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Discrete choice models are frequently used in statistical and econo-
metric practice. Standard models such as logit models are based on exact
knowledge of the form of the link and linear index function. Semiparamet-
ric models avoid possible misspecification but often introduce a computa-
tional burden especially when optimization over nonparametric and
parametric components are to be done iteratively. It is therefore interest-
ing to decide between approaches. Here we propose a test of semiparamet-
ric versus parametric single index modelling. Our procedure allows the
(linear) index of the semiparametric alternative to be different from that
of the parametric hypothesis. The test is proved to be rate-optimal in the
sense that it provides (rate) minimal distance between hypothesis and
alternative for a given power function.

1. Introduction. Discrete choice models are frequently used in statisti-
cal and econometric applications. Among them, binary response models, such
as Probit or Logit regression, dominate the applied literature. A basic hypoth-
esis made there is that the link and the index function have a known form;
see McCullagh and Nelder (1989). The fixed form of the link function, for
example, by logistic cdf is rarely justified by the context of the observed data
but is often motivated by numerical convenience and by reference to “stan-
dard practice,” say “accessible canned software.”

Recent theoretical and practical studies have questioned this somewhat
rigid approach and have proposed a more flexible semiparametric approach.
Green and Silverman (1994) use the theory of penalizied likelihood to model
nonparametric link function with splines. Horowitz (1993) gives an excellent
survey on single index methods and stresses economic applications. Severini
and Staniswalis (1994) use kernel methods and keep a fixed link function but
allow the index to be of partial linear form. Partial linear models are
semiparametric models with a parametric linear and a nonparametric index
and have been studied by Rice (1986), Speckman (1988) and Engle, Granger,
Rice and Weiss (1986).

These models enhance the class of generalized linear models [McCullagh
and Nelder (1989)] in several ways. Here we concentrate on one generaliza-
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tion, the single index models with link functions of unknown nonparametric
form but (linear) index function. The advantage of this approach is that an
interpretable linear single index, a weighted sum of the predictor variables, is
still produced. The link function plays, in theoretical justifications of single
index models via stochastic utility functions, an important role [Maddala
(1983)]: it is the cdf of the errors in a latent variable model. Our approach
enables us to interpret the results still in terms of a stochastic utility model
but enhances it by allowing for an unknown cdf of the errors.

Despite the flexibility gained in semiparametric regression modelling,
there is still an important gap between theory and practice, namely a device
for testing between a parametric and semiparametric alternative. A first
paper in bridging this gap is Horowitz and Hardle (1994). They considered for
response Y and predictor X the parametric null hypothesis

(1) Hy:Y=F(X76,)+e,

where x' 6 denotes the index and F is the fixed and known link function.
The semiparametric alternative considered there is that the regression func-
tion has the form f(x' 6,) with a nonparametric link function f and the
same index x' 6, as under H,. The main drawback of that paper is that the
index is supposed to be the same under the null and the alternative.

The goal of the present paper is to construct a test which has power for a
large class of alternatives. We move also to a full semiparametric alternative
by considering alternatives of single index type:

(2) H:Y=f(X"B)+e

with B possibly different from 6,. In addition we consider a more general H,
than in Horowitz and Hardle (1994), namely a parametric family (F,, 6 € 0),
thereby allowing link function and error distribution to depend on an arbi-
trary parameter.

The situation of our test is illustrated in Figures 1 and 2. The data is a
crosssection of 462 records on apprenticeship of the German Social Economic
Panel from 1984 to 1992. The dependent variable is an indicator of unemploy-
ment, (Y =1 corresponds to “yes”). Explanatory variables are X;, gross
monthly earnings as an apprentice, X,, percentage of people apprenticed in a
certain occupation and X, unemployment rate in the state the respondent
lived in during the year the apprenticeship was completed. The aim of the
test is to decide between the logit model and the semiparametric model with
unknown link function and possibly different index. In Héardle, Klinke and
Turlach (1995) this hypothesis is tested with the Horowitz—Hardle (HH) test
by Proenca and Werwatz who also prepared the dataset. They give a more
detailed description of the HH test procedure which does not reject.

We measure the quality of a test by the value of minimal distance between
the regression function under the null and under the alternative which is
sufficient to provide the desirable power of testing. The test proposed below is
shown to be rate-optimal in this sense.
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Fic. 1. Parametric fitting.

The paper is organized as follows. Section 2 contains the main results. The
test procedure is described in Section 3. In Section 5 we present a simulation
study. The proofs of main results are given in Section 4 (Theorem 2.2) and in
the Appendix (Theorem 2.1).

2. Main results. We start with a brief historical background of the
nonparametric hypothesis testing problem. The problem for the case of a
simple hypothesis and univariate nonparametric alternative was considered
by Ibragimov and Khasminskii (1977) and Ingster (1982). It was shown that
the minimax rate for the distance between the null and the alternative set is
of the order n~25/“s*1 where s is a measure of smoothness. Note that this
rate differs from that of an estimation problem where we have n=*/@s*D_In
the multivariate case the corresponding rate changes to n 25/¢4s*d  gag
Ingster (1993) has shown. The problem of testing a parametric hypothesis
versus a nonparametric alternative was discussed also in Hardle and
Mammen (1993). Their results allow the extraction of the above minimax
rate.

The results of Friedman and Stuetzle (1984), Huber (1985), Hall (1989)
and Golubev (1992) show that estimation of the function f under (2) can be
made with the rate corresponding to the univariate case. Below we will see,
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Fia. 2. Semiparametric fitting.

though, that for the problem of hypothesis testing the situation is slightly
different. The rate for this additive alternative of single index type differs
from that of a univariate alternative (d = 1) by an extra log factor. Neverthe-
less, we have a nearly univariate rate and we can therefore still expect
efficiency of the test for practical applications.

We will come back to the introductory example in Section 5. Suppose we
are given independent observations (X,,Y;), X, € R4, Y, e R}, i=1,...,n,
that follow the regression
(3) Y, =F(X,) + ¢, i=1,...,n.

Here ¢, = Y; — F(X,) are mean zero error variables,
Es =0, i=1,...,n,

with conditional variance

(4) o2 =E[e2X,], i=1,...,n.

13

ExampLE 2.1. As a first example, take the above single index binary
choice model. The observed response variables Y, take two values 0,1 and
P(Y, = 11X;) = F(X)),
P(Y, = 01X,) = 1 - F(X)).
In this case, 0.2 = F(X,{1 — F(X,)}.
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ExamMpPLE 2.2. A second example is a nonlinear regression model with
unknown transformation. An excellent introduction into nonlinear regression
can be found in Huet, Jolivet and Messeau (1993). The model takes the same
form as (1) but the response Y is not necessarily binary and the variance o
may be an unknown function of the F(X;)s. Carroll and Ruppert (1988) use
this kind of error structure to model fan-shaped residual structure.

We wish to test the hypothesis H, that the regression function F(x)
belongs to a prescribed parametric family [ F,(x), 6 € @], where O is a subset
in a finite-dimensional space R™. This hypothesis is tested versus the semi-
parametric alternative H; that the regression function F(-) is of the form

(5) F(x) =f(x"B),

where B is a vector in R? with | 8| = 1, and f(-) is a univariate function.
ExampPLE 2.3. Let the parametric family [ F,(x), 6§ € ©] be of the form
1
(6) Fy(x) =

1+exp(—x'6)
and let otherwise (X,Y) have stochastic structure as in Example 2.1. This
form of parametrization leads to a binary choice logit regression model. Probit
or complementary log-log models have a different parametrization but still
have this single index form.

Let %, be the set of functions [F,(x), 6 € O®] and let # be a set of
alternatives of the form (5). We measure the power of a test ¢, by its power
function on the sets %, and F: if ¢, = 0 then we accept the hypothesis H,,
and if ¢, = 1, then we accept H,. The corresponding first and second type
error probabilities are defined as usual:

aO(QDn) = sup PF(@n = 1)’

Fe%,

ay(e,) = sup Pp(@, =0).
&7

Here P, means the distributions of observations (X, Y;) given the regression
function F(-). When there is no risk of confusion, we write P instead of Pj.
Our goal is to construct a test ¢, that has power over a wide class of
alternatives. The assumptions needed are made precise below. We start with
assumptions on the error distribution.

(E1) There are A > 0 and C, such that
Eexp{Agl} <C,, i=1,...,n.
(E2) The conditional distributions of errors &; given X, depend only on
values of the regression function F(X,),
3(3i|Xi) =5/(‘9i|F(Xi)) = PF(Xi)a
where (P,) is a prescribed distribution family with one-dimensional param-
eter z.
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(E3) The variance function o2(z) = E[¢?|F(X,) = z] and the fourth cen-
tral moment function «*(z) = E[(g? — E¢?)?|F(X,) = z] are bounded away
from zero and infinity, that is,

0<a,<o0(z)<o*<»
0<ky <k(2)<kKk*<om

with some prescribed o, 0%, k., k* and these functions are Lipschitz: for
some positive constants C, and C, one has

lo(z) —a(2)]|<C,lz — 2],

|k(z) — k(2)] <Clz -zl

Note that (E1) through (E3) are obviously fulfilled for the single index
model in Example 2.1 and 2.3.
Now we present assumptions on the design X.

(D) The predictor variables X have a design density 7w(x) which is sup-
ported on the compact convex set 2 in R? and is separated from zero and
infinity on 2.

Assumption (D) is quite common in nonparametric regression analysis. It
is apparently fulfilled for the above example on apprenticeship and youth
unemployment. As an alternative to (D), one may assume that the design
density 7 is continuous and positive on some compact subset D of 2°. In the
last case, only observations on D are to be taken into account and this allows
reducing the problem to the situation described in the condition; see, for
example, Hardle, Hall and Ichimura (1993).

We now specify the hypothesis and alternative.

(HO) The parameter set © is a compact subset in R™.
For some positive constant C, the following holds:

|F,(x) —F,(x)|<Colo— 0 Vxe2,0,0 0.

All functions F,(-) belong to the Holder class 3 ,(s, L) of functions in R

(H1) The univariate link function f(-) from (5) belongs to the Holder class
3(s, L). The function F(x) = f(x7 B) is bounded away from the parametric
family %, that is,

7 inf |F — F,|| >
(1 inf|IF - Fll >,
with a given ¢, > 0. Here ||F — F,|| = [|F(x) — F},(x)|277(x) dx.

For the definition of a Holder smoothness class in the context of statistical
nonparametric problems we refer, for example, to Ibragimov and
Khasminskii (1981). In the case of an integer s, the class (s, L) can be
defined as the class of s-time differentiable functions with the sth derivative
bounded in absolute value by L. Assumption (HO) is certainly fulfilled for
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Example 2.3 but also in Probit and other generalized linear regression models
such as the log linear models.

The main results are given below. We compute first the optimal rate of
convergence of the distance ¢, distinguishing the null from the alternative.
The second theorem states the existence of an optimal test. The test will be
given more explicitly in the next section where we also apply it to the above
concrete examples. Theorem 2.2 is proved in Section 4 and the proof of
Theorem 2.1 is given in the Appendix.

THEOREM 2.1. Let ¢, = (a(y/log n)/n)**/“s*Y_If a is small enough then
for any sequence of tests ¢, one has

liminf ay(¢@,) + a1(¢,) > 1.

THEOREM 2.2. For any constant a* large enough there is a sequence of
tests ¢ which distinguish consistently the hypothesis H, from the alternative
H, = H,(c¥) with ¢} = (a*(ylog n)/n)**/4s* Y that is,

lim ay(¢?) = 0
n—w
and
lim o(¢f) = 0.
n—ow
3. The test procedure. Before we describe the test procedure let us
introduce some notation. Given functions F(x) and G(x) we denote by

(8) (F,G) = %f F(X;)G(X))

the scalar product of the functions F and G. We write also (F') instead of
(F,F) and identify the sequences (Y,), (&) with the functions Y(X;) and
£(X;). We construct the tests ¢, from Theorem 2.2 in several steps.

First, we shall do a preliminary parametric pilot estimation F; under the
null. Second, we estimate the d-dimensional nonparametric regression Fl of
E(Y|x) by a kernel estimation. These estimators are used in the approximat-
ing of expected value and the variance of the proposed test statistics. In the
third step, we estimate for each feasible value of B the corresponding link
function f under (H1) as in (2). Finally we compute the test statistic based on
comparison of residuals under H; and H;.

3.1. Parametric pilot estimation. Let ©®, be a grid in the parametric set 0
with the step log n/ Vn . Put
- 12
(9) 6, = arginf(Y — F,) = arginf— Y. |Y, — F,(X,)|".

" €0, 00, n i=1
Denote also
(10) Fo(r) =F; ().
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Note that 6, is not necessarily an efficient estimator under the null since we
do not correct for the variance function.

REMARK. We define 6, as a discretized minimum contrast estimator. The
discretization of the pilot parametric estimator is a standard device in this
kind of problem. It allows replacing in the proof the random point 6, by a
nonrandom point 6, which is the point of the grid closest to 6; see Lemma
4.8.

3.2. Nonparametric pilot estimation. For the nonparametric estimation of
the expected value and the variance of the test statistic, we shall use the
standard kernel technique; see, for example, Hardle (1990) or Muller (1987).
More precisely, we use a one-dimensional kernel satisfying the following
conditions.

(K1) K(-) is compactly supported.

(K2) K(-) is symmetric.

(K3) K(-) has s continuous derivatives.
(K4) [K(t)dt = 1.

(K5) [K(t)tkdt=0,k=1,...,s — 1.

Recall from (HO) and (H1) that s denotes the degree of smoothness of the
regression function. Note also that (K5) ensures that K is orthogonal to
polynomials of order 1 to s — 1. For a list of kernels satisfying (K1)-(K5), we
refer to Miiller (1987). A d-dimensional product kernel K; is defined as

d
(11) K(uy,...,uy) = l_llK(u])
j=
Take now
(12) hy= n—l/(2s+d),

the rate optimal smoothing bandwidth in d-dimensions, and put
YK ((x — X;) /hy)
L Ky((x — X;)/hy) '

The nonparametric kernel smoother F, is the well-known multidimensional
Nadaraya—Watson kernel estimator.

(13) Fy(x) =

3.3. Estimation under H,. We will use the following bandwidth:

2/(4s+1)
Vlog n )

n

(14) h = (

for estimation of f in the semiparametric model. Note that this bandwidth is
different from the one used for the nonparametric pilot estimation. It is also
different from the bandwidth rate n~2/***% used in obtaining the purely
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nonparametric rate of testing, n~2°/#s*® even for d = 1; see Ingster (1993).
The additional log factor comes from the semiparametric structure of our
alternative and can be viewed as extra payment for reducing the multivariate
structure to a univariate one.

In practice, the smoothness parameter s is typically unknown and the
bandwidth 4 is to be chosen in a data-driven way. Unfortunately, the theory
for adaptive nonparametric testing is not sufficiently developed and discus-
sion of the possibility of a data-driven bandwidth choice lies beyond the scope
of this paper. Recent results from Spokoiny (1996) indicate that the described
testing procedure can be performed in an adaptive way without significant
loss of power.

Let S, be the unit sphere in R Denote by S, , a discrete grid in S, with
the step b, = A***?. Let N be the cardinality of S, ,

(15) N = #Sn,d‘
For each g € S, ; define

16 K K il R¢
(16) a0 =K|=E] e
and introduce the smoothing operator .7; with
(17) %Y(Xi) = HB(XL') Z Yth,,B(Xi _Xj)7
J*i

where

-1
(18) HB(Xi) = ZKh,B(Xi _Xj)

J*+i

Similarly we define 7;¢ and % F. Note that given B, the values 7Y
estimate f in (2).

3.4. The test statisticc We start with some discussion explaining the
applied test statistics. First we treat the case with a simple null hypothesis
corresponding to the trivial regression function F = 0. We assume also that 3
is known. In this situation, the obvious goodness-of-fit test can be based on
<%Y> or better on TBO = 2(Y,%Y> — (%Y}. (The latter test statistic has
smaller variance.) Under the null, both these statistics are quadratic forms in
the errors ¢; and, therefore, U-type statistics. Standard calculation for U-sta-
tistics show that TBO has under the null the expectation of order (nh)~! and
the variance of order n 2A~!, and, being centered and normalized, it is
asymptotically normal; see, for example, Hall (1984). The proper test could be
taken in the form ¢* =1 [(Var TBO)*l/Z(TB0 - ETBO) > x,] where y, is (1 —a)-
quantile of the standard normal law. If a considered model has heteroskedas-
tic noise with variance depending on the unknown regression function (see,
e.g., Example 2.1 for the binary response model), then the value ETB0 and
VarTB0 are to be estimated using a pilot nonparametric estimator.
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In the case of the parametric null, the natural idea could be to construct a
pilot parametric estimator F,, and then to substruct it from the observation
Y, as was done in Hérdle and Mammen (1993). This leads to the test based on
Y - Fy, (Y — Fy)) — {(%(Y — F,)). Unfortunately, this method cannot
be applied to the case of the semiparametric alternative since the null
hypothesis can have another structure (e.g., with a different index) and hence
the value of the bias term in % F, can be too large. To bypass this problem,
we modify slightly the latter test statistics, changing Z,(Y — F) to 7Y — F,,.

Finally, to proceed with an unknown g, we calculate a statistic 7}, for each
B from the grid S, , and the resulting test statistic is based on the supre-
mum of all these quantities. If now B8 be the value of the index for the
unknown alternative, then, at least for one g’ € S, ;, the difference g’ — 8
will be small and the corresponding 7}, will be large enough to detect this
alternative. From the other side, considering the maximum of a growing
number of test statistics creates a problem with the error probability of the
first kind. To provide a prescribed level for this error probability, we have to
take a logarithmically growing test level that results in the extra log factor in
the rate of testing. The result of Theorem 2.1 shows that this log factor is an
unavoidable payment for the choice of an unknown index for the alternative
of semiparametric structure.

Now we present the test statistics. For each g € S, ;, we calculate 7, as
follows:

nvh . - - -
(19) 7= 2Y = Fo, 7Y = Fy) = (7Y = Fy) + By .
B

Here (-) is defined by (8), h by (14), F, by (10). We use the following
notation:

- 1
(20) EB: ;Z ZAO}ZHIZS(XI:)K}%,B(‘XL'_X]')’
T J#FL
where I1,(X)) is from (18),
(21) 5% = o?(F(X)), Jj=1,....,n,

the function o 2(-) being defined in the model assumptions of F,(x) being the
nonparametric pilot estimator. Finally,

Vi = h L X 675 5(X)|2K), o(X; - X;) - KPy(X,, X))

i j#i

|2

2

L (X)) KR 5 (Xi — X))

J*i

+h) i}

1

with &, = k(F(X,)), i = 1,..., n, x(-) being from (E3) and
(22) K}(LZ,)B(XL"XJ‘) = Z H[%(Xk)Kh,B(Xk _Xi)Kh,B(Xk _Xj)'

#i,J

I (X;)
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Put now

(23) T) = sup Tj
BES,. q

and

(24) ¢F = 1(T} > y/41log N ).
Here 1(-) is the indicator function of the corresponding event and N is the

cardinality of S, ;; see (15).

REMARK. Similarly to the case of parametric pilot estimation, we optimize
the parameter 8 over some grid of the unit sphere. This restriction allows
simplifying the proof by reducing the random field (TB’ B €S, to a family of
random variables (TB’ B € S, ). It may be possible to define the test statistic
T, as the supremum of 7, over the whole sphere S; but the proof in this
case seems to be much more involved.

4. Proof of Theorem 2.2. We start with a decomposition of the test
statistics Tj;. Denote by BB(x) the bias function for the smoothing operator .7,
from (17):

(25) By(X,) =% F(X,) —F(X)), i=1,...,n.

Fix some B € S, ; and F € 5, U 7.

LEMMA 4.1.
n/h 8 .
T, = 7[<F—FO> —(By) + A e, 8) — (Kye) + By
(26) B
+2(F = Fy, &) + 2By, &) — 2(B,, 7).
PrOOF. By definition, Y = F + £ and therefore
ZY = F + %6 =F + By + .
Now
XY - Fy, 7Y -~ Fy) =2(F —F, + &¢,F — Fy + B, + %, &)
=2(F — F,) + 2(F — Fy,B;) + 2(F — Fy, % &)
+ 2{e,F — F’O> + 2(e, By) + 2(¢, % &)

and
(%Y —Fy) =(F —Fy + By, + Kz¢)
= (F —Fy) + (By) + (#e) + 2(F - F), B)
+2(F — Fy, % ¢e) + 2(By, % e).
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Substituting this in the definition of 7j;, we obtain the assertion of the
lemma. O

The next step is to show that the expansion (26) for the statistic 7, can be
simplified by discarding lower order terms. Indeed we shall see below that the
last three terms are relatively small and can be omitted. The terms E; and V,
can be replaced by similar expressions E; and V; which use “true” values o;
and «; instead of estimated values 6; and k; and finally, the parametric
estimator 6, can be replaced by 6, defined by

(27) 0, = arginf{F — F,)

00,

where F is a “true” regression function from (3). Suppose that all these
replacements can be done. Define now

Vh
T = ”TB[<F_Fen> —(By) + AFye, e — (Fye) + By

and

1
EB = w Z Z O-jQHE(Xi)K}%,B(Xi _Xj)’
i ji
2
Vi =R L ¥ o0 TIE(X)[2K,, 4(X; = X)) = KDy(X;, X))
T J#FL
2

Z HE(XJ')K/%,B(X/% - Xj) :

J#i

+hZKL-4

Below we show that the tests ¢* based on the statistics 7,* with

n

(28) T)* = sup Ty
BES, q

have the same asymptotic behavior as ¢. For the moment we only consider
the tests ¢ *. Note that they are not tests in the usual sense since they
use the nonobservable values Eg;, V;, 6,. Central to our proof is the analysis
of the asymptotic behavior of the random variables

(29) & =nVh [20Ze, &) — (Ze) + Eg].

LEMMA 4.2. The following assertions hold
(30) Eg =0,
(31) Efﬁz = VBZ,
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and uniformly in F € 5, U5, BE S, ; and t € [—log n,log n],

P Vo) >t
(32) ((&/Ve) > 1) 1,
1—-®(¢)
®(-) being the standard normal distribution.

ProOOF. The first two statements are derived by direct calculation. In fact,
by definition and (22),

& = 2mZSiHB(Xi) Z.ngh,B(Xi - Xj)

J#i

_\/F%:H/%(Xi) J§i sth,B(Xi _Xj) 2
+Vh L X oI (X) KR 5(X; — X))
i j#i
= \/E;ng gingB(Xi)[th,B(Xi _Xj) - K;L%)B(Xn Xj)]
+\/EZ Z'(O}Z - €JZ)H§(Xi)KI%,/3(Xi _Xj)'
i j#i

Since the errors &; are independent and E¢;, = 0, E¢? = 0.2, we immediately
obtain (30) and (31). The last statement (32) is a particular case of the
general central limit theorem for quadratic forms of independent random
variables (U-statistics) and can be obtained in a standard way by calculation
of the corresponding cumulants. We omit the details; see, for example, Hardle
and Mammen (1993). O

The assertion (32) of Lemma 4.2 straightforwardly implies the following
corollary.

LEMMA 4.3. Uniformly in F € %, U 5 one has

(33) P sup é > y4log N | — 0, n — o,
BES,. q VB

PrOOF. For any ¢ one gets

& & &
(34) P(sup Estl< ¥ PlEZ>t| <N sup P|Z >t
BES, « "B BES, 4 B BES, 4 VB
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However, by (32) for n large enough,

p(% > m) < 2(1 - @(/2Tog V)

B

1
< exp{ - §|\/4log N|2} =N2
that implies (33) through (34). O

Now we come to the calculation of the error probabilities for the tests ¢’ *
based on T'*. Under the hypothesis H, one has F = F,, 6 € 0. This does not
automatically yield (F — F9n> =0 since 0, € 0, [see (27)] and 6 can be
outside ©,, but the assumptions (HO) on the parametric family guarantee
that this value is small enough.

LEMMA 4.4. Let F =F,, 6 € O. Then

In2 n

(F,— F, ) <C; —

ProoF. Let
0! = arginf|6 — 0’|.
0'€0,

The definition of the grid ©, provides |6 — G,QI2 < (n%n)/n. Now from the
definition of 6, and the assumptions (HO) on the parametric family we obtain

1 2
(Fy~F,) < (F,~ Fy) =~ L|F(X) ~ F(X)[' = C3lo— o'F
o2 In? n
<

Using this result, we have for F = F, by Lemma 4.3,

¢ In?n
P(T;* > 4log N) <P| sup = > /dlog N — C? wh| -0,
BES, 4 B n
n — o,
that is,
ao(@r*) = sup Pp(pi* =1) -0, n— o, O
FeZ,

Next we evaluate the error probability of the second type.

LEMMA 4.5. Let F € &,. Then for n large enough
(F-F,)=>c,/2.
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ProOF. Let F €% be fixed and

0y = arginf||F — F,||.
00O

By the triangle inequality and Lemma 4.4 one has

n®n

1
(F-F,)<(F~F)+(F, —F,)<(F-F)+C}—.

It remains to check that the inequality ||F — F9F|| > ¢, implies (F — E,F> >
¢,/2. For n large enough that is obviously the case. O

The following lemma is a direct consequence of assumptions (E3) and (D).

LEMMA 4.6. There exist constants C_, o* and V* such that

ikd

(35) (X)) K, p(X; — X))| < C T4 (X) K, (X, - X;)| VB, X, X,

(36) sup o; < o*
and
(37) s%p Vp< V™.

Recall now that each function F(-) from % is of the form F(x) = f(x" B,)
with some B, € S,;. As a consequence F(-) should be well approximated by
the smoothing operator .%; with B coinciding or close to B,. More precisely,
the following can be stated.

LEMMA 4.7. There is a positive constant C, such that for each F(-) € 7,

F(x) = f(x" By,

(38) <BB"> < Cbhzs

with

(39) B, — arginfl § — B,
BES, q

ProoF. The definition of the grid S, ; provides | B, — Byl < h****. Then,
it is well known, for example, from Ibragimov and Khasminskii (1981), that
for F(x) = f(x " B,) with f € 3(s, L) one has

(40) (Bg,) =% F —F) <L'h**!
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with L' = L||K||/(s — 1!, but

|<BBn> - <Bﬁo>| <(B; — By
(52” F - F)

IA

IA

I, (X;) X F(X)K, 5 (X; — X))

J#i

—1I (X)ZF( )KhBo(X X))l

J#i

Now using assumptions (D) and (K1)-(K5) we obtain
[TI51(X;) — 1) < X |Ky 5 (Xi = X)) — K, (X - X;)|
#i
(41) '

< CI, (X)) | B, }:.30|

and similarly

E“. |F(X) Ky, 5(X; = X;) = F(X))K;, (X — X;)|
J#i

42
——

Putting together (41) and (42) we conclude that

18, - Byl
(B, — (B, | = ¢ PP < g

< CIlz(X;)

and the lemma follows from C, = L' + 1.
To complete the proof for the tests ¢ * it remains to note that for each
F ez,

nvh
Ti* > KF—F,)— (B, )|+ g‘*"
VBn Bn
and that if
2V*
(43) (F—F,)>C,h* + Vdlog N,
n n\/}T
with V* from Lemma 4.6, then by Lemma 4.3 we obtain
nh 2V*
P(T}* < ,/410gN) <P 4log N S, < 4log N
Vﬁn ik Vﬁn
&,
<P 4log N | — 0, n — o,
VBIL
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Finally we remark that log N < C log n and the choice of & by (8) yields

4s/(4s+1)
Vlo
C h% + ‘/_,/410gN<c'( gn )

that is, (43) holds true if ¢, in the definition of the alternative H, is taken
with ¢2 > 2C'h?*. This completes the proof for the tests ¢F*. O

— C/h2s,

Now we explain why the statistics 7,7* can be considered in place of TF.
The idea is to show that the dlfference T}* — T is relatively small (bemg
compared with the test level y/4log N or dev1at10n (F — F, >) First we treat
the preliminary parametric estimator 0 Denote for given F €, UT,

n?n

d,(F) =(F - F, )+

6, being from (27).
LEMMA 4.8. Uniformly in F € 7, U% we have for each 6 > 0,

——(F - Fy) —=<F-F,)|> 8| >0,

- 0.

[(F — F,, &) > 5

1
P( a,(F)

PRrROOF. Let us fix some 6 > 0 and some 6 € O,. First we show that the
probability of the event
In? n
(F-F) +
n

is asymptotically small. More precisely, we state the following assertion:

{|(F—F9,g>| > 6

(45) Y P(|<F—F9,e>| > 8
0€0,

In?n
(F - Fy) + -0, n — o,
n

In fact, if we put d? = EKF — F,, £)|?, then we have
2

1
dg = E‘; Zei[F(Xi) - F(;(Xl)]

i

1 2
= ﬁ Z‘Tz‘ZlF(Xi) _Fo(Xi)l :

Using Lemma 4.6 we have

*2 %2

r LIF(X) = F(X)F = =—(F - F).
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Further,

2 2

In“n

1FF
§(<‘e>+ "

)z (F —F,)

and

P(|<F—F9,g>| > 8

In? n )
(F—-F,) + )
n

Lm0 (F—F,
—_— J— >_ R —
dgl €] 4, " T,

1 1)
P|— |(F - F, > —1 .
< (d0|< ) > ogn)

<P

Now we use an estimate of the large deviation probability for the centered
and normalized random variables (1/d,){F — F,, £); see Lemma 4.11. In-
deed, for n large enough,

¥ P(i

00, de

0 52
(F — F,, gy > ;log n) < Z exp{— 05 2 1n2 I’L}
0O,

<nexp{—(d + 1)logn} <n!

which implies (45). Here we used that the cardinality of ®, is of order n?. Let
6 € 0, be such that

(46) (F-F,) —(F—-F,)>28d,(F).
For 6 small enough this yields
(47) (F—Fe>—(F—F‘en>>8(<F—F6>+<F—F6n>)_

Now by definition of 6,, we obtain by (46) and (47)
(6,- 0} c{((Y-F) < (¥~ F,))
={(F-F,+¢&) <(F-F, +e&)}
={(F-F,) —(F-F,)<2(F - F,,e) + 2(F - F, , )}

o 0
C {(F —F,,&)> §<F — F(,}} U {(F - F ,&)> §<F - F9n>}.
Using this relation and (45) we deduce
P([(F —F;) —(F —F, )| > 25d,(F))

< Y 1|(F-F,) —(F—F,)|>28d,(F)|P(6, = 0)
6€0,
5
< ZP((F—F9,8>>§<F—F9>)—>O, n — o;

00,
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that proves (44). The second statement of the lemma follows directly from
(45). O

The next step is to show that the last two terms in the expansion (29) are
vanishing.

LEMMA 4.9. Given F let

In%2n

=<(B .
by <B>+n

Then uniformly in F € 7, U9, for each 6 > 0, the following assertions hold:

Y P((BB, gy > b‘bﬁ) -0,
BES,. q

Y P((BB,%3> > Bbﬁ) - 0.
BES, 4
REMARK 4.1. The statements of this lemma yield immediately that
P((B,a)gerﬁ VBeSn,d)—>1
and similarly for (BB,% ).
ProOF. The statements of the lemma are proved in the same manner as

in the last part of the proof of Lemma 4.8. For the second statement, we use
in addition the fact that

C
(48) Var(BB,%8> < ;(BB>.

Indeed, using assumptions (E1)-(E3) and (K1)-(K5), Lemma 4.6 and Jensen’s
inequality, we have

BBy, %0 = B SBCOIE) T ok (X X))
= % %‘,sz ingB(Xi)HB(Xi)Kh,B(Xi - X)) 2
< %U*ZC§§H§(X1) i%BB(Xi)Kh,B(Xi - X)) 2
c L gy BB X0 Kip (X~ X))
n i j Ei#th,B(Xi _Xj)

IA

q
%
Q
[\V]
Q
P
=
N
O
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Next we show that the quantities EB and Vﬁ estimate E; and V, well
enough.

LEMMA 4.10. For each 6 > 0 and uniformly in F € %, U 9,

P| sup |[E,—E;|>——| >0,
(Besf,d'ﬁ 2 Mlogn)
VB
P| sup |[——-1|>46]| — 0.
BES, 4| "B

ProoF. The assumption (E3) implies for each j=1,...,n
o2 — 6 < C,|F\(X,) - F(X;)|
and hence
- 1
|Ep — Byl < w X Ylo? - I (X) K 5 (X, - X;).
i j#i
Now by the design and kernel properties we derive for each j=1,...,n,

YIA(X)KP 4(X, - X)) <

J#i

nH

and using the Cauchy—Schwarz inequality we obtain

By — Byl < —— ZIF X)) - F(X;)| < [ ZIFl(X) F(X)I]

The pilot estimator F ) fulfills with high probability,
(F, - Fy < Cn2w/@s+0),

Hence using the inequality 2s/(2s + d) > 1/(4s + 1) and the definition of A
we arrive at the conclusion that

_ C 1
I’L\/E|EB_EB|S ﬁn_Z/(2s+d)=o(logn)' O

Lemmas 4.8-4.10 together imply the asymptotic equivalence of the tests
based on T; and T;. We finish the proof of the theorem with a result on
probabilities of deviations of centered and normalized sums of independent
errors g; over the logarithmic level. The following lemma was already used in
the proof of Lemma 4.8.

LEMMA 4.11. For each pair of positive constants r, a, the following rela-
tion holds uniformly in functions F from the Lipschitz class %,(1,L) of
functions in R<:

an(f(F)>a10gn)—)O, n — o,
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where

(F, &)

F)y= ——"_.
£(F) B o)

For the proof, we proceed in a standard way using (E1) through (E3) and
the Chebyshev exponential inequality: for any A, z > 0, one has P(¢> z) <
e *?Ee*¢. The details are omitted.

5. A simulation and an application. The purpose of our simulation
experiments was to study the quantiles of the test statistic 7 and the power
of the test in finite samples. All calculations have been performed in the
languages GAUSS and XploRe [Héardle, Klinke, and Turlach (1995)]. The
observations were generated according to a binary response model. The ex-

planatory variables were identical independent uniformly distributed on
[—1,1]. We took the parameter 6 = (1)1 / V2 and considered the functions

(49) fo(u) = Tt exp
(50) fi(w) = fo(u) + ne'(u)
(51) fa(u) = 1 — exp(—exp(u))

for different 0 < n < 1, where ¢ is the density function of the standard
normal distribution. While £, is a logit function, f; consists of a logit
disturbed by a bump (Figure 3). The response Y under H, was generated
such that P(Y = 1|x70, = u) = f,(u). We are thus interested in the hypothe-
sis H,

H,: F,(x) =E[Y|u(x,0) =u] =f,(u), 6€S8S,.

In a first step we calculated empirically the 90 and 95% quantiles of T} for
n = 100 and 200 observations generated by f,. They were used then as
rejection boundaries, defined as y/4log N; see (24). We calculated T* by
optimizing T, over a grid; see (23), with N = 50 gridpoints. As kernel
function K we used always the quartic kernel,

2
K(u) = %(1 - u2) 1oy <y

In the second step we analyzed the effect of increasing sample size on the
power. In Table 1 we show the power of the test when the data were
generated with functions f;,, that is, f; for n = 0.2, f,,, where n = 0.6 and
fo- In order not to oversmooth, we used the bandwidth 2, = 2 = 0.5 for
n =100, 200 and A, = h = 0.25 for n = 350, 500. Although we substituted,
for speed reasons in the cases n = 350 and 500, V,; by V, for all B, the power
increases very fast with n. Therefore, it could be of interest to compare the
power with regard to the bump 7 in the logit model. In Table 2 we show for
n = 200 and 350 the power of the test as a function of 1. We see that for
1 > 0.4 this test procedure works very well.
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REAL AND DISTURBED LOGISTIC

(*10 -1)
1

F1G. 3. Solid line: f,; dashed line: f; with n = 0.2; pointed line: f; with n = 0.6.

TABLE 1
Power and rejection boundaries for different alternatives

n,h = 100, 0.5 200, 0.5 350, 0.25 500, 0.25
level 5% 10% 5% 10% 5% 10% 5% 10%
rejection boundary 4.00 3.35 3.30 3.25 3.75 2.90 3.20 2.76
fia 0.056 0.096 0.112 0.215 0.133 0.207 0.150 0.200
fie 0224 0.294 0530 0.690 0.798 0.856 0.900 0.960
fa 0.316 0376 0946 0.991 0995 1.000 0.995 1.000
TABLE 2
Power for different bumps n
n= 0.2 04 0.6 1.0
level 5% 10% 5% 10% 5% 10% 5% 10%
n, h 200, 0.50 0.112 0.215 0.227 0.419 0.530 0.690 0.687 0.801
350, 0.25 0.133 0.207 0.321 0.478 0.798 0.856 0.889 0.926
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The last step of the simulation experiment was the study of bandwidth
choice. For the sake of simplicity, we set 2, = i as above. First, we always
have had to determine numerically the rejection boundaries for the special
bandwidth h. Here we observed shrinking boundaries, when A grew from
0.25 u to 2.25. In Figure 4 we plot the bandwidth versus the power of the test
with observations generated by f;.. Obviously for this kind of alternative we
get better power for larger bandwidths.

In the introductory example we dealt with youth unemployment. The
question is, can we explain the youth unemployment with the aforementioned
predictor variables X in a single index model with logit link? In the applica-
tion to this dataset, we used a slightly modified numerical procedure as
described in Proenca and Ritter (1995). Further, we rescaled the explanatory
variables of each dimension to [—1,1]. Since there are three dimensions
(d = 3) for a sample size of n = 462, we choose the bandwidth A, large,
definitively 1.5, whereas A = 0.3. By Monte Carlo studies described above we
determined the 90 and 95% one-sided quantiles of T}, and got 1.74, respec-
tively 2.38. Then we ran the test for our data and got the statistic value
T, = 3.076 for B = (—0.18010, —0.10725,0.97778). For the purpose of com-
parison, in Table 3 we switch the norm of 8 and set this first component
equal to the corresponding one of 6, the parameter of the logit fit in Figure 1.

BANDWIDTH VS POWER

1 1 1 1 1 1 1

BANDWIDTH

F16. 4. Power function of the test with respect to the bandwidth for function f,.
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TABLE 3
Comparison of 6 and B

Explanatory Earnings as an Percentage of apprentices Unemployed

variables Intercept apprentice divided by employees rate

0 —2.40996 —0.07999 —0.17989 0.95113

B — —0.07999 —0.04763 0.43422
APPENDIX

PrOOF OF THEOREM 2.1. To simplify our exposition and to emphasize the
main idea, we consider the case when the parametric family consists of one
point, namely, a zero regression function, and errors ¢; are independent and
standard Gaussian. Moreover, we assume random design with a design
density 7(x) in R? of the form 7(x) = 7 ,(|x]), where a univariate function
a,(-) is compactly supported on [—1,1], symmetric, twice continuously dif-
ferentiable and satisfies w(¢) = 3/4 for [¢| < 1/2.

The method of the proof is standard; see, for example, Ingster (1993). We
replace the minimax problem by a Bayes one, where we consider, instead of
the set 7, of alternatives, one Bayes alternative corresponding to a prior v
concentrated on #. We try to choose this prior » in such a way that the
likelihood Z, = dP,/dP, is close to 1 where the measure P, is the Bayes
measure for the prior v and P, corresponds to the case of zero regression
function. The Neyman—Pearson lemma yields that the hypothesis H,: P = P,
cannot be consistently distinguished from the Bayes alternative H,: P = P,
and hence from the composite alternative H;: P € #,. In the proof we use a
hypercube argument as in Bickel and Ritov (1988).

Now we describe the structure of the prior ». Let g(-) be some function
from the Holder class (s, L), supported on [ —1, 1] and satisfying the condi-
tions

(52) [e(t)ydt=0, g’ = [g*(t)dt>0, ligl.= sup|g(t)|<1.

Set

2/(4s+1)

(53)

ki

e

n

where a constant a will be chosen later. Denote by .#, the partition of the
1 1

interval [ — 3, 3] into intervals of length A. Without loss of generality, we
assume that the cardinality of the set .7, coincides with 1/A,

1
54 S, = .
(54) £, = o
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For each interval i €.7, introduce a function g,(¢) of the form

(55) (1) =hsg(t;t’),

t; being the center of I. Evidently g,;(-) is supported on I, g; € 3(s, L) and
the following hold for ~2 small enough:

(56) Jei(tydt =0,  [g}(t)dt=h*"lgl’.

Let now u be a set of binary values { u;, I €.7}, that is, u; = +1. Define a
function G,(¢) with

(57) Gu(t) = X mg(t).
Iez,

This function G, € X(s, L) vanishes outside [ — 1, 1] and by (56),

1
(88)  [GH(t)dt = i;jﬂ/glz(t) dt = h* [g*(¢) dt = h>lgll”.

Taking into account (53) we see that the distance between zero function and
each G, is just of the rate c¢? from Theorems 2.1 and 2.2.

Denote by .7, the set of all possible collections { u;, I € .#,} with binaries
u; = £1, and let m(d p) be the uniform measure on .#,. This measure can be
represented as the direct product of binary measures m,(du;) with m;(u; +
D=1/2

Now we pass to the semiparametric model. Let S, be a grid on the unit
sphere S,; with the step b,,

(59) b, = h'/S,

h being from (53). This means that | 3 — 8’| > b, = h/® for each 8, B’ € S,
B # B'. Below we will use that for some o > 0,

(60) N =#8, =n“

and

h%logn  hY%logn
(61) 7 = 2
|,8 - ,8,| bn

For each B € S, and each u €.#,, define a multivariate function G, ,(x) on
R? with

-0, n—->xoVB,B S, B+B.

Gs (x) =G,(x" B).

It is clear that the function G; ,(x) is Holder, G; ,(x) € X ,(s, L), and by (58)
we get

(62) JGE ()7 (x) dx = [G2(x7 B)my(lx]) dx

= [G2(t)my(t) dt = Coh*
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with 7,(¢) = (d/dt) 1(x" B < t)m,(|x) dx and C, € [Llg]? llgll*]. Finally we
take the prior v as the uniform measure on the set of functions {GB’ u BES,,
w EA,}, and

1
(63) P=— )

N pes,

1

TR

wed,

Here M = #4#, = 2'/", N being from (60). Denote also Z, = dP,/dP, and
notice that this likelihood can be represented in the form Z, = (1/N)X; .5 Z,
with
1 1 dP,
(64) Zy=— Y Zy ,=— ) ——*".
B M, <, B M, Z, dP,

Our goal is to prove that for a small enough in (53) one has
(65) Z,—1

under the measure P,.
We start from a decomposition and an asymptotic expansion for each Z,
from (64). For that we need some more notation. Fix some g € S, and put

(66) 0'32,1 = Zgiz(XiT .3): Ies,
1 T

(67) &1 = O__Zgl(Xi B)e: Ie.z,.
B, I i

We see that §; ; are standard normal and independent for different I € .7,
and

ZGBZ,}L(XI:) = ZG,%(XL'TB) = Z 0',32,1-

Iez,

Recall that we assume random design and

(68) EZGBZ»I-L(Xi) =n/G32,M(x)7r(x) dx = nCyh?*:.

Similarly for each g’}

(69) Eq?; =n[gf(x7 B)m(x)dx=n[gf(x" B)m(lxl) dx = nC;h? 1,
where C; does not depend on B and C; € [C,/ V2,V2C,].

LEMMA A.1.

ZB = 1_[ Ch(ob,lfﬁ,l)exp(_%aﬁz,l)a

i€,

where ch(z) = 3(e? + e 7).
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ProoF. By Girsanov’s formulas and (66) and (67),

Z,.. = exp{ LG, (X2, — 3G (X))

exp{ Z /-LIO-B,Igﬁ,I_% Z 0'52,1}

Iez, Ieg,

ex o - 102}
Ile_[jn P{Mz 188,17 2 B,I}

Now the lemma’s assertion follows from the direct product structure of the
measure m(dw). O

Denote also

(70) UBZ =% Z 023%]7
Iez,

(71) §3=v_ )y %1(531 1).
B Ies,

LEMMA A.2. The following statements hold:

(6] EOgB = 0.
(i) EO§ =1.
(iii) Ev} < C,n?h**1 = C, log n with C, < a; see (53).
Var UB <Cynllogn wzth some positive 02
(iv) The random variables {s are asymptotically normal and there exist
standard normal random variables {B such that

- 2
log n sup EO(ZB — 4“3) -0,
Besn

logn sup [Eqfdy — Eglplel = 0.
B,B'E€S,

For the proof, the first two statements are obvious. Statement (iii) follows
from (69). Finally, (iv) is the application of the Strassen type invariance
principle [see, e.g., Csorgé and Révész (1981)].

The next step is the asymptotic expansion for each Zg.

LEMMA A.3. The following statements are satisfied uniformly in B € S,,
for each & > 0:

(1) P0(|Zﬁ - exp{vﬁgﬁ - %UEH > 8) -0,

(ii) PO(‘ZB - exp{vaB - %vg}‘ > 8) - 0.



PARAMETRIC VERSUS SEMIPERIMETRIC REGRESSION 239

ProOF. The first statement is equivalent to the following one:
Py(|log Z, — vs4, + 302 > 6) - 0,
but the latter can be obtained using the Taylor expansion for log Z;:

IOgZ[s: Z IOgCh(Ob,Igg,I) - %02321
Iez,

= Z [%‘732,1(532,1 - 1) - %%%1554,1 + 0(023(?1536,1)]
Iez,

and the following asymptotic relations which hold uniformly in B:

Po( )y %%1(§ﬁ{1_3)‘>8 -0,
Iez,
Po( ) 023?‘1536,1 >8| —0;
Iez,

for details we refer to Ingster (1993).
The second statement of the lemma follows directly from Lemma A.2(Gii).
O

Now we arrive at the central point of the proof. Actually we prove that
“submodels” corresponding to different B are in some sense asymptotically
independent. That is why we have to pay with the extra log term for the
choice of “direction” 8.

LEMMA A.4. There exists a constant C such that for any B,B' €8S,
B# B,

h1/2

(72) |Egg | < 5 g

Proor. Let us fix some B, B’ for S,. Denote by p their scalar product,

p=1(B,B").
We will also denote by E™ the condition expectation given the design points
X,i=1,...,n.
Set for I, I' from .7,,
1
(73) r=r;p=E% & = ——— ZgI(XiT fg)gz'(XiT /3')-

05,10, 1'

Obviously, |r; ;| < 1.
Using the normality of §; ; and & ; we calculate easily

(74) E”(gg,, - 1)(5;7,,, — 1) =4r? ;. —2r; .
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One has
1 2 2
Eofgfgf = Z Og, 1(§b/3 I~ ) Z 0'3’,1'(53',1' - 1)
Ug 1e.7, U res
11
=E,—— Z Z 0'3 IUB 1[4’”11 2"1,1/]

UB Ug' 1e.7 I'e.7,

and using |r; ;| < 1 and the Cauchy—Schwarz inequality, we get

E, §g§g|<6E —— Y X g9 plr gl
Us Up Ie s, I'e s,

1/2

<6|E — X X %9

UB ﬁ Ie s, I'e s,

1/2
[Eo Y X 0232,1032',1""12,1'} .

Ie? I'e.7,

Next, using the Holder inequality,

1/2 1/2
E T gt (NI ) (VT gt

Ies I'e’g, Iz, I'es,
- 2 2
_NUBUB’( Y OB,I)( Y UB,),,) < Nuguyg.,
Iez, I'es,

where, recall, N = #7, = h~!. This inequality and Lemma A.2(iii) imply

1/2
|E0§B§B’| < C(log n)_lN[ Y ) E(TBQ’I%%’IJ"I%IV}
Ie s I'e’,
< C(logn) 'N? sup [Eoﬁlaﬁ’],r?’ 1,]1/2

S

’ n

with some C > 0.
Let us fix for a moment some I, I’ € .#, and denote

2 _ 2 2 9
wr =Koz 05 prppe
Below we will prove the following estimate:

Cnh23+3
(76) Wy < 1——/)2
with some constant C depending only on the design density . Substituting
the estimates in (75) and using (53), we get that [E, ;4| < Ch'/?(1 — p*)~"
Now the assertion follows from the simple fact that ( B B2 =1-—p2
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It remains to check (76). First we note that from (73),

2
w12,1' = E[ZgI(XiT B)gl'(XiT ,3,)]

— (n? - n)[fgl(f B)er(x" B)m(x) d’“r

+ nfg,z(xT B)gi(xT B’ )m(x) dx.

To simplify the notation, suppose without loss of generality that g =
1,0,...,0), B = (p, \/1 — p?,0,...,0). Introduce new variables y,, ¥o,..., ¥4
by the equality x™ B =¢, + hy,, x" B’ =t + hyy, v, =x,, k =3,...,d and
denote by T the linear transformation in R? such that y = Tx. It is easy to
verify that dT/dy, = (h,0,...,0), dT/dy, = (ho, h(1 — 0*>)"1/2,...,0) and
ldet T'| = R%(1 — 0%) /2. We have

B25+2 2

w?p=(n?—n)|— 1 g)moT d
= ( )mfg(y)g(y) () dy

nh4s+2

+ ﬁfg%yl)g%m)woﬂy) dy.

Here 7 T means the function on R? defined as the superposition of the
linear transformation 7' and the design density 7. Since the function g has
the support in [—1, 1], the latter integrals can be considered only on the
domain with |y, <1 and |y,] < 1. For any such point, one has
|7 o T(y1, Yoy ¥grevs ¥g) — e T(0,0, ygy ..., ¥y < 7' l|0T /0yl + 19T/ ysl)
l7'I(2h + h(1 — 0?)~1/2) where ||7'|| means the maximum of the norm of the
first derivative of 7. This implies

‘fg(yl)g(yz)ﬂ'°T(y)dW‘=¢fg(y1)g(yz)ﬂ°TYaq,y2,y3,~-,yd)d&

— [&(1)8(32)™>T(0,0,55,...,5,) dy

< Ch(1 - ¢?) /%

Here we have used the equality [g(¢) d¢ = 0 and boundedness of g. Simi-
larly, one estimates the second integral [g%(y,)g2(y,)m T (y)dy and (76)
follows.

Now everything is prepared to complete the proof of (65). The results of
Lemmas A.2 and A.3, reduce this assertion to the following one:

1
(77) N BZS

- 1
[exp{vﬁgﬁ - EUE} — 1} -0
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under the measure P,. It suffices to check that

r (2,-1))

1
E, -0
Besn

N2

with

7, - AR

B = €XP{Ugls — U5 (-

Using the normality of 458 and Lemma A.2(iii), one derives

~ 2

Eo[exp{vﬁgﬁ - %vg} - 1] = exp{vﬁz} < n®
For different, 8, B’ € S,,, denote o = E, foB,. Then by direct calculation,
E Z,Z, = Eyexp{avgug}.
The results of Lemmas A.4 and A.2(iv) allow us to obtain
Eo(Z3b — 1)(Z; — 1) = EoZyZ; — 1 < Calog n.

Finally, we derive by (61), Lemmas A.4 and A.2(iii), (iv),

1 _ 2
—E| Y (Z,-1
N2 0 ﬁeSn( g )
1 . 2 1 - -
-5 L Eo(Z, - 1) + L T E.(Z, - 1)(Z, - 1)
pes, pes, p'es,
BB
1 1 Ch'%log n
<— Y exp(vZ)+t— Y )Y ——
N? Bes, ( B) N?® pes, pres, |B— B'I”
IY:
I Ch'%log n
< Wﬂ + b—,% - 0,

if a in (53) is taken small enough.
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