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ASYMPTOTIC NORMALITY WITH SMALL RELATIVE ERRORS
OF POSTERIOR PROBABILITIES OF HALF-SPACES

BY R. M. DUDLEY1 AND D. HAUGHTON2

Massachusetts Institute of Technology and Bentley College

Let � be a parameter space included in a finite-dimensional Euclidean
space and let A be a half-space. Suppose that the maximum likelihood
estimate θn of θ is not in A (otherwise, replace A by its complement) and let
� be the maximum log likelihood (at θn) minus the maximum log likelihood
over the boundary ∂A. It is shown that under some conditions, uniformly
over all half-spaces A, either the posterior probability of A is asymptotic to
�(−√2�) where � is the standard normal distribution function, or both the
posterior probability and its approximant go to 0 exponentially in n. Sharper
approximations depending on the prior are also defined.

1. Introduction. Some examples of half-spaces of interest in parameter
spaces are, in a clinical trial of a treatment versus placebo, the half-spaces where
the treatment is (a) helpful or (b) harmful. Thus one may not only want to test
the hypothesis that the treatment (c) makes no difference, but to assign posterior
probabilities to (a), (b) and (c), under conditions as unrestrictive as possible on the
choice of prior probabilities [e.g., Dudley and Haughton (2001)]. More generally,
we have in mind applications to model selection as in the BIC criterion of Schwarz
(1978) and its extensions [Poskitt (1987); Haughton (1988)], specifically to one-
sided models and multiple data sets [Dudley and Haughton (1997)].

We will describe our results, omitting some details and conditions until
Section 2. Let � be the standard normal distribution function and φ its density. Let
� be an open subset of a Euclidean space Rd and letA vary over half-spaces in Rd .
Let A have boundary hyperplane ∂A. Let P = {Pφ :φ ∈ �} be a family of laws
having densities f (x,φ) with respect to some µ. Given n observationsX1, . . . ,Xn

i.i.d. with a law P not necessarily in P , let φ̂ = φ̂n be the maximum likelihood
estimate of φ ∈�. If φ̂n is in A, replace A by its complement. Let φ̃ = φ̃n be the
maximum likelihood estimate of φ in ∂A. Let LL(φ) := LLn(φ) denote the log
likelihood

∑n
j=1 logf (Xj ,φ) and let � :=�n := LL(φ̂)− LL(φ̃). Then 2� is a

likelihood ratio statistic. We will show in Theorem 1, under conditions to be given
in Section 2, that for any prior law π on � having a continuous, strictly positive
density, for A = An depending on n→∞, if ∂An approaches, however slowly,
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the true or pseudo-true (as defined in Section 2, Assumption A5) parameter point
φ0, then the posterior probability πn(An) is asymptotic to �(−√2�n ). Or if ∂An

remains bounded away from φ0, then both πn(An) and �(−√2�n ) approach 0
exponentially in n.

The classical normal approximation to posterior laws πn was by normal
laws with their means at the MLE (maximum likelihood estimate) φ̂ and their
covariance matrix equal to the inverse of the observed Fisher information matrix,
for example, in one dimension [Walker (1969) and Johnson (1970)] and for
multidimensional φ [Hipp and Michel (1976), Chen (1985) and Pauler, Wakefield
and Kass (1999)]. Thus the posterior law becomes close to a standard normal law
after a linear transformation. On the other hand, Le Cam (1953) proved asymptotic
normality of posteriors without assuming second derivatives of the likelihood
functions, so that the Fisher information matrix may not be defined.

Here, as mentioned, we will instead use nonlinear transformations by way
of likelihood ratio statistics, as did, for example, Bickel and Ghosh (1990),
who gave a set of precise assumptions, some of which (e.g., that the prior has
compact support) are stronger than needed for proving our theorem. (Bickel
and Ghosh’s Bayesian results may be viewed as technical lemmas for proving
frequentist theorems.) Likelihood ratio statistics give much smaller relative errors
of the normal approximation in the tails (see Section 10), and the approximation
is also rather easy to compute, requiring only the values of the likelihood at
the unrestricted MLE φ̂ and at the MLE φ̃ over the boundary ∂A of the half-
space A, and the knowledge of whether φ̂ ∈ A. We do assume second derivatives
of the likelihood functions and use them in showing that relative errors are small.
Some sharpened approximations depending on the prior, defined in Section 3,
are still more accurate in examples (Section 10). After Theorem 1 we give
a corollary showing that under our assumptions the same conclusions hold for
the first sharpened Laplace approximation as for the simpler likelihood root
approximation; stronger assumptions (e.g., beyond mere continuity of the prior
density) would apparently be needed to prove the order of improvement that can
be given by the sharpened approximations.

With notation as in the abstract, let B� := �(
√

2�)/�(−√2�) if the
MLE θ̂n is in the half-spaceA, or�(−√2�)/�(

√
2�) otherwise. Then our result

as stated in the abstract, or in more detail in Theorem 1, shows that B� gives an
asymptotic approximation to the Bayes factor πn(A)/(1−πn(A)) for a half-space
relative to its complementary half-space, for a wide class of proper priors, unless
πn(A) or 1− πn(A) is exponentially small. Yet B� does not depend on the prior.
Thus B� might be viewed as a “default Bayes factor” if no prior is given. Berger
and Mortera (1999) treat alternative possibilities for such factors when priors may
be improper.

Let an � bn mean that an = o(bn) as n→∞. For a fixed half-space A, let
dn be the Euclidean distance from φ̂n to ∂A. Let us say we have a case of Laplace
deviations if dn = O(n−1/2), of intermediate deviations if n−1/2 � dn � 1, and
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large deviations if dn converges to a positive constant d . Let us further say that
deviations are positive if φ̂n /∈A and negative if φ̂n ∈A.

Asymptotic normality of the posterior distribution holds classically for Laplace
deviations [e.g., Hipp and Michel (1976)] and, as the present paper shows, for
positive intermediate (and Laplace) deviations in terms of the likelihood root. In
the analysis literature, asymptotics for integrals of functions e−ah(x) over half-lines
with boundary point near the minimum of h as a→+∞ had been treated in terms
of normal distribution functions by Bleistein [(1966), Section 5], Wong (1973),
Skinner (1980) (in the multidimensional case), Temme (1982) and Wong [(1989),
Section VII.3]. In Temme (1982), h = h(x, a) can depend on a, as for posterior
distributions with a = n, and asymptotic expansions giving small relative errors
are proved under some (analyticity) assumptions.

In a statistical problem one presumably does not know in advance (before
observations are taken) whether the deviation will be Laplace, intermediate or
large. If one uses the asymptotic normality approximation we propose then one
has small relative errors for posterior probabilities of Laplace or intermediate
deviations.

Pauler, Wakefield and Kass (1999) also indicate some cases where posterior
probabilities of subsets A which may be half-spaces, or orthants, are useful. They
give in their Section 4 a “boundary Laplace approximation” which involves the
normal probability of A based on the observed Fisher information matrix at φ̂
times the prior density at the maximum φ̃ of the likelihood on A. Pauler, Wakefield
and Kass (1999) prove under a set of assumptions that as n→∞ the (relative)
error of their approximation approaches 0. Their approximation has the advantages
of applying when A is not necessarily a half-space and the data are not necessarily
i.i.d. On the other hand, their assumption C1, that the approximating normal
probabilities are bounded away from 0, is quite restrictive relative to our situation.

We will treat in Section 9 a multivariate normal location family and present in
Section 10 some numerical results for beta distributions.

2. Statements of assumptions and the main theorem. First we give some
notation. Let Pn := 1

n
(δX1 + · · · + δXn), with δx(A) := 1A(x). The log likeli-

hood LLn(φ) then equals LLn(φ) = n
∫

logf (x,φ) dPn(x), with −∞ ≤ LLn(φ)
<+∞ for all φ. We will need the following assumptions.

(A1) The set P = {Pφ :φ ∈ �} is a family of laws dominated by a
σ -finite measure µ on some sample space (χ,B). Let f (x,φ) be the density
(dPφ/dµ)(x), x ∈ χ , φ ∈�. We take 0≤ f (x,φ) <∞.

(A2) � is an open set in a Euclidean space Rd .

(A3) The observations X1,X2, . . . are i.i.d. random variables with values in
χ and with some law P (not necessarily in the family P ).
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(A4) A prior probability π0(φ) dφ is given on � with a continuous density
π0(φ) > 0 for all φ, so

∫
� π0(φ) dφ= 1.

(A5) There is a φ0 ∈�, to be called the pseudo-true value of φ, such that for
every neighborhood N of φ0 there is a κ > 0 such that almost surely for n large
enough, supφ /∈N LLn(φ) < supφ∈N LLn(φ)− nκ .

(A6) For φ in a small enough neighborhood W of φ0, the function f (x, ·)
is strictly positive and C2 in φ for P -almost all x, and the P -Fisher information
matrix E(φ) := {Eij (φ)}di,j=1 := {EP (−∂2 logf (·, φ)/∂φi∂φj )}di,j=1 exists and is
finite, strictly positive definite and continuous in φ.

(A7) For some neighborhood W of φ0, the class FW := {−∂2 logf (·, φ)/
∂φi∂φj } of functions for φ ∈ W, i, j = 1, . . . , d, is a Glivenko–Cantelli class
for P ; in other words we have supg∈FW

| ∫ g d(Pn − P )| → 0 almost surely as
n→∞.

REMARKS. Sufficient conditions for (A5) to hold can be found from sufficient
conditions for consistency of approximate maximum likelihood estimators; see
Huber (1967), and for further extensions, Dudley (1998). Berk (1966) and
Poskitt (1987) have considered the limiting behavior of posterior distributions for
observations with a law P not in a parametric family.

Both (A6) and (A7), if true for one neighborhood W of φ0, are also true for
all smaller neighborhoods, so we can take W to be the same in both. Since
P will usually be unknown to the statistician, one will need to check that
assumptions (A6) and (A7) hold for all P in a class including at least all Pφ
and preferably all P in some large class. Assumptions (A6) and (A7) hold for an
exponential family in standard form, where f (x,φ)= ex·φ−b(φ), since the second
derivatives of logf are constant in x.

Talagrand (1987) gave a characterization of Glivenko–Cantelli classes for a
given P . Dudley (1998) applies Talagrand’s theorem to extend the Glivenko–
Cantelli property to transformed classes; see also van der Vaart and Wellner (2000).
Sufficient conditions are known for a class F to be a Glivenko–Cantelli class for
all P , and a criterion is known up to measurability for F to be a Glivenko–Cantelli
class uniformly in P [Dudley, Giné and Zinn (1991)]. See also Alon, Ben-David,
Cesa-Bianchi and Haussler (1997).

Note that (A6) and (A7) are preserved by nonsingular linear transformations of
φ1, . . . , φd . Let I denote the d × d identity matrix.

Let A be a half-space {φ ∈ � :φ · vA ≥M} for some vA ∈ Rd , |vA| = 1 and
M ∈R. Then ∂A is the boundary hyperplane ∂A := {φ ∈� :φ · vA =M}. Let

� :=�A,n :=
(

sup
φ∈�

− sup
φ∈∂A

)
LLn(φ),
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where if the suprema are attained at unique points these are φ̂n (unrestricted MLE)
and φ̃n (MLE in ∂A), respectively. Here 2� is known as the (usual) likelihood
ratio (test) statistic, and ±(2�)1/2 as a likelihood root [defined, e.g., as m1 for
p = 1, q = 0 in Lawley (1956), Section 4].

When a statement is made “a.s. for n large enough” it will mean that it holds
with probability 1 for n≥ ni where ni is a random variable, not depending on A,
but possibly depending on other quantities, as will be made explicit in the proofs.

THEOREM 1. Suppose assumptions (A1)–(A7) hold, for a neighborhood W

of φ0 in (A6) and (A7). Let π0(φ) dφ be a prior law on � satisfying (A4). For
x = (X1, . . . ,Xn) let πx,n be the posterior distribution on �. Then almost surely
φ̂n exists for n large enough.

For any ε > 0 there exists κ ′ > 0 such that almost surely for n large enough, for
all half-spaces A, if φ̂n /∈A, then either:

(a) �(−√2�)/(1+ ε)≤ πx,n(A)≤ (1+ ε)�(−√2�), or

(b) both πx,n(A)≤ 3e−nκ ′ and �(−√2�)≤ e−nκ ′ .
Or, if φ̂n ∈A, then the same holds for B =Ac in place of A.

Specifically, if U is a neighborhood of φ0, then for some α > 0, πx,n(Uc) ≤
3e−nα almost surely for n large enough, and for small enough κ ′ > 0 (b) holds
for any half-space A ⊂ Uc. Or, if An is a sequence of half-spaces such that
d(An,φ0) := inf{|φ − φ0| :φ ∈ An} → 0 as n→∞, and φ̂n /∈ An for each n,
then almost surely πx,n(An)/�(−√

2�An,n )→ 1 as n→∞.

The proof will be given in Sections 4 through 8. The main steps in the proof
are as follows: Assume that φ̂n /∈ A, the case φ̂n ∈ A following by symmetry. For
any neighborhood V of φ0, if A is disjoint from V then (b) in the Theorem holds
for n large enough. We will find a small enough V so that if A intersects V we can
make a linear change of coordinates from φ into y so that ŷ = 0, the boundary ∂A
is the hyperplane where the first coordinate y1 is some constant, a unique MLE ỹ

in ∂A exists and is the point of A closest to 0, and the empirical Fisher information
matrix En(y) with respect to y is close to the identity matrix when y is close to 0.

We then obtain bounds on integrals In(B) = ∫
B e

−nh(y)π(y) dy, where π(·) is
the prior density in y coordinates, nh(y) is the difference in log likelihoods at the
MLE ŷ and y, so that πx,n(y ∈ C) = In(C)/In(�). Outside of a neighborhood
U(ρ) of the MLE, πx,n is exponentially small, so πx,n(A) equals In(A ∩
U(ρ))/In(U(ρ)) up to an exponentially small quantity. Propositions 2 and 3 give
asymptotic evaluations of In(U(ρ)) and In(A ∩ U(ρ)), which rely on Lemma 5,
relating to Mills’ ratios and their extension to ratios of gamma tail probabilities to
densities.
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3. Sharper approximations. Extending multidimensional Laplace approxi-
mation formulas of Hsu (1948) and Fulks and Sather (1961) [see Wong (1989),
Section IX.5], approximation formulas for integrals of likelihood functions
over hyperplanes or manifolds have been proved under different conditions by
Haughton (1984, 1988) and Poskitt (1987). Shun and McCullagh (1995) give fur-
ther asymptotic expansion terms and consider high dimensions relative to n; see
also Barndorff-Nielsen and Wood [(1998), Section 4]. Leonard (1982), Tierney
and Kadane (1986), Tierney, Kass and Kadane (1989), DiCiccio and Martin (1991)
and DiCiccio and Stern (1993) applied the Laplace method to approximate a mar-
ginal posterior density in case of a parameter φ = (ψ,η) where ψ = (ψ1, . . . ,ψp)

is a parameter of interest and η = (η1, . . . , ηq) is a nuisance parameter. In our
case, where we are interested in posterior probabilities of a half-space A which
can be written ψ1 ≥ ψ ′1, we have p = 1, ψ ≡ ψ1, q = d − 1, ηj = φj+1 for
j = 1, . . . , d − 1. Let π(φ) be the prior density, Y = (Y1, . . . , Yn) the observa-
tions, φ̃(ψ) = (ψ, η̃(ψ)) the MLE of φ for fixed ψ , if it exists, φ̂ = (ψ̂, η̃(ψ̂))

the overall MLE, 8 the log likelihood, m(ψ) := 8(φ̃(ψ)) the profile log likelihood,
and 8ηη := {∂28/∂ηi∂ηj }qi,j=1 the Hessian of 8 with respect to η. Let πψ |Y (ψ) be
the marginal posterior density of ψ . Then the approximation in the form stated by
DiCiccio and Stern (1993) is

π∗ψ |Y (ψ) := c∗
(

det[−8ηη(φ̃(ψ))]
det[−8ηη(φ̂)]

)−1/2
π(φ̃(ψ))

π(φ̂)
em(ψ)−m(ψ̂),(1)

where c∗ is a normalizing constant. (Note that functions of φ̂ and ψ̂ do not depend
on the argument ψ and in that sense are also constants.) Let z be the likelihood
root

z := sgn(ψ − ψ̂)

√
2
(
m(ψ̂)−m(ψ)

)
.(2)

If there is a pseudo-true ψ0 and a 1–1, mutually C1 relationship between z and ψ
for ψ in some neighborhood of ψ0, as will be shown in the Appendix, we get an
approximate posterior density for z,

π∗∗z|Y (z) := c∗
(

det[−8ηη(φ̃(ψ(z)))]
det[−8ηη(φ̂)]

)−1/2
π(φ̃(ψ(z)))

π(φ̂)
e−z2/2 dψ

dz
.(3)

We then define an approximation for the posterior probability of a half-space
A :ψ ≥ψ ′ > ψ̂ or equivalently z≥ z1 > 0, say, by

π∗∗(z≥ z1)

:=�(−z1)

(
det[−8ηη(φ̃(ψ(z1)))]

det[−8ηη(φ̂)]
)−1/2

π(φ̃(ψ(z1)))

π(φ̂)

dψ/dz|z=z1

dψ/dz|z=0
.

(4)

The approximation given by Theorem 1 is just �(−z1). We can now state the
following corollary.
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COROLLARY 1. Under the hypotheses of Theorem 1, if An are half-spaces
with φ̂n /∈ An and d(An,φ0)→ 0 as n→∞ where for each n, An is written as
{ψ ≥ ηn} (where the parameter ψ , a linear function of φ, can also depend on n),
then the posterior probability πx,n(An) is asymptotic as n→∞ to its sharpened
Laplace approximationπ∗∗(z≥ zn), which is well defined almost surely for n large
enough.

A proof will be given in the Appendix.
To improve the approximation of small posterior probabilities, one can

consider π∗∗ and the following approximations, but the rest of this section is
nonrigorous.

The approximation π∗∗(z ≥ z1) can be sharpened further. We will define
approximations in the one-dimensional case p = d = 1, q = 0, assuming that the
prior density π is differentiable at least once, or has higher derivatives for higher-
order approximations. The ratio of determinants is replaced by 1 and φ̃(ψ) ≡ ψ .
Let τ be the prior density as a function of z, so τ (z)= π(ψ(z)) dψ/dz. Let z1 ≥ 0.
The posterior probability πY (z≥ z1) equals∫ ∞

z1

τ (z)e−z2/2 dz

/∫ ∞
−∞

τ (z)e−z2/2 dz,(5)

exactly if the 1–1, increasing, C1 relationship between z and ψ holds for all
|z|<∞ (as in the beta case in Section 10), or up to an error exponentially small
in n under broader conditions, with ∞ replaced by K

√
n for some K <∞.

Let πk,∗Y (z ≥ z1) denote the approximation to πY (z ≥ z1) where τ is replaced
by partial Taylor expansions through order k, around 0 in the denominator and
around z1 in the numerator. The integrals of polynomials in z times exp(−z2/2)
can be found explicitly. In the denominator, odd powers of z yield 0 integrals. We
get π∗∗(z≥ z1)= π

0,∗
Y (z≥ z1) and for ζ := z1,

π
1,∗
Y (z≥ z1)= τ (0)−1[�(−z1)τ (z1)+ τ ′(z1)

(
φ(z1)− z1�(−z1)

)]
,

π
2,∗
Y (z≥ ζ )

= �(−ζ )[τ (ζ )− ζτ ′(ζ )+ τ ′′(ζ )(1+ ζ 2)/2] + φ(ζ )[τ ′(ζ )− ζτ ′′(ζ )/2]
τ (0)+ τ ′′(0)/2

.

DiCiccio and Martin (1991) gave a related approximation. In one dimension,
letting l(ψ) denote the log likelihood function and l(k) its kth derivative, for a
given ψ1, the posterior tail probability πn(ψ ≤ψ1) is approximated by

π
DM,∗
Y :=�(z1)+ φ(z1)

[
1

z1
+

√
−l(2)(ψ̂)π(ψ)
l(1)(ψ)π(ψ̂)

]
,(6)



1318 R. M. DUDLEY AND D. HAUGHTON

where ψ(z1)= ψ1 and we have in mind ψ1 ≤ 0 in this case. These approximations
will appear in the examples in Section 10.

Following a method going back at least to Bleistein (1966), Temme (1982) in
effect expands an integral

∫ w
−∞ φ(z)f (δz) dz for a smooth function f as

f (0)�(w)+
∫ w

−∞
f (0)− f (δz)

z
dφ(z),

integrating by parts and iterating the process to obtain an asymptotic expansion
in powers of δ ↓ 0. Here Temme (1982), going beyond earlier work by analysts
as far as we know, allows f to depend separately on δ if it satisfies suitable
conditions. In our case δ = 1/

√
n. Although the resulting expansions appear at

first sight different from ours, we have verified that: if δw→ 0, while possibly
w→−∞, the terms of orders δj , j = 0,1,2, are the same in our expansions
of the numerator and denominator of π∗,2Y as in those of Temme (1982). Or, if
δ ↓ 0, w→−∞ and δw→ u < 0 (a large deviation case), then our expansion and
Temme’s have different coefficients of �(w) and φ(w), but via

�(w)= φ(w)

[
− 1

w
+ 1

w3 +O(w−5)

]

as w→−∞, Temme’s series, and ours except for the error bound, give

φ(w)

[
−δf (u)

u
+ δ3

{
f (u)− uf ′(u)

u3

}
+O(δ5)

]
,(7)

where the O(δ5) term also depends on f and u.
When applying Temme’s expansion method to a beta probability

Ix(a, b)=
∫ x

0
ta−1(1− t)b−1 dt

/
B(a, b), 0 < x < 1, a > 0, b > 0,

there are different possible choices of δ such as 1/
√
a+ b [Temme (1982)]

or 1/
√
a+ b− 2 for a + b > 2 or 1/

√
a + b− 1 for a + b > 1 (Section 10

below). Temme (1982, 1987) evaluates the complete beta function B(a, b) directly,
whereas we apply approximations to it as examples of how the approximations
might work more generally.

There is an evident similarity between the sharpened Laplace approximations
to posteriors just given and the “saddlepoint” approximation to tail probabilities
for sample means due to Lugannani and Rice (1980); see also Daniels (1987) and
Jensen [(1995), Chapter 3]. One contrast is that the Lugannani–Rice and related
approximation formulas (e.g., for distributions of maximum likelihood estimators)
are based on moment generating functions, sometimes for approximating distrib-
utions [e.g., Fraser, Reid and Wu (1999)], and do not require explicit knowledge
of the densities of the sample means. Conversely, πi,∗Y and π

DM,∗
Y do not involve

moment generating functions, but they do use the likelihood functions and prior
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densities (which are usually given explicitly in the Bayes case) and their deriva-
tives.

In applications of the Laplace method to posterior probabilities, DiCiccio and
Martin (1991) and Fraser, Reid and Wu (1999) gave error rates of O(n−3/2) but
only for Laplace deviations. We will see in Table 3 of Section 10 that πi,∗Y and
π

DM,∗
Y also work well in a large deviation example.

4. Preliminary transformations. Here we begin the proof of Theorem 1. Let
Ln(φ) := exp(LLn(φ)) be the likelihood function. We first note that the posterior
law is eventually well defined under our assumptions: it follows from (A5) that for
a compact neighborhood N of φ0, a.s. for each n large enough, Ln(φ) is bounded
outside of N . On N it is bounded by continuity (A6). Then

∫
Ln(φ)π0(φ) dφ

<∞. Also by (A5), for the same n, Ln(φ) > 0 for some φ ∈N and so by continu-
ity Ln(φ) > 0 on some nonempty open set. Then by (A4)

∫
Ln(φ)π0(φ) dφ > 0.

Thus a.s. for n large enough, Ln(φ)π0(φ)/
∫
Ln(φ

′)π0(φ
′) dφ′ is a well-defined

posterior probability density.
We will assume first and for most of the proof that φ̂n /∈ A. The case φ̂n ∈ A

will follow by symmetry. We will make a linear change of coordinates in � so
that we can assume φ̂n = 0, E(φ0) is the identity matrix, A is a half-space with
boundary where the first coordinate φ1 is some constant and φ̃ is the point of A
closest to 0. Moreover, we need to make these changes “without loss of generality,”
which requires proof since A varies over all half-spaces and κ ′ must not depend
on A. Also, our informal statements so far have assumed that unique maximum
likelihood estimators φ̂n in � and φ̃n in ∂A exist, which is true for φ̂n for n large
enough, but not necessarily true for φ̃n simultaneously for all half-spaces A. It
is true if ∂A is close enough to φ̂n in a sense to be made precise as Case I (28)
after some coordinate transformations. The full transformation involving φ̃n will
be made in Case I.

We can take 0 < ε < 1. Take δ > 0 small enough so that

(1+ δ)3d+9 < 1+ ε.(8)

Then δ < 1/10. Let δ1 := δ2/100. By a fixed linear transformation of φ (not
depending on A) we can obtain coordinates θ in which E(θ0) = I , the identity
matrix, where θ0 is φ0 expressed in θ coordinates. By assumption (A4) there exists
a neighborhood V0 of θ0 such that, for the prior density π0(φ) dφ now expressed
as π1(θ) dθ , and η := infθ∈V0 π1(θ),

η ≤ π1(θ)≤ η(1+ δ), θ ∈ V0.(9)

To recall some facts about matrix norms, let K and J be d × d real matrices.
For the Euclidean norm ‖t‖ := (t21 + · · · + t2d )

1/2, we use the matrix norm
‖K‖ := max‖t‖=1 ‖Kt‖. Let K ≤ J mean that J − K is nonnegative definite
and symmetric. For any symmetric real matrix K , ‖K‖ = maxi |λi | for the
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eigenvalues λi of K . Thus if −cI ≤K ≤ cI and c ≥ 0, then ‖K‖ ≤ c. Conversely
if J is symmetric and ‖J − I‖< 2c/3 where 0 < c < 1/2 then

I/(1+ c)≤ J ≤ (1+ c)I.(10)

Then, there is a γ1 > 0 such that for W as in (A6) and (A7) and

V := {θ :‖θ − θ0‖< 4γ1},(11)

V ⊂W ∩ V0 and ‖E(θ)− I‖< δ1/3 for all θ ∈ V .
By a rotation which does not change distances, and keeps E(θ0) = I , we can

assume that vA = (1,0, . . . ,0), so A is a set

A= {θ : θ1 ≥M}.(12)

Let En(θ) be the empirical Fisher information matrix,

En(θ) :=
{
−

∫ (
∂2 logf (x, θ)/∂θi∂θj

)
dPn(x)

}n
i,j=1

.(13)

Almost surely for n large enough, by (A7),

‖En(θ)− I‖< 2δ1/3(14)

for all θ ∈ V , and by (A5), a.s. for n large enough the supremum of the likelihood
will be attained at some point θ where ‖θ − θ0‖ ≤ γ1. Specifically, this will occur
for n ≥ n0(ξ, γ1) where ξ is a point of the probability space on which Xj are
defined. At any such point, the gradient of LLn(θ) exists and is 0. By (14) and (10)
we have

I/(1+ δ1)≤En(θ)≤ (1+ δ1)I(15)

for all θ ∈ V . By (15), En is strictly positive definite on V , so almost surely,

for n≥ n0(ξ, γ1) a unique MLE θ̂n exists with ‖θ̂n − θ0‖< γ1.(16)

By a translation we can assume

θ̂n = 0.(17)

Then from (12),

A= {θ : θ1 ≥ ζ }(18)

for some ζ depending on θ̂n, A and the choice of coordinates. The translation
preserves distances and the fact that E(θ0)= I .

By (18), ζ > 0 since θ̂n = 0 /∈ A. Also by (15), LLn is strictly concave on V .
Thus if A ∩ V is nonempty, and since we assume θ̂n /∈A, we have

sup
A∩V

LLn = sup
∂A∩V

LLn.(19)
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For θ ∈�, let

H(θ)=Hn(θ)= 1

n

n∑
i=1

[logf (Xi,0)− logf (Xi, θ)].(20)

Along every line segment θ = tw in V , say, a < t < b, where ‖w‖ = 1, we have
by (15) that 1/(1 + δ1) ≤ d2H(tw)/dt2 ≤ 1 + δ1. A Taylor expansion around
0= θ̂n, where ∇H = 0, then gives dH(tw)/dt|t=0 =H(0)= 0,

1/(1+ δ1)≤ [dH(tw)/dt]/t ≤ 1+ δ1 for t �= 0,(21)

t2/[2(1+ δ1)] ≤H(tw)≤ t2(1+ δ1)/2.(22)

In what follows we let H(ζ,X)≡H(ζ) if d = 1. For ζ ≤ γ1 we have

H(ζ,0)≤ ζ 2(1+ δ1)/2(23)

[here 0 is the (d − 1)-dimensional zero vector]. Also, for (ζ,X) ∈ V ,

H(ζ,X)≥ (ζ 2 + ‖X‖2)/[2(1+ δ1)].(24)

Let

ρ := γ1/(1+ 6−1δ)≤ γ1/
(
1+ (δ2/36)

)1/2
.(25)

Let r := ρ/2. Let Id−1 be the total (d − 1)-dimensional area of the
sphere Sd−1 := {ω ∈ Rd :‖ω‖ = 1}. Then I0 := 2, I1 = 2π , I2 = 4π, . . . ,
Ik = 2π(k+1)/2/L((k + 1)/2) for k = 0,1, . . . . Let C1 := 1/2, C2 := π/9 and
Cd :=Id−1/(2Id−2) for d ≥ 3. Let, for κ in (A5) with N = V ,

ζ0 := ζ0(d, r, δ) :=min(Cdrδ,
√
κ).(26)

Since Id = 2
∫ 1

0 Id−1(1 − x2)(d−2)/2 dx ≤ 2Id−1 for d ≥ 2, we have for all
d = 1,2, . . . ,

Cd ≤ 1.(27)

5. Cases of the proof. Recall ζ0 as defined in (26). The proof of Theorem 1
will be divided into two cases:

Case I: 0 < ζ < ζ0,(28)

where the boundary ∂A= {θ1 = ζ } is not too far from the MLE θ̂n = 0, and

Case II: ζ ≥ ζ0,(29)

where ∂A is bounded away from θ̂n by a fixed amount.
Here, we will begin the main proof in Case I, where either (a) or (b) in

Theorem 1 may hold. We will find a unique MLE θ̃n in A or equivalently by (19),
(23) and (26) in ∂A. The following arguments through (38) are immediate if d = 1
since (ζ,X) is replaced by ζ and X by 0 ∈Rd−1.
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For fixed ζ with 0 < ζ < ζ0, inf(ζ,X)∈V H(ζ,X) can by (23) and (24) be
restricted to (ζ,X) such that (ζ 2 + ‖X‖2)/(1+ δ1) ≤ ζ 2(1+ δ1), or equivalently
1 + ‖X‖2/ζ 2 ≤ (1+ δ1)

2, and thus since δ < 1/10 and δ1 = δ2/100,

‖X‖2/ζ 2 ≤ 2δ1 + δ2
1 ≤ δ2/36.(30)

This then implies ζ 2 + ‖X‖2 ≤ γ 2
1 by (25) since ζ < ρ. Thus (ρ,X) ∈ V by

definition (11) of V and (16) for n ≥ n0(ξ, γ1). On the compact, convex set
of (ζ,X) satisfying (30) for fixed ζ > 0, H is a C2 function, strictly convex
by (15), so H attains its minimum on {θ1 = ζ } ∩ V at a unique point θ̃ := (ζ, X̃),

where X̃ = X̃(ζ ).
Define new coordinates y by the linear transformation y = T (θ) such that for

u(1) := (u2, . . . , ud), where u may be y or θ ,

y1 = θ1, y(1) = θ(1) − θ1X̃/ζ.(31)

We have ζ < ρ, so that (ζ,0) ∈ U(ρ) := {y :‖y‖ < ρ}. In the y coordinates,
A still is {y1 ≥ ζ } and ŷ = 0. Now ỹ = (ζ,0). Define h= hn so that

h(y) := hn(y)=Hn(θ)=Hn(y1, y
(1) + y1X̃/ζ ).(32)

Then since ζ < ρ, ‖T − I‖ ≤ δ/6 by (30). Since T −1 and its transpose (T −1)t

have the same form as T and T t , respectively, in this case, replacing X̃ by −X̃,
also

‖T −1 − I‖ = ‖(T −1)t − I‖ ≤ δ/6.(33)

Thus since ζ < ζ0, if ‖y‖ < ρ then ‖θ‖ = ‖θ − θ̂n‖ ≤ (1 + (δ/6))‖y‖ < γ1
by (25), so θ ∈ V ⊂ V0 by choice of γ1 and (16), for n ≥ n0(ξ, γ1). We have
D(2)Hn = En by (13) and (20), and D(2)hn = (T −1)t (D(2)Hn)T

−1. By (14)
and (33) and a short calculation we then have ‖D(2)hn− I‖< 2δ/3. Thus by (10),
if ‖y‖< ρ,

I/(1+ δ)≤D(2)hn ≤ (1+ δ)I.(34)

Note that the determinants (Jacobians) of an orthogonal transformation,
translation and T (31) are all ±1, so that the volume element dy = dθ is
unchanged. Then by (9), for ‖y‖< ρ,

η≤ π(y)≤ η(1+ δ),(35)

where π(y) is the density of the prior π1 for θ expressed in the y coordinates.
Recall that U(ρ) := {y :‖y‖ < ρ}. Note that U(ρ), by (31), depends on θ̂n,

ζ > 0, X̃, and its radius ρ > 0 for y, U(ρ) = U(ρ, ζ, X̃, θ̂n).
Reviewing then, in Case I, since 0 < ζ < ρ < γ1, in the y coordinates, Hn is

expressed as hn ≡ hn(y), the maximum likelihood estimate ŷ is equal to 0, and the
maximum likelihood estimate on the set ∂A= {y1 = ζ } equals (ζ,0).
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6. Bounds for the likelihood function and integrals. It follows from (20),
(32), (34) and a Taylor expansion around y = 0 as in (22) that

‖y‖2/[2(1+ δ)] ≤ h(y)≤ (1+ δ)‖y‖2/2(36)

for all y in U(ρ). We have A ∩U(ρ)= {y1 ≥ ζ } ∩U(ρ). Since h is minimized at
(ζ,0) on {y1 = ζ } ∩ U(ρ), it follows that ∂h/∂yj = 0 at (ζ,0) for j = 2, . . . , d .
By a Taylor expansion around (ζ,0), we have by (34) for (ζ,X) ∈ U(ρ) and

τ := h(ζ,0),(37)

τ + 1

2(1+ δ)
‖X‖2 ≤ h(ζ,X)≤ τ + (1+ δ)

2
‖X‖2.(38)

Note that

nτ =�(39)

by (17), (20), (32) and (37). Assume that d ≥ 2 (the case d = 1 is easier and will
be omitted). Define

In(B) :=
∫
B
e−nh(y)π(y) dy(40)

for any measurable set B . Note that by (20) and (32), the likelihood function equals
ML e−nh, where ML is the maximum likelihood on �.

Recall that πx,n is the posterior distribution on �, so a.s. for n large enough, for
any measurable set C ⊂� in y coordinates, πx,n(y ∈C) equals

ML
∫
C
e−nh(y)π(y) dy

/(
ML

∫
�
e−nh(y)π(y) dy

)
= In(C)/In(�).(41)

We will prove Theorem 1 by way of three propositions. Proposition 1 will say
that πx,n(U(ρ)c) is exponentially small in n; Proposition 2 gives an asymptotic
evaluation for In(U(ρ)) and Proposition 3 does so for In(A ∩ U(ρ)). For any
ρ′ > 0 not depending on n let U ′ := U ′(ρ′) := B(θ̂n, ρ

′) = B(0, ρ′) in the
θ coordinates as ultimately chosen, ending with (17).

PROPOSITION 1. For some ν > 0 not depending on the observations, a.s. for
n large enough, πx,n(U ′(ρ/2)c) < e−nν and whenever 0 < ζ ≤ ρ, πx,n(U(ρ)c) <
e−nν .

PROPOSITION 2. We have almost surely for n large enough,

(1+ δ)−(3d+10)/2 ≤ 1

η
In

(
U(ρ)

)
(n/2π)d/2 ≤ (1+ δ)(3d+6)/2.(42)
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PROPOSITION 3. In Case I, for d ≥ 2, we have almost surely for n large
enough, not depending on A,

η(2π/n)d/2(1+ δ)−(3d+10)/2�(−√2nτ)
(43) ≤ In

(
A∩U(ρ))

≤ η(2π/n)d/2(1+ δ)(3d+6)/2�(−√2nτ).(44)

The three propositions will be proved in Section 8 after Lemma 5. Recall that the
orthogonal transformation just before (12) and the translation just after (16) did
not change distances in the θ coordinates.

Let ω = (ω1, . . . ,ωd), S(d+) := {ω ∈ Rd :‖ω‖ = 1, ω1 > 0}. Let dω be
the surface element on S(d+). For any Borel set S ⊂ S(d+), the surface area
measure is Id−1(S) := ∫

S dω. Let Dω := ζ/ω1, and hω := Dω‖ω(1)‖, where
ω(1) = (ω2, . . . ,ωd) ∈ Rd−1. For 0≤ a ≤ b ≤∞ let [[a, b)) := {ω :a ≤Dω < b}.
Then

D2
ω = ζ 2 + h2

ω.(45)

Let the spherical coordinates of y be (t,ω) where ω := y/‖y‖ and t = ‖y‖. Then
dy = td−1 dω dt . Let S(ζ, ρ) := {ω ∈Rd :‖ω‖ = 1, ω1 ≥ ζ/ρ}. We have

In
(
A∩U(ρ))= ∫

S(ζ,ρ)

∫ ρ

Dω

e−nh(tω)π(tω)td−1 dt dω.(46)

If π(·) were constant and h linear then the integrals
∫ ρ
Dω
= ∫∞

Dω
− ∫∞

ρ would be
proportional to gamma probabilities. If h is quadratic without a linear term they
reduce to gamma probabilities or, if d = 1, to normal probabilities. We will bound
the corresponding integrals above and below by gamma probabilities. Thus we
consider gamma and normal probabilities in the following section.

For x > 0, [[x,∞)) = {ω : ζ/ω1 ≥ x} = {ω : 0 ≤ ω1 ≤ ζ/x}. Recalling ζ0 (26)
and Id,Cd as defined just before (26), we have the lemma.

LEMMA 1. For any ζ with 0 < ζ < ζ0, Id−1([[r,∞))) < δId−1/2, where
I0(·) is a sum of unit point masses at 1 and −1.

PROOF. For d = 1, S(1+)= {1}, so [[r,∞)) is empty by (26) and (27) since
ζ < ζ0 < r . For d = 2, I1([[r,∞))) = 2 arcsin(ζ/r). Since arcsin is a convex
function on [0,1], arcsinx ≤ 2x for 0 ≤ x ≤ 1. So since ζ/r < 1, and by (26),
I1([[r,∞)))≤ 4ζ/r < 4C2δ ≤ δπ/2= δI1/4. This proves the lemma for d = 2.

Let now d ≥ 3. We have, again by (26), and since 0 < ζ < ζ0,

Id−1
([[r,∞))

)=Id−1{ω : 0≤ ω1 ≤ ζ/r} =
∫ ζ/r

0
Id−2(1− x2)(d−3)/2 dx

< Id−2ζ0/r ≤ δId−1/2

by definition of Cd above (26). Lemma 1 is proved. �



POSTERIOR ASYMPTOTIC NORMALITY 1325

7. Gamma and normal tail/density ratios. We begin with normal probabil-
ities. Let M(x)=�(−x)/ϕ(x) for x ≥ 0 (M is sometimes called Mills’ ratio).

LEMMA 2. For all x ≥ 0 and 0≤ δ ≤ 1, e−δ ≤M(x(1+ δ))/M(x)≤ 1.

PROOF. For x = 0 the result is clear. It is easily shown that

M ′(x)=−1+ xM(x)(47)

since ϕ′(x) = −xϕ(x). By, for example, Lemma 12.1.6(a) in Dudley (1993), we
have for all x > 0 that �(−x) ≤ ϕ(x)/x and so M(x) ≤ 1/x. It follows that
M ′(x) ≤ 0 for all x > 0. So the second inequality is proved. For the first, and
x > 0, M(x) can be written as Laplace’s continued fraction [Wall (1948), 92.15],

M(x)= 1/(x + 1/(x + 2/(x + 3/(x + · · · .
So again M(x) < 1/x, and now we get

M(x) > 1
/(

x + 1

x

)
= x/(x2 + 1).(48)

It follows that [logM(x)]′ =M ′(x)/M(x)= [−1+ xM(x)]/M(x)≥−1/x, so

[logM(·)]x+δxx ≥−
∫ x+xδ
x

1

t
dt =− log[1+ δ] ≥ −δ.

This completes the proof of the first inequality, and the proof of Lemma 2. �

For α > 0 and s > 0, let

Mα(s) :=
∫ ∞
s

xα−1e−x dx
/
(sα−1e−s).(49)

LEMMA 3. (a) For any α ≥ 1, s > 0 and δ > 0, we have M ′
α(s) ≤ 0,

Mα(s)≥ 1 and e−δ(α−1) ≤Mα(s(1+ δ))/Mα(s)≤ 1.
(b) For α = 1/2, s > 0 and 0< δ ≤ 1, we haveM ′

1/2(s)≥ 0 and 1≤M1/2(s(1+
δ))/M1/2(s)≤ (1+ δ)1/2.

PROOF. For (a), note first that M1 ≡ 1. So assume α > 1. Using xα−1 ≥ sα−1

for x ≥ s it follows that Mα(s) ≥ 1 for all s > 0. We have M ′
α(s) = −1 +

Mα(s)[1− (α−1
s
)]. An integration by parts shows that Mα(s)≤ 1+ (α−1

s
)Mα(s).

So M ′
α(s)≤ 0. This proves the first part of (a). Now d log(Mα(s))/ds =− 1

Mα(s)
+

1− (α−1
s
)≤ 0. So, d

ds
[log(Mα(s))] ≥ −(α−1

s
) since Mα(s)≥ 1. Thus,∫ s+δs

s

d

dt
[log(Mα(t))]dt ≥−(α− 1) log(1+ δ)≥−(α − 1)δ.

So Mα(s + δs)/Mα(s)≥ e−δ(α−1). This completes the proof of (a).



1326 R. M. DUDLEY AND D. HAUGHTON

For (b), we have M1/2(s) ≡
√

2sM(
√

2s). So by (47), with u := (2x)1/2,
M ′

1/2(x) = [M(u)(1 + u2)− u]/u. Since M(u) > u/(1+ u2) by (48), M ′
1/2(x)

≥ 0. This proves the first part of (b) and the first inequality of the second part. For
the last inequality, Lemma 2 gives M1/2((1+ δ)s)≤ [2s(1+ δ)]1/2M([2s]1/2), so
M1/2((1+ δ)s)≤ (1+ δ)1/2M1/2(s). �

Next, let a > 0, and let Xa be a random variable distributed according to a La
distribution with density xa−1e−x/L(a) for x > 0. We have:

LEMMA 4. For any a > 0, (a) Ma(s)→ 1 as s→∞.

(b) For α fixed in (0,1) and 0 ≤ x ≤ αy, as y→∞, P (Xa ≥ y)/P (Xa ≥ x)

→ 0 uniformly in such x.

PROOF. (a) The definition of Ma (49) and integration by parts give∫ ∞
s

xα−1e−x dx = sα−1e−s + (α − 1)
∫ ∞
s

xα−2e−x dx,

and (a) follows since
∫∞
s xα−2e−x dx ≤ s−1 ∫∞

s xα−1e−x dx.
(b) By (a) it suffices to note that as y→∞, ya−1e−y/[(αy)a−1e−αy] = α1−a

× e(α−1)y→ 0. �

8. The rest of the proof. In this section we will finish the proof of Theorem 1.
The following bounds the inner integral in (46) via gamma probabilities:

LEMMA 5. LetUv := (0, v)with v > 0 and g :Uv �→R. Suppose that for some
0 < δ ≤ 1, for all t in Uv , 1/(1+ δ)≤ g′′(t)≤ 1+δ and assume that g′′ and thus g
and g′ can be extended to be continuous on [0, v], with g(0)= g′(0)= 0. Let π(·)
be measurable on Uv and such that for some η > 0, we have η ≤ π(t)≤ η(1+ δ)

for all t ∈ Uv . For 0≤ a < v, n= 1,2, . . . and k = 0,1,2, . . . , let

In,a,k := In,a,k,v :=
∫ v

a
e−ng(t)π(t)tk dt,

Ln,a,k := ηe−ng(a)ak−1M(k+1)/2(na
2/2)n−1.

(50)

We then have In,a,k,v ≤ Ln,a,k(1+ δ)k+2, and In,a,k,v is bounded below by

Ln,a,k

(1+ δ)k+1 −
ηe−ng(a)

n
√

1+ δ
vk−1 exp

[
n

2
(1+ δ)(a2− v2)

]
M(k+1)/2

(
nv2

2

)
.

PROOF. We have that t/(1+ δ) ≤ g′(t) ≤ t (1 + δ), thus t2/[2(1+ δ)] ≤
g(t)≤ t2(1+ δ)/2 for all t in Uv . Now for 0≤ a ≤ t ≤ v,

g(t)= g(a)+
∫ t

a
g′(s) ds ≥ g(a)+

∫ t

a

s

1+ δ
ds = g(a)+ (t2 − a2)

2(1+ δ)
,
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so

In,α,k,v ≤ η(1+ δ)

∫ ∞
a

e−ng(a) exp
[
−n(t

2 − a2)

2(1+ δ)

]
tk dt.

For any λ > 0 let

Ja,λ,k :=
∫ ∞
a

exp(−λt2)tk dt.(51)

Then

Ja,λ,k = (2λ)−1ak−1 exp(−λa2)M(k+1)/2(λa
2)(52)

by the change of variables u= λt2. Set λ1 := n/[2(1+ δ)]. It follows that

In,α,k,v ≤ η(1+ δ) exp
[
−ng(a)+ na2

2(1+ δ)

]
Ja,λ1,k(53)

and

Ja,λ1,k =
(1+ δ)

n
ak−1 exp

[
− na2

2(1+ δ)

]
M(k+1)/2

(
n

2(1+ δ)
a2

)
.(54)

Next,

eδ ≤ (1+ δ)2 for 0≤ δ ≤ 1,(55)

as is easily checked. Set

s := λ1a
2, α := (k + 1)/2(56)

and recall that λ1 = n/[2(1+ δ)]. Then s(1+ δ)= na2/2.
By Lemma 3(a), for k ≥ 1 [so that α ≥ 1 by (56)], then by (55), we have

Mα(s)≤Mα(na
2/2)eδ(α−1)=Mα(na

2/2)eδ(k−1)/2 ≤Mα(na
2/2)(1+ δ)k−1.

If k = 0, M1/2(s) ≤ M1/2(na
2/2) by Lemma 3(b). So, in all cases, for k = 0,

1,2, . . . ,

M(k+1)/2(λ1a
2)≤M(k+1)/2(na

2/2)(1+ δ)k,

and by (54),

Ja,λ1,k ≤ (1+ δ)k+1n−1ak−1 exp
[
− na2

2(1+ δ)

]
M(k+1)/2(na

2/2).

Thus by (53) and (50),

In,a,k,v ≤ η(1+ δ)k+2 exp[−ng(a)]n−1ak−1M(k+1)/2(na
2/2)= (1+ δ)k+2Ln,a,k,

proving the first statement in Lemma 5.
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For the lower bound, we have by the first line of the proof,

g(t)= g(a)+
∫ t

a
g′(x) dx ≤ g(a)+

(∫ t

a
x dx

)
(1+ δ)

= g(a)+ (t2 − a2)(1+ δ)/2.

So

In,a,k,v ≥ η exp[−ng(a)+ na2(1+ δ)/2]
∫ v

a
tke−(1+δ)nt2/2 dt

or equivalently, recalling (51) and setting b := (1+ δ)n/2,

In,a,k,v ≥ η exp[−ng(a)+ na2(1+ δ)/2][Ja,b,k − Jv,b,k].(57)

By (52) with λ= b, we have

Ja,b,k = 1

n(1+ δ)
M(k+1)/2

(
(1+ δ)na2/2

)
ak−1 exp[−na2(1+ δ)/2].(58)

For k ≥ 1, (k + 1)/2≥ 1, so by Lemma 3(a),

M(k+1)/2
(
(1+ δ)na2/2

)≥M(k+1)/2(na
2/2)e−δ(k−1)/2.

Since 0< δ < 1 by (8), we have eδ ≤ (1+ δ)2 by (55), and so

M(k+1)/2
(
(1+ δ)na2/2

)≥M(k+1)/2(na
2/2)

1

(1+ δ)k−1

for k ≥ 1. For k = 0, by Lemma 3(b), M1/2((1+ δ)na2/2)≥M1/2(na
2/2). So,

Ja,b,k ≥ (
exp[−(1+ δ)na2/2])ak−1 1

n
M(k+1)/2(na

2/2)(1+ δ)−k−1(59)

for all k = 0,1, . . . . Now, by (58) with v in place of a, and by both parts of
Lemma 3, for k = 0,1, . . . ,

Jv,b,k ≤ vk−1

n(1+ δ)
(1+ δ)1/2M(k+1)/2(nv

2/2) exp[−(1+ δ)nv2/2].
By (57), (50) and (59), it follows that In,a,k,v is bounded below by

Ln,a,k

(1+ δ)k+1 −
η

n
e−ng(a)vk−1 exp[n(1+δ)(a2−v2)/2]M(k+1)/2(nv

2/2)/(1+δ)1/2.

This completes the proof of Lemma 5. �

PROOF OF PROPOSITION 1, ASSUMING PROPOSITION 2. We have for 0 <
ζ ≤ ρ that ‖y‖ ≤ (1 + (δ/6))‖θ‖ ≤ 2‖θ‖ as noted just after (32). So U(ρ)c ⊂
U ′(ρ/2)c and it will suffice to prove the statement about U ′(ρ/2)c . Almost surely
‖θ̂n − θ0‖ < ρ/8 for n ≥ n0(ξ, ρ/8) by (16), so that in the θ coordinates as
finally chosen, ‖θ0‖ < ρ/8. Let B := B(θ0, ρ/4) in the θ coordinates. Then
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U ′(ρ/2)c ⊂ Bc. By assumption (A5), there is a κ > 0 such that a.s. for n large
enough, specifically n ≥ n2(ξ, ρ), where we can take n2(ξ, ρ) ≥ n0(ξ, ρ/8),
supθ /∈B LLn(θ) < supθ∈B LLn(θ) − nκ . Thus by (20), infθ /∈B H(θ) ≥ κ , and
by (32) and (40), In(Bc)≤ e−nκ . Also, ‖θ‖ ≤ 2‖y‖ for 0 < ζ ≤ ρ by (33) so B ⊃
U ′(ρ/8)⊃U(ρ/16). Thus we have a.s. for n≥ n4 for some n4(ξ, ρ, γ1, δ, d),

In(B)≥ In
(
U ′(ρ/8)

)≥ η(2π/n)d/2(1+ δ)−(3d+10)/2

by (42) for U(ρ/16). Thus by (41) for C =B ,

πx,n
(
U(ρ)c

)≤ πx,n(B
c)= In(B

c)

In(�)
= In(B

c)

In(B)+ In(Bc)

≤ e−nκ

In(B)
≤ e−nκ(n/2π)d/2(1+ δ)(3d+10)/2η−1.

We have (1 + δ)(3d+10)/2 < 1 + ε < 2 by (8), and 2(n/(2π))d/2 ≤ ηenκ/2 for
n ≥ n5 for some n5 = n5(d, η, κ). Proposition 1 then holds with ν = κ/2 and
n3 :=max(n2, n4, n5). �

PROOF OF PROPOSITION 2, ASSUMING PROPOSITION 3. For n≥max(n0(ξ,

γ1), n1(δ, ρ, d)), the bounds (43) and (44) hold uniformly in 0 < ζ ≤ ζ0 and then
we can let ζ → 0 to obtain the two inequalities when ζ = 0 and θ̂n ∈ ∂A. Con-
sider the half-space A1 := {θ1 ≥ 0} = {y1 ≥ 0} by (31). Adding inequalities for A1
and its complement then gives (42) (which could be proved directly without half-
spaces), proving Proposition 2. �

PROOF OF PROPOSITION 3. Recall ρ as defined in (25) and Dω and hω as
defined before (45). By Lemma 5, applied to k = d − 1, with g(t) = hn(tω) in
light of (34), since η ≤ π(tω) ≤ η(1+ δ) for tω ∈ U(ρ) by (35), we have, for ω
such that Dω ≤ ρ,∫ ρ

Dω

exp[−nhn(tω)]π(tω)td−1 dt

≤ η exp[−nhn(Dωω)](Dω)
d−2Md/2(nD

2
ω/2)n−1(1+ δ)d+1.

(60)

Since hn(Dωω) ≥ τ + h2
ω/[2(1 + δ)] by (38), we have by (46) and (60) that

In(A∩U(ρ)) is less than or equal to

η

n
(1+ δ)d+1e−nτ

∫
S(ζ,ρ)

exp
[
− nh2

ω

2(1+ δ)

]
Dd−2
ω Md/2

(
nD2

ω

2

)
dω.(61)

Let Y (ω) := Y (ω,n, d, δ) :=Dd−2
ω Md/2(nD

2
ω/2)/(1+ δ)d and

Z(ω) := Z(ω,n, d, δ, ρ)

:= ρd−2 exp
[
n(1+ δ)(D2

ω − ρ2)/2
]
Md/2(nρ

2/2)/(1+ δ)1/2.
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Then by Lemma 5 and (32),∫ ρ

Dω

e−nh(tω)π(tω)td−1 dt ≥ η

n
exp[−nh(Dωω)]{Y (ω)−Z(ω)}.(62)

Recalling r := ρ/2 after (25) and U(ρ) := {y :‖y‖ < ρ} after (35), we have
In(A ∩ U(ρ)) ≥ In(A ∩ U(ρ) ∩ {Dω ≤ r}), and for S(ζ, ρ) defined before (46)
and Dω before (45), S(ζ, ρ) ∩ {Dω ≤ r} = S(ζ, r), so by (46) and (62),

In
(
A ∩U(ρ))≥ ηn−1

∫
S(ζ,r)

exp[−nh(Dωω)][Y (ω)−Z(ω)]dω.(63)

We have Dω ≥ ζ > 0 for all ω ∈ S(d+). Next,

Z(ω)

Y (ω)
= ρd−2 exp[−n

2 (1+ δ)ρ2]
Dd−2
ω exp[−n

2 (1+ δ)D2
ω]

Md/2(nρ
2/2)

Md/2(nD
2
ω/2)

(1+ δ)d−1/2,(64)

which from the definition (49) of Mα is easily seen to equal a product T1T2T3
where 0 < T1 := exp[nδ(D2

ω − ρ2)/2], T2 := (1 + δ)d−1/2 and since Dω < ρ

in (63),

T3 := P (Xd/2 ≥ nρ2/2)

P (Xd/2 ≥ nD2
ω/2)

< 1,(65)

where Xd/2 is a gamma random variable with density x(d−2)/2e−x/L(d/2) for
x > 0. Then for 0 < Dω ≤ r = ρ/2 we have T1T2 ≤ 1 for n large enough,
n≥N0(δ, ρ, d), and then Y (ω)≥ Z(ω).

Also, h(ζ,X) ≤ τ + (1+ δ)‖X‖2/2 by (38) for (ζ,X) = Dωω. So for n ≥
N0(δ, ρ, d), by (45) and (63), In(A∩U(ρ)) is greater than or equal to

ηn−1e−nτ
∫
S(ζ,r)

exp
[−n(1+ δ)h2

ω/2
][Y (ω)−Z(ω)]dω.(66)

By Lemma 4(b), we have, for any fixed d ≥ 1, uniformly for Dω ≤ r = ρ/2,

(1+ δ)d−1/2 P (Xd/2 ≥ nρ2/2)

P (Xd/2 ≥ nD2
ω/2)

→ 0

as n→∞, recalling 0 < δ < 1. So for n≥ n1(δ, ρ, d)≥N0(δ, ρ, d) large enough,

(1+ δ)d−1/2 P (Xd/2 ≥ nρ2/2)

P (Xd/2 ≥ nD2
ω/2)

<
δ

2

for 0<Dω ≤ r . It follows by (66), (64), (65) and the definition of Y (ω) after (60)
that In(A∩U(ρ)) is bounded below by

ηn−1e−nτ
∫
S(ζ,r)

exp
[−n(1+ δ)h2

ω/2
]Dd−2

ω Md/2(nD
2
ω/2)

(1+ δ)d

(
1− δ

2

)
dω.
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As is easily shown, for 0 ≤ δ < 1, we have 1 − (δ/2) ≥ 1/(1+ δ), so for
n≥ n1(δ, ρ, d), In(A∩U(ρ)) is greater than or equal to

ηn−1e−nτ
∫
S(ζ,r)

exp
[−n(1+ δ)h2

ω/2
]Dd−2

ω Md/2(nD
2
ω/2)

(1+ δ)d+1 dω.(67)

Recalling again (45) that D2
ω = ζ 2+ h2

ω, the integrand in (67) equals

I (ζ,ω) := In,d(ζ,ω) := (1+ δ)−d−1 exp[nζ 2(1+ δ)/2]f (Dω)(68)

with f (x) := exp[−nx2(1+ δ)/2]xd−2Md/2(nx
2/2). Then

f (x)= exp[−nx2δ/2]L(d/2)(2/n)(d−2)/2P (Xd/2 ≥ nx2/2),

so f (x) is a decreasing function of x. Let ω(r) be a direction ω such thatDω(r) = r

(choose one such direction). Recall that [[r,∞))= {Dω ≥ r}, [[0, r))= {Dω < r}.
The function I (ζ,ω) depends on ω only through Dω and is decreasing in Dω since
f (x) is decreasing, so∫

[[r,∞))
I (ζ,ω) dω≤ I

(
ζ,ω(r)

)
Id−1

([[r,∞))
)

(69)

and ∫
[[0,r))

I (ζ,ω) dω≥ I
(
ζ,ω(r)

)
Id−1

([[0, r))).(70)

Now by Lemma 1 and (69),∫
S(d+)

I (ζ,ω) dω≤
∫
[[0,r))

I (ζ,ω) dω+ I
(
ζ,ω(r)

)
δId−1/2.

So by (70),∫
S(d+)

I (ζ,ω) dω

≤
∫
[[0,r))

I (ζ,ω) dω+ δ

2
Id−1

∫
[[0,r))

I (ζ,ω) dω
/
Id−1

([[0, r)))

<

∫
[[0,r))

I (ζ,ω) dω

(
1+ δ

1− δ

)
,

since Id−1([[0, r))) > (1 − δ)Id−1/2 by Lemma 1. Since δ < 1/10, it is clear
that 1+ δ/(1− δ)= 1/(1− δ) < (1+ δ)2. So

∫
S(d+)

I (ζ,ω) dω≤
[∫
[[0,r))

I (ζ,ω) dω

]
(1+ δ)2.
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Thus, returning to (67), then since I (ζ,ω) is the integrand in it,

In
(
A ∩U(ρ)) ≥ ηn−1e−nτ

∫
[[0,r))

I (ζ,ω) dω

≥ ηn−1e−nτ
∫
S(d+)

I (ζ,ω) dω
/
(1+ δ)2(71)

= ηn−1e−nτ

(1+ δ)d+3

∫
S(d+)

exp
[−n(1+ δ)h2

ω/2
]
Dd−2
ω Md/2(nD

2
ω/2) dω.

Then by (49), (45) and a few calculations, the integral in (71) equals

ne[nζ 2(1+δ)/2]
∫
S(d+)

exp
[−nδD2

ω/2
] ∫ ∞

Dω

ud−1e(−nu2/2) du dω.(72)

Returning now to Cartesian coordinates, we have ud−1 dudω = dy with
u= ‖y‖, so the integral in (71) equals, where dy := dyd · · ·dy1,

n exp[nζ 2(1+ δ)/2]
∫ ∞
ζ

∫ ∞
−∞
· · ·

∫ ∞
−∞

exp[−n‖y‖2/2] exp[−nδ‖y‖2ζ 2/(2y2
1)]dy

≥ n exp[nζ 2(1+ δ)/2]
∫ ∞
ζ

∫ ∞
−∞
· · ·

∫ ∞
−∞

exp[−n(1+ δ)‖y‖2/2]dyd · · ·dy1

= (1+ δ)−d/2n(2−d)/2(2π)(d−1)/2M
(
ζ
√
n(1+ δ)

)
(after a few calculations). So from (71),

In
(
A ∩U(ρ))≥ ηn−d/2e−nτ (1+ δ)−(3d+6)/2(2π)(d−1)/2M

(
ζ
√
n(1+ δ)

)
.(73)

It follows from (36) and the definition (37) of τ that ζ 2/[2(1+ δ)] ≤ τ =
h(ζ,0)≤ (1+ δ)ζ 2/2 (since (ζ,0) ∈ U(ρ)), and therefore

√
nζ/

√
1+ δ ≤√2nτ ≤√

n(1+ δ)ζ.(74)

So by Lemma 2,

M
(
ζ [n(1+ δ)]1/2)≥ e−δM(

√
nζ/

√
1+ δ )≥ e−δM(

√
2nτ ),

since M is a nonincreasing function, so

In
(
A ∩U(ρ))≥ ηn−d/2e−nτ (1+ δ)−(3d+6)/2(2π)(d−1)/2e−δM(

√
2nτ),

thus by definition of M(·) before Lemma 2,

In
(
A ∩U(ρ))≥ η(2π/n)d/2(1+ δ)−(3d+6)/2�(−√2nτ)e−δ.

By (55), for 0≤ δ ≤ 1, e−δ ≥ 1/(1+ δ)2; thus (43) follows.
Turning to the upper bound (61), consider the integral

I :=
∫
S(ζ,ρ)

exp
[−nh2

ω/[2(1+ δ)]]Dd−2
ω Md/2(nD

2
ω/2) dω.
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A few calculations and (49) show that as in (72),

I = n exp
[

nζ 2

2(1+ δ)

]∫
S(ζ,ρ)

exp
[

δ

1+ δ
D2
ω

n

2

]∫ ∞
Dω

ud−1 exp[−nu2/2]dudω.

Returning to Cartesian coordinates, we have dy = ud−1 dudω and u = ‖y‖.
Then for dy := dyd · · ·dy1,

I ≤ n exp
[

nζ 2

2(1+ δ)

]∫ ∞
ζ

∫ ∞
−∞
· · ·

∫ ∞
−∞

exp
[

δ

1+ δ

n

2

‖y‖2ζ 2

y2
1

]
exp

[
−n

2
‖y‖2

]
dy

≤ n(2−d)/2(1+ δ)(d−1)/2(2π)(d−1)/2M(ζ
√
n)

after a few calculations, using y2
j ζ

2/y2
1 ≤ y2

j for j = 2, . . . , d . Altogether,
using (61),

In
(
A∩U(ρ))≤ n−1η(1+ δ)d+1e−nτn(2−d)/2(1+ δ)d/2(2π)(d−1)/2M(ζ

√
n).

Now, since
√

2nτ ≤√n(1+ δ)ζ by (74) and by Lemma 2, we have

M(ζ
√
n)≤M

(
ζ
√
n(1+ δ)

)
eδ ≤M(

√
2nτ)eδ.

So again by (55), (44) follows and Proposition 3 is proved. �

PROOF OF THEOREM 1. Continuing with Case I, we have θ̂n /∈ A and ζ <

ζ0 < ρ. By Proposition 1, there exists ν > 0 such that by (41), for n≥ n3,

πx,n(A)= πx,n
(
A∩U(ρ))+ πx,n

(
A∩U(ρ)c)≤ πx,n

(
A ∩U(ρ))+ e−nν

= In
(
A ∩U(ρ))/In(�)+ e−nν ≤ In(A∩U(ρ))

In(U(ρ))
+ e−nν.

Since ζ < ρ then by Proposition 3 (44) and Proposition 2 (42), for n≥ n3,

πx,n(A)≤ (1+ δ)3d+8�(−√2nτ)+ e−nν.(75)

We now distinguish two subcases, subcase (i) where e−nν < δ�(−√2nτ) and
subcase (ii) otherwise. In subcase (ii), �(−√2nτ)≤ δ−1e−nν and

πx,n(A)≤ [
(1+ δ)3d+8δ−1 + 1

]
e−nν ≤ e−nν/2

for n large enough so that enν/2 ≥ (1+ δ)3d+8δ−1+ 1, in addition to n≥ n3. Thus
in subcase (ii), we have (b) in Theorem 1 for any κ ′ ≤ ν/2.

In subcase (i), by (75), (8) and (39),

πx,n(A)≤ (1+ δ)3d+9�(−√2nτ)≤ (1+ ε)�(−√2�),(76)

so that the upper bound in (a) of Theorem 1 holds.
Now to treat lower bounds for πx,n(A), by (41),

πx,n(A)≥ πx,n
(
A∩U(ρ))= In

(
A∩U(ρ))/In(�).
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Note that a.s. for n≥ n3 by Proposition 1 and (42),

In(�)= In(U(ρ))+ In
(
U(ρ)c

)≤ In(U(ρ))+ e−nν

≤ η(2π/n)d/2(1+ δ)(3d+6)/2+ e−nν ≤ η(2π/n)d/2(1+ δ)(3d+7)/2,

for n large enough, say, n≥max(n3, n6) for some n6(ν, η, d). Then by (43), (39)
and (8),

πx,n(A)≥ (1+ δ)−(3d+9)�(−√2nτ)≥�(−√2�)/(1+ ε).(77)

Thus by (76) conclusion (a) of Theorem 1 is proved in Case I(i).
To prove Theorem 1 when θ̂n ∈ ∂A we can, as in the proof of Proposition 2, let

ζ ↓ 0 in Proposition 3, then apply the same argument as for Case I(i).
In Theorem 1, the statement about U and A⊂ Uc follows from Proposition 1.

For the statement about An, since d(An,φ0)→ 0 and d(φ̂n,φ0)→ 0 we have
by (37), (20), (23), noting that h(ζ,0) ≤ H(ζ,0), and (32) that τ = τn → 0
as n→∞. Thus we have subcase (i) [after (75)]. We apply Propositions 1–3
and (8) to get that πx,n(An)/�(−√2�n)

.= 1 within a fixed power of 1+ ε for
n large enough. Letting ρ ↓ 0 and thus ε ↓ 0, we get πx,n(An)/�(−√2nτn)→ 1
as n→∞. This finishes the proof of Theorem 1 in Case I for d ≥ 2.

In Case II (29), ζ ≥ ζ0. Let B := {θ : θ1 ≥ ζ0} in the coordinates as in (18).
Recalling that, for B , by (37) and (39) for ζ = ζ0, �B,n = nh(ζ0,0), we have
by (A5), �(−√

2�B,n)≤ exp(−nκ) for some κ > 0 and n large enough. Then also
for A, �(−√2�)≤ e−nκ , uniformly for ζ ≥ ζ0. B is disjoint from U ′(ζ0), so by
Proposition 1, for some ν′ > 0, a.s. for n large enough, πx,n(A)≤ πx,n(U

′(ζ0)
c)≤

e−ν′n uniformly over all A with ζ ≥ ζ0. So in Case II we have conclusion (b) for
κ ′ =min(ν′, κ). The proof of Theorem 1 for d ≥ 2 is complete.

For d = 1 the proof is somewhat simpler and is omitted because there is
no transformation to spherical coordinates and we do not need Lemma 1. This
completes the proof of Theorem 1. �

9. A multivariate normal location family. For this family, explicit calcu-
lations can be done. We will see how (a) for a normal prior, slowness of ap-
proach of the half-space to φ0 can cause slow convergence to 0 of the relative
error of our simplest approximation (to some small probabilities), and (b) for a
double-exponential prior, the absolute error for some half-spaces is no smaller
than O(1/

√
n), even for the approximation sharpened via (1).

Consider the location family N(µ, I), µ ∈ Rd , on Rd with, first, a prior
N(0, σ 2I ) for µ. (In this case the Jeffreys prior, Lebesgue measure, is improper.)
Let x = (X1, . . . ,Xn) be observed i.i.d. N(µ, I). Let Sn := X1 + · · · + Xn and
Qn :=∑n

j=1 |Xj |2. Let A be a half-space A := {µ · t ≥ c} with |t| = 1. A brief

calculation shows that the posterior probability is πx,n(A) = �(τnSn · t − cτ−1
n )

where τn := (n + σ−2)−1/2. Our simple likelihood root approximation to the
posterior, provided that Sn/n /∈ A, is �(−√2�) = �(n−1/2Sn · t − c

√
n). As
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σ →∞, so that the prior becomes more and more diffuse, and converges in a sense
to the Jeffreys prior, the exact posterior distribution converges to the likelihood
root approximation. If we instead fix, for example, σ = 1, µ = µ0 = 0 and t =
(1,0, . . . ,0) and let c = cn = n−α for some α ∈ (0,1/2), we obtain πx,n(An) =
�(Sn,1/

√
n+ 1 − n−α

√
n+ 1) and �(−√2�n) = �(Sn,1/

√
n − n−α

√
n). For

a > 0 and 0 < δ < 1 a short calculation gives

�(a+ δ)−�(a)= φ(a)(1− e−aδ)
(
1+O(δ2)

)
/a.(78)

We will use the fact that if Zn are any standard normal variables then |Zn| =
O(
√

logn ) = O(nε) a.s. as n→∞ for any ε > 0. Let Zn := Sn,1/
√
n, a :=

an := n0.5−α − Zn and δ := δn := n−α
√
n+ 1 − Zn

√
n/
√
n+ 1 − an. Then we

have a.s. δn = 1
2n
−0.5−α + Zn

2n +O(n−α−3/2). Since by l’Hospital’s rule and facts
stated after (47), �(−x) ∼ φ(x)/x as x → +∞, it follows from (78) that the
relative error in the likelihood root approximation of the posterior is almost surely
asymptotic to anδn ∼ n−2α/2 as n→∞, which converges to 0 slowly for small
α > 0. The probabilities being approximated converge to 0 rather rapidly in this
case.

For the approximation π∗∗ (4) the factors in terms of 8ηη and dµ1/dz≡ n−1/2

are constants and divide out, so the interesting factor is ρn := π1(θ̃)/π1(θ̂), which
a brief calculation shows to be exp(−anδn + Op(δ

2
n)). The relative error in this

case is rSL := [�(−an)ρn −�(−an− δn)]/�(−an− δn). By (78) we have

�(−an− δn)=�(−an)− φ(an)
(
1− exp(−anδn))(1+O(δ2

n)
)
/an,

and so the numerator of rSL is asymptotic to

[φ(an)a−1
n −�(−an)](1− exp(−anδn))+O(δ2

n)�(−an).
Since �(−x) − φ(x)/x ∼ −φ(x)/x3 as x → +∞, also by l’Hospital’s rule,
the numerator is asymptotic to φ(an)δn/a

2
n. Since the denominator is asymptotic

to φ(an)/an, we have rSL ∼ δn/an ∼ 1/(2n), not depending on α. But in the
examples in the next section, the relative error of π∗∗ goes to 0 at a slower rate.

Often, rates of convergence for approximations of posteriors have been stated
in the literature without precise assumptions. Under certain conditions on the
likelihood functions, it is sufficient for convergence without rates that the prior π(·)
should be continuous and strictly positive [e.g., Walker (1969), Theorem 1 and
Corollary 1 above]. For faster rates such as O(1/n) or O(n−3/2), beside stronger
assumptions on the likelihood functions, it has been assumed that π(·) has
continuous partial derivatives through order 4 [e.g., Bickel and Ghosh (1990),
Erkanli (1994)]. We will see that for such rates, even for the very smooth normal
location likelihood, some smoothness of the prior is needed.

A strictly positive, continuous, in fact Lipschitz, but not differentiable (at 0)
prior density on R1 is the double-exponential π(θ)= e−|θ |/2,−∞< θ <∞. One
can do closed-form calculations with this prior and the normal location family as
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noted by Pericchi and Smith (1992) and Choy and Smith (1997). Let d = 2 and
take N(φ, I ), φ = (ψ,η), Sn = (Sn1, Sn2). The profile log likelihood is

m(ψ)=−n log(2π)− 1

2
Qn +ψSn1 − n

2
(ψ2 − y2),

where y := Sn2/n. For the log likelihood 8, ∂28/∂η2 ≡−n.
For any product prior density π(ψ,η)= π1(ψ)π2(η), the approximation (1) to

the marginal posterior density is exact here. Instead we take the 45 degree rotated
double-exponential product prior π(ψ,η)= 1

2 exp(−|ψ+η|− |ψ −η|). Then π is
not differentiable where ψ =±η. The approximation (1) is given by

π∗ψ |Y (ψ)= c∗∗ exp(−|ψ + y| − |ψ − y| +ψSn1 − nψ2/2),

where the normalizing constant c∗∗ may depend on y,Sn1 and n but not on ψ . The
exact marginal posterior can be evaluated straightforwardly, say, for ψ ≥ 0, setting∫ ∞

−∞
dη=

(∫ −ψ
−∞

+
∫ ψ

−ψ
+

∫ ∞
ψ

)
dη,

as c exp(ψSn1− nψ2/2)τn(ψ,y) where c is a constant with respect to ψ and

τn(ψ,y) := e−2ψ [
�

(√
n(ψ − y)

)−�
(−√n(ψ + y)

)]
+ e2y+2/n�

(
−√n

(
ψ + y + 2

n

))

+ e−2y+2/n�

(
−√n

(
ψ − y + 2

n

))
.

For u > 0 we have 1−�(
√
nu)=�(−√nu)→ 0 exponentially as n→∞. Thus

the relative error in the approximation of τn(ψ,y) by exp(−|ψ − y| − |ψ + y|)
for ψ = a|y|, a ≥ 0, y �= 0, as n→∞, is asymptotic to −2/n for 0 ≤ a < 1 and
to
√

2/(πn) for a = 1 (and is exponentially small for a > 1). Taking a in a 1/
√
n-

neighborhood of 1, if for the true parameters ψ0 = η0 �= 0, then with probability
not approaching 0 we have an absolute error in the approximation of posterior
probabilities of some half-spaces via (1) of order 1/

√
n.

10. Beta numerical results. As an example, we considered the sample space
of two points {0,1} and the family of binomial probabilities with p ∈�= (0,1),
and the fixed half-space (segment) p ≤ x = 0.7. We consider in Tables 1 and 3
the Jeffreys prior, which is the β(1/2,1/2) distribution with density p−1/2(1 −
p)−1/2/π , 0 < p < 1, and in Table 2 the uniform prior. If in n independent
trials, there are k successes (1’s) and n− k failures (0’s) then the posterior is the
β(k + 1/2, n − k + 1/2) distribution in Tables 1 and 3, β(k + 1, n − k + 1) in
Table 2. Thus the posterior probability of the interval [0, x] in Tables 1 and 3 is

Jx,k,n := Ix,k+1/2,n−k+1/2 :=
∫ x

0
tk−1/2(1− t)n−k−1/2 dt

/
B(k+1/2, n−k+1/2),
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TABLE 1
Jeffreys prior beta examples

n k J 0.7,k,n rcl r� r0 r1 rDM r2

50 44 1.3735 · 10−3 −0.940 −0.091 −0.0103 −8.6 · 10−3 −2.8 · 10−3 3.05 · 10−5

100 85 2.5483 · 10−4 −0.932 −0.068 −0.0054 −3.7 · 10−3 −8.5 · 10−4 3.30 · 10−6

200 165 2.5816 · 10−5 −0.927 −0.053 −0.0030 −1.7 · 10−3 −2.8 · 10−4 5.3 · 10−7

500 394 4.6722 · 10−6 −0.834 −0.034 −0.0016 −6.2 · 10−4 −5.8 · 10−5 3 · 10−8

1000 767 1.1125 · 10−6 −0.752 −0.025 −0.0010 −2.9 · 10−4 −1.9 · 10−5 | · | " 10−9

2000 1501 2.6838 · 10−7 −0.661 −0.018 −0.0007 −1.4 · 10−4 −6.3 · 10−6 | · | " 10−9

5000 3671 4.7368 · 10−8 −0.534 −0.012 −0.0004 −5.6 · 10−5 −1.5 · 10−6 | · | " 10−9

where B(·, ·) is the beta function. The MLE for p is p̂ = k/n. Thus, for the MLE to
be outside the half-space (in this case, interval) [0, x]we consider k ≥ nx. For such
n,x and k we have the exact beta probability, which we computed by the algorithm
of Holt (1986), and our approximation�� :=�x,k,n :=�(−√2�). We evaluated
the relative error r� := �x,k,n/Jx,k,n − 1. For comparison, we took a classical
approximation by a normal distribution with mean p̂ and variance such that the
second derivative of the log of its density (a constant) equals the second derivative
of the log of the posterior density at p̂. This gave an approximation we call �cl
with a relative error rcl. [Taking the posterior mode (k − 1/2)/(n − 1) in place
of p̂ or the second derivative of the log likelihood gave worse approximations in
Table 1.] Also, in all three tables, we consider the sharpened approximations πi,∗Y
and πDM,∗

Y defined in Section 3 to the posterior probabilities and give their relative
errors ri for i = 0,1,2, and rDM. The relative error r2 is the smallest in each row
and rDM is usually next smallest.

Table 3 treats a “large deviation” case in which x = 0.7 and k/n = 0.74 both
remaining constant as n becomes large. Here the relative error r� of the simple
likelihood root approximation may approach a nonzero constant, which would not
contradict our theorem. For all the sharpened approximations, the relative errors

TABLE 2
Uniform prior beta examples

n k I 0.7,k+1,n−k+1 rcl r� r0 r1 rDM r2

50 44 1.9625 · 10−3 −0.977 −0.364 −0.0232 −3.1 · 10−3 8.5 · 10−3 2.6 · 10−4

100 85 3.3070 · 10−4 −0.960 −0.282 −0.0164 −3.2 · 10−3 2.7 · 10−3 7.8 · 10−5

200 165 3.1374 · 10−5 −0.948 −0.221 −0.0106 −2.1 · 10−3 9.4 · 10−4 2.1 · 10−5

500 394 5.2625 · 10−6 −0.860 −0.143 −0.0061 −1.0 · 10−3 2.1 · 10−4 4.0 · 10−6

1000 767 1.2096 · 10−6 −0.777 −0.103 −0.0040 −5.6 · 10−4 7.0 · 10−5 1.1 · 10−6

2000 1501 2.8479 · 10−7 −0.684 −0.075 −0.0026 −2.9 · 10−4 2.4 · 10−5 3.1 · 10−7

5000 3671 4.9194 · 10−8 −0.553 −0.049 −0.0015 −1.2 · 10−4 5.9 · 10−6 6 · 10−8
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TABLE 3
Jeffreys prior large deviation beta examples

n k J 0.7,k,n rcl r� r0 r1 rDM r2

50 37 0.27308 −0.037 −0.0269 −0.0134 −2.5 · 10−3 −3.4 · 10−4 −5.5 · 10−5

100 74 0.19233 −0.049 −0.0220 −0.0085 −1.5 · 10−3 −1.4 · 10−4 −1.5 · 10−5

200 148 0.10740 −0.074 −0.0188 −0.0052 −9.3 · 10−4 −6.1 · 10−5 −3.8 · 10−6

500 370 0.02432 −0.141 −0.0162 −0.0026 −4.5 · 10−4 −2.1 · 10−5 −4.8 · 10−7

1000 740 0.00261 −0.241 −0.0151 −0.0015 −2.5 · 10−4 −9.9 · 10−6 −8 · 10−8

2000 1480 0.00004 −0.405 −0.0144 −0.0008 −1.4 · 10−4 −4.7 · 10−6 −1 · 10−8

5000 3700 2 · 10−10 −0.713 −0.0140 −0.0003 −5.7 · 10−5 −1.8 · 10−6 | · | " 10−9

do appear to approach 0. For the sharpest approximation π2,∗
Y the relative error is

quite small and becomes smaller very rapidly. We caution, however, that this is a
one-dimensional case and the approximation of a marginal of a multidimensional
posterior as in (1) and (3) could result in larger relative errors of order O(1/n)
[Tierney, Kass and Kadane (1989)]. Alternatively, if the likelihoods or priors are
not smooth enough, some of the approximations involving derivatives may not
be defined, and others may be defined but less accurate, as seen in Section 9 for
a double-exponential prior.

For Table 1, we wrote a computer program which, given n,x, and α > 0, starts
with the smallest integer j ≥ nx and considers k = j, j + 1, j + 2, . . . as long
as Jx,k,n ≥ α, and finds the k in that range with the largest relative error r� in
absolute value. We chose α = 1/n2. Then k/n→ x as n becomes large. Some
terms in approximations vanish when n= 2k (so, near x = 0.5) and one vanishes
for the uniform prior when k/n .= 0.916. Thus we chose x = 0.7. As is perhaps not
surprising, we found the largest relative errors when the probabilities Jx,k,n were
as small as allowed, with Jx,k,n > α > Jx,k+1,n. We used the same k for each n in
Table 2 as in Table 1. Since α→ 0 as n→∞ at a slower than exponential rate,
by Theorem 1, the relative error r� in the approximation �� should approach 0,
which fits with Tables 1 and 2. The notation | · | " 10−9 indicates that the relative
error (of the approximation π

2,∗
Y ) is less in absolute value than 1.5 · 10−9; we do

not give more exact values since the Holt algorithm by which we computed beta
probabilities was constructed to give a relative error less than 10−9. For the same
reason, we round off possibly unreliable digits of r2 when |r2|< 10−6.

The relative errors rcl for the classical approximation �cl based on the second
derivative at the MLE decrease slowly in magnitude in Tables 1 and 2, even
increase in size with n in Table 3, and they are quite large, except in the upper
rows of Table 3. The �cl approximation can work rather well in the middle of the
posterior distribution. The smallest relative error r2 in Table 3 is of order n−5/2, in
agreement with (7).

The approximation �(−√2�) of Theorem 1, which is the same in correspond-
ing rows of Tables 1 and 2, is a better approximation to posterior probabilities for
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the Jeffreys prior (Table 1) than it is for the uniform prior (Table 2), by a factor
about 4 in the relative errors r�. To understand this, observe as noted, for exam-
ple, by Woodroofe (1992) that if we take as a coordinate parameter z = −√2�
for p ≤ k/n and

√
2� for p > k/n as in (5) then the likelihood function becomes

exactly normal. The uniform prior dp on 0 < p < 1 and the Jeffreys prior have
densities with respect to dz, say, τu(z) and τJ (z), respectively. One can evaluate
the logarithmic derivatives of both at z= 0, where we find

τ ′u(0)
τu(0)

= 4
τ ′J (0)
τJ (0)

=− 2(2k − n)

3
√
nk(n− k)

,

which is not 0 unless k = n/2. Thus with respect to dz, the Jeffreys prior is more
uniform than the prior dp around the MLE.

For higher order approximations the situation is more complicated. The
approximations again tend to be more accurate for the Jeffreys prior, but not
necessarily to the extent shown in Tables 1 and 2 for r2. For example, when
n = 500, x = 0.7 and k = 394, for the Jeffreys prior r2

.= 3 · 10−8 and for the
uniform prior r2

.= 4 · 10−6. The Jeffreys r2 changes sign nearby from k = 391
to 392, so it is unusually small in absolute value. We found a similar sign change
for x = 0.8, n= 500, k = 437,438.

For accurate calculation of the approximations when |x − (k/n)| is very small,
analytic subtraction is needed, as for the Lugannani–Rice approximations [e.g.,
Daniels (1987), page 43; Reid (1996), page 143].

APPENDIX

The relationship between a coordinate and a profile likelihood root.

PROPOSITION 4. Let ψ(φ) = a + v · φ, v �= 0, so ψ is a nonconstant affine
function of φ. Under the assumptions made in Theorem 1, let φ0 be the pseudo-true
parameter of (A5). Then there is an open interval (c, d) containing ψ0 := ψ(φ0)

such that almost surely for all n large enough, in (2) there is a 1–1, mutually
C1 relationship, depending on n and the observations, between z and ψ for
c < ψ < d .

PROOF. As after (8), we can make a linear coordinate change from φ to θ

with E(θ0) = I . In the neighborhood V of θ0 defined by (11), almost surely for
n large enough, ‖En(θ)− I‖< 2δ1/3 by (14). By (16), almost surely for n large
enough, there is a unique MLE θ̂n with ‖θ̂n − θ0‖ < γ1. Then θ ∈ V whenever
‖θ − θ̂n‖< ρ1 := 3γ1 by (11). As in (17) and similarly to (12), by a translation and
rotation of coordinates which does not change any of the preceding (but depends
on n and θ̂n), we can assume that θ̂n = 0 and that ψ = a + bθ1 for some constants
a, b with b > 0 where θ1 is the first coordinate of θ . Thus we can assume ψ = θ1.

Let η := θ(1) = (θ2, . . . , θd) ∈Rd−1. Consider the vector-valued function ∇ηHn
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for Hn defined by (20) from {‖θ‖ < ρ1} into Rd−1, where ∇η = (∂/∂θ2, . . . ,

∂/∂θd). Then ∇ηHn is C1 and ∇ηHn(0) = 0. By (14), the Hessian ∂2Hn/∂θi∂θj
is within 2δ1/3 of the identity on the open set {‖θ‖< ρ1}, which almost surely for
all n large enough includes all θ within 2γ1 of θ0.

If Ir is the r × r identity matrix, a matrix B is d × d and B
(1)
ij = Bij for

i, j = 2, . . . , d , then it is easily seen that ‖B(1)− Id−1‖ ≤ ‖B− Id‖. The derivative
Gn := ∇η∇ηHn is the Hessian of Hn with respect to η, so by (14) ‖Gn − Id−1‖<
2δ1/3 on {‖θ‖ < ρ1}. In particular Gn is invertible at θ = 0. Thus by the implicit
function theorem [e.g., Rudin (1976), Theorem 9.28], there are an open set U1 ⊂
Rd and an open interval W1 ⊂ R, say (−w,w), both containing 0, such that for
all θ1 ∈W1, there is a unique η(θ1) such that θ̃ := θ̃ (θ1) := (θ1, η(θ1)) ∈ U1 and
∇ηHn(θ̃(θ1)) = 0. Moreover, the function η(·) is C1 on W1 and η(0) = 0. We
have by (22) that if ‖θ‖ = ρ1 then H(θ) ≥ ρ2

1/(2(1 + δ1)), while if in addition
|θ1| < ρ1/2 then H(θ1,0) < ρ2

1(1 + δ1)/8 < H(θ). Thus if |h| < ρ1/2 then
inf{H(θ) : θ1 = h, ‖θ‖ ≤ ρ1} is attained at a point θ = θ̃ (h) at which ‖θ‖ < ρ1
and ∇ηH(θ) = 0. By strict convexity of H(·) on ‖θ‖ < ρ1, θ̃ (h) is unique, so
θ̃ (·) is a well-defined function from (−ρ1/2, ρ1/2) into {θ :‖θ‖ < ρ1}, we can
take w ≤ ρ1/2 and then the definitions of θ̃ agree for |θ1| < w. By the implicit
function theorem, θ̃ (·) is a C1 function on some neighborhood of each point
in (−ρ1/2, ρ1/2). So by compactness of any closed subinterval, we can take
w = ρ1/2.

By (A5), there is a κ > 0 such that almost surely for n large enough,

inf
θ /∈V Hn(θ) > κ.(79)

Inequality (22) gives Hn(θ) ≤ ‖θ‖2(1 + δ1)/2 ≤ ‖θ‖2 for ‖θ‖ < ρ1. Thus
Hn(θ)≤ κ for ‖θ‖ ≤ min(ρ1,

√
κ ), so Hn(θ̃(θ1)) ≤ κ for |θ1| < γ2 :=

min(ρ1,
√
κ )/2. By strict convexity, for |θ1|< γ2, Hn(θ1, η) has a strict minimum

with respect to η at η= η(θ1) for (θ1, η) ∈ V and by (79) for all η. In other words,
the profile log likelihood m(θ1)= 8(θ̃(θ1))= 8(0)− nHn(θ̃(θ1)), so by (2),

z= (sgnθ1)

√
2nHn

(
θ̃ (θ1)

)
.(80)

Let g(t) :=Hn(θ̃(t)) for |t|< γ2. For −γ2 < u< u+ v < u/2< 0,

g(u+ v)=Hn

(
u+ v, η(u+ v)

)≤Hn

(
u+ v,

u+ v

u
η(u)

)

= Hn

(
u,η(u)

)+ v
d

dt
Hn

(
u+ t,

u+ t

u
η(u)

)∣∣∣∣
t=τ

for some τ , 0 < τ < v, by the mean value theorem. By (21) and since
‖(1, η(u)/u)‖ ≥ 1, this derivative is less than or equal to−|u|/[2(1+ δ1)]. Letting
v ↓ 0 we get g′(u) < 0. Likewise we get g′(u) > 0 for 0 < u< γ2. Thus

dz

dθ1
=
√
n|dHn(θ̃(θ1))/dθ1|√

2Hn(θ̃(θ1))

> 0
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for |θ1| < γ2 and θ1 �= 0 since Hn(θ̃(θ1)) > 0 for θ1 �= 0. Also, dz/dθ1 is
continuous in θ1 for 0 < |θ1|< γ2.

Let aij := 1
2∂

2Hn(0)/∂θi∂θj for i, j = 1, . . . , d , and bj := dθ̃j /dθ1|θ1=0 for
j = 1, . . . , d . Then by Taylor’s theorem with remainder,

√
Hn(θ̃)/|θ1| =

√√√√√ d∑
i,j=1

aij θ̃i θ̃j + o(θ2
1 )

/
|θ1|→

√√√√√ d∑
i,j=1

aij bibj

as θ1 → 0. The limit is strictly positive because the matrix {aij } is positive definite
(being close to 1

2Id ) and the vector b is nonzero since b1 = 1. By the chain rule,
we have for θ̃ = θ̃ (θ1) that

dHn(θ̃)

dθ1
= ∂Hn

∂θ1
(θ̃)+

d∑
j=2

∂Hn

∂θj
(θ̃)

dθ̃j

dθ1
= ∂Hn

∂θ1
(θ̃)

(the latter equation will not be used here). We have as ‖θ‖→ 0 for j = 1, . . . , d ,
∂Hn(θ)/∂θj = 2

∑d
i=1 aij θi + o(‖θ‖), and so

dHn(θ̃(θ1))

dθ1
= 2

d∑
j=1

d∑
i=1

aij bibj θ1+ o(|θ1|)

as θ1→0. It follows that as θ1→0, (sgn θ1)d

√
Hn(θ̃(θ1))/dθ1→

√∑d
i,j=1 aijbibj .

So by (80), since z is a continuous function of θ1, and has a derivative approaching
a positive limit as θ1 → 0, z is a C1 function of θ1 with dz/dθ1 > 0 for |θ1|< γ2.

Almost surely for n large enough we will have ‖θ̂n − θ0‖ < γ2/2, or in our
eventual θ coordinates ‖θ0‖ < γ2/2, so |θ01| < γ2/2. Then |θ1 − θ01| < γ2/2
implies |θ1|< γ2. A C1 function with a strictly positive derivative has a C1 inverse.
Thus the open interval (θ01 − γ2/2, θ01 + γ2/2) has the properties stated in the
proposition for ψ replaced by θ1, and the proposition is proved. �

PROOF OF COROLLARY 1. By the last statement in Theorem 1, πx,n(An)/

�(−zn)→ 1. Almost surely for n large enough, we have Case I of the proof (28),
so the MLE θ̃n in ∂An exists and is unique almost surely, as shown just before (80).
Write An as {y1 ≥ ζn} for coordinates y, depending on An, as defined in Section 5,
equation (31). We have d(∂An,φ0)→ 0, ‖φ̂n − φ0‖ → 0 a.s., and the coordi-
nate transformations φ �→ θ �→ y in Sections 4 and 5 increase distances at most
by a constant factor not depending on An, so ‖θ̃n − θ̂n‖ → 0 and ζn→ 0. Thus
by uniform continuity of π1(·) in a neighborhood of θ0 and π(·) in the corre-
sponding open set in y coordinates we have π1(θ̃)/π1(θ̂)→ 1 and as in (35),
π(ζn,0)/π(0)→ 1 as n→∞. Similarly, the Hessians 8ηη are uniformly con-
tinuous in a neighborhood of θ0 by (A6) and (A7), and their determinants are
bounded away from 0 almost surely as n→∞ by (15) for θ coordinates or (34) for
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y coordinates. Thus det[−8ηη(θ̃)]/det[−8ηη(θ̂ )] → 1 and likewise in y coordi-
nates. Let ỹ := ỹ(y1) be the MLE of y for given y1, or θ̃ in y coordinates, which
is well-defined for |y1| small enough. Then let (y1, ỹ2, . . . , ỹd) := (y1, ỹ

(1)) :=
ỹ(y1). By (31) and (32),

y1 ≡ θ1 and hn(ỹ)≡Hn(θ̃).(81)

Recall also that ỹ(ζn)= (ζn,0) from just before (32) and so

dhn(ỹ)

dy1

∣∣∣
y1=ζn

= ∂hn(y)

∂y1

∣∣∣∣
y=(ζn,0)

=: ∂hn(ζn,0)

∂y1
.

Thus

d
√
hn(ỹ)

dy1

∣∣∣∣
y1=ζn

= ∂hn(ζn,0)/∂y1

2
√
hn(ζn,0)

.(82)

By (36), ζ 2
n /[2(1+ δ)] ≤ hn(ζn,0)≤ (1+ δ)ζ 2

n /2, so ζn/
√

1+ δ ≤√2hn(ζn,0)≤
ζn
√

1+ δ. Similarly from (34), y1/(1+δ)≤ ∂hn/∂y1 ≤ y1(1+δ) for y1 > 0 small
enough. Thus by (82),

2−1/2(1+ δ)−3/2 ≤ d

√
hn(ỹ)/dy1|y1=ζn ≤ 2−1/2(1+ δ)3/2

for n large enough. So d
√
hn(ỹ)/dy1|y1=ζn → 2−1/2 as n→∞ since we can let

δ ↓ 0. By (80) and (81), and the end of the proof of Proposition 4, as n→∞
dz/dy1|y1=ζn ∼

√
n and dz/dy1|y1=0 ∼

√
n.(83)

It follows from this and Proposition 4 that

dz/dy1|y1=ζn
dz/dy1|y1=0

→ 1, so
dy1/dz|z=zn
dy1/dz|z=0

→ 1,

and Corollary 1 is proved. �
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