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REFINED PICKANDS ESTIMATORS OF THE EXTREME
VALUE INDEX

By HOLGER DREES
University of Cologne

Consider a distribution function that belongs to the weak domain of
attraction of an extreme value distribution. The extreme value index B
will be estimated by mixtures of Pickands estimators, where the weights
are generated by a probability measure which satisfies a certain integra-
bility condition. We prove a functional limit theorem for a process of
Pickands estimators and asymptotic normality of the refined Pickands
estimator. For negative B the new estimator is asymptotically superior to
previously defined estimators. A simulation study also demonstrates the
good small-sample performance. In particular, the estimator proves to be
robust against an inappropriate choice of the number of upper order
statistics used for estimation.

1. Introduction. Let X;, i € N, be a sequence of i.i.d. random variables
(r.v.’s) with common distribution function (d.f) F. Assume that F belongs to
the weak domain of attraction of an extreme value d.f. G [in short, F € D(G)],
that is,

(1.1) .S’(a,jl( max X; — bn)) - G weakly
1<i<n

for some normalizing constants a, > 0 and b, € R. Note that, subsequently,

we do not distinguish between a d.f. and the pertaining distribution. Up to a

location and scale parameter, G has to be one of the following extreme value

d.f’s (given in von Mises representation).

exp(—(1+ Bx) /?), if1+Bx>0,B+#0,
exp( —exp(—x)), if B =0.

There is a rich literature about the estimation of the so-called extreme value
index (or tail index) B based on X;, 1 <i < n [see, e.g., Hill (1975), Hosking
and Wallis (1987), Smith (1987), Dekkers and de Haan (1989) and Dekkers,
Einmahl and de Haan (1989); for an introduction see Reiss (1989)]. Pickands
(1975) proposed the estimator

Gg(x) =

n—i+l:n _Xn—2i+1:n

L1
Bn(”) = log(z) log

Xn—2i+1:n _Xn—4i+1:n
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where i <n/4 and X,., <X,., < - <X,., are the order statistics per-
taining to (X;);.;.,. The main advantage of Pickands’ estimator is the
consistency of 3,(m,) for any B € R and any intermediate sequence m, — <,
m,/n — 0, in contrast to the Hill estimator and the probability weighted
moment estimator proposed by Hosking and Wallis. Moreover, the Pickands
estimator is easy to compute and invariant under shift and scale transforma-
tions as used in (1.1).

On the other hand it has a rather poor asymptotic efficiency. Furthermore,
the Pickands estimator §,(i) is very sensitive to the choice of the intermedi-
ate order statistics which are used for estimation: even a small alteration of i
can yield a considerable change of the estimate.

To overcome these disadvantages, we consider mixtures

(12) BAn,v = Zn cni :BAn(l)
i=1

of Pickands estimators, where m, is an intermediate sequence and the scores
¢,i» 1 <i <m,, are generated by a probability measure v on B(0, 1], that is,
c,; = v((i — 1)/m,,i/m,], B, , will be addressed as a refined Pickands
estimator with score generating probability measure v. Observe that the
refined Pickands estimator has the representation

By = [ Bu(max)v(dx),

where 1x[ denotes the smallest integer greater than or equal to x. The special
case of a mixture of two different Pickands estimators was studied by Falk
(1994). In contrast to that, we merely impose an integrability condition on ».
The paper is organized as follows. Section 2 contains the mathematical
results. We establish the asymptotic distribution of a jump process based on
mY2(B,Gi) — B), 1 <i < m,, and of the normalized error my*(B,, — B) of
the refined estimator. Furthermore, for each 8 # — 3 a score generating
probability measure »*( B) is determined that minimizes the asymptotic
variance of my/*(B, , — B). Finally, we investigate the adaptive estimator
B4, Where B, is a weakly consistent estimator of B8 and »(B) is an
almost optimal score generating probability measure.
_ In Section 3 we compute the asymptotic relative efficiency (with respect to
Bn, v+ p)) of well-known estimators that are based on the same number &, of
upper order statistics. A simulation study demonstrates the good finite-sam-
ple behavior of the refined Pickands estimator. Particularly, the estimator
proves to be less sensitive to an inappropriate choice of £, than the moment
estimator of Dekkers, Einmahl and de Haan (1989). All proofs are collected in
Section 4.

2. Asymptotic normality of refined Pickands estimators. Like the
Pickands estimator many popular estimators of the extreme value index are
based on a certain fraction of upper-order statistics (X, _;,1.,)1<;<#,, Where
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k, denotes an intermediate sequence. It is well known that asymptotic
normality of, for example, the Hill estimator or the moment estimator of
Dekkers, Einmahl and de Haan (see Section 3 for the definitions) is obtained
only if %, does not tend to infinity too fast. For a rigorous formulation of
these conditions on %,, one has to examine the so-called second-order behav-
ior of the underlying d.f. F.

Recently, several different sets of second-order conditions on F have been .
proposed [see, e.g., Smith (1987), Dekkers and de Haan (1989, 1993) and
Dekkers, Einmahl and de Haan (1989)]. The most general approach was
made by Pereira (1994), who assumed that there are functions a, ®: (0,1) —
(0,0) and ¥: (0,2) - R such that

Fl'l-tx)-F'(1-¢t) xF-1
a(?) -

where ®(¢) = 0o(1) and R(¢, x) = o(®(¢)) as ¢ | 0. [By convention, (x# — 1)/
= —log(x)if B=0.]
Observe that (2.1) implies

F'(l-tx) —FY(1-t) x7f-1
a(t)/(1+cd(t) B

Hence, w.l.o.g. one may assume that ¥ = 0 or that ¥ is not a multiple of
x — (x~# — 1)/B. This leads to the following condition.

(2.1)

+ ®(¢)¥(x) + R(¢, x),

,B_l

+<I>(t)(‘l’(x) +o2 +R(¢, x).

CONDITION 2.1. Assume that the expansion (2.1) holds for some measur-
able, locally bounded functions a, ® and ¥, where (i) or (ii) holds:

(i) ¥ =0and R(¢,x) =0(1) as ¢ |0 for all x > O;
(ii) ¥(x)B/(x~P — 1) is not constant, ®(¢) = o(1) and R(¢, x) = o(®(¢)) as
t 10 for all x > 0.

Notice that Condition 2.1(i) is equivalent to F € D(G;) [de Haan (1984),
Lemma 1]. Essentially, the second-order Condition 2.1(ii) is the condition
considered by de Haan and Stadtmiiller (1993), who also examined the
relationship to the conditions of Dekkers and de Haan (1993). They proved
that, under Condition 2.1(ii), ® is §-varying for some & > 0, that is,

G
10 ®(2)
for all x > 0, and that ¥ is of the form

x®,

X ) : x
V(x) =c1f s‘(ﬁ“)f u‘s‘lduds+czf s® (Bt s,
1 1 1

for some real constants ¢; and c,. In particular, ¥ is differentiable. Moreover,
the relations R(¢, x) = o(1) and R(¢, x) = o(®P(t)), respectively, hold locally
uniformly [Dekkers and de Haan (1989), Lemma 2.2; de Haan and Stadtmiiller
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(1993), Remark 4(ii)l. Many examples of d.f’s satisfying Condition 2.1(ii) can
be found in Pereira (1994).

ExaMPLE 2.1. Assume that the quantile function (q.f) F~! is of the
following type:

t7 P+ Lt° B +0o(t°P), ifp+0,

-1 —
(22)  FrA-f=pte —log(t) + Lt® + o(¢%), ifB=0,
as t | 0 for some & > 0, 8 # B. Then Condition 2.1(i) holds with ®(¢) = t? and
W(x) = c(x° 2 — 1) for some constant ¢ € R \ {0}. Examples of this type of
d.f’s are the extreme value d.f’s G, (8 = 1), the Cauchy distribution (B8 = 1,
& = 2) and the logistic d.f. (=10, § = 1).

Note that the leading term ¢ # and —log(¢), respectively, of the expansion
(2.2) is the q.f. of a generalized Pareto distribution. Hence the underlying d.f.
belongs to a certain neighborhood of a generalized Pareto d.f. with location
and scale parameter. For 8 > 0 expansion (2.2) is equivalent to the well-known
Hall condition [Hall (1982)]. Moreover, it is closely related to a condition
which was partly introduced by Weiss (1971) and investigated in detail by
Falk (1985), Falk and Reiss (1992), Falk and Marohn (1993) and Kaufmann
(1994), among others.

Corresponding to the two sets of conditions on F, we assume two condi-
tions that describe an upper bound on the rate at which the intermediate
sequence m, tends to infinity. Recall that m, determines the fraction of
upper order statistics that is involved in estimation of B.

ConNDITION 2.2. The sequence (m,), .y is an intermediate sequence such
that (i) or (ii) holds:

@ lim,, ., m}/? SUP;c 0, . /n), x e[1-n, 4+ R(E, £)| = 0 for some 5 > 0;

(i) lim, _,, m¥2®(m,/n) = A € [0, ).

If the second order Condition 2.1(ii) is satisfied, then Condition 2.2(i)
applied to the “remainder term” ®(¢)¥(x) + R(¢,x) reads as lim,
mY/2®(m, /n) = 0. Thus in this case Condition 2.2(ii) (with A > 0) allows m,,
to converge faster to infinity than Condition 2.2(i) does.

First we establish a functional limit theorem for the jump process

Zn,ﬂ(t) = Z m}z/z(én(i) - B)l((i—l)/m,“i/mn](t)7 te[0,1],
i=1
that may be addressed as a Pickands process. Observe that

(23) m}z/z(:én,v - IB) = on,B(t)V(dt)'
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Define
2B
if B #
g@)(1-27) P70
g = 9
m, if =0,

1
dg v = 5(_(1 +2F)¥(2) +2°¥(4))
and a Gaussian process

Zy(t) = 1 W(i) - 1+—2_BW i) + 27 (B*DW(¢t) t>0
p t 4 2 2 ’ -

where W denotes a standard Brownian motion.

THEOREM 2.1. Let h:[0,1] — [0, ) be a continuous function such that

. loglog(3/t) \'/* 3

Assume that Conditions 2.1G) and 2.2(G) or Conditions 2.1Gi) and 2.2(ii) are
satisfied and set A = 0 in the first case. Then

(A(t)  Zy 5(2)) oy = (R(2) - ca(Zs(t) + Ady 4t°)), (0, weakly
in the Skorohod space D|0, 1]. '

As an easy consequence one obtains asymptotic normality of the refined
Pickands estimator.

COROLLARY 2.1. If the score generating probability measure v satisfies

(2.5) f(loglog(B/t)

1/2
; ) v(dt) <o

and the conditions of Theorem 2.1 hold, then
(2.6) g(ml/z( B, — B )) —>./V( Aegdy o f t(dt),cpo.’, | weakly,
where g’ , = [o,(s, )v*(ds, dt) and gy(s,t) = Cov(Z(s), Zg(t)).

If the score generating probability measure has no mass in a neighborhood
of 0, then an upper bound on the rate can be established at which asymptotic
normality holds. For simplicity we restrict ourselves to the case where the

estimator is asymptotically unbiased. (However, see the remark following the
proof of Theorem 2.2.)
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THEOREM 2.2. If v(0,¢e] =0 for some & > 0 and Conditions 2.1G) and
2.2() are satisfied, then, for all n > 0

suplP{ 1/2([§n,y - B) < x} _‘/V(O’Cﬁszp%y)(—w,x]}

xR

m,
=0|— +10g(mn)m 172 4 ml/2 sup
tele, 1], x€[l-n,4+1]

tm,
R( ,x)
n

|

Note that (2.6) includes the asymptotic normality of the Pickands estima-
tor Bn(m ) = Bn,g as a special case; this result was already established by
Dekkers and de Haan (1989) under more restrictive conditions on F. In
addition, we obtain from Theorem 2.2 the rate of convergence to
M0, cja;(1,1)) in that case.

Observe that the asymptotic variance cza;’, of m}/*( B, y B) depends on
the score generating probability measure. Our next aim is to determine a
probability measure v*(B) €4 = {(v: v satisfies (2.5)} that minimizes o7,
and hence the asymptotic mean squared error if the estimator is asymptoti-
cally unbiased. In particular, this is true if Conditions 2.1(i) and 2.2(i) are
satisfied.

Check that, for s < ¢,

t

0, if 0 < —

i s < 1

t t t
(), bt

%(S,t) = .'9; 1 4+ 2-(B+D 4 9-@B+1)
4s
(1+ 278 4+ 27C~+D) " t
— — < .
” , 1 2 s<t

Since o_5,,/(s,t) = 22 *g, (s t) for all s,¢ € (0, 1], »*( 8) minimizes o, if
and only if it minimizes o-_( g+1),»- Hence we may restrict our attention to
B= — 1

LEMMA 2.1. For B> — 1,

(1- 2—(ﬁ+1))2

. f
(2.7) infop., = 16
For B> — 3, the infimum is attained at

[ee]
V*( B) = Z ai,ﬁsz"’
=0
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where
28+1 _ . .
g, | ZET A2, if g0,
(z+ 1)2‘(”2), if B=0.

Regrettably, we do not find any probability measure which minimizes
a? ,2,,- Therefore we modify the asymptotically optimal probability measure
for parameters 8 on a small neighborhood of — 3:

vi(—(B+1)), ifg<—3-np,
(2.8) v(B) = {v*(-z+p), ifIB+3 <p,
v*(B), if B> -3 +p,

for some p > 0. Then for all £ > 0 there is a p > 0 such that

. 2 2
inf g5, — %.V(ﬂ)‘< &

sup
ved

BER

Note that the (almost) optimal score generating probability measure v( 8)
depends on the parameter which has to be estimated. Thus it suggests itself
to introduce an adaptive estimator. It turns out that the estimator

éu,v([in) = fén(]mnt[)v( én)(dt)

has the same asymptotic performance as the refined Pickands estimator
whose score generating measure is based on the actual parameter g if B, isa
weakly consistent estimator of B.

THEOREM 2.3. If Conditions 2.1G) and 2.2G) are satisfied and ﬁn is a
weakly consistent estimator of B, then

(2.9 ,?(m,lﬂ( Bu vidy — B)) —(0,¢502 () weakly.

REMARK. In a similar way one can determine an asymptotically optimal
score generating probability measure v* (i.e., a measure which minimizes the
asymptotic mean squared error) if Conditions 2.1(ii) and 2.2(ii) hold for some
A > 0. In this case, however,v* also depends on A, dg y and . Since these
parameters are very difficult to estimate, an adaptive estimator would be of
little practical use.

‘Besides the asymptotic normality of the refined Pickands estimator, one
may investigate the asymptotic behavior of further functionals of the Pickands
process, such as a weighted median or test statistics [Z? z(¢)v(dt) of
Cramér-von Mises type. For details we refer to Drees (1993).
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8. Comparison of estimators. In this section we compare the adaptive
estimator B, , 5, with the Pickands estimator, the moment estimator pro-
posed by Dekkers, Einmahl and de Haan (1989) and Hill’s estimator [Hill
(1975)]. Recall that the latter is defined by

AH _1kn_1 Xn—i+1:n
ﬁn = (kn - 1) Z ].Og —)(__———
i=1 n—k,+1:n

for some intermediate sequence &,. Because the Hill estimator is inconsistent
if B <0, Dekkers, Einmahl and de Haan (1989) proposed the following

modification:
Conll
1--— ) ,

752

BY =Bl +1~ (2
where

/ k,—1 X 1. 2
M® = (k, — 1)‘1 Y (10g(X”‘—‘-"_)) .

i=1 n—k,+1:n

Utilizing Corollary 2.1, one can determine an asymptotically optimal choice
of the number %k, of upper order statistics used by the refined Pickands
estimator, that is, a number such that the asymptotic mean squared error is
minimized. Such an optimal %} was established under suitable second-order
conditions by Dekkers and de Haan (1993) for the moment estimator and, for
example, by Goldie and Smith (1987) for the Hill estimator [see also Hall and
Welsh (1985)]. However, k¥ depends on certain parameters that describe the
second-order behavior of the underlying d.f. F. Since these parameters (e.g., ®
and T in the case of the refined Pickands estimator) are very difficult to
estimate, the theoretical results about %} are of little practical use. [This was
already noticed by Smith (1987), page 1182.] Moreover, under the second-order
Conditions 2.1(ii), the quotient of the minimal mean squared errors of two
estimators usually depends on B, 8 and ¥ so that it is a cumbersome
measure of the asymptotic relative efficiency in this case.

For these reasons we confine ourselves to calculating the asymptotic
relative efficiency if %, is sufficiently small such that all estimators under
consideration are asymptotically unbiased. It turns out that in most cases for
all three estimators this restriction leads to the same upper bound on the rate
at which %k, may tend to infinity. For example, under the Hall condition
1-F(x)=cx VB + dx™%/# + o(x~2/P)) for some >0, 6 # B and d # 0,
the moment estimator, Hill’s estimator and the refined Pickands estimator
are asymptotically unbiased if and only if &, = o(n~2%/@%+D) Hall and
Welsh [(1984), Theorem 1] proved that in some sense this is the best
attainable rate.

It is well known that

(3.1) ,‘Z(k;/z(ﬁ,f’ - B)) -0, B%) weakly
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if B> 0 and Conditions 2.1(i) and 2.2(1) hold with a(¢) = BF~'(1 — ¢) [see
Goldie and Smith (1987)]. Dekkers, Einmahl and de Haan (1989) proved that

(3.2) 2(k2(BP - B)) »#0,()’) weakly

for intermediate sequences %, which tend to « sufficiently slowly, where
1+ B2, if >0,
(1-8)*(1-28)
1-2 5-118)(1-2
(4_8 B (5-118)(1-2p)
1-38 " (1-3B)(1-4pB)
if the right endpoint of the underlying d.f. is positive (which can be achieved
by a simple shift operation).
It is easily seen that for all & > 0 there is a constant p > 0 such that the

variance of the limiting normal distribution of £/2( 3, ,5,, — B) is less than
4c,3 inf, . , g, + &. So it is reasonable to compare

33) (g)? =

y ifB<0

B(1 — 2-(B+D) . 1o,
og2)(1-27) | "P="3B*0
1
4 inf o, = { —— if B =
™" | Tlogi(2)’ ifp=0,
B? . 1
210g7(2)’ fE< -3

with the asymptotic variances of the other estimators.

Figure 1 shows a plot of 4c inf, . , Ob divided by the asymptotic vari-
ances given in (3.1) (solid 11ne) and 3. 3) (broken line), respectlvely The
dotted line is the corresponding plot for the asymptotic variance of the

AREg
6.0

5.01
4.01
3.0
2.0+

B
FiG. 1. ARE of BF (solid line), BP (broken line) and B,(%, /4] (dotted line) w.r.t. B, ,s)



2068 H. DREES

Pickands estimator. Notice that, for g8 # — 2, these ratios are the asymptotic
relative efficiencies (ARE) with respect to Bn 4 (B)"

The plot clearly exhibits that Bn v, 18 the asymptotically best estimator
for negative B, whereas for 8 > 0 the asymptotic variance of Bn is smaller.
To be more precise, we have

AREB(ﬁnD’ én,v(én)) -0 as B —x,

and
ARE,( B2, Bu vig) ~ (log(2) > as B .

The ARE of the Pickands estimator w.r.t. [§n L+ g) converges to 1 as|Bl - .
Furthermore, in the present situation the Hill estimator is the best estimator
for B > 0 (yet not even consistent for 8 < 0). In view of Figure 1, it is natural
to choose ,Bn V(B ,Bn or ,Bn for the estimation of B accordmg to an initial
estimate of B [For details see Drees (1993).]

Next, we want to examine the finite-sample behavior of Bn (B2 BP
and B,(k,/4D by a simulation study. We choose S, = Bn W(B,) with' B, =
Bn, ,+0y as the initial estimator. Furthermore, we put p = 0. 01, but all “small”
values for p lead to almost the same results. (In practice one may even choose
p equal to 0.) In view of the definition of the moment estimator, it is obvious
that this estimator works only if all order statistics used for estimation have
the same sign. For this reason, in the case that the minimum of the observa-
tions is negative we shift the whole sample such that the minimum is equal
to £ = 0.001. (The performance of the estimator depends on &, particularly if
a large fraction of the sample is utilized for estimation. We do not go into
detail, because this is a specific feature of ,Bn )

The study is based on 10,000 Monte Carlo simulations. In each simulation
we generate n = 1000 pseudo-r.v.’s according to a d.f. F' that satisfies Condi-
tion 2.1(ii). As already noted, the choice of the number %, of upper order
statistics used for the estimation is crucial. We calculated the three estima-
tors for %, = 50,100,200, ...,900,1000. Then, for each underlying d.f. and
each estimator, we determine the number %, for which the estimator shows

0.5 1.0 0.5 1.0 0.5 1. 0
FiG. 2. Empmcal quantile functions of the absolute error of B,, w g, (solid line), D (broken
line) and B,(k,/4) (dotted line) with underlying d.f. F equal to (a) G_j, (b) v (© T,
n = 1000 and optimal k,,.
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the best performance. Figure 2 displays the empmcal qf’s of the absolute
error |B, — Bl for B, = ,Bn v, (solid line), BP (broken line) and B,(%, /4D
(dotted line).

In Figure 2a the underlying d.f. is the extreme value d.f. with parameter
—1. In this case all three estimators under consideration perform best if they
are based on the upper 200 order statistics. The plot demonstrates the
superiority of the refined Pickands estimator over the moment estimator for
negative (3, which has already been indicated by Figure 1.

In contrast to this, at first glance it is surprising that the refined Pickands
estimator yields slightly better results than the moment estimator in the case
F = G,. However, in this particular case where B = 6 the second term of
expansion (2.2) can be included in the location parameter wu. Hence the
location invariant estimator Bn »(4,) may utilize more upper order statistics
than BD To be precise, the latter estimator shows the best performance for
k, = 200, whereas the best choice is %, = 800 for the refined Pickands
estlmator and %, = 700 for the Pickands estlmator (An asymptotically opti-
mal sequence is k ~ An2/3 for B2 and k, ~ A*n*/5 for Bn +(4,)» Where A and
A* are some pos1t1ve constants.) It should be mentioned that the moment
estimator outperforms the refined Pickands estimator for other underlying
df’s F e D(Gl) like the Cauchy d.f. (see below).

If the r.v’s are distributed according to the gamma distribution with
parameter 5, where g = & = 0 (Figure 2¢), then for appropriately chosen %,
[%, = 200 for BP; k, = 800 for B, ,;, and B,(%,/4D] the moment estima-
tor shows the best behav10r However the refined Pickands estimator per-
forms much better than the original Pickands estimator, which proves to be
the worst estimator under consideration for all three underlying d.f’s.

Up to now, we have examined the behavior of the estimator if the number
k, of upper order statistics used for estimation is taken appropriately. As
already mentioned, in practice it is very difficult to determine such an
optimal %, which depends on the unknown underlying d.f. For this reason,
one important feature of an estimator of B is the stability of its performance
under changes of %,.

Table 1 gives the median of the absolute error of the refined Pickands
estimator B, ,; , (upper lines) and the moment estimator (lower lines) for
k, = 100, 200, 400, 600, 800, and 1000 and several d.f’s.

In all cases, due to the bias, the error of the moment estimator increases
more rapidly than the error of the refined Pickands estimator as %, in-
creases. In particular, for F = Gg, B < 0, the quality of the estimates given by
BP clearly deteriorates for %, > 500. In contrast to this, Bn w(g, Yields
sensible results if one uses up to 800 order statistics or sometimes even the
whole sample. (Note that for the generalized Pareto distribution W_, /25
k, = 1000 is the optimal choice!) Indeed, for almost all d.f’s Bn (G, 18
superior to ,Bn if one uses more than one-half of the sample. Thus the refined
Pickands estimator is less sensitive to an inappropriate choice of %,.

Finally, we want to investigate the stability of the estimates against small
alterations of %,. Figure 3 displays, for a single sample, the refined Pickands
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TABLE 1
Median of the absolute error of the refined Pickands estimator (upper lines) and the moment
estimator (lower lines) [Wy =1 + log(G;) generalized Pareto d.f.; C* is the Cauchy d.f. re-
stricted to the positive half-axis, Weig(x) = 1 — exp(—x3); #0, 1)* is the standard normal d.f.
restricted to the positive half-axis; and L(x) = (1 + exp(—x))~! is the logistic distribution]

F 100 200 400 600 800 1000

G_, 0.162 0.119 0.156 0.249 0414 1.350
0.160 0.143 0.296 0.594 1.289 > 10

G_1,9 0.172 0.123 0.104 0.144 0.228 0.735
0.102 0.087 0.171 0.349 0.765 > 10

Gy 0.146 0.091 0.072 0.106 0.162 0.358
0.070 0.052 0.056 0.123 0.309 > 10

G, 0.174 0.117 0.076 0.062 0.057 0.132
0.097 0.071 0.079 0.138 0.232 6.350

W_i,s 0.170 0.122 0.091 0.070 0.071 0.069
0.100 0.077 0.066 0.066 0.076 9.900

Cc* 0.174 0.113 0.079 0.081 0.131 0.211
0.095 0.068 0.053 0.076 0.161 3.301

Wei, 0.186 0.210 0.262 0.319 0.386 0.548
0.189 0.231 0.330 0.479 0.796 > 10

T 0.146 0.110 0.129 0.168 0.220 0.381
0.084 0.084 0.128 0.208 0.392 5.851

M0, 1)* 0.161 0.157 0.189 0.217 0.243 0.269
0.128 0.140 0.180 0.234 0.358 > 10

L 0.143 0.093 0.116 0.185 0.277 0.683
0.072 0.068 0.150 0.304 0.668 > 10

estimator (solid line), the moment estimator (broken line) and the Pickands
estimator (dotted line) as a function of the number %, of upper order
statistics used for estimation. The underlying d.f’s are F = G, (Figure 3a)
and F =T, (Figure 3b), respectively. Of course, these plots are of little
statistical significance since they show the behavior of the estimators for just
one realization. However, for practical purposes it is hard to estimate 8 if the
estimate changes a lot under small alterations of %,. Hence some statisti-
cians will prefer an estimator whose dependence on %, can be described by a
smooth function. In particular, such a behavior may be helpful for an interac-
tive data-driven choice of %, using plots like Figure 3, as has been suggested
by, for example, Dekkers, Einmahl and de Haan (1989) or Falk, Hiisler and
Reiss [(1994), Chapter 6].

The plots displayed here are in some sense typical. Usually the function
pertaining to the moment estimator is the smoothest, in particular for
100 < &, < 400. In contrast to this, using the Pickands estimator, even small
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Fic. 3. Estimates pertaining to én,v(ﬁ,,) (solid line), B2 (broken line) and B,( %, /4D (dotted
line) as a function of k,,, one sample of size n = 1000: (a) F = G; (b) F =T;.

alterations of &, can cause large changes of the estimates. The smoothness of
the curve corresponding to B, ,(5,, lies somewhere in between. Particularly
for &, > 500, the curve is almost as smooth as the curve pertaining to BD.

Another striking feature of the plots is the large systematic deviation of
the moment estimate from the true value in Figure 3a (respectively, the
rapidly increasing error in Figure 3b), which is apparently due to the bias. In
accordance with the results given in Table 1, this effect is much less evident
in the case of the refined Pickands estimator.

To sum up, it can be said that the refined Pickands estimator is the best
estimator under consideration for negative parameters, whereas usually the
moment estimator is superior if B> 0 and k, is chosen appropriately.
Moreover, B, ,;,, is more robust against an unsuitable choice of &, for all
values of B.

4. Proofs. One main tool for proving the functional limit Theorem 2.1 is
the “Hungarian construction” of Komlés, Major and Tusnady (1975, 1976)
[see also Shorack and Wellner (1986), (2.7.7)]. Given a standard Brownian
motion W, this construction yields a sequence of standard exponential r.v.’s §;
such that

i

Y (§-1)-W3)

Jj=1

4.1) P{ max
1<i<k

> d, log(k) + x} < d,exp(—djx),

for some constants d,,d,,d; > 0and all x € Rand &£ € N.
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Define
A F_ (l—n:IZ‘ &) - F'(1-n'T% &) iy
niT g 1( Yz g ) (1 nILi )
if n7'El_, ¢ €(0,1) for I € (i, 2i,4i} and A, ;= 0 otherwise. Moreover, let
_ log(A, ; +2°)
log(2)

By Lemma 5.4.2 of Reiss (1989) and a quantile transformation, one obtains
the following bound on the variational distance between the distribution of
the vector of Pickands estimators §,(i) and of the vector of B, ;:

@D (Bl reren) ~H(Buciens)] - 0 22).

The following technical lemmas are basic for the proof of Theorems 2.1
and 2.2.

LEMMA 4.1. Suppose that Condition 2.1(1) or 2.1(i) is satisfied. Let

" tm,
Ay, = sup | Ly %0p
tele, 1] n
tm
AP = sup Rl —,l(1 +x)]|,
tele, 1], 1e(1,2,4), x| <d(og(m)/m)*/2 n

where d == (d; + 2d3! + 4)/e.
Then, for all £ > 0 and n € (0, }), there are positive constants d, and dy
such that, for all m <lqynl,

P{ max

Jem[ <ism

- B,,,,.—ﬁ—cﬁ(—zzﬁ(u) +dﬁyq,cp(%))‘

log(m
>d4( BUR) (a4 A<3>m)} <dsm2.
m , )
In particular,
i
(4.4) max Y% B,,-B- CB(_2ZB(4i) + dB"I,CD(—))’ -0 a.s,
Jem,[ <i<m, n

if Condition 2.2(i) [respectively, 2.2(ii)] is satisfied.

PrOOF. We restrict ourselves to the case where B # 0 is satisfied because
the proof runs along the same lines in the other case. Subsequently,
a(i,m,n) = O(b(m, n)) is interpreted as |a(i, m,n)| < c|b(m,n)| for all
lem[< i < m <]nn[ and some constant ¢ depending only on & and 7.

For r; == £i_ (& — 1) — W(i), we obtain, from (4.1),

(4.5) P{ max [}l > (d, + 2d; )10g(4m)> - 0(m~?).

l<i<d4m
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The reflection principle yields
P{ max |[W(i)| > (16m log(m))l/z}

(4.6) l<i<4m
< 4P{W(4m) > (16mlog(m))"*} = O(m~2).
Now assume that
max |r;| < (d, +2d;')log(4m) and
(4.7) l<i<4m

max |W(i)| < (16m log(m))">.
1<i<4m

Then n~'Yi™ & =n"'(4m + W(4m) +r,,,) <1 for sufficiently large n.
Thus, for [ € {1,2,4} and lem[< i < m, we have

=F_1(1 ~ il(l L ) + r,,.))
n li
O R e

+<D(£—)\If(l(1 + ————W(lil)i+ il )) +R(%,l(1 + —W(lil)i+ il )))

- _1(1 - %) +“(%)(Z_Bﬁ_ S ”’(%)“’”)

1/2
+O(_l.(.)£(ﬁ.)_ + A(;) (log(m) ) + A® )
m ,m m n,m

where the last equation follows from the Taylor expansion (1 + x)™# =1 —
Bx + O(x?%) and the differentiability of ¥. By (4.7) and (1 + O(x))"! =1 +
O(x), it follows that

A, ;= B(- /i) (W) — (1 +278)/2W(2i) + 27 F*DW(4i))
+2d, ®(i/n)

b

+0(log(m)/m + &P, (log(m) /m)"/* + &2 )

-1
x[278 - 478 + O((log(m) /m)'/* + &, + 42 )]

—g8-1 log(2)cﬁ(_4zﬁ(4i) + 2d‘3""¢( ))

L
o( log(m) '

m

+ (A0, + A(ﬁgm).
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Utilizing a Taylor expansion of the logarithm one obtains

27PA
n,t 2A
Toa(2) +0(A%)

= cg| —2Z,(4i) +dﬁ,\,,q>(;;)) + 0(

In view of (4.5) and (4.6), assertion (4.3) is proven.

Under Condition 2.2(1) [respectively, 2.2(ii)]l, ml/2(log(m,)/m, +
AV, )% + A® ) —> 0. Therefore (4.4) follows by the Borel-Cantelli
lemma. O

Bn,i_B=

log(m)

T () a2,

LEMMA 4.2. Under the conditions of Theorem 2.1, one has

max iY/2

l<is<m,

i
B,,—-B- cB(—2ZB(4i) + dB’,P@(;)) =0,(1).
PrOOF. Let C, ;= i'2B, ; — B — cg(—2Z;(4i) + dg o ®(i/n))|. Assume
that the assertlon 1s false Then there is an ¢ > 0 such that, for all 2, N € N,
there exists n. > N with

mn

8<P{ max C, >k}s Y P(C, ;> k).
1SlSmn i=1 !

Thus one can find sequences (n(k)), <y and (i(k)), ey With n(k) - o, 1 <

i(k) < m,,, such that

w -1
(4.8) P{Coty, ity > k) > ( Zj‘m) (i(R) ™

j=1
If (i(k)), < is unbounded, then it has an intermediate subsequence which by
(4.8) is a contradiction to (4.3). Hence there is a constant subsequence of
(i(k)); < n- Consequently,

(4.9) P{Chqy.: > (1)} > &,

for some sequence k(!) - » and some fixed i € N and & > 0.

On the other hand, F € D(G;) implies that, for some normalizing con-
stants @, > 0 and b, € R, (a;'(X,,_;,;., — b,); < ;<; converges weakly. Be-
cause of (4.2) and ®(i/n) - 0, it follows that (C, ;),cn is stochastically
bounded, which is a contradiction to (4.9). Hence the assertion is proven. O

Proor oF THEOREM 2.1. Let

Cofimt i)
I(n’l) = ) ’ Zn,B:= Zmn/ (Bn,i_ﬁ)ll(n,i) and

m, My i=1

Z, 5(t) = —(4m,)" " Zy(4m,t).
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Because of .‘Z(Z,,, ) =H(Z;) and (4.2), it suffices to prove that

sup BO|Z,5() - co(Z,, 5(t) + Adg o)
+d8,wm}/2<b(%))'

AR

[0 <5l

h( ) ( ) h(t)Z, 5(t)
ol ) -

< max sup h(¢)|Z
l<ism, te(n,i)

+ lcgl max  sup
l<i<m, tel(n,i)

+ lcgl max  sup
l<ism, tel(n,i)

+ legdg, 4| max  sup A(?)

<ism, tel(n,i)
=T +T,+T;+T,>0
in probability.

Using (2.4) and Lemmas 4.1 and 4.2, we obtain T, — 0 in probability,
since, for all ¢ > 0,

T, < sup A(t)t"'? max /2

te(0,1] lem, [<i<m,

i
X|B, ;—B-— cﬂ(—zzﬂ(4i) + dﬁ,w¢(;))1
+ sup A(t)t™'/? max i'/2
te(0, £] l<i<m,
i
Let A(t) = (loglog(8/t)/t)~"/ 2, Check that the continuity of A /A and the
monotonicity of A in combination with (2.4) yield
lh(t) — h(i/m,)
max  sup ——
1sismuiern,y  h(i/m,)
h(t)  h(i/m,)
R(t)  h(i/m.,)

< max sup
1<i<m, tel(n,i)

+ max sup h(t) - -0
1<iSma teK(n, i) h(t)  h(i/m,)

Hence, by the law of the iterated logarithm,
Ih(t) = h(i/m,)
max  sup -0

LAY i
A n,B : 7.
m, ’ m, 1<i<m, tel(n,i) h(l/mn)
Next observe that the continuity of 4 - Z; implies T; — 0 in probability.

T, < legl max h(

l<i<m
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Finally, by the uniform convergence theorem for regularly varying func-
tions [see, e.g., de Haan (1970), Corollary 1.2.1.4], one has

n

.\ 1/2
m i
T, < legdg || sup h(t)t‘l/zm}/zd)(—-—") max
’ te(0,1] n l<ism,\mMm

®(i/n) ( i )5

d(m,/n) A\ m
m i\°
m}/ZCD(—")( ) — Atd
nJ\m,

REMARK. Theorem 2.1 can also be proven by utilizing strong or stochastic
approximations of the quantile or tail quantile process as given by Csorgd,
(Csorg6, Horvath and Mason (1986), Einmahl and Mason (1988) or Einmahl
(1992) instead of the Hungarian construction and the approximation (4.2).
The latter reference gives a nice survey of such approximations [see also
Csorgé and Horvath (1993)]. This approach was fruitfully utilized by Csoérgd,
Deheuvels and Mason (1985), among others. However, some of these approxi-
mations require additional conditions (like the existence of a density of F)
and, moreover, by this means it may be difficult to obtain rates of conver-
gence as in Theorem 2.2.

n

+ max sup A(?)

l<i<m, tel(n,i)

)—)0. O

ProOF OF COROLLARY 2.1. Choose a strictly decreasing sequence ¢, — 0
such that [, , (loglog(3/¢)/t)"/?v(dt) < n™3. Then

o - |

4 e n_(t—tn+l)/(tn_tn+l)’ ifte(tn+l’tn]’
loglog(3/t) 1, ift € (¢,,1],

defines a positive, continuous function % which satisfies (2.4). Since
[1/h($)v(dt) < =, the map D[0,1] = R, z — [z(¢)/h(t)v(dt), is continuous
at any z € C[0, 1]. Therefore the assertion follows from Theorem 2.1, (2.3)
and the continuous mapping theorem, because Z([Z4(t)v(dt)) =40, 0i,)
[Shorack and Wellner (1986), Proposition 2.2.1]. O

ProoF oF THEOREM 2.2. We will prove the stronger result

sup’P{m},/Z( B, - B) < x} —/y(o,cg%?v)(_w, x]I

xeR

m
= 0(—nf- + log(m,)m; % + m}/zA(f?mn),
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where A% is defined in Lemma 4.1. Define I(n, i), Z, s and Z, , asin the
proof of Theorem 2.1. Let v, = LiewvI(n, De; /- Lemma 4.1 implies that

P{‘fz’,,,,,(t)v(dt) - chZn,B(t)u,,(dt)i > d,(log(m,)m;'/? + m}’/ZA(?’?mn)}

. log(mn)
lem[<i<m, m, "
<d;m;?
Observe that

supl (0,32, )(—==, & + 3] —#(0, o, )(~=, &1l < (2mg2,,) ",

xeR

for all y € R and H(cg(Z, ;(¢)v,(dt)) =#(0,cjas, ). Hence

P{fz"n,ﬂ(t)v(dt) < x} —#(0,¢305, )(—, %]

= O(log(m,)m;* + m/*AD L)

sup
(4.10) xeR

Elementary calculations show that |0b2, v~ O'B?vl = O(m;1), and so
sup|.# (0, iz, )(—o=, 1] =#(0, i, )(==, 1l = O(5}, ~ 05.3)

xeR
= 0(m;")

[cf. Reiss (1989), Problem 4.2(ii)]. Now the assertion follows readily from (4.2)
and (4.10). O

REMARK. In a similar way one can prove that

sup
xeR

P{m}‘/Z(én’V - /3) < x} —/l/()\cﬁdﬂyw ftﬁy(dt),cﬁaﬂ%v)(—m, x]

|

m
—O(— + log(m,)m; 1/2+m1/2( aY ) + AP )

®(tm,/n)

A AN
®(m,/n)

m
it
n

) - /\‘ + sup
tele, 1]

if Conditions 2.1(ii) and 2.2(ii) are satisfied and »(0, ¢] = 0.
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PROOF OF LEMMA 2.1. The map » = og’, has a local minimum at »* if and
only if, for all finite signed measures » on B(0,1] with #(0,1] =0 and
JQoglog(8/¢)/t)'/2|3|(dt) < oo,

[ [ as(s,t)(v* + p¥)(ds, dt) = [ [ (s, 6)(v*)’(ds,dt) VpeR

< [[ax(s,t)v*(ds)p(dt) = 0.

This means that [o(s, t)v*(ds) is constant for all ¢ € (0, 1]. Furthermore, if
two probability measures v§ and v} have this property in common, then

[ [ as(s,)(v1)*(ds, dt) = [ [ (s, 0)((#5)" + (v% — ¥§)*)(ds, dt)
> [ [ op(s.6)(v1)"(ds, dt)

and vice versa. Hence o;f = o »3» Which shows that every local minimum of

the map v+~ 02,2,, is a global minimum. By some direct calculations, one

obtains that /a,;(s, t)v*( B)(ds) is independent of ¢. Thus the infimum is
attained at »*( 8), and (2.7) can be proven by elementary calculations. O

PrROOF OF THEOREM 2.3. Let A(t):=tY%*¢ te[0,1], for some ¢€
(0, min( p, 3)). According to Theorem 2.1 there are versions Z, ; of Z, ; and a

version ZB of Z, such that sup,c(o,y h(t)IZ-,,’B(t) - cBZ-B(t)I — 0 a.s. The
triangle inequality yields

[ Za, a(0)(B.)(d) — [ esZp(t)v( BY(a1)|

< [1Z,,5(2) = caZs(2)lv( B, )(d2)

+ legl

[ Za(oyw(B.)(at) - [ Zu(oyn(B) ()|

- - 1 -
< t:;f)uh(t)lzn,,;(t) — caZp(t)l [ z—(ﬁv(ﬂn)(dt)

- < |y 27 — v 27
+ legl sup A(t)IZg(2) Y | (Bn){ ) — () 2"} .

te(, 1] i=0 h(27%)
Since supg < [1/h()¥( BXdt) < =, the first term converges to 0 a.s. Using a
generalized version of the Scheffé lemma [Reiss (1989), Lemma 3.3.4] and the
weak consistency of B,, it is easily seen that X7_lv( B N27%} —
v(BA27}/h(27%) - 0 in probability. Thus, the convergence of the second
term to 0 in probability is an immediate consequence of sup, < ¢, 1)(t)I1Z;(¢)|
<® as. Now the assertion follows from Z(f CBZB ®v(BXde)) =7(0,
cia sy and (2.3). O
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