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SHAPE CHANGES IN THE PLANE FOR LANDMARK DATA

BY MICHAEL J. PRENTICE AND KANTI V. MARDIA

Edinburgh University and Leeds University

This paper deals with the statistical analysis of matched pairs of
shapes of configurations of landmarks in the plane. We provide inference
procedures on the complex projective plane for a basic measure of shape

Ž .change in the plane, on observing that shapes of configurations of k q 1
landmarks in the plane may be represented as points on C P ky 1 and that
complex rotations are the only maps on CSky 1 which preserve the usual
Hermitian inner product. Specifically, if u , . . . , u are fixed points on1 n

ky 1 ky1 Ž .C P represented as CS rU 1 , and v , . . . , v are random points on1 n
ky 1 5 U 52

C P such that the distribution of v depends only on v Au for somej j j
unknown complex rotation matrix A, then this paper provides asymptotic
inference procedures for A. It is demonstrated that shape changes of a
kind not detectable as location shifts by standard Euclidean analysis can
be found by this frequency domain method. A numerical example is given.

1. Introduction. There are a variety of practical problems which re-
quire the statistical analysis of matched pairs of shapes of configurations of

Ž .landmarks in the plane. For various examples, see Bookstein 1991 . We
assume that data are available in the form of a random sample of n

Ž . Ž .independent and identically distributed matched pairs X , Y , . . . , X , Y1 1 n n
Ž .of k q 1 landmarks in the plane, where here each X and each Y is aj j

Ž .complex k q 1 vector. The shape of each object is the information on the
landmarks after all ‘‘pose’’ information has been removed, that is, the effect of

Ž .location, size and orientation. Thus, as in Mardia and Dryden 1989 , for
example, each X and Y is centred, scaled and multiplied, conventionally byj j
the Helmert matrix, to give a random sample of matched pairs of complex

Ž . U U Uunit k-vectors u , v , where u u s 1 s v v , u denotes transposed com-j j j j j j j
Ž . Ž .plex conjugate and each u and v is identified with u exp iu and v exp if ,j j j j

respectively, for all real u , f, and where i2 s y1. Thus each u and v is aj j
point on the complex projective hyperplane C P ky1 represented as

ky1 Ž . Ž .CS rU 1 , in the notation of Kent 1994 . Note the important restriction of
invariance under scalar rotations. We propose here to carry out a basic
investigation of the problem of point and regional estimation of shape change
on shape space, rather than on a Euclidean approximation to shape space.

Ž .Goodall 1991 addresses this problem using Euclidean approximations, but
here we propose to explore the consequences of investigating shape change by
representing it as a complex rotation and developing estimation and test
procedures on C P ky1.
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Although it is now conventional to use the coordinate system of Kendall
Ž .1984 on shape space, using complex contrasts generated by premultiplica-
tion with the Helmert matrix, there are some advantages in using a Fourier
alternative, described in detail below. After centring and scaling, each X andj

Ž .Y is a unit-length complex k q 1 -vector with entries summing to zero.j
Premultiplication by the Helmert matrix constructs k linearly independent
contrasts, but there is no particular reason to choose a coordinate system on
the complex sphere in this way. Indeed, one criticism levelled at the use of
the complex sphere in shape analysis is that the coordinates do not measure
anything biologically meaningful. The following alternative does, however,
give complex spherical coordinates with a geometric meaning. We propose to
replace the Helmert matrix by

y1r2F s f s k q 1 exp 2p irsr k q 1 ,Ž . Ž . Ž .Ž .Ž .r s

r s 1, . . . , k ; s s 1, . . . , k q 1,

so that the shape vectors u and v are unit norm discrete Fourier transformsj j

of the centred and scaled X and Y , respectively. Note that FF* s I andj j k
Ž .y1 TF*F s I y k q 1 11 , as for the Helmert matrix. Thus, for example, ifkq1

X represents a configuration of landmarks in standard numerical order atj
Ž .the vertices of a regular n-sided polygon in the plane, then u s 1, 0, . . . , 0j

and, in general, its first element u is a measure of the extent to which X isj1 j
similar to such a polygon. Similarly u measures the extent to which X isjt j

Ž Ž ..similar to a configuration with vertices at exp y2p istr k q 1 , s s 1, . . . ,
k q 1.

For the case of triangle, k s 2, suppose that the correspondence quoted by
wŽ . x 1 2Kent 1994 , page 292 between CS and S is modified by relabelling as

Ž .T 1 Ž .T 2follows. Given z s z , z g CS , define t s t , t , t g S by1 2 1 2 3

t s y2 Re zU z , t s 2 Im zU z , t s z zU y z zU .Ž . Ž .1 1 2 2 1 2 3 1 1 2 2

Then the Fourier choice of coordinate system above maps into the conven-
Ž .tional spherical blackboard of Kendall 1984 .

In this paper we propose to begin exploration of the statistical analysis of
shape change on Kendall’s shape space viewed as a normed frequency do-
main. The parallels with spectral analysis of time series are obvious, but
there is the important difference that we usually have a relatively small

Ž .number of landmarks length of time series with a reasonably large number
of replicated measurements, as compared with only one realisation of a time
series.

A complex spherical regression model is suggested in Section 2 as a basic
model for shape change in the frequency domain. The main theoretical
results needed are stated in Section 3, and estimation and test procedures are
exemplified in Section 4. In Section 5, these ideas are applied to the data

Ž .analysed by Mardia and Walder 1994a, b }a set of landmark coordinates
from lateral cephalograms of male rats from a close bred European strain, for
which x-ray results are available at a number of different times for the same
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subjects. It is, of course, necessary to assume that the shape of the outline of
each rat skull is adequately summarised by a small set of points, known as
biological landmarks. At ages 90 and 150 days and 7 and 14 days, analyses of
shape change in the frequency domain are carried out. The discussion given
in Section 6 highlights some advantages of this method. For a general

Ž . Ž .background to directional statistics, we refer to Mardia 1972 , Watson 1983
Ž .and Fisher, Lewis and Embleton 1987 .

2. A complex spherical regression model. Interest will centre here
on a nested sequence of three hypotheses H ; H ; H concerning a com-0 1 2
plex rotation A. The simplest possible statement about any shape change is
H : A s I . If H is true, then the shapes v are assumed to be the same as0 k 0 j
the shapes u except for composition with a small isotropic error. The mostj

Ž . Ž .general model considered here is H : A g SU k , where SU k denotes the2
group of special unitary matrices, that is, complex rotations, k = k complex

Ž .matrices A such that AA* s A*A s I and det A s q1. Hence if H is true,2
then, ignoring scalar rotations, the shapes v are assumed to be the shapesj
Au , except for composition with a small isotropic error, where here A doesj

Ž .not depend on j, but could be any fixed complex rotation in SU k . This is the
most general form of a rigid motion on the complex sphere. We shall also

Ž .reserve the standard notation U k for general unitary matrices, having
determinant with modulus 1. The model described below assumes that all
inferences are made conditional on u , . . . , u . Note that we assign no particu-1 n

Ž 2 .lar biological or geometric meaning to the components of the k y 1 -
dimensional parameter A. Our motivation in this exploratory paper is a
preliminary investigation of global shape-space alternatives to conventional
linear multivariate analyses on convenient tangent spaces.

Let u and v denote the unit length dominant eigenvectors of the popula-0 0
tion complex moment of inertia matrices of the u and v , respectively, thatj j

wŽ .is, the ‘‘population mean shapes’’ of the u and v in the sense of Kent 1992 ,j j
xpage 121 . The intermediate hypothesis we consider here is that u is0

Ž .unaffected by the complex rotation A. Since all eigenvalues of A g SU k
Ž .have unit modulus the hypothesis H : Au s exp iu u , for some unspecified1 0 0

real u , is merely a statement that u is an eigenvector of A. The hypothesis0
H asserts that the ‘‘population mean after-shape’’ is the same as the1
‘‘population mean before-shape,’’ since any shape is unaffected by scalar
rotations, although it allows that the distribution of the individual v needj
not be centred at their corresponding u . We shall investigate the problem ofj
estimating A on the general alternative hypothesis H and also subject to2
the restrictions imposed by H .1

We consider in this paper a ‘‘complex axial regression’’ model: u , . . . , u1 n
are fixed points on C P ky1, v , . . . , v are independent random points on1 n
C P ky1 such that the probability density of v , with respect to uniformj
measure on CSky1, is of the form

5 U 5 2g v Auž /j j
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Ž .for some unknown A in SU k . Large sample statistical procedures for
estimating and testing the unknown parameter A are described here. Since
complex rotations are the only maps on CSky1 which preserve inner prod-
ucts, the parameter A is a fundamental measure of shape change on Kendall’s
shape space.

The development of these procedures is an extension of the work of Chang
Ž .1987 on spherical regression, which is the corresponding problem for signed
directions on the real hypersphere Sky1, with the v having a probabilityj
density dependent only on vTAu . Here, in the complex axial case, A andj j

Ž . Ž .A exp iu are distinguishable in U k , but induce the same transformation in
Ž .complex projective space, so we shall say that A is ‘‘unique’’ in quotes if

2.1 A s A m AŽ . 2

Ž . Ž 2 .is unique without quotes . Note that A g SU k .2
It is convenient to work with k 2-vectors

Ž2.2.2 u s u m u y eŽ . j j j

Ž2.and v s v m v y e, wherej j j

2.3 e s ky1 vec I ,Ž . Ž .k

so that uŽ2. is unchanged by scalar rotations of u and has zero expectation ifj j
ˆu is uniformly distributed. It is reasonable to estimate A by the matrix Aj

which maximises
y1 5 U 5 22.4 r A s n v Au ,Ž . Ž . Ý j j

Ž .a complex axial analogue of the ‘‘vector correlation’’ of Stephens 1979 ; see
Ž .also Jupp and Mardia 1980 . Since

5 U 5 2 y1 Ž2.U Ž2.2.5 v Au y k s v A uŽ . j j j 2 j

Ž . Ž2. Ž2. Ž .with A as in 2.1 and v , u as in 2.2 , we may equivalently choose to2 j j

estimate A by the matrix A which maximises

2.6 r A s ny1 vŽ2.UA uŽ2. ,Ž . Ž . Ý2 j 2 j

which is in the form of a vector correlation on a subspace of a k 2-sphere of
Ž y1 .1r2radius 1 y k , provided

2.7 YY s E vŽ2.UA uŽ2. ) 0,Ž . Ž .0 j 2 j

Ž5 U 5 2 . y1or, equivalently, provided E v Au ) k . Note that YY s 0 if the v arej j 0 j
uniformly distributed and that r s r y ky1, 0 F r F 1.2

One iterative scheme to estimate the complex rotation matrix A is to start
at some suitable AŽ0. and choose AŽ1., . . . , AŽ t ., . . . so AŽ t . maximises
Ž Ž t . y1 U Ž ty1. U . Ž .tr A n Ýu u A *v v , using complex singular value decompositionsj j j j

ˆŽ .at each iteration as in Prentice 1989 . We call this A the least squares
ˆestimate of A because A minimises

Ž2. Ž2. Ž2. Ž2. 5 U 5 2v y A u * v y A u s 2n y 2 v Au .Ž . Ž .Ý Ýj 2 j j 2 j j j
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ˆIn Section 3, we find the asymptotic distribution of A under the assumption
y1 U Žthat lim n Ýu u s M, a positive definite symmetric matrix Theoremnª` j j

.1 , and asymptotic confidence regions for A will be based on Theorem 1. For
Ž .closed subgroups G9 : G of U k , we also find the asymptotic distribution of

Ž . Ž .r G9 s sup r A and of2 2

A g G ,
Ž . Ž . Ž .r G y r G9 , when A g G9 Theorem 2 .2 2
Note that if the underlying distribution is complex Dimroth]Watson with

probability density

5 5 22.8 b K exp K v*Au ,Ž . Ž . Ž .
then the procedures of this paper are just maximum likelihood estimation
and likelihood ratio testing. Note also that we assume that u are fixed, orj
else make inferences conditional on the u . Complex axial regression withj

w Ž .errors in variables is not discussed here see Chang 1989 for spherical
xregression with errors in variables , but complex axial regression with highly

Ž .concentrated errors is certainly of interest; see Rivest 1989 for the spherical
case and our remarks on F tests in Section 4.

3. Statement of the main asymptotic results. The tangent space at
Ž .the identity I of SU k is the collection of skew-Hermitian k = k matricesp

Ž .with zero trace, that is, the matrices H such that H q H* s 0 and tr H s 0.
Ž Ž ..We denote this tangent space by L SU k and define the exponential map

Ž Ž .. Ž .f: L SU k ª SU k by
`

y1 s3.1 f H s s! H .Ž . Ž . Ž .Ý
ss0

Ž . Ž .Note that if G is a closed subgroup of SU k and L G is the tangent space at
Ž . Ž Ž .. Ž .I of G, then L G is a vector subspace of L SU k and L G is the set of Hp

Ž Ž .. Ž .in L SU k such that f tH is in G for all real t. Note that dim G s
Ž Ž .. Ž . 2 Ž . 2dim L G and dim U k s k , where dim SU k s k y 1.

The statement and proof of Theorem 1 given below is made easier by
Ž .introducing the following notation. If A g G : U k , then define A as in2

Ž .2.1 and let G be the collection of such A , as A varies over G. Then G is a2 2 2
Ž . Ž . Ž 2 .subgroup of SU k m SU k , which is itself a subgroup of SU k , as A has2

Ž . Ž .determinant q1. The tangent space at I of SU k m SU k is the collectionp
2 2 w Ž .xof k = k matrices Prentice 1989

H Ž2. s I m H q H m I ,Ž . Ž .
Ž Ž .. Ž Ž . Ž ..where H g L SU k . We denote this tangent space by L SU k m SU k

Ž Ž .. Ž Ž . Ž ..and define f : L SU k ª L SU k m SU k by2

3.2 f H s f H Ž2.Ž . Ž . Ž .2

Ž . 2 2 Ž .with f as in 3.1 , acting on k = k matrices. Note that dim L G s2
Ž . Ž . Ž . Ž . 2dim L G for all G : SU k , so, in particular, dim SU k m SU k s k y 1.



SHAPE CHANGES IN THE PLANE 1965

If v on CSky1 has a complex axially symmetric probability density of the
Ž5 5 2 . Ž Ž2..form g v*u , then it is useful to define constants YY and YY by E v s0 2

Ž2. Ž . y1Ž . Ž .YY u , that is, E vv* s YY uu* q k 1 y YY I , with YY as in 2.7 , and0 0 0 k 0

y1 2 25 5 5 53.3 YY s k y 1 E v*u 1 y v*u .Ž . Ž . Ž .Ž .2

Thus if Q is a random variable representing the great circle distance between
v and u, then

y1 y12 y1 y1YY s k y 1 kE cos Q y k s 2k y 2 kE cos 2Q q 1 y 2k ,Ž . Ž . Ž . Ž .0

y1 y112 2 2YY s k y 1 E sin Q cos Q s k y 1 E sin 2Q .Ž . Ž . Ž . Ž .2 4

Ž .By contrast, in the case of spherical regression, Chang 1986, 1987 found it
Ž . Ž .y1 Ž 2 .useful to work with C s E cos Q and C s k y 1 E sin Q . Note the0 2

equivalence, after angle doubling, of YY , 4 YY and C , C in the case k s 2.0 2 0 2
Complex axial regression reduces to spherical regression for the case of

Ž . 3 Ž .triangles: SU 2 is isomorphic to S , the unit quaternions, and SO 3 is
obtained from S3 by identifying antipodal pairs. A statistical study of such

Ž .identifications has been carried out by Prentice 1986 .
It is also of some importance to characterise the variance matrix of vŽ2..

Ž . Ž . Ž .Let z s u, U *v, where u, U g SU k , so

u*U s 0, U*U s I ,ky1

TUU* s I y uu*, u , U *u s e s 1, 0, . . . , 0 .Ž . Ž .k 1

3.4Ž .

Ž Ž2.. Ž2. Ž . T y1Ž .In this canonical form E z s YY e and E zz* s YY e e q k 1 y YY I .0 1 0 1 1 0 k
We assume z Ž2. has a k 2 = k 2 variance matrix, with the symmetries of the

Ž . Ž Ž2. Ž2. .complex normal distribution, of the form W s w s E z z * yqr , st
2 Ž2. Ž2.T Ž . Ž .YY e e , with obvious symmetries, and where w s v displays com-0 1 1 jq, jq jq

plex analogues of the special structure described in Lemma 5.1 of Prentice
Ž . Ž .1984 . However, it turns out that only w s w s ??? s w is of12, 12 13, 13 1k , 1k
any real concern in the proofs of the main results below, and of course

Ž U U . Ž .y1 Ž U Ž U .. Ž .w s E z z z z s k y 1 E z z 1 y z z s YY , as in 3.3 .12, 12 1 1 2 2 1 1 1 1 2
Ž . ŽŽ Ž2. Ž2..Ž Ž2. Ž2.. . UIf Y s u, U *, then E v y YY u v y YY u * s Y WY . The most0 0 2 2

obvious parametric model fitting into this general description is the
Ž .Dimroth]Watson density 2.8 .

Ž .Our proof of the complex axial version of Theorem 1 of Chang 1986 is
modelled very closely on that of Chang, but some of the calculations appar-
ently necessary are considerably more intricate. Further, note that we appar-
ently cannot state Theorem 1 as any special case of Theorem 1 of Chang
Ž .1986 , and we make no claims about the asymptotic distribution of
Ž Ž2.2 . Ž Ž 2 ..2tr H M s 2 tr H M , wheren 2 n

3.5 M s lim ny1 uŽ2.uŽ2.U .Ž . Ý2 j j
nª`

As M is singular and vŽ2. does not have a complex axially symmetric2
distribution on the entire complex k 2-sphere, it is not possible to construct
any useful complex axial proofs from special cases of his Theorem 1.
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Ž .THEOREM 1. Let G be a closed subgroup of U k , so G is a closed2
Ž 2 . Ž5 U 5 2 .subgroup of T : SU k , and suppose each v has a density g v A u ,j j 0 j

Ž .where A g G. Suppose furthermore that YY ) 0, with YY as above 3.3 , and0 0 0
that ny1Ýu uU converges to a Hermitian positive definite matrix M, wherej j
M s N q iN with N real symmetric positive definite and N real skew-sym-1 2 1 2
metric. Then:

ˆŽ . Ž .a The least squares estimate of A in G , denoted A G , is consistent2 2 n2 2
ˆ ˆ ˆŽ . Ž . Ž Ž .. Ž .for A . We may write A G s A G ‘‘uniquely,’’ so A G is consis-0 2 n2 2 n 2 2 n 2

tent for A .0
U ˆŽ . Ž . Ž . Ž . Ž . Ž .b Write A A G s f H for H g L G , with f as in 3.2 , so0 2 n2 2 2 n n 2

U ˆ Ž . Ž . Ž .A A G s f H , with f as in 3.1 . Then H is asymptotically complex0 n 2 n n
wmultivariate normal with mean 0 and probability density with respect to

Ž .x wŽ .y1 2 Ž 2 .xLebesgue measure on L G proportional to exp 2 YY YY n tr H N so2 0 n 1
Ž 2 . Ž 2 . 2Ž .that ynYY rYY tr H N is asymptotically XX dim G .0 2 n 1

Ž . Ž .Note the similarity of parts a and b of our Theorem 1 and Theorem 1 of
Ž . Ž 2 . Ž 2 .Chang 1986 : N is the real part of M and tr H N ' tr H M .1 n 1 n

An outline of the proof of Theorem 1 is given in the Appendix.

Ž . Ž . Ž .THEOREM 2. a If A g G, then r G , defined in 2.6 , has a limiting0 2
normal distribution with mean YY and variance0

y1 y1 y1 y1 y1n V G s n 1 y k 1 y YY YY q k 1 y YY y k YY .Ž . Ž . Ž . Ž .Ž .0 0 0 2

Ž .b If A g H : G, then0

n YY rYY r G y r H s n YY rYY r G y r HŽ . Ž . Ž . Ž . Ž . Ž .Ž .Ž .0 2 2 2 0 2

2Ž .has a limiting x dim G y dim H distribution.
Ž .c If A g K : H : G, then0

dim G y dim H r dim H y dim KŽ . Ž .
= r H y r K r r G y r HŽ . Ž . Ž . Ž .Ž . Ž .2 2 2 2

Ž .is asymptotically F dim H y dim K, dim G y dim H .

Ž . Ž .Again, note some similarity with Theorem 2 of Chang 1986 . In a , his
y1Ž . y1Ž Ž 2 . 2 .variance was n C q C s n E cos Q y C , whereas here it is1 2 0

y1Ž Ž 4 . Ž Ž y1 . y1 .2 . Ž . Ž .n E cos Q y YY 1 y k q k , and in b and c the results are0
Ž .identical except for a missing factor of 2 in b .

T ˆ Ž . Ž Ž .. Ž . Ž .THEOREM 3. Let A A G s f H G for H G g L G . Then0 n 2 n 2 n 2
1r2Ž Ž . . 1r2 Ž .n r G y YY and n H G are asymptotically independent.2 0 n 2

The proofs of Theorems 2 and 3 are available from the authors on request.
If the density g is unknown, then to use Theorem 1 and 2 we need

Ž .consistent estimators of YY and YY . Using Theorem 2 a , we can estimate YY0 2 0
Ž .consistently by g s r G if A g G, and a consistent estimator of YY is0 2 0 2
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w Ž .xy1 Ž . 5 U 5 2g s n k y 1 Ýe 1 y e , where e s v A u and A maximises2 j j j j G j G
Ž .r G .2

4. Some simple test procedures. Suppose H is a closed subgroup of
Ž .SU k , where k ) 2. For now we exclude the case of triangles k q 1 s 3. If

Ž . Ž .YY and YY , defined in 3.3 , are known, Theorem 2 b can be used to test, in0 2
large samples, if the true complex rotation matrix A is in H. If a test of the

Ž .simple H : A s A against the general alternative H : A g SU k y H is0 0 2 0
Ž . y1Ž Ž Ž .. Ž ..required, then from Theorem 2 b , n YY YY r SU k y r A is asymptot-0 2 2 2 0

2Ž 2 .ically distributed as x k y 1 if H is true. Here0

y1 U ˆ 2 y15 54.1 r SU k s n v A u y kŽ . Ž .Ž . Ýž /2 j j

and
y1 5 U 5 2 y14.2 r A s n v A u y k .Ž . Ž . Ýž /2 0 j 0 j

An alternative procedure, involving more computational effort, is provided
by Theorem 1, but not pursued further here. Given a sample estimate A ofn
the unknown complex rotation, suppose AU A has spectral decomposi-n 0

Ž . Ž .tion X* exp iL X, where X g U k and L is a real diagonal matrix. Then
if H s iX* n X, a test of H : A s A is provided by referringn 0 0
Ž 2 . Ž 2 . 2Ž 2 .y n YY rYY tr H N to x k y 1 .0 2 n 1
It is also possible to investigate the hypothesis H : Au s lu , where here1 0 0

u is the population mean before-shape and l is a complex number of unit0
modulus. The hypothesis H asserts that u is an eigenvector of A and hence1 0
that the mean before-shape u is the same as the mean after-shape v , since0 0
all shapes are unchanged by scalar rotations. There may be systematic
differences between each before-shape u and its corresponding after-shapej

Ž .v , but u s v . Since the subgroup of matrices A in SU k , such that u isj 0 0 0
Ž . Ž .an eigenvector of A, is isomorphic to SU k y 1 , it follows from Theorem 2 b
Ž .that a test of H against H : A g SU k y H is provided by referring1 2 1

y1Ž Ž Ž .. Ž Ž ... 2Ž . Ž 2 . ŽŽ .2n YY YY r SU k y r SU k y 1 to x 2k y 1 , as k y 1 y k y 10 2 2 2
. Ž . Ž Ž .. Ž . Ž Ž ..y 1 s 2k y 1 . Here r SU k is as in 4.1 and r SU k y 1 is found2 2

most easily by first rotating all u data and all v data so that M s ny1Ýu uU
j j

Ž .is diagonal, M s diag s , . . . , s , where s , . . . , s and 1 y s are typically1 k 1 ky1 k
T Ž T . T Ž T .small. After this change of coordinate system, u s z , a , v s w , b ,j j j j j j

Ž .where the z and w are k y 1 vectors and the a and b are real scalars.j j j j
Then

y1 U ˆ 2 y15 54.3 r SU k y 1 s n v A u y kŽ . Ž .Ž . Ýž /2 j c j

ˆ ˆŽ .and where A is constrained to be of the form block diag A , 1 . The iterativec 1
ˆsearch procedure for the constrained least squares estimate A is identical to1

ˆthat for A, except that the dimensionality of the problem is reduced by 1.
Of course in practice YY and YY must be estimated by g and g , say, and0 2 0 2

the validity of the test procedures is then even more approximate. For a
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Ž .practical large sample test of H : A s I no systematic shape change against0

H : A g SU k y H ,Ž .2 0

refer

4.4 T s ng SU k rg SU k r SU k y r I ,Ž . Ž . Ž . Ž . Ž .Ž . Ž . Ž .2 0 2 2 2

2Ž 2 . Ž Ž .. Ž Ž .. Ž . Ž Ž ..to x k y 1 , where g SU k s r SU k as in 4.1 , and g SU k s0 2 2
y1 U ˆ 2Ž Ž .. Ž . 5 5n k y 1 Ýc 1 y c , c s v A u , 0 F c F 1. Similarly, to test onlyj j j j j j

whether the mean shape has changed, that is, test H : u s v against1 0 0
Ž .H : A g SU k y H , refer2 1

T s ng SU k y 1 rg SU k y 1Ž . Ž .Ž . Ž .1 0 2

= r SU k y r SU k y 1Ž . Ž .Ž . Ž .2 2

4.5Ž .

2Ž . Ž Ž .. Ž Ž .. Ž . Ž Žto x 2ky1 , where g SU ky1 sr SU ky1 as in 4.3 and g SU ky0 2 2
y1 U ˆ U 2.. Ž Ž .. Ž . 5 51 s n k y 1 Ýd 1 y d , where d s w A z q b a , 0 F d F 1.j j j j 1 j j j j

Note incidentally that a test of H : A s I against H : u s v is provided0 1 0 0
2Ž Ž ..by referring T s T y T to x k k y 2 . Thus it is possible to demonstrate0 2 1

Ž .systematic shape differences A / I even when the mean before-shape is the
same as the mean after-shape.

These x 2 tests based on large sample size asymptotics can be replaced,
where appropriate, by F tests derived from high concentration asymptotics,

Ž .as in Rivest 1989 for the real case. Following the same approach, we note
wŽ . xthat the complex analogue of Rivest 1989 , formula 5 is simply

2F s n 2k y 1 y k y 1 r SU k y r GŽ . Ž . Ž . Ž .Ž .obs 2 2

y12 y1= k y 1 y g 1 y k y r SU k ,Ž .Ž .Ž .Ž .2

4.6Ž .

Ž 2 Ž . Ž 2 ..with null distribution F k y 1 y g, n 2k y 1 y k y 1 . This is the gen-
eral form of the F test of the null hypothesis that A g G, a closed proper

Ž .subgroup of SU k .

5. An application. The procedures of Section 4 are applied here to a
Ž .standard data set analysed most recently by Mardia and Walder 1994a, b .

The data consists of landmark coordinates from lateral cephalograms of 18
male rats from a close bred European strain as summarised graphically by

wŽ . xBookstein 1991 , Figure 7.6.7; reproduced here as Figure 1 . We consider
first the change between ages 90 and 150 days in the shape of the lateral
cephalograms of the 18 male rats, as measured by the k q 1 s 8 landmarks
described there. Various analyses have been carried out on this data set,

wŽ . xnotably by Bookstein 1991 , Section 7.6 . Here we explore some statistical
inferences which can be made about the shape change on C P 6, using the
Fourier coordinate system described in the Introduction. The mean shape at
age 90 days is

u s 10y3 939, y33 q 104i , y80 y 73i , 65 y 20i , 5 q 39i ,Ž0

T26 i y 103i , 54 q 271i .
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FIG. 1. Evolution of rat calvarial shape to Basion]Bregma baseline. Reproduced from Bookstein
wŽ . x1991 , page 356 .

to three decimal places, and the mean shape at age 150 days is

v s 10y3 935, y40 q 98i , y71 y 74 i , 68 y 20 i , 5 q 41i ,Ž0

T31 y 106i , 54 q 286i ,.
where both shapes have been made unique by requiring that their first
components are real and positive. The unconstrained least squares estimate
of the complex rotation A is such that v and Au coincide to three decimal0 0

ˆplaces and A has an eigenvector

w s 10y3 820, 22 q 182 i , y120 q 132 i , y165 y 98i ,Ž
T108 y 1i , 7 y 65i , y240 q 391i ,.

quite close to both u and v . In passing we note that u , v and w are all0 0 0 0
Ž .Treasonably close to e s 1, 0, 0, 0, 0, 0, 0 . The fact that the first components1

wof u and v are so large confirms what is evident from Figure 2 reproduced0 0
Ž . xfrom Bookstein 1991 , Figure 3.4.1 , that these cephalograms have land-

marks labelled 1 to 8 in anticlockwise order, and are approximately evenly
spaced. If they were regular octagons, then the shape vectors would have
been e , but of course there is no biological reason to expect this.1
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wŽ .FIG. 2. Representation of rat calvaria mid-sagittal section. Reproduced from Bookstein 1991 ,
xpage 68 .

Ž . Ž Ž .. Ž .For these data, 7r6 r SU 7 s 0.9996271 note that 0 F r F 6r7 , with2 2
convergence to seven significant figures in only three iterations, and

Ž Ž .. Ž . Ž Ž ..g SU 7 s 0.00005325. For a test of H : u s v , 7r6 r SU 6 s2 1 0 0 2
0.9995555 with convergence to seven significant figures achieved after only

Ž .two iterations. The statistic 4.5 for testing H against the general alterna-1
2Ž .tive H is T s 17.79, to be compared with x 13 , significant at about the2 1

0.16 level if the asymptotic distributional assumptions are valid. With these
distributional assumptions there is no definite evidence that the population
mean shape at age 150 days is different from the population mean shape at

Ž .90 days. Note also that the statistic T , as in 4.4 , for testing H : A s I2 0
against the completely general H , is 156.5. This gives incontrovertible2

2Ž .evidence that H is false when compared with x 48 . Equally, for a test of0
H against H , the statistic T s T y T is 138.7, also highly significant0 1 0 2 1

2Ž .when compared with x 35 . We have strong evidence of systematic shape
change, A / I, but no real evidence that the mean after-shape differs from
the mean before-shape.

A similar analysis of the shape changes between ages 7 and 14 days leads
to different conclusions. The mean shape at 7 days is

u s 10y3 958, 45 q 161i , y125 y 54i , 30 y 34 i ,Ž0

T19 q 66i , 0 y 43i , 26 q 165i .
and the mean shape at age 14 days is

v s 10y3 954, 33 q 159i , y113 y 57i , 36 y 31i ,Ž0

T13 q 59i , y60i , 65 q 181i ,.
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where again both have been made unique by requiring first components real
Ž . Ž Ž .. Ž Ž ..and positive. In this case, 7r6 r SU 7 s 0.9988397 and g SU 6 s2 2

Ž . Ž Ž ..0.0001656, rather bigger than in the first data set. Also 7r6 r SU 6 s2
Ž .0.9985120 and the statistic 4.5 for testing H against H is T s 41.51,1 2 1

2Ž .highly significant when compared with x 13 . There is definite evidence that
the mean shape at 7 days is different from that at age 14 days.

Ž .The use of high concentration asymptotics, as in Rivest 1989 , is also of
Ž .interest here. The use of the F test in 4.6 for testing H against H gives1 2

Ž .F s 4.04, to be referred to the distribution F 13, 186 and leading to theobs
same conclusion. Clearly these procedures based on high concentration
asymptotics are of particular importance when both sample size n and
number of landmarks k q 1 are quite small.

6. Discussion. One standard multivariate approach to testing whether
there has been any change of shape of a configuration of landmarks in the
plane is to standardise all sample configurations to a common baseline and

2 w Ž .then carry out a Hotelling’s T test on the differences e.g., Bookstein 1991 ,
xSection 5.4 . A criticism that may be levelled at this by a theoretician is that

the use of such a procedure can give results which depend on which two
landmarks were used as the baseline, but, as is well known, this criticism has
little strength since most shape data sets are very highly concentrated so that
the Hotelling’s T 2 values obtained from different choices of baseline are in

w Ž . xpractice virtually identical Bookstein 1991 , Section 5.2 . In this paper we
have developed an alternative approach to the fundamental location-shift
problem on Kendall’s shape space, the complex projective hyperplane. The
test procedures developed in Section 4 will be completely unaffected by
baseline choice, even for shape data sets which are more diffuse than usual,
and there is the added advantage that systematic shape changes not de-
tectable as location shifts by standard Euclidean analysis can be found, as in
the numerical example of Section 5: the fact that calculations are performed
in the Fourier domain gives a different insight into the changes taking place.
Presumably the shape changes detected here show up in a Euclidean analysis
as a change in variance matrix rather than a location shift. For the case of

Ž .triangles with k q 1 s 3 landmarks in the plane the simplest possible case ,
the procedures described here reduce to conventional spherical regression on
the sphere S2, using Kendall’s spherical blackboard, for precisely the reason
that a complex Bingham distribution on CS1 is equivalent to a Fisher

2 w Ž . xdistribution on S Kent 1994 , page 292 . The test procedure for investigat-
wŽ .ing H : u s v is quite simply that described in Chang 1986 , Section 2,1 0 0

xsecond example , with the specified axis being the population mean before-
shape, a unit direction on S2.

It is instructive to consider an artificial example as a demonstration on S2

of the kind of shape change detected in the first numerical example of Section
4 in more dimensions. Such changes are not evident as location shifts using
standard Euclidean methods, but can be found on Kendall’s shape space.
Consider a ‘‘data set’’ of 4m matched pairs of triangles with shapes on S2 all

Ž .Tclose to the equilateral shape 0, 0, 1 , using the ‘‘spherical blackboard’’
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wŽ . xcoordinate system of Kendall 1984 , Figure 2, page 101 . Specifically, con-
Ž .sider the artificial data set consisting of matched pairs u , v , where u sj j j

Ž Ž 2 .1r2 .a cos jQ, a sin jQ, 1 y a for small positive a, Q s pr2m, and v sj
u . Note that u s u . All shapes u and v are slight perturbations ofjqm j jq4 m j j
an equilateral triangle.

Clearly, if these shapes on S2 are converted back into triangles standard-
ised to any baseline whatsoever, then the Hotelling’s T 2 statistic calculated
from the changes in location of the remaining landmark will be negligibly
small. Hence a standard matched pairs Euclidean analysis to detect a change
in mean shape will conclude that there is no change. However, a spherical
regression analysis on Kendall’s blackboard leads to a different conclusion.
The sample mean before-shape and sample mean after-shape are both
Ž .T0, 0, 1 , the equilateral triangle. The hypothesis H : A s I of no systematic0 3
shape change is rejected in favour of H : u s v , but there is no evidence in1 0 0
favour of the general alternative H : u / v . The conclusion to be drawn is2 0 0
that there is a systematic shape change, even though there is no evidence
that the mean before-shape is any different from the mean after-shape.

Ž .TIndeed, let A be a rotation through pr2 about 0, 0, 1 , that is,

0 y1 0
A s .1 0 0ž /0 0 1

Then the systematic change in shape is given by v s Au .j j

APPENDIX

PROOF OF THEOREM 1. The major modification of the proofs of Chang
Ž .1986 requires the use of vectors that are here quadratic in the original
shape measurements, leading to more complicated terms in Taylor series

Ž .expansions. We refer to the corresponding sections in Chang 1986 for ease of
y1 Ž2. Ž2.U y1 Ž U . Ž U . Tcomparison. Let X s n Ýu v and Z s n Ý u v m u v * . Then j j n j j j j

Ž .existence of M implies the existence of M , as in 3.5 , and of2

A.1 Mqs lim ny1Ý u uU m u uU *T .Ž . Ž . Ž .j j j j

ˆ U ˆŽ . Ž . Ž .Since A G ª A , for large enough n we can write A A G s f H ,n 2 0 0 n 2 n
Ž .where H g L G is chosen to have smallest magnitude. We can assumen

U wŽ . xA s I by replacing v with A v . By analogy with Chang 1986 , page 9110 j 0 j

Ž . Ž .pick a specific B g L G and define a real-valued function on L G ,

d
Bg H s tr f H q tB Z ,Ž . Ž .Ž .n 2 ndt ts0

BŽ . Bso that g H s 0. We expand g in a Taylor series about 0:n n n

d
B Ž2.g 0 s tr f tB Z s tr B Z .Ž . Ž .Ž . Ž .n 2 n ndt ts0
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Ž Ž2. . Ž Ž2. . Ž Ž2. Ž T .. Ž .However, tr B X s tr B Z since tr B e v* m v s 0. If H g L G ,n n

d d
Bg 9 0 ? H s tr f sH q tB Z s tr C B , H Z ,Ž . Ž . Ž .Ž . Ž .Ž .n 2 n nds dtss0 ts0

1 Ž2. T TŽ . w Ž .x Ž . Ž .where C B, H s HB q BH q H m B* q B m H* . Thus 0 s2
BŽ . Ž Ž2. . Ž Ž . .g H s tr B X q tr C B, H Z q R, where R is suitably bounded andn n n n n

Ž2.'Ž . Ž . Ž .so, using Lemma 1, it follows that if a B s ytr B n X , then a B sn n n
q T' 'Ž Ž . . Ž . Ž Ž . Ž . .YY tr n C B, H M q 1 y YY tr n C B, H vec M e q R , where R0 n 0 n n n

Ž Ž . q.is suitably bounded. It remains to simplify tr C B, H M and
Ž Ž . Ž . T . q Ž .tr C B, H vec M e . With M as in A.1 ,

1q q qtr C B , H M s tr BH m I M q tr HB m I MŽ . Ž . Ž .Ž . Ž . Ž .�2

qtr I m BH *T Mq q tr I m HB *T MqŽ . Ž . 4Ž . Ž .Ž . Ž .
s tr HMB q tr BMH s 2 tr HN B .Ž . Ž . Ž .1

Ž Ž . Ž . T .Similarly, 2 tr C B, H vec M e simplifies eventually to 0.
Thus

Ž2.' 'a B s ytr B n X s 2 YY tr n H N B q R ,Ž . Ž .Ž . Ž .n n 0 n 1 n

where R is suitably bounded.n
wŽ . xAs in Chang 1986 , Lemma 4 , we have the following lemma:

LEMMA 1. a has covariance quadratic formn

YY Q B , B s y4YY tr B N B for B , B g L G .Ž . Ž . Ž .2 1 2 2 1 1 2 1 2

PROOF.

E BŽ2.uŽ2. * vŽ2. y YY uŽ2. vŽ2. y YY uŽ2. *BŽ2.uŽ2.Ž . Ž . Ž .ž /j j 0 j j 0 j j
A.2Ž . UŽ2. Ž2. Ž2. Ž2.s u *B * Y W Y B u ,Ž . Ž .j j j j2 2

Ž .where Y s u , U * and W is the variance matrix of the canonical randomj j j
variable z Ž2..

Ž . Ž .TNow Y u s e and Y Bu s f say , where f s 0, f , . . . , f and f may bej j 1 j j 2 p
assumed real, as arbitrary scalar rotations may be applied to the columns of

Ž . TU . Thus A.2 reduces to g Wg, where g s f m e q e m f and the entries inj 1 1
Ž .g are nonzero only if its double suffix includes the value 1 exactly once.

Ž .Hence A.2 reduces to
k k

U4 v f f s y4YY tr Bu u BŽ .Ý Ý 1q , 1m q m 2 j j
qs2 ms2

Ž . T Ž U U .since v s d YY with YY as in 3.3 , and f f s tr u B Bu . We1q, 1m qm 2 2 j j
Ž .obtain the covariance quadratic form of a B , which is real, by averag-n

Ž . Ž Ž .. Ž .ing over j. Thus YY Q B , B s y4YY Re tr B N B . Since a B s2 1 2 2 1 1 2 n
Ž Ž .. Ž .2 YY Re tr H N B q o 1 , it follows by the same argument as that of0 n 1 p

wŽ . xChang 1986 , Lemma 4 that H is asymptotically complex normal withn
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Ž Ž .2 Ž . Ž ..probability density proportional to exp n 2 YY r 8 YY tr H N H . Hence0 2 n 1 n
Ž 2 . Ž 2 . 2Ž .y n YY rYY tr H N is asymptotically distributed as x dim G . This proves0 2 n 1

Theorem 1. I
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