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JOHN W. TUKEY’S CONTRIBUTIONS TO ROBUST STATISTICS

BY PETER J. HUBER

We summarize John W. Tukey’s contributions to robust statistics, sepa-
rating them into four categories: conceptual; tools; techniques; procedures.

In robustness, as in every area he touched, John Tukey produced hundreds
of original ideas, some brilliant, fundamental and lasting, some ephemeral. He
presented them in a rambling fashion, in survey articles, in technical reports, in
mimeographed draft memoranda and some only in lectures. Along the route, like
The Three Princes of Serendip (a favorite fable of his), he would make unexpected
discoveries by accident and sagacity. When I started working in robustness in 1961,
I much profited from the superb reprint and preprint collection then housed in the
coffee room of the Berkeley Statistics Department, containing a fair number of his
unpublished papers. Tukey loved words, especially those he had created himself,
and his baffling terminology made those papers hard to understand, especially to
an outsider like me. The precise meaning of his words sometimes changed over
time, and important ideas occasionally got lost in the passage from a preliminary
to the final version of a paper.

In Tukey’s oeuvre, his contributions to robustness are among the least organized,
and, regrettably, there is still no corresponding Collected Works volume. I shall
try to identify some of Tukey’s more important or fertile contributions and to
separate them into four categories: conceptual; tools; techniques; and procedures.
The separation between the latter three categories admittedly is somewhat fuzzy,
but it clarifies matters if we do not throw things such as diagnostic tools, Monte
Carlo techniques and estimation procedures all into the same pot. At the same
time I shall try to transmit some impression of John’s idiosyncrasies and style of
interaction. The choice and assessment of the importance of his contributions are
mine and sometimes would differ from his own.

Conceptual contributions. In robustness, Tukey’s most decisive contribution
was his clear conceptual recognition of the main underlying problem. He
apparently was the first to recognize the extreme sensitivity of some conventional
statistical procedures to seemingly minor deviations from the assumptions, and
he elaborated on this theme in his 1960 paper, “A survey of sampling from
contaminated distributions.” He was not the first to use scale mixtures of normals
to model the distribution of measurement errors [cf. Newcomb (1886)], nor was he
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the first to notice that in practice the mean absolute error might be superior to the
“optimal” mean square error [cf. Eddington (1914)], to mention just two authors.
But he put the finger on the problem, namely on the excessive sensitivity of some
classical procedures to seemingly negligible deviations from the distributional
assumptions, and he gave an eye-opening quantitative example. Implicitly, his
paper made clear that robustness was a stability or continuity problem, but with
topologies somewhat different from those hitherto considered in statistics, and
that contamination models provided very handy formalizations. To quote some
of his own words: “The problem is a large sample problem.” “Moreover, since
gross non-normality will be detected, practical concern must be focussed on the
effects of indetectable or barely detectable non-normality. We shall learn that such
effects may be large” [Tukey (1960), page 453]. It is curious but typical that Tukey,
despite his background in point-set topology (remember that a version of the axiom
of choice has been named after him) left it to others to draw and explicate the not
exactly straightforward topology connection.

While Hampel and myself did so in the 1960s, Tukey’s own robustness interests
shifted to new grounds, namely to heavy-tailed distributions and small samples.
In the Princeton robustness study of 1970–1971 [see Andrews et al. (1972)] his
principal aim was to find compromise estimators that would behave well over the
entire range between the normal and very heavy-tailed distributions. I remember
the amount of persuasion it took me to have him consent to the inclusion of T3
(the t-distribution with three degrees of freedom) in that study. I argued that this
was advisable in order to populate a hole left in the design; he felt that adding
T3 would waste a slot, it being too close to the normal. At a statistics meeting
a few months later, a senior statistician then told me that in his opinion T3 was
too long-tailed to be of practical interest! I still believe the truth is somewhere in
between. Tukey very often, deliberately or not, overstated his points for the sake of
the argument. His (over)emphasis on heavy tails, in combination with the paper by
Donoho and Huber (1983), later contributed to the exaggerated importance some
people assigned to high breakdown point methods in regression. I am sure that
Tukey would share my opinion that uncritical insistence on a high (close to 50%)
breakdown point is just as foolish as uncritical use of a low (below 5%) breakdown
point procedure.

Generally, and especially after he had decided that his central interest was
in data analysis [cf. Tukey (1962), page 2], he would rely on his intuition and
profess open contempt of mathematics. He would cow weaker discussion partners,
including many of his graduate students, by the sheer weight of his authority
(and unfortunately impress upon them that mathematics was unnecessary).
Nevertheless, under duress he would produce nontrivial mathematical arguments.
For example, during the academic year 1970–1971 in Princeton he obviously
relished the presence of hard sparring partners (Bickel, Hampel and myself) and
would bounce his new ideas off us. When we did not buy one of them, he usually
would either retreat gracefully or come forward with a piece of sophisticated
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mathematical reasoning. We never knew whether the latter had been sitting there
all along in the subconscious back of his mind, or whether he had fashioned it on
the spot.

Just before Christmas 1970 David Andrews proposed a collaborative undertak-
ing in order to foster interaction between the robustniks then present in Princeton.
We all knew that only a study narrowly limited to an area we believed to un-
derstand, but which still presented open finite sample problems, had a chance of
succeeding in the short time available (till early June 1971). I was then working
on the asymptotic theory of M-estimates of regression, and I think that all of us in
principle were more interested in robust regression and analysis of variance than
in the simple one-dimensional location problems targeted by Andrews’ proposed
study [cf. Hampel (1997) for further details]. Frank Hampel just has reminded
me of a talk by John Tukey on robust regression, commenting on his depth and
breadth of insight, and regretting that nobody seemed to have followed up on the
full range of open problems raised in that talk. In subsequent years Tukey repeat-
edly tried to organize a successor study on robust regression along similar lines.
However, the goals of such a regression study are elusive to nail down. In particu-
lar, because of the lack of permutation symmetry, suitable experimental designs are
much harder to devise than in the simple location case. In addition, it would have
been necessary for the protagonists to be physically together again for an extended
period of time, which was not practicable. These efforts faded when Tukey’s focus
of interest moved more fully into exploratory data analysis.

Tools. The main obstacle to a more widespread use of nonstandard statistical
procedures was (and still is) the difficulty of understanding what is going on, and of
determining what they actually do in a quantitative sense. It is necessary to be able
to do this not only in general (i.e., for an abstract distributional model), but also in
each particular case, with actual data. One desperately needs tools to assist one’s
understanding (and even more desperately, the ability to use the available tools
sensibly). This applies in particular to all robust procedures, which by necessity are
nonlinear, and which often are defined through obscure algorithms. Specifically,
one needs tools to assess the influence of individual data values on a statistic of
interest, as well as tools for estimating its variability (i.e., a substitute for the
classical “standard error”).

In 1958 Tukey had realized that a method for bias reduction proposed by
Quenouille (1956) could be used for precisely those purposes. To emphasize that
he regarded it as a crude and simple, universally useful tool, he gave it the colorful
name Jackknife.

DEFINITION. Let Tn = Tn(x1, x2, . . . , xn) be an arbitrary statistic. Then the
ith jackknifed pseudovalue is defined as

T ∗
ni = nTn − (n − 1)Tn−1(x1, . . . , xi−1, xi+1, . . . , xn).(1)
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Tukey pointed out that T ∗
ni as defined in (1) measures the (suitably scaled)

contribution of xi toward Tn, and as such is useful for diagnostic purposes.
Quenouille’s original contribution had been to recognize that the arithmetic

mean of the pseudovalues

T ∗
n = n−1

∑

i

T ∗
ni

was an estimator of the same quantity as Tn, but had a smaller bias than the latter.
Tukey in addition pointed out that

1

n(n − 1)

∑

i

(T ∗
ni − T ∗

n )2

usually is a good variance estimate for both Tn and T ∗
n ; actually it is slightly

better adapted to estimating the variance of the former than that of the latter. The
Jackknife is known to fail for statistics that depend only on a few order statistics,
like the sample median. In recent years, after computing has become cheap and
universally accessible, the Jackknife therefore has lost ground against bootstrap
methods.

Around 1970, Tukey proposed a variant of the Jackknife, the sensitivity curve,
designed to assess the sensitivity of an estimator to the position of observations not
present in the sample. This is a finite sample version of Hampel’s influence curve.
Instead of omitting one observation, one adds a virtual observation x to the sample
and assesses its influence on the estimate by

SCn−1(x) = n
(
Tn(x1, . . . , xn−1, x) − Tn−1(x1, . . . , xn−1)

)
.

The sensitivity curve also illustrates two idiosyncrasies of John. First, some of
his more important ideas were propagated through folklore rather than through
his printed work: the sensitivity curve is one of several important ideas appearing
in the mimeographed preliminary version of Exploratory Data Analysis [EDA;
Turkey (1970); cf. the reference in Andrews et al. (1972), page 96], but not in
the final printed version [Turkey (1977)]. Second, it highlights Tukey’s emphasis
on the nonprobabilistic aspects of statistics and data analysis: he preferred
to rely on the actual batch of data at hand rather than on a hypothetical
underlying population of which it might be a sample. His 1960 paper on sampling
from contaminated distributions still had freely used the notion of “robustness”
(insensitivity of the asymptotic distribution of the estimate to small changes in the
underlying population). But his later work almost exclusively favored the notion
of “resistance” (insensitivity of the value of an estimate to small changes in the
underlying sample). Fortunately, it follows from a theorem of Hampel that the two
concepts for most practical purposes are equivalent [see Huber (1981), pages 7
and 41].
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Techniques. It is difficult to compare families of estimators across families
of distributions, if, as usually is the case, one has to rely on simulation methods.
The intrinsic random variability of the simulations easily exceeds the size of the
differences one is interested in. We became painfully aware of this in the course
of the Princeton robustness study. Tukey at that time concocted sophisticated
tricks applicable to error distributions representable as the distribution of random
variables of the form X = Y/Z, where Y is normal, stochastically independent
of Z. In particular he devised “Monte Carlo swindles”: make use of information
on Y and Z available to the person doing the simulation, but not to the statistician,
who is only shown the values of X. Later, he elaborated on another idea: when one
is sampling from strictly positive densities, then in principle each sample can come
from any such density, but with different probabilities; see the book Configural
Polysampling [Morgenthaler and Tukey (1991)].

While he used to change his focus of attention every few years, some ideas had
long gestation periods. At the 1965 Berkeley Symposium he had drawn a few of
us in typical Tukey fashion into an incisive, long and exhausting, but inconclusive,
discussion on the advisability of conditioning in robustness and how one might go
about it. At that time I did not understand what he was up to (I suspect he did not
either), nor how it would be possible to condition in the robustness context, where
one lacked a precise, unique model. Of course his concern about conditioning had
much to do with his preference for dealing with actual data batches of moderate
size rather than with hypothetical underlying distributions, but I believe now that
this discussion already contained the seed for configural polysampling.

Procedures. The separation between exploratory data analysis and robustness
is naturally blurred. Tukey proposed many quick and dirty procedures for
analyzing data with pencil and paper, all of them robust. Examples are the trimeans
(weighted means of three selected order statistics) and several robust straight-
line fits and robust smoothers. He himself loved to analyze data by hand. In
seminar talks, he usually would sit in the back row, occupying his hands and half
of his mind with what he called his “knitting”—a data set he was analyzing by
scratching down numbers with a four-color ballpoint pen. The knitting metaphor
is most apposite, if one remembers that he particularly loved to do iterated running
medians. Interactive use may be more important than the specific procedures
themselves: the main purpose of them is to help the data analyst look at the data
in many different ways. Tukey sometimes said that his philosophy of data analysis
had been expressed already in 1 Corinthians 6.12 (“All things are lawful for me,
but not all things are helpful”). For such an approach to be successful, the analyst
should share Tukey’s own brand of data analytic intuition, which was absolutely
uncanny. It was most impressive how he homed in quickly on any peculiarities of
a data set.

In Tukey’s view, robustness is an attribute of the statistical procedure, typically
to be achieved by weighting or trimming the observations. This ought to be
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contrasted to, say, George Box’s view, who thought that the data should not be
tampered with and that the model itself should be robust. There was a facetious, but
highly illuminating, interchange on this point between the two at an ARO meeting.
Box reminded Tukey that he (Box) had invented the term and he could define
robustness to be anything he wanted it to be. (I think we have here a question of the
chicken and the egg: which is first, a robust procedure or a least favorable model?
John Tukey in his later years disliked and avoided models—note the absence of
models in his EDA [Tukey (1977)]—while George Box, being a Bayesian, was
strongly model-based.) In response to a request of the organizer of that meeting
(Robert Launer), John then sat down in his room that night and wrote a short
descriptive note on his views on robustness, which was inserted verbatim into
the proceedings [Tukey (1979), pages 103–106]. This note is highly interesting,
because it contrasts what matters to the user of robust procedures and what to
the tool-forger. In Tukey’s words: The former needs a reasonably self-consistent
set of procedures that are reasonably easy to use; all efficiencies between 90 and
100% are nearly the same for the user. The tool-forger, on the other hand, should
pay attention to another 1/2% of efficiency. Tukey comments that just which
robust/resistant methods you use is not important—what is important is that you
use some. It is perfectly proper to use both classical and robust/resistant methods
routinely, and only worry when they differ enough to matter. But when they differ,
you should think hard.

Tukey’s intuition regarding robust procedures was less sharp than his data
analytic intuition. This had less to do with his intuition per se than with the fact
that he neglected to keep it in check by (heuristical) mathematical arguments. This
also may have been the reason why over the years he proposed and experimented
with literally hundreds of procedures. It is little known that the Monte Carlo
experiment performed in 1970–1971 and described by Andrews et al. (1972),
which had investigated the performances of some 68 location estimators under
some 40 different “situations” (i.e., error distributions and sample sizes), was
but the A-wave of a sequence of successor experiments. Among them, John had
reserved the H-wave to Bickel, Hampel and myself, and we used it to fill two
conspicuous omissions of the original study (rank estimates, and outlier rejection
rules followed by the sample mean). The H-wave was run in 1972 when Tukey and
his co-workers already had progressed several waves beyond, to N or so. I have it
from hearsay that he ran out of letters of the alphabet before running out of steam.

In distinction to his contributions to spectrum analysis, most of which are here
to stay in their original form, his robust procedures, while providing food for
thought, leave room for improvements. A problem with several of them is that he
did not bother about details and recommended them for general use prematurely.
For example his “Biweight,” a still very popular redescending robust estimate of
location proposed by him shortly after the Princeton robustness study, does not
quite measure up to the redescenders previously designed by Hampel in the course
of that study, because it is redescending too steeply in the flanks. Contrary to



1646 P. J. HUBER

common belief, the “Biweight” is more arbitrary than Hampel’s estimates, and
I guess it became so popular only because it looks nicer (i.e., smoother and
simpler). While the flaw might be negligible to the user, it is large enough to
irk the tool-forger. In any case, many of his procedures are highly intriguing
and challenging. For example, the “Shorth”—the mean of the shortest half of the
sample—is intriguing because it has a slower than usual convergence rate (namely
n−1/3 rather than n−1/2; the slower rate had first jumped into our eyes when we
looked at the computer outputs). Years later a modified and generalized version
was reincarnated by Hampel (1975) and propagated by Rousseeuw (1984) in the
form of least median of squares (LMS) regression estimates.

Another problem is that Tukey had defined many procedures through ad hoc
algorithms without clearly enunciated goals. Indeed, it appears that he often was
more interested in the algorithmic process than in what it ultimately achieved. For
example, consider his median polish, an appealingly simple iterative method for
robustly decomposing a two-way table into (overall) + (row effects) + (column
effects) + (residuals):

xij = m + ai + bj + rij ,

such that the row-wise and column-wise medians of the residuals are all 0; see
Tukey [(1977), Chapter 11]. In most cases, his procedure stops after a small
finite number of steps, and it has the (fairly obvious) property that each iteration
decreases the sum of the absolute residuals. It is, however, much less obvious
that the process hardly ever converges to the true minimum. As a rule, it stops
just a few percent above, but an example (due to Anscombe) shows that the
relative deficiency can be arbitrarily large. I guess that most people, once they
become aware of these facts, for machine calculation will prefer the L1-estimate
of the row and column effects, which gives a fixed-point of the median polish
algorithm achieving this minimum. See in particular Kemperman (1984) and Chen
and Farnsworth (1990).

But even when his intuition did not hit the intended nail, it often hit a
neighboring one. The interplay between trimming and Winsorizing is a good
example. A batch of univariate data is trimmed by dropping a fixed number of
extreme values, say g on the left and g on the right. Tukey felt it would be
preferable not to drop those values entirely, but merely to reduce their influence.
He therefore proposed that, instead of dropping, one should replace those values
by the next adjacent order statistic, that is, by the (g + 1)st and the (n − g)th
respectively. In the honor of Charlie Winsor he called this procedure Winsorizing.
Interestingly, and rather counter-intuitively, it turned out a few years later that
trimming does exactly what Winsorizing was supposed to do but, on the other
hand, that the standard error calculated from the Winsorized sample asymptotically
gives the correct value for the standard error of the trimmed mean. See Huber
[(1981), pages 58–59].
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Common themes. Tukey’s contributions to robustness must be viewed in the
context of the philosophical issues pervading his work in data analysis. They
have been summarized by him in the opening and closing sections of his long
paper “The future of data analysis” [Tukey (1962)]. In distinction to some of
his later pronouncements, his views there are expressed in a balanced fashion.
These sections still are eminently readable and should be required reading for
any aspiring statistician; the issues are likely to stay around for a while to come.
He pointed out that inference in the sample-to-population sense is only part, not
the whole, of statistics and data analysis. Thereby he pushed probability theory
away from the center stage it had occupied in statistics for the preceding half of
a century. He warned against the dangers of optimization and moved the role
of mathematical proof into the background. Instead he stressed the importance of
judgment. On such a basis we can for example justify the use of a procedure, robust
or otherwise, even if we know its properties only approximately and in particular
cannot quantify its accuracy in probabilistic terms (whether these are confidence
intervals or posterior probabilities). Also, we are allowed to rely on simulation (“if
[it] be used wisely”) rather than on rigorous proof. In short, a data analyst should
behave like a scientist rather than as a pure mathematician. Of course I should add
that, for all this to work, you had better be endowed with a good share of John
Tukey’s statistical intuition and judgment!
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