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UNIFORM CONSISTENCY OF GENERALIZED KERNEL
ESTIMATORS OF QUANTILE DENSITY

By C. CHENG

Johns Hopkins University

Various smoothing methods for quantile density estimation are uni-
fied into a generalized kernel smoothing. Based on a stochastic upper
bound of the derivatives sequence for a sequence of smoothed Brownian
bridges, uniform in-probability consistency of generalized kernel quantile
density estimators on any closed subinterval of the open unit interval is
derived.

1. Introduction. Let X be an absolutely continuous random variable
with c¢df F and pdf f. Associated with F is the quantile function (qf)
Q(w) = F ' (v) =inflx: F(x)>u}, u<[0,1]. Once f(x)>0 for all x €
(x5, xF) with xp = sup{x: F(x) = 0} and x¥ = inf{x: F(x) = 1}, Q is differ-
entiable on the open unit interval and q(u) = @ (v), u € (0, 1), is the quan-
tile density function (qdf). 3

Given a random sample X;,..., X, of X, let F, be the empirical distribu-
tion function (EDF) and define @ (v) == F, *(v), u € [0, 1], to be the empirical
quantile function (EQF). The difference between the uth sample and true
quantiles, @,(v) — Q(w), is asymptotically normal with zero mean and vari-
ance [q(u)?u(1 — u)/n. The efforts on estimating the qdf ¢ has been moti-
vated by constructing confidence intervals for the population quantiles based
on this asymptotic normality. [See Csorgé and Horvath (1989), for an alterna-
tive approach.] Histogram estimators of the qdf ¢ were studied by Siddiqui
(1960), Bloch and Gastwirth (1968), Bofinger (1975) and Falk (1986). Parzen
(1979) introduced convolution kernel estimators, which were subsequently
studied by Falk (1986) and Csorgd, Deheuvels and Horvath (1991).

The various smoothing methods applicable to qf and qdf estimation [in
addition to the references already mentioned, see Kaigh and Cheng (1991),
Vitale (1975), Gawronski (1985), Cheng (1995) and Schoenberg (1965)] can be
unified into an integral transform of the EQF @, with respect to some kernel:

Qu(w) = [ Q. (1)K, (u,t) d,(2),

(1.1) d . d ..
G,(w) = 2-Qu(w) = 2= [ Q1)K (w,8) dp, (1), w e (0,1),
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where the measure u, and the kernel K, satisfy appropriate variational
properties (cf. Section 2), and K, is so chosen that Qn is differentiable for
(almost) all samples. Then ¢, is a natural estimator of the qdf ¢ = @'.

This generalized kernel formulation provides a unified treatment of many
smoothing methods applicable to qf and qdf estimation. In this paper the
uniform in-probability consistency of the qdf estimator §,(-) on any fixed
closed subinterval in (0,1) is established. The main result, Theorem 2.1,
identifies a particular functional of the smoothing kernel that determines the
rate of the stochastic bound of the estimation error. The result is applicable to
a wide range of smoothing schemes.

Section 2 contains the main theorem and illustrative examples; Section 3
contains lemmas and proofs required to establish the theorem.

2. The main theorem. Throughout the sequel U = [a, b] is an arbitrar-
ily fixed subinterval of (0,1). The main result, to be proved in the next
section, follows from several regularity conditions on the qdf and the smooth-
ing kernel which are given below.

Q, (SMoOTHNESS). The qdf g(-) is twice differentiable on (0, 1).

Q, (ConTROLLED TAIL). There is a y> 0 such that sup,. ;,u(1 —
wlJ(w)| < v, with J(u) = d log q(u) /du.

Q; (TAIL MONOTONICITY). Either ¢(0) < «© or g(u) is nonincreasing in some
interval (0, u ), and either g(1) < « or g(u) is nondecreasing in some inter-
val (u*, 1).

K;. For each n, 0 < pu,(0,1) < (but may depend on n), and
w,({0,1}) = 0.

K,. For each n and each (u,?), K, (u,t) =0, and, for each u € U,
oK (u,t)du,(t) = 1.

K;. For each n, [(tK, (u,t)du,(t) =u, u € U.
K,. There is a sequence 8, |0 such that sup, c |/, K, (u, t) dp,(t) —
1110, as n Tee.

The rest of the conditions concern the derivative K (u, t) = dK,(u,t)/du.
Let S, be the (unique) closed subset of (0,1) such that w,((0,1) \S,)=0
and p,((0,1) N\ S}) >0 for any S, c S,. For the sequence §, in K,, let
I(w)=[u-28,u+s,] I{(w)=(0,1 \ I(u),for u € U. Define A(u; K,) =
1 @K (u, Ol dp,(¢), u € U; and, for a well-defined function g on (0, 1), let
R(g; K,) = sup, c y [rs)|8 (DK (u, )l d p, (2).
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K;. For each n, sup, .y [o 1K, (u, )l dp,(t) < = (but may depend on n).

K. (a) For each n and each u € U, K, (u,t) =0, t € I:(uw); or (b) S, C
[,1— ¢] c(0,1), with U C[e&,1 — &] for some 0 < & < 3.

K,. For the §, sequence in K,, 52 sup, .y Alu; K,) - 0 and R(1; K,) —
0as n10.

For a function g on (0,1), let M, = sup,.ylg(w)l. Let ¢,(u) =
[4QWK ! (u, t) du,(t). Then d, = sup,.ylq,(w) — q(w)| is the deterministic
error of the estimator ¢,(«) in estimating the qdf ¢ (cf. Lemma 3.2). The main
result is the following theorem.

THEOREM 2.1. Under conditions Q;-Q; and K,-K,, the estimator §,(u)
is uniformly in-probability consistent on U: sup,.yld,(w) — q(w)| =
0,(B(q; K,) + d,), as n 1%, where

B(q;K,) = n~ V2| M, Niy/28, log 5, + M, + C,M,n~V?A (n) Xy,

with N, = sup, .y AMu; K,), C a universal constant and n=°A.(n) = o(1) for
any 6 > 0.

For illustration, consider first the familiar convolution case
K,(u,t) dp,(t) = h'K((t — u)/h,) dt

with K() a differentiable and symmetric pdf on [-1,1] and %, | 0. For K,
8, =nh,; for K,, A(u;K,) =h,"a(K), with «(K) = [!,|K'(x)dx, and
R(1;K,) = 0 for sufficiently large n. Once n"'/?h, ' = n~" | 0, the dominat-
ing term in B(q; K,) is M,a(K)h,"/2h, 'log h,'. It is well-known that,
under @, the deterministic error d, = O(h2) for a second-order kernel K.
Hence the best rate of the stochastic bound is O((n ! log n)?/®). For a further

illustration, consider the following example.

ExampPLE 2.1 (Boundary-modified Bernstein polynomial). Let & be such
that U c[e,1 — ] € (0, 1). The k-degree boundary-modified Bernstein poly-
nomial qdf estimator on U is, for an appropriate kernel b,(u, ¢) and u,,

d ~
HOE e CAOLICREING

1 k_lén(tj+1)_Qn(tj) E—-1 j E—1-j
_FZ 1k ( . )(u—e)(l—s—u) ,

s_j=0 ‘]

where L,=1-2¢ and t;= ¢+ (j/k)L,, j=0,1,..., k. Let k =k, 1 as
n 1. Conditions K;,-K; and K, can be easily verified. For condition K,,
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Laplace formula [Lorentz (1986), pages 15-18] implies 5, = £~ 1/27° 0 <
8 < +. Next,

' B dbk(u )
Au; K,) = t_,e%w) du
k-1 k_l) j—1 k—1-j (J/k)_v
= ’ 1— ,
L. t,EIZn(w(-’ Sy (J/k)(1 —J/k)

where v = (u — &)/L,. Thus A(u; K,) ~ (k — 18, /[ L>v(1 — v)] = O(k1/2%?)
for each u € U because [(j/k) — v| < §6,/L, for t; € I,(u). Similarly, by
Lorentz [(1986), equation (7), page 15], R(1; K, 5= O(A E1725%) = o(1)
(choose s > 1/26) as n 1. So K; and K, are verified.

Further calculations using Taylor expansion show that the determinis-
tic error d, = sup, < ;y1g,(w) — q(w)| ~ a(e)k~'. Assume that k =k, < n, for
each n. Then

sup|qn( u) —q(u)

uelU
- Op(c(g, M,)n =1/ 0/ 9+ 3072, [log p1/H-(/2) 4 a(g)k—l).

So the best rate of the stochastic bound is O(n ! log n)?/®*6%) Because 6 > 0
but can be arbitrarily small, this rate is slightly slower than that for the
second-order kernels. However, Cheng (1995) shows interesting and desirable
oscillation properties of the Bernstein polynomial smoothing in finite sam-
ples, which in general are not provided by convolution kernels.

3. Lemmas and proofs. The proof of Theorem 2.1 is divided into several
lemmas. The previously defined notation continues to be used below.

Define g,(u) = (K, g)w) = [{g(®)K (u,t) du,(t) and g, (v) = dg,(uw)/du,
u € U, for a well-defined function g on (0,1). Conditions K., K, and
Billingsley [(1986), Theorem 16.8] imply that, for each n, g, (u) =
Jeg(OK! (u,t)du,(t), u € U.

Arguments using Taylor expansion and Billingsley [(1986), Theorem 16.8]
establish the following lemma.

LEMMA 3.1. Let g be a twice continuously differentiable function on (0, 1).
Then under conditions K,-K,, g, and g, approximate g and its derivative
g simultaneously on U in the sense sup,.ylg,(w) —gw)| — 0 and
sup, cylg,(w) — g'(w)| = 0, as n — o,

Turning to the qdf estimator in (1.1), earlier argument implies that, with
probability 1, §,(u) = [¢K.(u,t)du,(t), u € U, for each n. Let g,(u) =
[eQWK ! (u, t) du, ().
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LeEMMA 3.2, Under conditions Q;-Q; and K=K, there exists a sequence

of Brownian bridges {B,}._, such that nl/z[qn(u) g,(w)] = B.(w) + & (w),
u € (0,1), where

By(w) = [(a(1)B(O)K,(u,0) du(1),  ueU,
and

sup |&,(u)| < Con~ %A (n)
uelU

suplq(v)lsupA(u K,) + R(q;K,)

with probability 1; C, is a universal constant and n_l/QAy(n) = 0(1) as n 1.

Proor. First note that

n2[4,(w) = 3,(w)] = ['02[Qu() ~ Q(OIKL(1, 1) disy(1).

By conditions Q;-Q; and Csérgé and Révész [(1978), Theorem 6], there is a
sequence of Brownian bridges {B,} such that, with probability 1,

nl/2

1/2 _ _ u —CO7
A0 |5 [Qu(1) = @(1)] - B,(w)| <

lim sup

1
ns o a(®)”
where C, is a universal constant, A (n) depends on y in Q, but n""A (n) =
o(1) for arbitrary 7> 0. Let e,(¢) = [l/q(t)]nl/z[Q @ -Q1)] -8B (t) Then

n2(Q,(t) — QD] = q()B,(1) + q(t)e,(t). So nl/2[§,(u) — G,(w)] = Bi(w) +
¢ (w) with & () = [§q(t)e (K. (u,t)du,(t). Moreover, with probability 1,

A1 1 ’
sup |£,(w)] = sup [q(t)]en() K, (u,0)|d(t)
uelU ueU

< s Je,(v >|supf ()| K (u,t)|dp,(t)

< Con?A (n) sup ['q(0)| Ky(u, 0)|dp, (1),  n -,
ueU”’0

and SupuEU fOlq(t)|K;z(u7 t)| dl"(‘n(t) < SupUEU q(v)supuEU A(u; Kn) +
R(q; K,). Note further that R(q; K,) = o(1) by Q;, K; and K,. O

LEMMA 3.3. Let B,(u) be as in Lemma 3.2. Then sup,.,lB.(u)| =
0,(A(q; K,)), as n 1o

A(g;K,) = sup, .y q(v)sup, ey A(u; K,)/25, log 6,
+sup, cplg’ (¥l + R(g; K,).
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Proor. First note that

[la(6)[B.(t) = B,(0)] K;(u, ) d,(t)
0

sup |B’ u)| < sup
uelU

[a(O K, t) (1)

+ sup | B,(u)| sup
uelU ueU
=T +W,.
By Lemma 3.1, sup,.ylfgq(O)K,(u,t) du,(t) ~ sup,.ylg'@l; W, =
O,(sup,, c ylg'(W));

Tnssggf |a(2)[B,(2) = B,(w)] K;(w,t)|dp,(2)

+sup [ [2(O)[B.(¢) = B, ()] Ki(u, 0)|du,(t)
welU I

=T ,+T, ,.
Because B,’s are identically distributed as a Brownian bridge,

T, , < sup sup |B<t>—B<u)|sup/ LIOEACRIIETAC
ueU tel0,1]

= Op(l)R(q’ Kn)’

Ty, = swp [ 1a()[B,(6) = By ()] K (. 0) i (1)

uelU

< sup sup q(t) sup |B,(v) — B(u)|sup/ |K’(u t)|du,(t)
ueU tel,(u) vel,(u)

~ supq(v) supA(u K,)O, (\/25 log &, )
velU

the asymptotic equlvalence follows from Csorgd and Révész [(1981), Theorem
14.1]. O

REMARK 3.1. Note that, for each n,

o dRa(D)B(OK,(u,t) du,(t)
B (u) =
du
with probability 1. The above lemma provides a stochastic upper bound for
this derivative process sequence. For related results on smoothed Wiener
process and Brownian bridge, see Stadtmiiller (1986, 1988) and Xiang [(1994),
Lemma 2.1].

Theorem 2.1 follows immediately from the lemmas.
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