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INFORMATION AND THE CLONE MAPPING
OF CHROMOSOMES

BY BIN YU1 AND T. P. SPEED 2

University of California, Berkeley

A clone map of part or all of a chromosome is the result of organizing
order and overlap information concerning collections of DNA fragments
called clone libraries. In this paper the expected amount of information
Ž .entropy needed to create such a map is discussed. A number of different
formalizations of the notion of a clone map are considered, and exact or
approximate expressions or bounds for the associated entropy are calcu-
lated for each formalization. Based on these bounds, comparisons are
made for four species of the entropies associated with the mapping of their
respective cosmid clone libraries. All the entropies have the same first-

Ž .order term N log N when the clone library size N ª ` as that obtained2
by Lehrach et al.

1. Introduction. The primary goal of the Human Genome Project is to
sequence the entire human genome, which consists of about 3 = 109 base

Ž .pairs bp of DNA. Current technology only permits sequencing of fragments
of the order of a few hundred to a thousand base pairs of DNA in a single
reaction. Consequently, much effort is devoted to fragmenting large DNA
molecules, such as chromosomes, in such a way that the sequenced fragments
can be readily assembled. Clone maps, which are one form of physical
mapping, play a key role in this process, as well as providing a resource
permitting the detailed study of chromosomal regions of biological interest.

A clone map of part or all of a chromosome is the result of organizing order
and overlap information concerning collections of DNA fragments called clone
libraries. Such libraries consist of many, typically thousands or tens of
thousands, of DNA fragments from a chromosome or region of interest. Each
fragment exists as an insert in an autonomously replicating DNA sequence,
which resides within, and replicates with its host cells. In this manner it is
possible to generate many copies of the fragment of interest, and the name
clone is thus used as an abbreviation for the longer and more accurate name:
cloned DNA fragment.

A large clone library might consist of 5000 cloned fragments of average
length 100,000 base pairs, from a chromosome of length 100,000,000 base
pairs. Assuming that the cloned fragments are randomly located along the
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chromosome, this would mean that any particular spot on the chromosome
should be represented on an average of five cloned fragments, giving rise to
the term fivefold coverage, or a five-hit library. We note that a library of
fragments of this size is still not suitable for DNA sequencing. Typically, one
or two further stages of subcloning are needed prior to sequencing, and there
may be additional mapping at these stages as well. In such cases both the
libraries and the fragments will be smaller, but the principles of mapping
remain much the same. For details on clone mapping from the perspective of

Ž .applied probability, see Lander and Waterman 1988 . Nelson and Speed
Ž .1994 have a more statistical perspective, and give further references to
these aspects of the topic.

In their paper comparing the relative merits of fingerprinting cloned
fragments of DNA by hybridization of oligonucleotide probes and by digestion

Ž .into restriction fragments, Lehrach et al. 1990 raised two interesting ques-
Ž .tions concerning the creation of clone maps of a chromosome: 1 how much

Ž .information is needed? and 2 how much information is gained by the
hybridization and restriction digestion methods, respectively? The answer to

1Ž .the first question offered by these authors was log N! for a library of N2 2
Žclones. This figure corresponds to the average amount of information the

.entropy, see the following discussion required to identify the true ordering of
N objects labeled 1, 2, . . . , N when it is not possible to distinguish between

Ž . Ž .the ordering i , i , . . . , i and its reverse i , . . . , i , i , but otherwise all1 2 N N 2 1
orderings are equally likely. However, it is not entirely clear why the ordering
of objects in this way corresponds to any formal notion of a physical map, and
even if there is such a correspondence, why all possible configurations should
be equally likely.

To illustrate these points, let us briefly consider the cases of N s 2 and
N s 3 clones, regarded mathematically as having identical length L bp and

wbeing randomly located along a chromosome of length G bp cf. Lander and
Ž .xWaterman 1988 . For two such clones we have two configurations, overlap

or not, with quite unequal probabilities 2b and 1 y 2b, respectively, where
b s LrG. For three clones there are ten distinguishable configurations: one
with no overlaps, three with exactly two clones overlapping, three with two
different clone pairs overlapping, but no triple overlap and three distinguish-
able configurations involving a triple overlap. Again these can be seen to be
far from equally probable. In practice, N will be in the hundreds or
thousands.

Ž .In order to answer question 1 exactly, we would need to enumerate the
� Ž .set XX of distinguishable configurations, calculate their probabilities p x :

4 Ž . Ž . Ž .x g XX and then go on to calculate the entropy H X s yÝ p x log p xx g XX 2
of a random configuration X. The first part of this program has been com-

w Ž .xpleted see Newberg 1993 , but to our knowledge no one has carried the
calculation of the probabilities beyond N s 3, although this is, in principle,

Ž .possible. We do not know how to obtain the entropy H X exactly, but in the
following discussion we will find bounds on entropies of various configuration
variables which are relevant to clone mapping.
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Ž .The reason that the entropy H X is the appropriate measure of informa-
w Ž .tion is explained in texts on information theory see, e.g., Craig et al. 1990

Ž .xand Renyi 1984 . We content ourselves here with a brief informal explana-´
tion, applicable when the elements of XX are equally likely, each having

< < Ž . < <probability 1r XX , in which case H XX achieves its upper bound log XX . The2
argument goes like this: to identify any particular element x g XX , we con-
sider successive subdivisions of XX into halves, quarters, eighths, and so on,
and if we were told at each stage which half, quarter, eighth, and so forth
contained the particular element, we would gain one bit of information each

k < <time. Clearly this process cannot finish in less than k steps, where 2 F XX
- 2 kq1, and this k is thus a lower bound to the number of such questions,
equivalently bits of information, necessary to identify the particular element
in question. More refined procedures can limit the amount of information

< < wnecessary to log XX q « , where « ) 0 is as small as we wish see, e.g., Renyi´2
Ž .x1984 . A similar but more complicated argument applies when the elements

wof XX are not equiprobable see the discussion of the noiseless coding theorem
Ž .xin Cover and Thomas 1991 .

Ž .In this paper we study the entropy H X of a random configuration X most
appropriate to the clone mapping problem. The study is done through seven
other random structures, P, Q, U, V, W, Y and Z, each of which can be
regarded as embodying a greater or lesser amount of the structure implicit in
X, but whose entropies are more accessible. We derive a variety of exact and
approximate expressions and lower and upper bounds for the entropies of
these quantities. We compute these bounds for clone libraries of interest and
the bounds are reasonable for all configuration variables considered and very
tight for some. Based on these computations, comparisons are made for four
‘‘model’’ species in terms of information needed for the mapping of their
respective cosmid clone libraries. It is somewhat surprising that all the
entropies have the same first-order term N log N when N ª `, as that2

Ž .obtained in Lehrach et al. 1990 . We end the paper with some remarks
concerning the more difficult question 2.

In closing this brief introduction we note that in the analysis which follows
we essentially ignore the role of distances, although we do consider the
placement variable W in units of thousands of base pairs. Many physical
mapping methods produce some information concerning distances as well as
clone order, and such information can be very useful in practice, even when
Ž .as is often the case there are large error bounds attached. In particular, it
would be misleading to compare the hybridization and restriction digest
methods mentioned previously, solely on the basis of the information they
produce concerning clone order. The restriction digest method produces fairly
precise information about distances, whereas the hybridization method does
not. An analysis, which incorporates distance as well as order and overlap
information, is beyond us at this time.

2. What is a clone map? We now introduce several different but related
abstractions of the notion of a clone map of a chromosome, this being
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informally an ordering of a library of cloned fragments of the chromosome in
question. As noted previously, we adopt the mathematical model for a clone

Ž .library used in Lander and Waterman 1988 , namely, that the N cloned
fragments can be identified with N randomly located subintervals of equal
length L of a genome of length G. More formally, the left-hand endpoints
Ž .say of the N intervals corresponding to the cloned fragments are indepen-

w xdently located uniformly along 0, G y L . It will be convenient at points in
the argument to take an alternative, effectively equivalent view of the

w xleft-hand endpoints as being the points on 0, G y L of a homogeneous
Poisson process with rate l s NrG per base pair.

2.1. Fully ordered configurations. Following the terminology of Alizadeh,
Ž .Karp, Newberg and Weisser 1993 , we use the term placement to describe a

configuration of positions of the clones along the chromosome, that is, a
Ž . w xspecification W s W , W , . . . , W , where W g 0, G y L is the location of1 2 N i

the left-hand endpoint of the ith cloned fragment, i s 1, 2, . . . , N. The units
Ž . Ž .here are base pairs bp or kilobase pairs kb ; see the following discussion.

Experimental procedures exist which could precisely determine these loca-
tions for a clone library, but most clone mappings have more modest aims,
seeking to single out a less completely specified configuration from among a
class of a priori equivalent alternatives. Before we turn to a discussion of
such ‘‘coarser’’ configurations, we make a connection with the work of Lehrach

Ž .et al. 1990 , which stimulated this research. By the linear ordering of a clone
Ž .library, we mean the sequence V s V , V , . . . , V of labels of the ordered1 2 N

left-hand endpoints of the clones; equivalently, the vector of ranks of W s
Ž .W , W , . . . , W listed in reverse order. This variable seems to be the one1 2 N

Ž .considered in Lehrach et al. 1990 .

2.2. Island configurations. We turn now to a second class of clone con-
figurations, those based on the notion of an island, which is either a single
clone, not overlapping with any other clone in the library, or a set of clones,
each pair of which is connected by a chain of overlapping pairs of clones.
Islands of two or more clones are usually called contigs, and many clone
mapping projects have as their initial objective the determination of all
contigs in their library and the ordering, up to inversion, of clones within
contigs. This is usually the objective of fingerprint-based clone mapping,
which attempts to infer clone order and overlap from information concerning
each of the clones in the library, such as the list of fragment lengths following
digestion by restriction enzymes, or the pattern of hits and misses following
hybridization with a panel of probes. Fingerprint-based clone mapping pro-
jects usually turn to quite different techniques such as radiation hybrid or

Ž . wfluorescence in situ hybridization FISH mapping see, e.g., Cox, Burmeister,
Ž . Ž .xPrice and Myers 1990 and Trask 1991 .

The most basic island configuration variable is Z, the number of islands.
Ž .More informative is the variable U s U , U , . . . , U of island sizes, which is1 2 N

a partition of the integer N, that is, ÝNU s Z, ÝNiU s N; or, equivalently,1 i 1 i
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U is the number of islands containing i clones. The components of U are thei
� 4multiplicities of the block sizes of the partition Q of the set 1, 2, . . . , N of

clone labels into islands. Here Q is the unordered list of disjoint subsets of
� 41, 2, . . . , N , usually called blocks or equivalence classes, but called islands in

� 4this context, whose union is 1, 2, . . . , N .
More informative again than Q is the configuration variable we term the

distinguishable orderings of the clones and denote by Y, namely, the variable
which refines Q by including information on the ordering of clones within
contigs, up to inversion. Thus Y tells us which clones are together in a contig
and, up to a flip, the order in which they appear, but it contains no informa-
tion on the relative positions of distinct islands along the genome.

There is one last refinement which we mention, namely, the configuration
Ž .variable discussed in Newberg 1993 , which includes information on the

depth of coverage within contigs. We denote this configuration variable by X,
and note that it may be regarded as refining Y by containing not just
information on the labels of the left-hand endpoints of the clones within each
contig, up to inversion, but the labels of the interleaved sequence of the
left-hand and right-hand endpoints of the clones, again up to inversion.

Ž .Newberg 1990 calls two configurations of clones topologically similar if one
can be transformed into the other by permuting the islands andror reflecting
some of the islands. An adjustment of the amount by which any pair of clones
overlap leaves one with a topologically similar clone ordering, if no endpoint
of a clone is moved past an endpoint of another clone. With this definition, X
is the set of equivalence classes of topologically distinct configurations, called

Ž .interleavings in Newberg 1993 and Alizadeh, Karp, Newberg and Weisser
Ž .1993 .

2.3. Pairwise overlaps. Many fingerprint-based clone mapping projects
take as their starting points the determination of pairwise overlaps among

w Ž .the clones in their library see, e.g., Branscomb et al. 1990 , Craig et al.
Ž . Ž .x1990 and Fu, Timberlake and Arnold 1992 . For this reason we define the

Ž .pairwise overlap variable P s P : 1 F i - j F N , where P s 1 if clones ii j i j
and j overlap, and P s 0 otherwise. It is clear that P can be obtained fromi j

Ž .X but not from Y. In seeking to estimate H P we do not mean to imply that
pairwise comparisons are the best, or even an effective way to ascertain
pairwise overlap information. Indeed, many of the most common clone map-

w Ž .xping methods, such as STS-content mapping Green and Green 1991 and
w Ž .xrestriction mapping Olson et al. 1986 , do not attempt to determine pair-

wise overlaps at all. Nevertheless, it seems to us of interest to ask just how
Ž .large H P is in relation to the entropies of other, more refined configuration

variables.
This concludes our discussion of the different abstractions of the notion of

a clone map of a chromosome based on a library of cloned DNA fragments
from that chromosome. As with all mathematical idealizations, our variables
all fail to account for many features of real clone mapping projects. Our hope
is that the features we do retain are the important ones, and that our results
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are at least qualitatively correct and useful. We now illustrate the different
variables just introduced in a simple case.

EXAMPLE. Suppose that G s 150, L s 20 and N s 8. We list the set of
Ž .configuration variables refining W s 120, 50, 10, 45, 105, 55, 20, 76 . The vec-

w xtor of ranks of these values, viewed as observations on 0, 150 , is
Ž . Ž .1, 5, 8, 6, 2, 4, 7, 3 , and so V s 3, 7, 4, 2, 6, 8, 5, 1 . Using the values in W, it is
easy to ascertain that

X s 373979 *, 426492969 *, 889 *, 515919 * ,� 4Ž . Ž . Ž . Ž .

Ž . Ž .where 3 resp. 39 denotes the left-hand resp. right-hand end of clone 3 or
vice versa, and * indicates the fact that the ordering is only unique up to
reversal. In a similar notation we have

Y s 37 *, 426 *, 8 , 51 * ,� 4Ž . Ž . Ž . Ž .

< < < Ž 1 2 1.while Q s 15 246 37 8, U s 1 , 2 , 3 and Z s 4.

3. Results. In this section we present our approximations to the entropy
of the configurations just described. All proofs are collected in the appendices.

We have sought close nonasymptotic upper and lower bounds to the
entropy expressions of interest, and have been quite successful in this regard

Ž . Ž . Ž . Ž .with H Q and H Y , and somewhat less so with H X and H P . Exact
Ž . Ž .calculations of H W and H V are straightforward. It is also of interest to

consider our results asymptotically as N ª `. In so doing, we could keep
LrG fixed and let c s NLrG increase, or we could keep c fixed and let LrG
decrease. A value of c in the range 3]10 is typical, with c s 5 being quite
common, although values in the range 40]50 have been used. Our figures and
tables have c fixed at 5.

Ž . Ž .The easiest entropy to evaluate is H W which is just N log G y L f2
N log G. This last expression can be rewritten as2

H W s N log N q N log LrcŽ . Ž .2 2

by making the substitution c s NLrG. It is clear that the leading term is
N log N, and also that the second term depends on the units in which L is2

Ž .measured. The most reasonable choice would seem to be kilobase pairs kb ,
Žin which the values G s 100,000 kb, L s 40 kb corresponding to a cosmid

. Ž . 5library and c s 5 give N s 12,500 and H W s 2.1 = 10 , compared with
N log N s 1.7 = 105.2

Ž .As pointed out in Lehrach et al. 1990 , we may use Stirling’s formula to
get

1H V s log N !Ž . Ž .2 2

1 'f N log N q log N y log e N y log 2p y 1.Ž . Ž .2 2 2 22
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Now let us define

1 1r12'w x� 4 � 4L U s E Z log N y log e q log E Z q log 2p e ,Ž . Ž .2 2 2 22

Np2

� 4L U s E Z log q log q c ,Ž . Ž .2 2 NNž /q 1 y qŽ .
M U s Neyc a q b y log e N ,Ž . Ž . Ž .N N 2

yc 1r12' � 4M U s Ne a q b y log e N q log 2p e E Z ,Ž . Ž . Ž . Ž .Ž .N N 2 2

1N N N N N� 4 � 4 � 4where a s E F log F , b s E log F and c s E F , and F is aN 2 N 2 N2

truncated geometric random variable with p s eyc and truncation at N. That
Ž N . jy1 Ž N .is, for q s 1 y p, P F s j s pq r 1 y q , j s 1, 2, . . . , N. We have the

following bounds on the entropies.

Ž .RESULT A Finite-sample entropy bounds . Let us introduce the following
abbreviations:

H Y s log N !y L U y Np 1 y p ,Ž . Ž . Ž .2

q N� 4H Y s log N !y L U y Np 1 y p q E Z H F q log N ,Ž . Ž . Ž . Ž .2 2

H Q s log N !y L U y M U ,Ž . Ž . Ž .2

q N� 4H Q s log N !y L U y M U q E Z H F q log N ,Ž . Ž . Ž . Ž .2 2

H X s N log N q N log 4re y log N,Ž . Ž .2 2 2

H X s H Y ,Ž . Ž .
H P s H X ,Ž . Ž .
H P s H Q ,Ž . Ž .

where
N

N N NH F s y P F s j log P F s j .Ž . Ž . Ž .Ý 2
js1

Then our main bounds may be expressed as

H S F H S F H S ,Ž . Ž . Ž .

where S may be X, Y, Q or P.

Ž .RESULT B Asymptotic expansions for entropies . The following expres-
sions are valid as N ª `:

i H W rN log N s 1 q o 1 ,Ž . Ž . Ž .2

ii H V rN log N s 1 q o 1 ,Ž . Ž . Ž .2

iii 1 y eyc q o 1 FH X rN log N F 1 q o 1 ,Ž . Ž . Ž . Ž . Ž .2
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iv H Y rN log N s 1 y eyc q o 1 ,Ž . Ž . Ž . Ž .2

v H Q rN log N s 1 y eyc q o 1 ,Ž . Ž . Ž . Ž .2

vi H P rN log N s 1 y eyc q o 1 .Ž . Ž . Ž . Ž .2

The finite-sample bounds in Result A are really only useful when they are
not very far apart. Fortunately, they are reasonably close for all four configu-
ration variables considered here and very close for Y and Q. Figure 1 is the
log-log plot of the entropy bounds for c s 5 and N s 100, . . . , 20,000, and it is

Ž . Ž . Ž .clear that the bounds are very tight for H Y and H Q , tight for H X , but
Ž .not so close for H P . It is also comforting to see that W, X and Y, which are

all reasonable definitions of a clone map, turn out to have very similar
Ž .entropies. The other interesting and useful observation is that H V is

Ž .numerically very close to H Y for the range of N that we considered and for
Ž .c s 5. Therefore, the simple Stirling expansion for H V can be used as a

Ž .valid short-hand formula for H Y when c s 5. This shows that Lehrach
et al.’s intuition works well here since the coverage is high enough that most
of the randomness in the configuration variable Y comes from the permuta-
tion which is captured in V.

It is perhaps remarkable that the entropies of W, V, X, Y, Q and P all turn
out to have the first-order term N log N, asymptotically, as obtained in2

Ž . Ž .Lehrach et al. 1990 cf. Result B . Moreover, the constant for the first-order

Ž . Ž . Ž . Ž . Ž . Ž . Ž .FIG. 1. log H W top line ; log H X second line from top ; log H Y , log H V and log H Y2 2 2 2 2
Ž . Ž . Ž .in the third line cluster and in that order from top; log H Q and log H Q in the bottom line2 2

Ž .cluster and in that order from top. Here the basic unit for W is kb, L s 40 kb and c s 5.
Ž . Ž . Ž . Ž .log H Y and log H X serve as lower and upper bounds for log H X and log H Q and2 2 2 2
Ž . Ž .log H X serve as lower and upper bounds for log H P .2 2
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Ž . Ž . Ž . ycterms of H Y , H Q and H P is the same, namely, 1 y e . Unfortunately,
this asymptotic result is not so useful for the values of N which are relevant

Ž . Ž .here, because the term which makes the difference between H Y and H Q
Ž . Ž . Ž .cf. Figure 1 is M U , which is O N . The problem is that log N is2
asymptotically larger than any constant term, but in this case it is much

Ž . Ž .smaller than the corresponding constant ; 260 in the O N term.
An interesting fact which follows from the entropy bounds is that
Ž . Ž . Ž . ŽH P rH X G 0.20 for c s 5 and N s 100, 200, . . . , 20,000 cf. Figure 2 . Note

that the turns on the ratios for small N are probably artifacts of our bounds,
.not indicative of the true ratios of the entropies. This implies that the

pairwise variable P contains a substantial proportion of the information in
the interleaving variable X. However, although the pairwise mapping ap-
proach is definitely a good starting point for any clone mapping effort,
recovering the pairwise variable P efficiently may well be improved by using
multiple comparisons.

Ž .Table 1 lists the entropy bounds for specific cosmid L s 40 kb clone
libraries corresponding to the G for a bacterium E. coli, yeast S. cerevisiae,
roundworm C. elegans and humans. Here we observe behavior similar to that

Ž . Ž . Ž .found in the figures. Table 2 gives the bounds on H W , H X and H Y for
the last three species in relation to those of the bacterium E. coli. The ratios
are seen to be species specific rather than specific to the configuration
variables. We conclude that it makes sense to say, for example, that cosmid
clone mapping for the roundworm requires about 40 times as much informa-
tion as that for the bacterium E. coli, and that such mapping for humans

Ž . Ž . Ž . Ž . Ž . Ž .FIG. 2. Lower bounds on H P rH Y upper line and H P rH X lower line , c s 5.



B. YU AND T. P. SPEED178

TABLE 1
Entropies and ratios for fivefold cosmid clone libraries of four species

Ž .ratios based on unrounded figures

Bacterium Yeast Roundworm Human
N s 500 N s 1,875 N s 12,500 N s 375,000

3 4 5 6Ž .H W 6.0 = 10 2.6 = 10 2.1 = 10 8.1 = 10
3 4 5 6Ž .H V 3.8 = 10 1.8 = 10 1.5 = 10 6.4 = 10
3 4 5 6Ž .H X 3.7 = 10 1.8 = 10 1.5 = 10 6.4 = 10
3 4 5 6Ž .H X 4.8 = 10 2.1 = 10 1.8 = 10 7.2 = 10

Ž . Ž .H X rH X 0.79 0.82 0.85 0.89
3 4 5 6Ž .H Y 3.7 = 10 1.8 = 10 1.5 = 10 6.4 = 10
3 4 5 6Ž .H Y 3.8 = 10 1.8 = 10 1.5 = 10 6.4 = 10

Ž . Ž .H Y rH Y 0.99 0.99 0.99 0.99
3 3 4 6Ž .H Q 1.1 = 10 5.5 = 10 7.0 = 10 3.9 = 10
3 3 4 6Ž .H Q 1.2 = 10 5.7 = 10 7.2 = 10 4.0 = 10

Ž . Ž .H Q rH Q 0.95 0.96 0.98 0.99
3 4 5 6Ž .H P 1.1 = 10 0.6 = 10 0.7 = 10 3.9 = 10
3 4 5 6Ž .H P 4.8 = 10 2.1 = 10 1.8 = 10 7.2 = 10

Ž . Ž .H P rH P 0.23 0.26 0.40 0.55

requires about 1500 times as much information as that for the bacterium
E. coli.

4. Final comments. We close our discussion with some brief remarks on
Ž .the important question 2 raised in Section 1: how much information is

gained by the hybridization and restriction digestion methods, respectively?
It is not our intention to offer a thorough discussion of this topic here, as we
hope to present something more complete in a future paper. Rather, our aim
here is simply to point out that the situation is not quite as simple as the

Ž .discussion in Lehrach et al. 1990 , page 45, suggests.
Suppose that we collect data D , D , . . . , D on our clone library, for1 2 n

Ž .example, D could be the pattern of responses of our clones q or y to then
nth in a sequence of hybridization with short oligonucleotides. Each such

TABLE 2
Entropies of W, X and Y relative to E. coli, c s 5

Yeast Roundworm Human

Ž .H W 4.3 35 1350
Ž .H X 4.5 37 1505
Ž .H X 4.7 40 1700
Ž .H Y 4.7 40 1690
Ž .H Y 4.7 40 1700
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Ž .data item has an entropy H D , indeed the full collection has an entropyn
Ž .H D , D , . . . , D , but if our aim is constructing a clone map using these1 2 n

Ž < .data, the relevant entropy is H X D , D , . . . , D , the conditional entropy of1 2 n
the library configuration X given the data D , D , . . . , D . The computation of1 2 n
this quantity is not at all straightforward, even if the data items
D , D , . . . , D are mutually independent and identically distributed, given X,1 2 n
as might be the case with a sequence of hybridizations involving short

Ž .oligonucleotides of the same length. In such a case H D , D , . . . , D s1 2 n
Ž . Ž < .nH D , but no such simplification occurs for H X D , . . . , D , although it1 1 n

should be possible to determine the asymptotic behavior of this quantity as
n ª `. In a future paper we hope to discuss this issue more fully.

APPENDIX A

( ) ( ) Ž u1 u2 .Upper and lower bounds for H Q and H Y . Let u s 1 , 2 . . . be
a partition of the number N, and suppose that ÝNu s z. We will use the1 i

Ž .notation U ? to denote the partition of N associated with the configuration in
parentheses.

Ž .LEMMA A.1. The number of configurations Q for which U Q s u is

N !
A.1 .Ž . u iNP i! u !Ž .is1 i

w Ž .xPROOF. This is well known see, e.g., Aigner 1979 .

Ž .LEMMA A.2. The number of configurations Y for which U Y s u is

N ! 1
A.2 .Ž . zyuN 12P u !is1 i

PROOF. It is clear that the number we seek in this lemma is the number
Ž .A.1 multiplied by the number of directionless permutations of clones within
islands. However, the latter is just

N
u i1 i!Ž .Ł 2

is2

and the result follows once we note that ÝN u s z y u . Iis2 i 1

Ž .LEMMA A.3. The configurations Y with U Y s u are equally likely.

PROOF. By symmetry.

�Ž . Ž .EXAMPLE. It is easy to see that the configurations y s 37 *, 426 *,1
Ž . Ž . 4 �Ž . Ž . Ž . Ž . 48 , 51 * and y s 32 *, 785 *, 4 , 16 * , for example, are equiprobable.2
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COROLLARY A.1.

i H Q N U s log N !y L U y M U ,Ž . Ž . Ž . Ž .2

ii H Y N U s log N !y L U y Np 1 y p ,Ž . Ž . Ž . Ž .2

where
N

A.3 L U s E log U !Ž . Ž . Ł2 i½ 5
is1

and
N

UiA.4 M U s E log i! .Ž . Ž . Ž .Ł2½ 5
is1

PROOF. These relations are consequences of Lemmas A.1 and A.2 and the
equiprobable assertion of Lemma A.3.

Ž . Ž . Ž .We turn now to obtaining upper and lower bounds L U , M U and L U ,
Ž . Ž . Ž .M U of L U and M U . In the calculations that follow, we use upper and

wlower bounds for factorials easily obtained from Stirling’s formula see, e.g.,
Ž . xFeller 1968 , page 52

nq1r2 yn nq1r2 yn 1r12'A.5 n e F n!F n e 2p e .Ž .
We also make use of the readily proved fact that the distribution of the

sizes of islands is a truncated geometric with probability p s eyc, where
Ž . N Nc s NLrG. More fully, the ordered sequence F , F , . . . of island sizes1 2

consists of identically distributed random variables with common distribution
Ž N . iy1 Ž N . Ž .pr F s i s pq r 1 y q , i s 1, 2, . . . , N. Lander and Waterman 1988

give the proof for N large in which case F N is approximated by a geometric.
Taking the truncation into account gives more accurate results in our bounds

Ž . yc Ž yc .when N is in the hundreds. It follows that E Z y U s Ne 1 y e , since,1
for i s 1, 2, . . . , N,

Z
N

N � 4EU s E I s E Z P F s iŽ .Ýi �F si4j
js1

s np2q iy1r 1 y q N .Ž .
w 2 iy1 Ž N .More precisely, EU f np q r 1 y q , since Z is very weakly related toi

� 4Nthe sequence I j s 1, 2, . . . . Equality holds if Z is independent of this�F si4jxsequence. We note that the preceding approximations are not expected to
work for very small N ’s, but we believe they do work when N is in the
hundreds, say larger than 500.

LEMMA A.4.
q

L U F L U F L U ,Ž . Ž . Ž .
q � 4where x s max x, 0 ,

1 1r12'w x� 4 � 4L U s E Z log N y log e q log E Z q log 2p eŽ . Ž .2 2 2 22
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and
c yc� 4L U s E Z log N y 2c q 1 log e q e y 1 log 1 y e .Ž . Ž . Ž . Ž .2 2 2

PROOF. Since ÝNU s Z, we must have1 i

Z G 1,U U ???ž /1 2

in which case

� 4 � 4E log Ł U ! F E log Z!2 i i 2

1 1r12'F E Z q log Z y log e Z q log 2p e .Ž .� 4Ž .Ž . 2 2 22

Now Z F N, and so the right-hand side of the preceding formula is
1 1r12'� 4 � 4 � 4F E Z log N q E log Z y log e E Z q log 2p e ,Ž . Ž .2 2 2 22

Ž .which is just the expression L U .
Ž .For the lower bound L U we argue as follows:

N

� 4L U s E log U !Ž . Ý 2 i
is1

N

G E U log U y log e U� 4Ž .Ý i 2 i 2 i
is1

N

� 4 � 4s E U log U y log e E Z since U s ZŽ .Ý Ýi 2 i 2 i
is1

N

� 4 � 4 � 4G E U log E U y log e E Z since x log x is convex.Ž .Ý i 2 i 2 2
is1

� 4 2 iy1 Ž N . ycNow E U s Np q r 1 y q where p s e and q s 1 y p and so, contin-i
uing the preceding sequence of inequalities,

2N Np
2 iy1 � 4L U G Np q log q i y 1 log q y log e E ZŽ . Ž . Ž .Ý 2 2 2N1 y qis1

Np2

� 4s Np log q Np log q c y log e E ZŽ . Ž .2 2 N 2Nq 1 y qŽ .
Np2

� 4 � 4s E Z log q log q c y log e E Z ,Ž . Ž .2 2 N 2Nq 1 y qŽ .
Ž . � 4 yc Nwhich is seen to be L U once we recall that E Z s Ne and c s E F . ThisN

completes the proof of Lemma A.4. Note that the leading term in each case is
yc Ž . qŽ .e N log N. Obviously, U G 0. Hence L U G L U . I2

� N N 4In the following lemma a and b are moments E F log F andN N 2
1 N N� 4E log F , where F has a truncated geometric distribution with parame-22

ter p s eyc, c s NLrG, and truncation at N.
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LEMMA A.5.

M U F M U F M U ,Ž . Ž . Ž .
where

M U s Neyc a q b y log e NŽ . Ž . Ž .N N 2

and
yc 1r12' � 4M U s Ne a q b y log e N q log 2p e = E Z .Ž . Ž . Ž . Ž .N N 2 2

PROOF. By definition,
N

UiM U s E log i!Ž . Ž .Ł2½ 5
is1

s E U log i! .Ý i 2½ 5
i

Ž .We first use the lower bound of A.5 , obtaining
N

1M U G E U i q log i y log e iŽ . Ž .Ž .Ý i 2 22½ 5
is1

N N
1 � 4s i log i q log i E U y log e N since iU s N.Ž .Ž .Ý Ý2 2 i 2 i2

is1 is1

Ž . 2 iy1 Ž N .Now E U s Np q r 1 y q as before.i
To complete this, we need to recall that

N iy1pq
N NE F log F s i log iŽ .� 4 Ý2 2 N1 y qis1

and
N iy11 1 pq

� 4E log F s log i .Ž .Ý2 2 N2 2 1 y qis1

As mentioned in the statement of the lemma, these will be denoted by a andN
b , respectively, givingN

M U G Neyc a q b y log e N s M U .Ž . Ž . Ž . Ž .N N 2

Turning now to the upper bound, the same reasoning leads to
yc 1r12' � 4M U F Ne a q b y log e N q log 2p e E Z ,Ž . Ž . Ž . Ž .Ž .N N 2 2

where we have used the fact that Ý U s Z. However, the right-hand side ofi i
Ž .the preceding formula is just M U and we are finished. I

LEMMA A.6.
< N� 40 F H U Z F E Z H F .Ž . Ž .

PROOF.
< <H U Z s pr Z s k H U Z s kŽ . Ž . Ž .Ý

k
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and
< N N NH U Z s k F H F , . . . , F F kH F ,Ž . Ž .Ž .1 k

since U is a function of Z s k identically distributed random variables with
N Ž .the same truncated geometric distribution as F and its conditional en-

tropy is bounded from above by the entropy of F N, F N, . . . , F N when they are1 2 k
independent. The lemma now follows by substituting this second equation in
the previous one. I

COROLLARY A.2.

0 F H U F NeycH F N q log N.Ž . Ž . 2

PROOF. The relation is an immediate consequence of the lemma, once we
recall that Z F N and E Z s Neyc. I

APPENDIX B

( ) Ž .An upper bound for H X . In his thesis Newberg 1993 obtained
Ž .recurrence relations and asymptotic expressions for the total number C N of

interleavings involving any number of islands which can be formed from N
equal-sized randomly located cloned fragments. His asymptotic expression is
given in the following result.

PROPOSITION B.1.
N3r8 'e 2 4N

C N ; as N ª `.Ž . ž /8 N e

COROLLARY B.1.

H X F log C NŽ . Ž .2

4
s N log N q N log y log N2 2 2ž /e

3 5
q log e y q o 1 as Nª`.Ž . Ž .28 2

APPENDIX C

Proofs of Results A and B.

PROOF OF RESULT A. Note that, for S s Y or Q,

H S s H S N U q H U .Ž . Ž . Ž .
Ž .The bounds for S s Y follow from Corollaries A.1 ii and A.2 and Lem-

Ž .ma A.4. The bounds for S s Q follow from Corollaries A.1 i and A.2 and
Lemma A.5. The bounds for S s X follow from Corollary B.1 and the fact that
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Ž .X is a function of Y and the lower bound on H Y . We dropped the constant
term in the upper bound for X in Corollary B.1 since it makes only negligible
difference. Finally, the bounds for S s P follow from the facts that

H P G H Q G H QŽ . Ž . Ž .
and

H P F H X F H XŽ . Ž . Ž .
Ž .because Q is a function of P and P is a function of X . I

Ž . Ž .PROOF OF RESULT B. i and ii follow directly from the finite-sample
Ž . Ž . Ž . Ž .bounds on H X , H Y and H P , and the exact expressions for H W and

Ž .H V , and so does

H P G 1 y eyc N log N 1 q o 1 .Ž . Ž . Ž .Ž .2

Because Q is a function of P,

H P s H Q q H P N Q .Ž . Ž . Ž .
Ž .For any given configuration Q, let U s U Q . Then, for any island of i clones,

P can only take 2 iŽ iq1.r2 possible values. It follows that

H P N Q F E log 2Ui=i Ž iq1.r2Ž . Ł2 ž /
i

F EU i2 q i r2Ž .Ý i
i

s Np2q iy1 i2 q i r2Ž .Ý
i

s Neyc pq iy1 i2 q i r2Ž .Ý
i

yc 2 � 4 Ns Ne E F q E F r2 1 y q� 4 Ž .Ž .N N

s O N as N ª `.Ž .
Hence

H P F H Q q O N s 1 y eyc N log N 1 q o 1 . IŽ . Ž . Ž . Ž . Ž .Ž .2
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