence of an intrinsic mean and in computing the intrinsic sample mean, even
when it exists. To define an extrinsic mean of Q with respect to an embedding j

of M in a Euclidean space (Rk, d0), consider first the set of all points p of R
k

such that there is a unique point x in j (M) having the smallest distance from p,
that is, satisfying d0(p, j (M)) = d0(p, x). Such points p are called nonfocal,
and points which are not nonfocal are called focal. For example, the only focal
point of Sd in Rd+1 is the origin. For an embedding j of M in Rk a probability
measure Q on M is said to be nonfocal if, when viewed as a measure on Rk

via j , its mean µ is a nonfocal point. The extrinsic mean µE(Q) of a nonfocal Q

is the j -preimage of the projection Pj(M)(µ) of µ on j (M), that is, j (µE(Q))

is the point of j (M) closest to µ. One may show that the set of all focal points is
closed and has Lebesgue measure zero in Rk (Theorem 3.2). Being thus guaranteed
that most probability measures on M are nonfocal, one proceeds to show that the
extrinsic sample mean XE = µE(Q̂n) based on a random sample is a strongly
consistent estimate of the (population) extrinsic mean µE(Q) of a nonfocal Q

(Theorem 3.4). Here Q̂n is the empirical distribution of the random sample. As
far as the estimation of the intrinsic mean µI(Q) is concerned, Theorem 3.3(b) in
the present article proves that under an equivariant embedding one has µI(Q) =
µE(Q) provided M is a compact two point homogeneous space other than a round
sphere, and Q is nonfocal and invariant under the subgroup of isometries leaving a
given point fixed. In particular, under the assumed symmetries, the extrinsic sample
mean is a strongly consistent estimator of the intrinsic mean µI(Q) if the latter
exists.

As indicated above, for an embedding of M in an Euclidean space Rk ,
the extrinsic mean µE(Q) exists under broad verifiable conditions. The next
important task, beyond consistency, is to derive the asymptotic distribution of the
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extrinsic sample mean and use this to construct confidence regions for µE(Q) and,
therefore, of µI(Q) when the intrinsic and extrinsic means coincide. A general
method is presented for this. Let X be the sample mean, when the observations Xi

are viewed as points in the ambient space Rk . In Theorem 3.6, the projection H(X)

of X on the tangent space to M at µE(Q) is shown to be asymptotically normal
centered at µE(Q), and a computation of the asymptotic dispersion is given. One
derives bootstrap-based confidence regions for µE(Q) (Corollary 3.7) by Efron’s
percentile method [Efron (1982)] with a coverage error Op(n−1/2) for general Q,
which is particularly useful in those cases where the asymptotic dispersion matrix
is difficult to compute. Note once again that, under the hypothesis of symmetry
in Theorem 3.3(b), if the intrinsic mean exists then the above confidence regions
apply to it.

Finally, Section 4 applies the preceding theory to (i) real projective spaces
RP N−1, or the axial spaces, and to (ii) complex projective spaces CP k−2, or
the planar shape spaces. Under the so-called Veronese–Whitney embedding, the
explicit formulas for the extrinsic mean of a nonfocal distribution on an axial
space are given in Theorem 4.2. For planar shape spaces the corresponding
results are presented in Theorem 4.4. It is also pointed out in Example 4.3 that
inconsistent Procrustes estimators in some parametric models arise when Q is
focal, thus clarifying an issue raised in Dryden and Mardia (1998), page 280.
As an application both intrinsic the extrinsic (Procrustean) sample means are
computed using some data from Bookstein (1991) on children with the so-called
Apert syndrome. This is presented in graphical form. Also, the extrinsic sample
mean of 13 complete observations of Apert data is used to estimate a missing
landmark in one incomplete observation. The data here are quite concentrated,
which makes the extrinsic sample mean almost indistinguishable from the intrinsic
sample mean.

We now briefly mention some of the earlier literature on statistical inference
on Riemannian manifolds. In parametric statistical inference, the information
matrix has been used as a Riemannian metric on the parameter space ever
since Rao (1945). For more recent treatments and advances in this direction,
we refer to Amari (1985), Barndorff-Nielson and Cox (1994), Burbea and
Rao (1982), Efron (1975) and Oller and Corcuera (1995). Pioneering work on
directional analysis was carried out by G. S. Watson beginning in the 1950s [see
Watson (1983) and Mardia and Jupp (1999) and the references in both]. Some
classes of semiparametric models were analyzed by Beran (1979), Watson (1983)
and others. Statistical analysis for axial and shape spaces similar in spirit to the
inference for extrinsic means presented here may be found in Kent (1992), Kent
and Mardia (1997), Le (1998) and Prentice and Mardia (1995). Nonparametric
bootstrap methods for inference on extrinsic means of axes have been employed
in Beran and Fisher (1998) and in Fisher, Hall, Jing and Wood (1996). The recent
books by Dryden and Mardia (1998) and Kendall, Barden, Carne and Le (1999)
are good sources for readable accounts of various methodologies in the field,
emphasizing their applications.
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2. Intrinsic means and moments of a probability measure on a Rie-
mannian manifold. Let (M,g) be a d-dimensional connected and complete Rie-
mannian manifold, that is, M is a d-dimensional C∞ connected manifold with a
complete Riemannian metric g. Denote by dg the (geodesic) distance under g. We
consider M-valued random variables X, that is, measurable maps on a probability
space (�,A,P ) into (M,B), where B denotes the Borel sigma-algebra of M .
All probability measures on M below are defined on B . Note that every closed
bounded subset of M is compact [do Carmo (1992), pages 146–149].

For the following definition we consider, more generally, a metric space (M,d)

and a probability measure Q on the Borel sigma-algebra B of M .

DEFINITION 2.1. Let Q be a probability measure on the metric space (M,d).
The Fréchet mean set of Q is the set of all minimizers of the map F on M defined
by

F(p) =
∫

d2(p, x)Q(dx), p ∈ M.(2.1)

If there is a unique minimizer, this is called the Fréchet mean of Q. If M is a
Riemannian manifold, the Fréchet mean (set) w.r.t. the geodesic distance d = dg

is defined to be the intrinsic mean (set) of Q; if the minimizer is unique, the
intrinsic mean will be labeled µI(Q). If X is an M-valued random variable having
distribution Q, then the above are also referred to as the Fréchet, or intrinsic mean
(set) of X, as the case may be.

Riemannian manifolds are “curved,” so that geodesics starting at a point p may
meet for a second time in the cut locus of p. Technical details on cut locus and
normal coordinates are as follows. If the manifold is complete, the exponential map
at q is defined on the tangent space TqM by expq v = γ (1), where γ : t → γ (t) is
the geodesic with γ (0) = q , γ̇ (0) = v. An open set U ⊂ M is said to be a normal
neighborhood of q (∈ U), if expq is a diffeomorphism on a neighborhood V of the
origin of TqM onto U , with V such that tv ∈ V for 0 ≤ t ≤ 1, if v ∈ V . Suppose
U = expq V is a normal neighborhood of q . Then (x1, x2, . . . , xd) are said to be
the normal coordinates of a point p ∈ U w.r.t. a fixed orthobasis (v1, v2, . . . , vd)

of TqM if p = expq (x1v1 + x2v2 + · · · + xdvd).
Let v ∈ TqM be such that g(v, v) = 1. The set of numbers s > 0, such that

the geodesic segment {expq tv : 0 ≤ t ≤ s} is minimizing is either (0,∞) or
(0, r(v)], where r(v) > 0. We will write r(v) = ∞ in the former case. If r(v)

is finite, then expq r(v)v is the cut point of q in the direction v [Kobayashi and
Nomizu (1996), page 98]. Let SqM = {v ∈ TqM :g(v, v) = 1}; then the largest
open subset of M in which a normal coordinate system around q is defined is
expq(V (q)), where V (q) = {tv : 0 ≤ t < r(v), v ∈ SqM}. The cut locus of q

is C(q) = expq{r(v)v :v ∈ SqM , r(v) finite} [Kobayashi and Nomizu (1996),
page 100]. Note that C(q) has volume measure 0, and M is the disjoint union
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of expq(V (q)) and C(q). The injectivity radius at the point q is rq = inf{r(v) :
v ∈ SqM}.

EXAMPLE 2.1. For the d-dimensional unit sphere, M = S
d = {p ∈ R

d+1 :
‖p‖ = 1}, with the Riemannian metric induced by the Euclidean metric on Rd+1,
the exponential map is given by

expp(v) = cos(‖v‖)p + sin(‖v‖)‖v‖−1v, v ∈ TpSd, v �= 0.(2.2)

Also, V (p) = {v ∈ TpSd :‖v‖ < π} and C(p) = −p. We may now determine
the exponential map when M is a real (complex) projective space RP d (CP d/2

for d even) of constant (constant holomorphic) curvature. In this case M is a
quotient of a round sphere S, and the projection map π :S → M is a Riemannian
submersion. If we denote by exp the exponential map for both the sphere and
projective space, we have expπ(p) dπ(v) = π(expp(v)). If p ∈ Sd , then since RP d

is homogeneous, for [p] ∈ RP d , we may assume without loss of generality that
p = (1,0, . . . ,0). Then C([p]) = {[q] :q = (0, q1, . . . , qd) ∈ Sd} = RP d−1 is the
projective hyperplane from infinity of the point [p]. Similarily, we may assume
that the point [p] ∈ CP d/2 is represented by p = (1,0, . . . ,0) and in this case
C([p]) is CP d/2−1, the complex projective hyperplane at infinity of the point [p].

If Q(C(q)) = 0, we will denote by λQ = λQ,q the image measure of Q under
exp−1

q on M\C(q). We will suppress q in λQ,q .

THEOREM 2.1. Assume (M,g) is a complete connected Riemannian mani-
fold. Let I (Q) be the intrinsic mean set of Q and set C(Q) = ⋃

q∈I (Q) C(q). (a) If
there is a point p on M such that F(p) is finite, then the intrinsic mean set is a
nonempty compact set. (b) If q ∈ I (Q) and Q(C(Q)) = 0, then∫

V (q)
vλQ(dv) = 0.(2.3)

(c) Suppose (M,g) has nonpositive curvature, and M is simply connected. Then
every probability measure Q on M has an intrinsic mean, provided F(p) is finite
for some p.

PROOF. (a) It follows from the triangle inequality (for dg) that if F(p) is finite
for some p, then F is finite and continuous on M . To show that a minimizer exists,
let l denote the infimum of F and let pn ∈ M be such that F(pn) → l as n → ∞.
By the triangle and the Schwarz inequalities, and by integration w.r.t. Q, one has

d2
g(pn,p1) ≤ 2d2

g(pn, x) + 2d2
g(x,p1) ∀x ∈ M,

d2
g(pn,p1) ≤ 2

(
F(pn) + F(p1)

)
.

(2.4)

Hence since F(pn) (n ≥ 1) is a bounded sequence, so is pn (n ≥ 1). By
completeness of M , pn has a subsequence converging to some point p∗. Then
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F(p∗) = l, so that p∗ is a minimizer. Also the inequalities (2.4) applied this time
to p∗ and an arbitrary minimizer m show that d2

g(m,p∗) ≤ 4l. In other words,
the set of minimizers is bounded. It is also a closed set, since its complement
is clearly open, proving compactness of the intrinsic mean set. To prove (b), note
that expq(V (q)) has Q-probability 1. Consider an arbitrary point x in expq(V (q));
then with probability 1 there is a unique geodesic, say γx,µ joining x and µ with
γx,µ(0) = x, γx,µ(1) = µ. Also let µv(t) be the geodesic starting at µ [µv(0) = µ]
with tangent vector v [(dµv(t)/dt)(0) = v]. Let αv,x be the angle made by the
vectors tangent to these geodesics at µ. Then [see Helgason (1978), page 77, and
Oller and Corcuera (1995), Proposition 2.10]

dµF (v) = 2
∫

dg(x,µ)‖v‖ cos(αv,x)Q(dx).(2.5)

Select a point q ∈ I (Q) and write the integral in (2.5) in normal coordinates
on TqM . If µ ∈ I (Q), then µ is a critical point of F . Then we select µ = q ,
and evaluate the right-hand side of (2.5) at v = vi = ∂

∂xi . Note that given that expq

is a radial isometry, the right-hand side of (2.5) in this case is 2
∫

xiλQ(dx), where
xi are the normal coordinates of an arbitrary point of expq(V (q)). Then in such
coordinates, (2.5) becomes (2.3).

For part (c) of the theorem, we adapt the proof of Kobayashi and Nomizu
(1996), Theorem 9.1, to our situation as follows. By part (a) there is a point q

in the intrinsic mean set. By a classical result due to J. Hadamard [see Helgason
(1978), page 74], since M is simply connected and complete, C(q) = ∅, and we
define a map G on M by

G(p) =
∫
M

‖ exp−1
q (p) − v‖2λQ(dv).(2.6)

Since on a simply connected manifold of nonpositive curvature expq is expanding,
we have G(p) ≤ F(p). On the other hand by part (b), G(p) = G(q) +
‖ exp−1

q (p)‖2 and, since expq is a radial isometry, F(q) = G(q). Therefore, q is
in fact the unique minimizer of F . �

REMARK 2.1. If M has nonpositive curvature and is not simply connected,
the intrinsic mean does not exist in general. If M is flat a sufficient condition
for the existence of the intrinsic mean is that the support of Q is contained in
a geodesically convex open normal neighborhood of M and F(p) is finite for
some p. In general, if the infimum of the injectivity radii is a positive number r(M)

and the scalar curvature of (M,g) is bounded from above by (π/r(M))2 and
if the support of Q is contained in a closed geodesic ball Bρ of radius ρ =
r(M)/4, then the intrinsic mean exists. To see this note that, when restricted to
the closed geodesic ball B2ρ , F has a unique minimum at some point in Bρ [see
Karcher (1977), Theorem 1.2]. Clearly, this minimum value is no more than ρ2.
On the other hand, if p ∈ (B2ρ)c, then F(p) ≥ d2

g(p,Bρ) > ρ2. This proves the
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uniqueness of the minimum of F in M , when the support of Q is contained
in Bρ. Necessary and sufficient conditions for the existence of the intrinsic mean
of absolutely continuous radially distributed probability measures on CP d/2 are
given in Le (1998) and Kendall, Barden, Carne and Le (1999).

REMARK 2.2. Mean values of a random variable on a manifold were defined
in Oller and Corcuera (1995) and previously in Emery and Mokobodzki (1991),
as exponential barycenters. The mean values in the sense of Oller and Corcuera
(1995) turn out to be critical points of F , while the intrinsic means defined here
are minimizers of F . This explains, for example, why in Oller and Corcuera (1995)
the von Mises distribution on Sd is found to have two mean values, while in fact
there is only one intrinsic mean. Note that the density at x ∈ Sd of the von Mises
distribution w.r.t. the volume form is a constant multiple of exp(mx).

In the case of a Riemannian manifold, the points in the intrinsic mean set are
points of local minima of F and are therefore Karcher means [Kendall (1990) and
Le (1998)].

REMARK 2.3. If C(q) has Q-measure zero, for some q ∈ M , an intrinsic
moment w.r.t. a given set of normal coordinates of an arbitrary order s =
(s1, . . . , sd) ∈ Zd+ can be defined by

∫
xsλQ(dx) where xs = (x1)s

1 · · · (xd)s
d
, if

the latter is finite.

REMARK 2.4. As the proof shows, part (a) of Theorem 2.1 holds for the
Fréchet mean set of a probability measure Q on any metric space M with the
property that all closed bounded subsets of M are compact.

For the structure of probability measures which are invariant under a group of
isometries one has the following simple result.

PROPOSITION 2.2. Suppose K is a group of isometries of (M,g) which
leaves the measure Q invariant. Then the intrinsic mean set is left invariant by K .
In this case Q induces a quotient measure on the space of orbits M/K and the
mean set of Q is a union of orbits.

PROOF. An isometry τ of (M,g) is a diffeomorphism of M such that
g(dτ (v), dτ (v)) = g(v, v) for all v ∈ TqM . Since dg(p, q) = dg(τ (p), τ (q)) for
all p,q ∈ M , if Q is invariant under τ then one has F(τ(p)) = F(p) [see (2.1)].
In particular, this is true when p is a minimizer of F and τ ∈ K . The claim follows
from these observations. �

EXAMPLE 2.2. If Q is rotationally symmetric on Sd (such as the von Mises
measure), then the intrinsic mean set of Q is a union of parallel (d − 1)-
dimensional spheres or poles of the axis of rotation, since the space of orbits is one-
dimensional. Let SO(d) be the special orthogonal group (or group of rotations).
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The SO(d) invariant measures on Sd depend on one function of one real variable,
as shown in Watson [(1983), Section 4.2]. The uniform distribution on a compact
Riemannian manifold whose density is 1/vol(M) w.r.t. the volume measure is
an example of an invariant distribution. Recall that the volume measure of a
Riemannian manifold in a local chart is given by

vol(A) =
∫
A

det

(
gx

(
∂

∂xi
,

∂

∂xj

)1/2)
λ(dx),(2.7)

where λ is the Lebesgue measure. The intrinsic mean set of the uniform
distribution is M .

DEFINITION 2.2. Let X1, . . . ,Xn be independent random variables with a
common distribution Q on a metric space (M,d), and consider their empirical
distribution Q̂n = 1

n

∑n
k=1 δXk

. The Fréchet sample mean (set) is the Fréchet mean

(set) of Q̂n, that is, the (set of) minimizer(s) m of p → 1
n

∑n
j=1 d2(Xj ,p). If M is

a Riemannian manifold, then the Fréchet sample mean (set) of Q̂n for the distance
d = dg is called the intrinsic sample mean (set).

The following result establishes the strong consistency of the Fréchet sample
mean as an estimator of the Fréchet mean of the underlying distribution.

THEOREM 2.3. Let Q be a probability measure on a metric space (M,d)

such that every closed bounded subset of M is compact. Assume F is finite on M .
(a) Then, given any ε > 0, there exist a P -null set N and n(ω) < ∞ ∀ω ∈ Nc,
such that the Fréchet (sample) mean set of Q̂n = Q̂n,ω is contained in the
ε-neighborhood of the Fréchet mean set of Q for all n ≥ n(ω). (b) If the Fréchet
mean of Q exists then every measurable choice from the Fréchet (sample) mean
set of Q̂n is a strongly consistent estimator of the Fréchet mean of Q.

PROOF. (a) We will first prove that for every compact subset K of M one has

sup
p∈K

|Fn,ω(p) − F(p)| → 0 a.s. as n → ∞,

Fn,ω(p) :=
∫

d2(x,p)Q̂n,ω(dx) ≡ 1

n

n∑
j=1

d2(Xj ,p).

(2.8)

To prove (2.8) first observe that for a given p0 ∈ K one has, in view of the strong
law of large numbers (SLLN) applied to 1

n

∑n
j=1 d(Xj ,p0),

sup
p∈K

1

n

n∑
j=1

d(Xj ,p) ≤ 1

n

n∑
j=1

d(Xj ,p0) + sup
p∈K

d(p,p0)

≤
∫

d(x,p0)Q(dx) + 1 + diam(K) = A, say,

(2.9)
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which holds for all n ≥ n1(ω), where n1(ω) < ∞ outside a P -null set N1. Fix
ε′ > 0. From (2.9) one obtains, using the inequality |d2(Xj ,p) − d2(Xj ,p

′)| ≤
{d(Xj ,p) + d(Xj ,p

′)}d(p,p′), the bound

sup
{p,p′∈K : d(p,p′)<δ1}

|Fn,ω(p) − Fn,ω(p′)| ≤ 2Aδ1 = ε′/3

∀n ≥ n1(ω) (ω /∈ N1),
(2.10)

where δ1 := A/6ε′. For the next step in the proof of (2.8), let δ2 > 0 be such that
|F(p) − F(p′)| < ε′/3 if p,p′ ∈ K and d(p,p′) < δ2. Let δ = min{δ1, δ2}, and
{q1, q2, . . . , qr} be a δ-net in K , that is, ∀p ∈ K , there exists q(p) ∈ {q1, . . . , qr}
such that d(p, q(p)) < δ. By the SLLN, there exist a P -null set N2 and n2(ω) < ∞
∀ω /∈ N2 such that

max
i=1,2,...,r

|Fn,ω(qi) − F(qi)| < ε′/3 ∀n ≥ n2(ω) (ω /∈ N2).(2.11)

Note that by (2.10), (2.11) and the fact that |F(q(p)) − F(p)| < ε′/3 ∀p ∈ K ,
one has

sup
p∈K

|Fn,ω(p) − F(p)|

≤ sup
p∈K

|Fn,ω(p) − Fn,ω(q(p))| + sup
p∈K

|Fn,ω(q(p)) − F(q(p))|

+ sup
p∈K

|F(q(p)) − F(p)|

< ε′/3 + ε′/3 + ε′/3 = ε′ ∀n ≥ n(ω) := max{n1(ω),n2(ω)},
outside the P -null set N3 = N1 ∪ N2. This proves (2.8).

To complete the proof of (a), fix ε > 0. Let C be the (compact) Fréchet mean set
of Q, � := min{F(p) :p ∈ C}. Write Cε := {p :d(p,C) < ε}. It is enough to show
that there exist θ(ε) > 0 and n(ω) < ∞ ∀ω, outside a P -null set N such that

Fn,ω(p) ≤ � + θ(ε)/2 ∀p ∈ C,

Fn,ω(p) ≥ � + θ(ε) ∀p ∈ M\Cε, ∀n ≥ n(ω) (ω /∈ N).
(2.12)

For (2.12) implies that min{Fn,ω(p) :p ∈ M} is not attained in M\Cε and,
therefore, the Fréchet mean set of Q̂n,ω is contained in Cε, provided n ≥ n(ω)

(ω /∈ N ). To prove (2.12) we will first show that there exist a compact set D

containing C and n3(ω) < ∞ outside a P -null set N3 such that both F(p) and
Fn,ω(p) are greater than � + 1 ∀p ∈ M\D, for all n ≥ n3(ω) (ω /∈ N3). If M is
compact then this is trivially true, by taking M = D. So assume M is noncompact.
Fix p0 ∈ C and use the inequality d(x, q) ≥ |d(q,p0) − d(x,p0)| to get∫

d2(x, q)Q(dx) ≥
∫ {

d2(q,p0) + d2(x,p0) − 2d(q,p0)d(x,p0)
}
Q(dx)
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or

F(q) ≥ d2(q,p0) + F(p0) − 2d(q,p0)F
1/2(p0).(2.13)

Similarly, using Q̂n,ω in place of Q,

Fn,ω(q) ≥ d2(q,p0) + Fn,ω(p0) − 2d(q,p0)F
1/2
n,ω (p0).(2.14)

Since M is unbounded, one may take q at a sufficiently large distance � from C

such that, by (2.13), F(q) > � + 1 on M\D, where D := {q :d(q,C) ≤ �}. Since
Fn,ω(p0) → F(p0) a.s., by (2.14) one may find a P -null set N3 and n3(ω) < ∞
such that Fn,ω(q) > � + 1 on M\D ∀ n ≥ n3(ω) (ω /∈ N3). This proves the
italicized statement above.

Finally, let Dε := {p ∈ D :d(p,C) ≥ ε}. Then Dε is compact and �ε :=
min{F(p) :p ∈ Dε} > �, so that there exists θ = θ(ε), 0 < θ(ε) < 1, such
that �ε > � + 2θ . Now apply (2.8) with K = D to find n4(ω) < ∞ outside a
P -null set N4 such that ∀n ≥ n4(ω), one has (i) Fn,ω(p) ≤ � + θ/2 ∀p ∈ C

and (ii) Fn,ω(p) > � + θ ∀p ∈ Dε. Since Fn,ω(p) > � + 1 on M\D ∀n ≥ n3(ω)

(∀ω /∈ N3), one has Fn,ω(p) > � + θ ∀p ∈ Dε ∪ (M\D) = M\Cε if n ≥ n(ω) :=
max{n3(ω),n4(ω)} for ω �∈ N , where N = N3 ∪ N4. This proves (2.12), and the
proof of part (a) is complete.

Part (b) is an immediate consequence of part (a). �

REMARK 2.5. A theorem of Ziezold (1977) for general separable (pseudo)
metric spaces implies the conclusion of part (b) of Theorem 2.3 for compact
metric spaces M , but not for noncompact M . In metric spaces such that all closed
bounded subsets are compact, the present theorem provides (i) strong consistency
for Fréchet sample means and (ii) uniform convergence to the Fréchet mean of Q

of arbitrary measurable selections from the sample mean set. This applies to both
intrinsic and extrinsic means of Q and Q̂n on manifolds.

REMARK 2.6. Under the hypothesis of Theorem 2.3(a), the Hausdorff
distance between the intrinsic sample mean set and the intrinsic mean set does
not in general go to 0, as the following example shows. Consider n independent
random variables X1, . . . ,Xn with the same distribution on the unit circle, that is,
absolutely continuous w.r.t. the uniform distribution. Then with probability 1, we
may assume that for i �= j , Xi �= Xj . Assume Xj = eiθj and let X∗

j = e
iθ∗

j = −Xj ,

where the arguments θ∗
j are in the increasing order of their indices. F(eiθ ) is

periodic with period 2π and is a piecewise quadratic function; on each interval
[θ∗

j , θ∗
j+1], F(eiθ ) = ∑n

k=1(2πεk,j + (−1)εk,j (θ − θk))
2 where εk,j ∈ {0,1}.

Therefore, the points of local minima have the form 1
n

∑n
k=1(θk + 2πεj,k(−1)εj,k )

and each local minimum value mj = mj(θ1, θ2, . . . , θn) is a quadratic form
in θ1, . . . , θn. Since εk,j ∈ {0,1}, there are at most 2n such possible distinct
quadratic polynomials. Given that the each of the variables θ∗

j is continuous, the
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probability that there is a fixed pair of indices i �= j , such that mi(θ1, . . . , θn) =
mj(θ1, . . . , θn) is 0. This shows that, with probability 1, all the local minima are
distinct and the intrinsic sample mean exists. On the other hand, the intrinsic mean
set of the uniform measure on the circle is the whole circle, proving that in this
case the Hausdorff distance between the intrinsic sample mean set and the intrinsic
mean set is π with probability 1.

REMARK 2.7. The computation of the intrinsic mean set of a probability mea-
sure on a nonflat manifold M often involves nonstandard numerical algorithms,
even if M has a Riemannian metric of maximum degree of mobility. For this rea-
son, in the next section we will focus on a different approach to indices of location
of probability measures on manifolds.

3. Extrinsic means of distributions on submanifolds. Since most of the
literature on directional and shape analysis is concerned with parametric inference
(e.g., MLEs, likelihood ratios, etc.), there has not been much emphasis on intrinsic
analysis. For purposes of nonparametric or semiparametric inference, however,
statistical analysis of intrinsic indices such as the intrinsic mean is very important.
But it is generally not easy to prove the existence (i.e., uniqueness) of the intrinsic
mean. Also intrinsic means, when they exist, are often very difficult to compute.
On the other hand, a manifold can be also looked at as a submanifold of some
Euclidean space, and a probability measure on it can be regarded as a probability
measure in that ambient linear space. Such an approach has been employed in
directional analysis in Mardia and Jupp (1999), Watson (1983) and Fisher, Hall,
Jing and Wood (1996), and in shape analysis in Kent (1992), Dryden and Mardia
(1993) and Le (1998).

In this section we give a general treatment of the notion of an extrinsic mean,
and of statistical inference for it. We will also show that under special structures of
invariance and symmetry the intrinsic and extrinsic means coincide, and therefore
the extrinsic sample mean, which is easier to compute, can be used as a consistent
estimator of the intrinsic sample mean.

Assume M is a closed submanifold of the Euclidean space Ek = (Rk, d0) where
d0 denotes the Euclidean distance, d0(x, y) = ‖y − x‖. Let Q be a probability
measure on M . Let Gc be the set of nonfocal points of M in Ek. The projection
map PM :Gc → M is defined as PM(p) = x if d0(p,M) = d0(p, x).

In this case, the Fréchet function is defined on M by

F0(p) =
∫
M

‖p − x‖2Q(dx).(3.1)

DEFINITION 3.1. The extrinsic mean set of Q is the set of all minimizers
of F0 on M . If there is a unique minimizer, this is called the extrinsic mean of Q

and will be labeled µE(Q).
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PROPOSITION 3.1. Assume µ is the mean of Q as a probability measure
on Rk . Then (a) the extrinsic mean set is the set of all points m ∈ M , with
d0(µ,m) = d0(µ,M), and (b) if µE(Q) exists then µ exists and is nonfocal and
µE(Q) = PM(µ).

PROOF. (a) If p, x ∈ M , then ‖p − x‖2 = ‖p − µ‖2 + 2〈p − µ,µ − x〉 +
‖µ−x‖2 and if we integrate this identity over M w.r.t. Q, given that

∫
M xQ(dx) =∫

Rk xQ(dx) = µ, we get

F0(p) = ‖p − µ‖2 +
∫
M

‖µ − x‖2Q(dx).(3.2)

In particular, for any points p, m ∈ M , F0(p) − F0(m) = d2
0 (µ,p) − d2

0 (µ,m)

and (a) follows by selecting m to be a minimizer of F0. (b) If µE(Q) exists then
µ exists and from part (a) it follows that the distance from an arbitrary point
on M to µ has the unique minimizer µE(Q), that is, µ is nonfocal and since
d0(µE(Q),µ) = d0(µ,M), µE(Q) = PM(µ). �

THEOREM 3.2. The set of focal points of a submanifold M of Ek is a closed
subset of Ek of Lebesgue measure 0.

PROOF. A point p is nonfocal, with d0(p,M) = r , if and only if the
(hyper)sphere S(p, r) of radius r centered at p has a unique point x in common
with M . In this case the interior of the ball B(p, r) is included in Ek\M and
TxM ⊆ TxS(p, r); x is the point of absolute minimum of the function Lp

defined on M by Lp(y) = d2
0 (p, y). Let u = (u1, . . . , ud) be coordinates of

points y = y(u) on M , with y(0) = x. In Milnor [(1963), page 36] it is
shown that x is a degenerate critical point of Lp if and only if p is a focus.
Moreover, from the computations in Milnor [(1963), page 35] it follows that if
K1,K2, . . . ,Ks are the nonzero principal curvatures of M at the point x and
|t| < min{|K1|−1, |K2|−1, . . . , |Ks |−1} for any unit vector ν in νxM , the normal
space at the point x, the matrix((

∂y/∂ui(0)
)(

∂y/∂uj (0)
) − tν

(
∂2y/∂ui∂uj (0)

))
is positive definite. In particular, since r < min{|K1|−1, |K2|−1, . . . , |Ks |−1}, the
matrix ((

∂y/∂ui(0)
)(

∂y/∂uj(0)
) − (

p − y(0)
)(

∂2y/∂ui∂uj (0)
))

is positive definite. There are a neighborhood N of p and an open neighborhood
U of 0 such that, for any u ∈ U and q ∈ N , the matrix of the second partial
derivatives of Lq(y(u)), namely,((

∂y/∂ui(u)
)(

∂y/∂uj (u)
) − (

q − y(u)
)(

∂2y/∂ui∂uj (u)
))
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is positive definite. Since the manifold topology of M coincides with the induced
topology, one may assume that there is a ball B(x, ε), such that y(U) = M ∩
B(x, ε). Let ε be as small as necessary. Since x is the only common point
of M and S(p, r), and the set M\ IntB(x, ε) is closed, there is a number δ,
r > δ > 0, such that d0(p,M\ Int B(x, ε)) = r + δ. Let q ∈ IntB(p, δ/2) and
z ∈ M\ IntB(x, ε). Then d0(q, z) > |d0(q,p)−d0(p, z)| > r +δ−δ/2 > d0(q, x).
It follows that d0(q,M) = d0(q,M ∩ IntB(x, ε)). If y ∈ IntB(x, ε)\{x} is such
that d2

0 (q, y) = d2
0 (q,M), it follows by the positive definiteness of the displayed

matrix above that y is an isolated point of minimum of Lq , proving that the set of
nonfocal points is open.

Let G(∞) be the set of foci of M , and let G be the set of focal points. It is
known [Milnor (1963), page 33] that G(∞) has Lebesgue measure zero. If x is a
point on M , we define G(x) to be the set of all points f in Ek such that there is at
least another point x′ ( �= x) on M with d0(x, f ) = d0(x

′, f ) = d0(f,M). Another
description of G(x) is as the set of all centers f of spheres of Ek that are tangent
to M at least at two points, one of which is x, and whose interiors are disjoint
from M . The tangent space TxM is included in the tangent space at x to such a
sphere. Therefore the normal line at x to such a sphere is included in the normal
space νxM , which means that a point in G(x) is in νxM . We show that on each
ray starting at x in νxM (x is the zero element, if νxM is regarded as a vector
space) there is at most one point in G(x). Indeed if f1, f2 are two distinct points
on such a ray starting at x, assume f1 is closer to x than f2. Let x′, x′′ be such that
d0(x

′, f1) = d0(x, f1) = d0(f1,M), d0(x
′′, f2) = d0(x, f2) = d0(f2,M). Then

x′ is a point of M in the interior of S(f2, d0(f2,M)), a contradiction. Given that
G(x) intersects the radii coming out of x in νxM at most at one point, the Lebesgue
measure of G(x) in νxM is zero.

Let NM be the disjoint union of νxM , x ∈ M . NM is the normal bundle
of M and it is a manifold of dimension k. We define the map N :NM → Rk by
N(x, vx) = x + vx . One may show [Milnor (1963)] that the critical values of N

are the foci of M . Therefore if f = N(x, vx) is a focal point that is not a focus,
f is a regular value of N . Thus, if λ represents the Lebesgue volume form in R

k ,
then N∗λ is a volume form on N−1(Rk\G(∞)), and the Lebesgue measure of
G\G(∞) is

λ
(
G\G(∞)

) ≤
∫
NM\G(∞)

N∗λ.

If we apply Fubini’s theorem integrating over the base M the integral in each fiber
(normal space νxM), we see that the integrand in νxM is a volume form that is a
multiple C(x) of the Lebesgue measure in νxM . Therefore∫

NM\G(∞)
N∗λ =

∫
M

C(x)

(∫
G(x)

λx(dv)

)
vol M(dx),
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which is zero since ∫
G(x)

λx(dv) = λx(G(x)) = 0. �

Now we extend the notion of extrinsic means to embeddings of manifolds.

DEFINITION 3.2. Assume Q is a probability measure on M and j :M → R
k

is an embedding, such that j (M) is closed . We say that Q is nonfocal w.r.t. j if
Q regarded as a measure j (Q) on Rk has a mean µ(j (Q)) = ∫

Rk x(j (Q))(dx)

which is a nonfocal point of j (M). The extrinsic mean of a probability measure Q

which is nonfocal w.r.t. j is µ
j
E(Q) := j−1(Pj (M)(µ(j (Q)))).

Since the embedding j is assumed to be given, we will normally drop the
superscript j and write µE(Q) for µ

j
E(Q).

DEFINITION 3.3. A Riemannian embedding is an embedding j :M → Rk

which pulls back the induced Riemannian structure on j (M) to the Riemannian
structure of M . A Riemannian embedding is said to be equivariant at a point p

of M , if every isometry of j (M) that keeps j (p) fixed is the restriction of an
Euclidean isometry. A two point homogeneous space is a Riemannian manifold
such that for each two pairs of its points (p, q), (p′, q ′) with dg(p, q) = dg(p

′, q ′),
there is an isometry τ with τ (p) = p′ and τ (q) = q ′.

To simplify notation, we will often write p for j (p) and M for j (M), in case
of a Riemannian embedding j . It is known that M is a two-point homogeneous
space if and only if, for each p ∈ M , the isotropy group Hp of all isometries
of M which keep p fixed is transitive on every geodesic sphere S(p, r) :=
{x ∈ M :dg(x,p) = r}, r > 0 [Chavel (1993), page 147]. That is, given q , q ′ ∈
S(p, r), there exists h ∈ Hp such that h(q) = h(q ′).

The following theorem links the intrinsic mean of Q on a Riemannian manifold
with its extrinsic mean under an embedding which is equivariant at a point p. Note
that for every h ∈ Hp the differential dh maps TpM into itself.

THEOREM 3.3. Let j :M → Rk be a Riemannian embedding which is
equivariant at p. Assume that 0 ≡ (p,0) is the only fixed point of TpM under
the family of maps {dh :h ∈ Hp}. Assume also that Q is a probability measure
on M which is invariant under Hp, and µ(j (Q)) is finite and nonfocal. (a) Then
either µE(Q) = p or µE(Q) ∈ C(p), the cut locus of p. The same holds for the
intrinsic mean µI(Q) if it exists. (b) If, in addition to the hypothesis above, M is
a compact two point homogeneous space other than the round sphere and µI(Q)

exists, then µI(Q) = µE(Q) = p.
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PROOF. (a) The mean µ(j (Q)) of j (Q), regarded as a measure on the
ambient Euclidean space, is invariant under each Euclidean isometry ĥ, say, which
extends h ∈ Hp . For Q, as a measure on the Euclidean space, is invariant under ĥ

∀h ∈ Hp, due to the equivariant embedding at p and the invariance of Q on M

under Hp. It now follows that µE(Q) is invariant under Hp . Suppose now that
µE(Q) �= p. We will show that in that case µE(Q) ∈ C(p). If this is not so then
µE(Q) ∈ expp(V (p)). Then there exists a unique minimizing geodesic joining
p and µE(Q). Because of uniqueness this geodesic, say, γ , is left invariant by the
isometries h ∈ Hp . Then γ̇ (0) is invariant under dh ∀h ∈ Hp , contradicting the
hypothesis that 0 is the only invariant vector in TpM under {dh :h ∈ Hp}.

Suppose next that µI(Q) exists. Then µI(Q) is invariant under Hp , since
F(y) = F(hy), ∀h ∈ Hp , due to the invariance of Q under Hp. The same
argument as above now shows that either µI(Q) = p or µI(Q) ∈ C(p).

(b) It follows from a classification theorem due to Wang (1952) that besides the
round spheres, there are only four types of two-point homogeneous spaces, namely,
the real projective spaces, complex projective spaces, quaternionic projective
spaces and the Cayley projective planes [see also Helgason (1978), page 535].
It is known from Warner (1965) that for any point p ∈ M, C(p) is a strong
deformation retract of M\{p}, and, in particular, C(p) has the homotopy type
of M\{p}. On the other hand, if M is one of the two-point homogeneous spaces
other than a sphere given by Wang’s classification, then the cohomology of M\{p}
is not trivial. This shows that in this case M\{p} is not homotopically trivial and
therefore C(p) is also not homotopically trivial. This implies that if M is not a
sphere, C(p) has at least two points q, q ′. Moreover, since the isotropy group Hp

is transitive on the geodesic sphere S(p,dg(p, q)), we may assume that dg(p, q) =
dg(p, q ′) = r . Hence if µE(Q) ∈ C(p) there exists q ′ ∈ C(p)\{µE(Q)} such
that dg(p,µE(Q)) = dg(p, q ′). By the transitivity of Hp on S(p, r), there exists
h ∈ Hp such that h(µE(Q)) = q ′, contradicting the invariance of µE(Q). By (a),
µE(Q) = p.

The same argument applies to µI(Q) if it exists. �

EXAMPLE 3.1. Let Q be a probability measure on a sphere, with
µ(j (Q)) �= 0, such that the group leaving Q invariant is the stabilizer of a given
point p. Then µE(Q) is either p or the antipodal point of p on the sphere. The same
is true of µI(Q) if it exists. Such examples of probability distributions are given
in Watson [(1983), page 136] and Fisher (1993), including the von Mises distribu-
tions. Another example of an invariant distribution is given by the Dimroth–Watson
distribution on the real projective plane RP 2, whose Radon–Nykodim derivative
at the point [x] w.r.t. the volume measure of a constant curvature Riemannian
structure on RP 2 is proportional to exp[k(p · x)2], x ∈ S2, and is O(2) invariant.
A general O(2) invariant measure with a density on RP 2 has the Radon–Nykodim
derivative w.r.t. the volume form at the point [x] proportional to f ((p ·x)2), x ∈ S2,
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where f is a density of an absolutely continuous positive measure on a finite inter-
val. An example of equivariant embedding of RP 2 furnished with a Riemannian
structure with constant curvature into the space of symmetric matrices S(3,R)

is provided by the Veronese-like map j [u] = uut . The Euclidean distance d0 on
S(3,R) is given by d2

0 (A,B) := Tr((A − B)(A − B)). As such if u, v are in S2,
d2

0 (j [u], j [v]) = Tr(uut − vvt )(uut − vvt ) = Tr(uutuut − 2uutvvt + vvtvvt ) =
2(1 − (u · v)2). The fact that the embedding is equivariant follows from the action
of isometries of O(3) on S(3,R), by simultaneous left and right multiplication. By
Theorem 3.3(b), if the intrinsic mean direction of a rotationally invariant measure
on RP 2 (the space of directions in the three-dimensional Euclidean space) exists, it
is the same as the extrinsic mean. Note that proportional distances yield the same
Fréchet mean set, and therefore the intrinsic mean sets of a probability measure
on RP 2 obtained after scaling S2 to different radii are all the same. Finally, note
that Kobayashi (1968) gave a general construction of an isometric embedding of a
compact symmetric space, which can be used to provide an equivariant embedding
of any two-point homogeneous space (including the Cayley plane) into a Euclidean
space.

DEFINITION 3.4. Assume X = (X1, . . . ,Xn) are i.i.d. M-valued random
variables whose common distribution is a nonfocal measure Q on (M, j) and
the function p → ∑n

r=1 ‖j (p) − j (Xr)‖2 has a unique minimizer on M ; this
minimizer is the extrinsic least squares sample mean. If the mean j (X) of the
sample j (X) = (j (X1), . . . , j (Xn)) is a nonfocal point, the extrinsic sample mean
is

XE := j−1(
Pj(M)(j (X))

) ≡ µ
j
E(Q̂n),(3.3)

where Q̂n = 1
n

∑n
i=1 δXi

is the empirical distribution.
From now on, we will occasionally omit the embedding, that is we assume

M is a submanifold of the Euclidean space and j is the inclusion map. To ease
notational complexity in this case, we will often write Xi for j (Xi) and X for
j (X) = 1

n

∑n
i=1 j (Xi).

THEOREM 3.4. Assume Q is a nonfocal probability measure on the mani-
fold M and X = {X1, . . . ,Xn} is a random sample from Q. (a) If the sample mean
X is a nonfocal point then the least squares sample mean equals the extrinsic
sample mean XE. (b) XE is a strongly consistent estimator of µE(Q).

PROOF. (a) If X is a nonfocal point then by Proposition 3.1, applied to the
empirical Q̂n, the extrinsic least squares sample mean is the extrinsic sample mean.
(b) By the SLLN, X converges to µ[j (Q)] almost surely. Since F c is open, by
Proposition 3.2, and the projection PM from F c to M is continuous, j−1(PM(X))

converges to µE(Q) almost surely. �

In particular, from Theorem 3.4 we get the following consequence.
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REMARK 3.1. If Q is focal, the extrinsic mean set has at least two points.
Therefore by Theorem 2.3(a) the extrinsic sample mean set may have more than
one point, and a selection from the extrinsic sample mean set sequence may not
have a limit.

COROLLARY 3.5. Assume M , Q and the equivariant embedding j are as
in Theorem 3.3(b). Then the extrinsic least squares sample mean is a strongly
consistent estimator of the intrinsic mean of Q.

We now consider a method for constructing confidence regions for extrinsic
means µE(Q) on regular submanifolds. For the formulas below we omit summa-
tion symbols for any repeated index in the same monomial.

Let H be the projection on the affine subspace µE(Q) + TµEM . We would
like to determine the asymptotic distribution of H(X). While H(X) is not the
same as PM(X), its asymptotic distribution is easier to compute. For large
samples the extrinsic sample mean is close to the extrinsic mean and, therefore,
H(X) and PM(µ) will be close to each other. When M is a linear variety, the
two maps coincide. Thus for concentrated data the delta method for H gives
a good estimate of the distribution of the extrinsic sample mean. Assume that
around PM(µ) the implicit equations of M are F 1(x) = · · · = F c(x) = 0, where
F 1, . . . ,F c are functionally independent. Then X − H(X) is in νPM(µ)M , the
orthocomplement of TPM(µ)M ; thus it is a linear combination of the gradients
gradPM(µ) F

1, . . . ,gradPM(µ) F
c. We need to evaluate the differential of the map

H at µ, in terms of F 1, . . . .,F c. Set να = ‖gradPM(µ) F
α‖−1 gradPM(µ) F

α (α =
1, . . . , c) and

hαβ(µ) = νανβ,(
hαβ(µ)

)
α,β=1,...,c = ((

hαβ(µ)
)
α,β=1,...,c

)−1
.

Then x −H(x) = tβ(x,µ)νβ where tβ(x,µ) = hαβ(µ)(x −PM(µ))να . Therefore,
H(x) = x + hαβ(µ)((PM(µ) − x)να)νβ , dµH(v) = v − hαβ(µ)(vνα)νβ , that is,

G
j
i = ∂Hj

∂xi
(µ) = δij − hαβ(µ)νi

αν
j
β,(3.4)

where δij = 1 or 0 according as i = j or i �= j . By the delta method we arrive at
the following theorem.

THEOREM 3.6. Let {Xk}k=1,...,n be a random sample from a nonfocal
distribution Q on the submanifold M , given in a neighborhood of µE(Q) by
the equations F 1(x) = · · · = F c(x) = 0. Assume Q has mean µ and covariance
matrix � as a distribution in the ambient numerical space. If G is the matrix
given by (3.4), then n1/2(H(X) − PM(µ)) converges weakly to N(0,G�Gt) in
the tangent space of M at the extrinsic mean µE(Q) = PM(µ) of Q.
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Sometimes the matrix � = G�Gt may be difficult to compute and one may use
nonpivotal bootstrap, that is, Efron’s percentile bootstrap to obtain a confidence
region for µE(Q). We state this as follows [see Efron (1982)]:

COROLLARY 3.7. Under the hypothesis of Theorem 3.6, one may construct
an asymptotic (1 − α)-confidence region for µE(Q) = PM(µ), using the boot-
strapped statistic n1/2(H(X

∗
) − H(X)). Here H is the projection on the affine

subspace XE + TXE
M and X

∗
is the mean of a random sample with repetition of

size n from the empirical Q̂n considered as a probability measure on the Euclidean
space in which M is embedded.

REMARK 3.2. Suppose F is finite and Q is nonfocal. By Theorem 3.2, there
exists δ > 0 such that X is nonfocal if ‖X − µ‖ < δ. Since P (‖X − µ‖ ≥ δ) =
O(n−1), one may define XE to be any measurable selection from the sample
extrinsic mean set if X is focal. Theorem 3.6 and a corresponding version of
Corollary 3.7 hold for this XE.

EXAMPLE 3.2. Let M = Sd , j the usual embedding (inclusion) in Rd+1 and
Q a nonfocal probability measure on Sd , that is, µ = ∫

Rd+1 xQ(dx) �= 0. Let
m = PMµ. Then H(X) − m = X − m − {(X − m) · m}m = X − (X · m)m =
X − µ − {(X − µ) · m}m. Hence

√
n(H(X) − m) converges in distribution to a

d-dimensional normal distribution supported by the tangent space TmSd identified
with {x ∈ R

d+1 :xm = 0}. As a measure on R
d+1 this normal distribution has

mean 0 and covariance matrix � := � + (mt�m)mmt − 2�(mmt), where �

is the covariance matrix of Q viewed as a measure on Rd+1. An asymptotic
(1 − α)-confidence region for m may now be constructed using the estimate of �

obtained by replacing in its expression (i) � by the sample covariance matrix S

and (ii) m by X/|X|. Alternatively, one may use the bootstrap procedure of
Corollary 3.7.

4. Means of distributions on axial spaces, planar shape spaces and their
Veronese–Whitney embeddings. The space of all directions in RN , or axial
space, is an (N − 1)-dimensional real projective space. It is the space RP N−1

of equivalence classes on a round sphere in RN with antipodal points identified.
As such this space carries a Riemannian structure of constant positive curvature,
since the antipodal map is an isometry of the round sphere. This is the space of
elliptic geometry, and the total group of isometries SO(N) has maximum mobility.
Given that this elliptic space is locally isometric with a round sphere, if the support
of a distribution w.r.t. the stabilizer of a point [which is a subgroup of SO(N)

isomorphic to SO(N − 1)] has small diameter, then the intrinsic mean exists (see
Remark 2.1).
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In this section we would like to consider the general situation when the
distribution is not concentrated. Note that for N odd, RP N−1 cannot be embedded
in RN .

Usually, in directional statistics, one regards an axial distribution as one
corresponding to an SN−1-valued random variable X such that X and −X have
the same distribution [Watson (1983), Chapter 5; Fisher, Hall, Jing and Wood
(1996); and Beran and Fisher (1998)]. One may show that the Veronese–Whitney
map defined in Section 3 for N = 3, and given for arbitrary N by the same
formula j ([u]) = u ut (‖u‖ = 1), is an equivariant embedding of RP N−1 into
a 1

2N(N + 1)-dimensional Euclidean space. To see this, let S(N,R) denote the set
of all real N × N symmetric matrices. Since the Euclidean distance d0 between
two symmetric matrices is

d0(A,B) = Tr
(
(A − B)(A − B)t

) = Tr
(
(A − B)2)

,(4.1)

the group O(N) acts as a group of isometries of (S(N,R), d0) via

T (A) = T AT t(4.2)

and leaves M = j (RP N−1) invariant. It is known that O(N) acts transitively
on SN−1, that is, if u, v ∈ RN,‖u‖ = ‖v‖ = 1, there is a T ∈ O(N) such
that T u = v. Then T (j [u]) = T uutT t = vvt = j ([v]), showing that O(N) acts
transitively on M . The stabilizer of this action is O(N − 1). Therefore RP N−1

with the Riemannian metric induced by j is a homogeneous space, with a group of
isometry of largest dimension. From Theorem 3.1 in Kobayashi (1972), it turns
out that with this metric RP N−1 has constant positive curvature, and j is an
equivariant embedding of RP N−1 into S(N,R). Also M = j (RP N−1) is included
in the set S+(N,R) of symmetric nonnegative definite N by N real matrices.
S+(N,R) is convex, so the mean under Q of matrices in S+(N,R) is a matrix
in S+(N,R). Therefore, we are interested in determining only the projection of
a semipositive matrix on M . If A is in S(N,R) and T is an orthogonal matrix,
then d0(A,M) = d0(T (A),M). Given A in S+(N,R), there is T in O(N) such
that T (A) = diag(ηa)a=1,...,N = D, and the entries of D are all nonnegative,
in increasing order. Let x = (xa) be a unit vector in RN . After elementary
computations we get

d2
0
(
D,j ([x])) = 1 + ∑

η2
a − 2

∑
ηa(x

a)2 ≥ d2
0
(
D,j ([eN ])),(4.3)

where eN is the eigenvector of D of unit length corresponding to the highest
eigenvalue. Note that if ηN has multiplicity two or more, then for any t ∈ [0,2π ]
and for any unit vector x = (xa) ∈ RN , we have

d2
0 (D, j [x]) ≥ d2

0 (D, j [cos teN−1 + sin teN ]) = d2
0 (D, j [eN ])

and D is focal. If ηN is simple, that is, has multiplicity one, then d2
0 (D, j [x]) ≥

d2
0 (D, j [eN ]) and the equality holds only if [x] = [eN ]. In this last case, D is a

nonfocal and PM(D) = j ([eN ]). We will call such an eigenvector of length 1 a
highest eigenvector of D. One then obtains the following:
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PROPOSITION 4.1. The set F of the focal points of M = j (RP N−1)

in S+(N,R) is contained in the set of matrices in S+(N,R) whose largest
eigenvalues are of multiplicity at least 2. The projection PM :S+(N,R)\F → M

associates to each nonnegative definite symmetric matrix A with a highest
eigenvalue of multiplicity one, the matrix j ([m]) where m is a highest unit
eigenvector of A.

If Q is a probability measure on RP N−1, assume [X], ‖X‖ = 1 is a RP N−1-
valued random variable with distribution Q. As a consequence of Corollary 3.5
and Proposition 4.1 we obtain the theorem:

THEOREM 4.2. Assume [Xr ], ‖Xr‖ = 1, r = 1, . . . , n, is a random sample
from a probability measure Q on RP N−1. Then (a) Q is nonfocal if the highest
eigenvalue of E[X1X

t
1] is simple and in this case µE(Q) = [m], where m is

a unit eigenvector of E[X1X
t
1] corresponding to this eigenvalue. (b) Under the

hypothesis of (a) the extrinsic sample mean [X]E is a strongly consistent estimator
of µE(Q).

Note that when it exists, [X]E is given by [X]E = [m], where m is a unit
eigenvector of Sn = 1

n

∑n
n=1 XrX

t
r . It may be noted that in this case [X]E is

also the MLE for the mean of a Bingham distribution [Prentice (1984) and Kent
(1992)] and for the mean of the Dimroth–Watson distribution, whose density
function at [x] is proportional to exp(k(µ ·x)2), where k is a constant. For these or
more general parametric families, MLE asymptotics or bootstrap methods [Fisher
and Hall (1992)] are commonly used. Nonparametric techniques of estimation of
extrinsic means will be presented in a forthcoming second part of this article.

We turn now to planar shape spaces [see Kendall (1984)].

DEFINITION 4.1. A planar k-ad is an ordered set (z1, z2, . . . , zk) of k points
in the Euclidean plane at least two of which are distinct. Two k-ads (z1, z2, . . . , zk)

and (z′
1, z

′
2, . . . , z

′
k) are said to have the same shape if there is a direct similarity

T in the plane, that is, a composition of a rotation, a translation and a homothety
such that T (zj ) = z′

j for j = 1, . . . , k. Having the same shape is an equivalence
relationship in the space of planar k-ads, and the set of all equivalence classes of
k-ads is called the planar shape space of k-ads, or the space

∑k
2. Without loss of

generality one may assume that two k-ads that have the same shape also have the
same center of mass, that is,

∑
zj = ∑

z′
j = 0, and they have the same shape if

there is a composition of a transformation T which keeps the origin fixed, and is a
rotation followed by a homothety such that T (zj ) = z′

j for j = 1, . . . , k − 1. Such
a transformation T is determined by a nonzero complex number, that is to say, the
two k-ads with center of mass 0 have the same shape if there is a z ∈ C\{0} such
that zzj = z′

j for j = 1, . . . , k − 1. Thus the shape equivalence class of a planar
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k-ad is uniquely determined by a point in CP k−2, that is to say,
∑k

2 is identified
with CP k−2. Kendall (1984) pointed out that there is no unique way to identify∑k

2 with CP k−2 and indeed our method of identification differs from Kendall’s
method.

Tests appropriate for mismatch of shapes of k-ads were introduced in Sibson
(1978) based on the so-called Procrustes statistic. The Procrustean distance, in
our terminology, is the distance induced by the Euclidean distance on CP k−2 via
a quadratic Veronese–Whitney embedding into a unit sphere of the linear space
S(k − 1,C) of selfadjoint complex matrices of order k − 1. In order to define
j : CP k−2 → S(k − 1,C) it is useful to note that CP k−2 = S2k−3/S1, where
S2k−3 is the space of complex vectors Ck−1 of norm 1, and the equivalence
relation on S2k−3 is by multiplication with scalars in S1 (complex numbers of
modulus 1). If z = (z1, z2, . . . , zk−1) is in S2k−3, we will denote by [z] the
equivalence class of z in CP k−2. The Veronese–Whitney (or simply Veronese) map
is in this case j ([z]) = z z∗ where, if z is considered as a column vector, z∗ is the
adjoint of z, that is, the conjugate of the transpose of z. The Euclidean distance
in the space of Hermitian matrices S(k − 1,C) is d2

0 (A,B) = Tr ((A − B) ×
(A − B)∗) = Tr ((A − B)2).

Kendall (1984) (see his Theorem 1) has shown that the Euclidian distance in
S(k − 1,C) induces via j a Riemannian structure on CP k−2, which is known
in literature as the Fubini–Study metric and has a highest dimensional group of
isometries on CP k−2 among all the Riemannian metrics on this manifold. The
isometry group is the special unitary group SU(k − 1) of all (k − 1) × (k − 1)

complex matrices A, with A∗A = I , det(A) = 1. By analogy with the action of
the orthogonal group in the real projective space, one may show that the group
SU(k − 1) acts transitively as a group of isometries and up to a scaling factor,
j is an equivariant embedding of CP k−2 into the space of self adjoint matrices
S(k − 1,C).

Since M = j (CP k−2) is SU(k − 1) invariant, the techniques used for
j (RP N−1) can be adapted to determine the focal points of M in S+(k − 1,C),
the space of nonnegative definite self-adjoint (k − 1) × (k − 1) complex matrices.
We are then led to the following:

PROPOSITION 4.3. The focal points of M = j (CP N−1) in S+(k − 1,C)

are the nonnegative definite symmetric matrices with the highest eigenvalue of
multiplicity at least 2. The projection PM :S+(k − 1,C)\F → M associates to
each matrix A ∈ S+(k − 1,C) with a highest eigenvalue of multiplicity 1, the
matrix j ([m]), where m is a highest unit eigenvector of A.

The following result, which follows from Theorem 3.4 and Proposition 4.3,
addresses the question of consistency of Procrustes estimators [see Dryden and
Mardia (1998), page 280].
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THEOREM 4.4. Let Q be a probability distribution on CP k−2 and let {[Zr ],
‖Zr‖ = 1}r=1,...,n be a random sample from Q. (a) Q is nonfocal iff λ, the largest
eigenvalue of E[Z1Z

∗
1 ], is simple and in this case µE(Q) = [m], where m is an

eigenvector of E[Z1Z
∗
1 ] corresponding to λ, with ‖m‖ = 1. (b) The extrinsic

sample mean [Z]E is a consistent estimator of µE(Q) iff λ is simple.

EXAMPLE 4.1. The Dryden–Mardia distribution on CP k−2 is induced by a
Ck−1-valued random variable Z which has a multivariate normal distribution with
mean ν and covariance matrix σ 2I2k−2. The variable X on CP k−2 corresponding
to Z is X = [Z] = {λZ,λ ∈ C∗}. Kent and Mardia (1997) showed that E(j (X)) =
αIk−1 + βνν∗, where α > 0, α + β > 0. If we write this quadratic form w.r.t.
orthogonal coordinates with the first axis along ν, we notice that as a matrix,
E(j (X)) is conjugate with a diagonal matrix whose diagonal entries are all α

except for the entry α + β in the upper left corner, showing that E(j (X))

is nonfocal for j . By Theorem 4.4 the extrinsic mean of the Dryden–Mardia
distribution exists and the extrinsic sample mean is a consistent estimator of the
extrinsic mean.

EXAMPLE 4.2. The complex unit sphere is CSk−2 = {z ∈ Ck−1 | ‖z‖ = 1}.
Kent (1994) defines on CSk−2 the complex Bingham distribution associated with
a Hermitian matrix as a parameter by the probability density function

fA(z) = C(A)−1 exp(z∗Az), z ∈ CSk−2.(4.4)

This density is constant along the orbit of z via the action of CS0 given by
(eiθ , z) �→ eiθz. The space of orbits is CP k−2 and the image of the volume measure
of CSk−2 on CP k−2 in this projection is the volume measure associated with the
Fubini–Study metric. Therefore fA(z) induces a probability density function on
CP k−2, which we call the density of the complex Bingham distribution for planar
shapes, given by

gA([z]) = fA(z), [z] ∈ CSk−2.(4.5)

Assume λA is the largest eigenvalue of A and let VA be the eigenspace
corresponding to λA. Then the extrinsic mean set of the complex Bingham
distribution for planar shapes is the set {[µ] | µ ∈ VA\0}. The extrinsic mean
exists only if VA has dimension one over C. Therefore if dimC VA ≥ 2, even if
the Procrustes estimate (extrinsic sample mean) exists, it is inconsistent.

In general, if [zr ] = [(z1
r , . . . , z

k−1
r )], ‖zr‖ = 1, r = 1, . . . , n, are independent

observations from a random variable on CP k−2, the extrinsic sample mean [z]E
is [m], where m is a highest unit eigenvector of

K := 1

n

n∑
r=1

zrz
∗
r .(4.6)
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Note that [z]E is the full Procrustes estimate for parametric families such as
Dryden–Mardia distributions or complex Bingham distribution for planar shapes
[Kent (1992)]. Unlike other authors [Kent (1994) and Kendall (1984)], in our
computations we do not make any use of the so-called Helmert transform. We
simply center the raw landmark data ur = (u1

r , . . . , u
k
r ), r = 1, . . . , n, get wr =

(w1
r , . . . ,w

k
r ) with w

j
r = u

j
r −ur and rescale the first k−1 transformed coordinates

by taking zr = ‖w̃r‖−1w̃r , where wr = (w̃t
r ,w

k
r ). Then we evaluate K in (4.6) and

take the highest eigenvector of K as a representative of [z]E. As noted before,
given that our identification of �k

2 to CP k−2 differs from Kendall’s identification,
the values of [z]E using the two identification methods may differ. This difference
will be small in the case of a highly concentrated distribution, as in the example
below.

REMARK 4.1. The extrinsic sample mean can be used to determine missing
coordinates when most of the landmarks in a new observation are known. We
consider the case of one missing landmark although for more missing landmarks
the same principle works. Assume [z]E = [ζ ], ζ ∈ CSk−2, is the sample mean of a
number of complete observations and o = (z1, . . . , zk−1, z) are the raw coordinates
of a new observation, with z unknown (we may assume w.l.o.g. that the missing
landmark is the last one). After centering and rescaling we get

wj =
(
zj − 1

k

(
z +

k−1∑
s=1

zs

))/(
k∑

j=1

∣∣∣∣∣zj − 1

k

(
z +

k−1∑
s=1

zs

)∣∣∣∣∣
2)1/2

.(4.7)

Minimizing d0([o], [ζ ]) amounts to maximizing

h(z) = (
∑k−1

j=1 |wjζ j |2)∑k−1
j=1 |wj |2 ,(4.8)

where wj are given in (4.7), and the solution gives the missing landmark z

conditionally on the sample data and the other landmarks in o. We will call this the
XM method of retrieval for a single missing landmark.

If z,w ∈ CSk−2, the Fubini–Study distance dg([z], [w]) is proportional to
arccos |ztw|. Therefore the intrinsic mean [z]I of the sample [zr ], ‖zr‖ = 1,
r = 1, . . . , n, is a minimizer of

g([ζ ]) =
n∑

r=1

arccos2(|zt
rζ |), ‖ζ‖ = 1.(4.9)

The minimizer can be determined by selecting ζ = (ζ 1, . . . , ζ k−1) with ζ k−1 > 0.
If for r = 1, . . . , n and j = 1, . . . , k − 1 , we have ζ j = ξj + iηj and z

j
r = x

j
r + iy

j
r ,
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such a minimizer is obtained by using numerical methods for the objective function
of 2(k − 2) real variables

g(ξ1, ξ2, . . . , ξ k−2, η1, η2, . . . , ηk−2)

=
n∑

r=1

arccos2

∣∣∣∣∣∣∣zk−1
r

√√√√√1 −
k−2∑
j=1

(
(ξ j )2 + (ηj )2

) +
k−2∑
j=1

zj
r ζ

j

∣∣∣∣∣∣∣ .
(4.10)

Because the intrinsic distance is larger than the extrinsic distance (chord < arc)
outliers have more influence on the intrinsic sample mean, which makes the use
of the extrinsic mean preferable in practice if strong outliers are present. For
concentrated data the two means are very close to each other.

We close with an example to compute the mean Apert syndrome upper midface,
and to use it to estimate a missing landmark. In our example, based on data from
Bookstein (1991), we determine the extrinsic mean of a group of 8 landmarks
on the Apert syndrome upper midface. The data set represents coordinates of the
following landmarks: the Anterior nasal spine, Sella, Spheno-ethmoid registration,
Nasion, Orbitale, Inferior zygoma, Pterygomaxillary fissure and Posterior nasal
spine taken from lateral X-rays of a group of 14 children suffering from the
Apert syndrome. The data are displayed in Figure 1. Note that the coordinates of
landmark 7 from “child 9” are missing. The shape variable (in our case, shape
of the 8 landmarks on the upper face) is valued in a planar shape space CP 6

(real dimension = 12). The usual statistical methods fail when applied to CP k−2

because, as a Riemannian manifold, CP k−2 is not locally Euclidean, whatever the
metric we consider on it. As a special case of Theorem 3.3(b), one may show that
if the i.i.d. CP k−2-valued observations have a Dryden–Mardia distribution, then
the intrinsic and extrinsic means are the same. Thus the extrinsic sample mean is
a consistent estimator of the intrinsic mean of Q, by Theorem 2.3 or by Ziezold
(1977). This result is due to Kent and Mardia (1997) and Le (1998).

Using MINITAB, from the 13 complete observations, after rescaling, we found
the following representative for the extrinsic sample mean shape corresponding to
[z]E = [z1 : z2 : z3 : z4 : z5 : z6 : z7] ∈ CP 6:

z1 = −0.174205 + 0.351359i, z2 = 0.258564 − 0.431477i,

z3 = −0.112506 − 0.233028i, z4 = −0.527492 − 0.069521i,

z5 = −0.117264 + 0.109873i, z6 = 0.113351 + 0.209546i,

z7 = 0.279319 + 0.000000i, z8 = 0.280233 + 0.063249i.
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FIG. 1. Apert data.

Using MATHEMATICA for the function g in (4.10), we obtained a represen-
tative for the intrinsic sample mean shape corresponding to [z]I = [z1 : z2 : z3 : z4 :
z5 : z6 : z7] ∈ CP 6, which after rescaling, is given by

z1 = −0.174180 + 0.351085i, z2 = 0.258289 − 0.431400i,

z3 = −0.112757 − 0.232802i, z4 = −0.527627 − 0.069441i,

z5 = −0.117257 + 0.109764i, z6 = 0.113449 + 0.209658i,

z7 = 0.279347 + 0.000000i, z8 = 0.280736 + 0.063136i.
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FIG. 2. Extrinsic sample mean of the 13 complete Apert observations.

The representative of the intrinsic sample mean, including the resulting coor-
dinate z8 = −∑7

j=1 zj , is displayed in Figure 3; it cannot be distinguished from
the extrinsic sample mean (cf. Figure 2) since the coordinates of corresponding
landmarks are identical to the third decimal.

As explained above, we used a different method of identification of a shape with
a point in CP 6. For this reason our result slightly difers from the extrinsic mean
obtained using Kendall’s method of identification. We also include a representative
of the extrinsic sample mean, using Kendall’s method of identification [for details
on Kendall’s method see Kendall (1984)], provided by one of the referees:

z1 = −0.1764454 + 0.3503738i, z2 = 0.2619642 − 0.4296601i,

z3 = −0.1109860 − 0.2335313i, z4 = −0.5270207 − 0.0731476i,

z5 = −0.1178114 + 0.1094137i, z6 = 0.1123381 + 0.2108623i,

z7 = 0.2771263 + 0.0000000i, z8 = 0.2808349 + 0.0656893i.

FIG. 3. Intrinsic sample mean of the 13 complete Apert observations.
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FIG. 4. Retrival of landmark 7 in observation 9.

Finally, in Figure 4 we display observation 9 completed by various methods.
Our XM method, from formulas (4.7)–(4.8), yields for the missing landmark
the coordinate z7 = 9.59 + 8.57i. Unlike the empirical method which yields
z7 = 10.46 + 9.02i, the XM method places landmark 7 to the left of landmark 8,
in agreement with 9 out of the complete 13 observations.

However, when applied to the Apert data, both the empirical method and the
XM method perform worse than the TPS (thin-plate spline) method [see Dryden
and Mardia (1998), page 206]. We owe to one of the referees of this paper the
value of z7 = 9.88 + 9.307i based on the TPS method, thus putting landmark 7
above landmark 8, which is the case for 12 out of 13 observations.

For work on missing landmark data see Bookstein and Mardia (2000).

REMARK 4.2. While the computations for Apert data are only illustrative, we
believe that similar computations for random samples of clinically normal children
from various groups of populations, may be useful in reconstructive plastic surgery.
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