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COMPARISON OF SEQUENTIAL EXPERIMENTS

BY EITAN GREENSHTEIN

Ben-Gurion University

A generalization for the theory of comparison of experiments is given
to the case of sequential experiments. We investigate only the case of ‘‘0’’
deficiency. Applications are given to the case of exponential experiments.

Introduction. The theory of comparison of experiments deals with the
following problem. Suppose two kinds of observations are available to a
statistician. The observations are of two random variables having two differ-
ent laws of distribution depending on the same parameter set. Some infer-
ence should be made with a resulting loss depending on the true parameter
which is unknown. The statistician should choose which observation to take
before making the inference. Usually one observation is better than the other
depending on the type of loss and on the prior information. In some cases, one
observation is better than the other regardless of the loss or prior informa-
tion. The last case is of special interest.

Previous research on comparison of experiments has been confined to
nonsequential experiments. In this work we will examine the problem in the
case of comparison of two sequential experiments. Recent works on compari-

w xson of experiments in the context of sequential analysis are Greenshtein 6
w x w xand Greenshtein and Torgersen 8 and 9 .

The concept of experiment is defined by a sample space XX , s-algebra BBX

Ž X . Ž Y .and a collection of measures F , u g Q. Let XX , BB , F and YY , BB , G ,u u u

u g Q, be two experiments, to be referred as X and Y. A criterion to
Ž .determine whether one experiment is more informative than sufficient for
w xthe other was suggested by Bohnenblust, Shapley and Sherman 3 and is the

following: X is a sufficient experiment for Y, if for every action space A, loss
Ž .function L u , a , u g Q, a g A, and procedure d depending on Y, there exists

a procedure d X depending on X such that the associated risk functions satisfy
Ž X. Ž .R u , d F R u , d for every u .

w xBlackwell 2 considered the same problem and suggested the following
criterion: X is a sufficient experiment for Y if there exists a Markov kernel d

Y Ž . Ž < . Ž . Ž .such that ; A g BB , G A s Hd A x dF x or, equivalently, G dy su u u

Ž < . Ž .Hd dy x F dx .u

The last criterion in words: the distribution of Y under u can be achieved
w xby a randomization after observing X without knowing u . Blackwell 2 and

w xlater Le Cam 12 showed the equivalence of those two criteria. Two impor-
w xtant references for the work done on the subject are Torgersen 14 and

w xStrasser 13 .
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A generalization of this concept to sequential experiments is the following:
� 4 � 4 Ž . n Ž .let X and Y be two sequences of r.v.’s X , . . . , X ; F and Y , . . . , Yi i 1 n u 1 n

n � 4 � 4; G , u g Q, 1 F n F `; X is sequentially sufficient for Y if there exists au i i
Ž < . Ž < . Ž <sequence of Markov kernels d dy x , d dy x , x , y , d dy x , x , x ,1 1 1 2 2 1 2 1 3 3 1 2 3

.y , y , . . . satisfying:1 2

1 <G dy s d dy x dF x ,Ž . Ž .Ž .Hu 1 1 1 1 u 1

2 < < 1 2 <G dy , dy s d dy x d dy x , x , y dF x dF x x ,Ž . Ž .Ž . Ž . Ž .HHu 1 2 1 1 1 2 2 1 2 1 u 1 @ 2 1

...

� 4In words, the process Y may be sequentially randomized from the processi
� 4X without knowing u .i

In Section 2 we give two motivating examples. Example 2.1 is simple and
Ž . Ž .surprising; it shows that X , . . . , X sufficient for Y , . . . , Y for every fixed1 n 1 n

� 4 � 4n does not imply in general that X is sequentially sufficient for Y .i i
In Section 3 we prove two main results. We give a condition under which

Ž . Ž . � 4X , . . . , X sufficient for Y , . . . , Y for every n implies X is sequentially1 n 1 n i
� 4sufficient for Y . The second result is that in some cases X is sufficient for Yi

if and only if observing X is equivalent to observing Y and an independent
additional experiment D.

1. Formulation of a sequential procedure and preliminary results.
w xIn this formulation we will follow closely Brown 4 . Let X , . . . , X , m F `,1 m

be a sequence of random variables distributed according to the law
Ž .F dx , . . . , dx , u g Q. Suppose a statistician, while observing the process,u 1 m

may choose at each stage n F m an action a . Finally, there is a lossn
Ž .L u , a , . . . , a incurred from taking the actions a , . . . , a when u is the1 m 1 m

true parameter.
We will now state this more formally. Let X , . . . , X , m F `, be a se-1 m

quence of r.v.’s. Denote by BBX the s-algebra generated by X , BBX a trivialn n 0
s-field, BBX the s-algebra generated by X , . . . , X and BBX the s-algebraŽn. 1 n

Ž .generated by X , . . . , X . Let F dx , . . . , dx be a parametrized family of1 m u 1 m
distributions on the product space =XX , with the s-algebra BBX.i

Assume there exists a set A : K : =m K of possible sequences ofnns0
actions. K consists of actions that are taken without observations like start0
sampling or do not start sampling. Give K the Tychonoff topology. Let AA ben
the Borel field on K , AA the Borel field on =n K and AA the Borel field onn Žn. iis0
K.

DEFINITION 1.1. A sequential decision procedure is a set of conditional
� 4measures d : n s 0, . . . , m satisfying, for n G 1,n

Ž . Ž < . Ž .i d ? x, a is a probability measure on K . Here x s x , . . . , x andn n 1 m
Ž .a s a , . . . , a , and d is a probability measure on K .0 m 0 0
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Ž . Ž < . Xii d C ? , ? is BB = AA -measurable for each C g AA .n Žn. Žny1. n
Ž . Ž < .iii d C ? , a is BB -measurable for each a g A, C g AA .n Žn. n

Ž .Let L u , a , . . . , a be a loss function which for every u is AA-measurable.1 m

� 4A procedure d s D determines a stochastic process on the spacen
Ž m . Ž m . X= X = = K , with the s-algebra BB = AA and measuren nns1 ns0

Ž .H dx , . . . , dx , da , . . . , da . The description of this process in words is:uD 1 m 0 m
choose an action a with distribution determined by d . Observe X with0 0 1

Ž .distribution as the marginal of F dx , . . . on X . Then choose a withu 1 1 1
Ž < . w xdistribution d da x , a and so on. It is shown in 4 that this process isn 1 1 0

Ž .well defined. Denote the marginal of H on AA as m da , . . . , da .u , D uD 0 m

Ž .DEFINITION 1.2. A sequential decision procedure such that m A s 1 foruD

each u will be called an available sequential decision procedure. Here A : K
: =m K is assumed to be compact and hence measurable.nns0

DEFINITION 1.3. The risk function is defined by

1.1 R u , D s L u , a , . . . , a dm a , . . . , a .Ž . Ž . Ž . Ž .H 1 m uD 1 m

Ž X .DEFINITION 1.4. A triple XX , BB , F , u g Q is called an experiment.u

Ž m XDEFINITION 1.5. A sequential experiment is defined by = XX , BB , F , ui uis1
.g Q .

When there is no ambiguity we will refer to these experiments as the
� 4experiment X and the sequential experiment X .i

Ž X .DEFINITION 1.6. An experiment XX , BB , F , u g Q is sufficient foru

Ž Y .YY , BB , G , u g Q , denoted X = Y, if and only if for every action space A,u

Ž .loss function L u , a , u g Q, a g A, and decision procedure d depending on
X Ž X. Ž .Y, there exists a procedure d depending on X such that R u , d F R u , d

for every u .

Ž w x.THEOREM 1.1 Le Cam 12 . Suppose Y is Borelian and F g V for someu

Ž < .dominating measure V. Then X = Y if and only if there is a function d B x ,
B g BBY, x g XX , such that:

Ž . Ž < .i For each x g XX , d ? x is a probability measure on YY ;
Ž . Y Ž < . Xii For each B g BB , d B ? is BB -measurable;
Ž . Y Ž . Ž < . Ž .iii For each B g BB , G B s Hd B x dF x .u u

Ž . Ž . Ž < .Conditions i and ii define d ? ? to be a Markov kernel. When all of these
conditions are satisfied, we say that the experiment Y is a randomization
of X.
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Ž X .DEFINITION 1.6a. =XX , BB , F , u g Q is sequentially sufficient fori u

Ž Y . � 4 � 4=YY , BB , G , u g Q , denoted X = Y , if and only if for any action spacei u i seq i
Ž .A : K s =K , loss function L u , a , . . . , a and available sequential deci-n 1 m

� 4 � 4 X � X 4sion procedure D s d depending on Y , there exists an available D s dn i n
� 4 Ž X .depending on X such that the associated risk functions satisfy R u , D Fi

Ž .R u , D for each u .

Denote by F n the restriction of F to B .u u Žn.

n n � n4THEOREM 1.1a. Suppose F g n for every n, where n is a sequence ofu

� 4 � 4dominating measures, and Y , . . . , Y is Borelian. Then X = Y if and1 m i seq i
� 4only if there exists d s D satisfying the three conditions in Definition 1.1n

where YY = ??? = YY , BBY, BBY , BBY play the role of K, AA , AA , AA such that1 m n Žn. n Žn.

m dy , . . . , dy s G dy , . . . , dy for each u .Ž . Ž .uD 1 m u 1 m

w xPROOF. Follow the ideas of Le Cam; see Greenshtein 6 . I

Theorem 1.1a is the analogue of Theorem 1 of Le Cam to the sequential
� 4 � 4 � 4case. It states that X is sequentially sufficient for Y if and only if Y cani i i

� 4be sequentially randomized from X without knowing u , as informallyi
described in the Introduction. D may be viewed as a Markov kernel between

Ž . Ž .the nonsequential experiments X , . . . , X and Y , . . . , Y ; it is a special1 m 1 m
kind of Markov kernel and we call it a ‘‘sequential Markov kernel.’’

2. Motivating examples. In the two examples given in this section, we
will investigate the following: for two sequential experiments we consider the

Ž X . Ž Y .relation where XX = ??? = XX , BB , F = YY = ??? = YY , BB , G for every n.1 n Žn. u 1 n Žn. u

� 4The first example will show that this relation does not imply X is sequen-i
� 4tially sufficient for Y . The second example will indicate that sequentiali

sufficiency might be implied by sufficiency for every fixed n under some
additional conditions. These examples will motivate Theorems 3.1 and 3.2.

The following example demonstrates that in a sequential testing problem,
a statistician having two observations X = Y might prefer to observe first the
less informative one.

EXAMPLE 2.1. Let Y , Y be independent r.v.’s with distribution:1 2

1 1Ž . Ž .Under u , Y ; Bernoulli , Y ; Bernoulli .0 1 23 4
2 3Ž . Ž .Under u , Y ; Bernoulli , Y ; Bernoulli .1 1 23 4

Let X s Y and X s Y . Here X = Y ; the Markov kernel from the1 2 2 1 1 1
5 1 1 5Ž . Ž . Ž . Ž .experiment X to Y is d 1r1 s , d 1r0 s , d 0r1 s , d 0r0 s .1 1 6 6 6 6

Ž . Ž .Obviously, X , X = Y , Y .1 2 1 2
� 4We will describe a sequential decision problem which shows that X , X1 2

� 4is not sequentially sufficient for Y , Y . Suppose that the cost of a first1 2
observation is 0, and the cost of a second observation is c ) 0. The terminal
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Ž . Ž .actions are ‘‘u ’’ and ‘‘u .’’ Define the loss function L u , u s 1, L u , u s a,1 0 0 1 1 0
Ž . 0 � 4L ?, ? s 0 otherwise. Let d be the following procedure depending on Y .i

Observe Y ; if Y s 0 decide u ; if Y s 1 take another observation. Then1 1 0 1
decide u if Y s 1; decide u if Y s 0. The risk associated with d 0 is1 2 0 2

1 1 1 2 2 1 1 2 10 0R u , d s ? c q ? , R u , d s ? c q ? ? a q ? a s ? c q ? a.Ž . Ž .0 13 3 4 3 3 4 3 3 2

In the following we will show that for a suitable choice of a and c, there is no
1 � 4 0d depending on X that improves upon d for every u .i

w xIt can be shown 6 that there are only five admissible nonrandomized
i � 4sequential procedures d , i s 1, . . . , 5, based on X , X . Their associated1 2

1 1i iŽ Ž . Ž ..risks r s R u , d , R u , d , when we take a s and c s , are: r si 0 1 110 100
1 1 1 1 1 3 1 3 1 1Ž . Ž . Ž . Ž . Ž1, 0 , r s 0, , r s , , r s q , q , r s q , q2 3 4 510 4 40 400 12 400 20 400 2 400

1 1 1 2 10 0. Ž Ž . Ž .. Ž .; we also have r s R u , d , R u , d s q , q .0 0 1120 300 12 300 20

It may be verified that r cannot be dominated by a convex combination of0
r , . . . , r ; hence it is not achievable by a sequential procedure based on1 5
� 4X , X .1 2

Before starting the next example the following definitions are needed.

Ž D . Ž Y .DEFINITION 2.1. Let DD, BB , F and YY , BB , G , u g Q, be two experi-u u

ments. The experiment consisting of two independent experiments Y and D
is the following: the sample space DD = YY , the s-algebra generated by BBD =
BBY and the product measure F = G .u u

DEFINITION 2.2. For two experiments X and Y, X f Y iff X = Y and
Y = X.

Ž . Ž .EXAMPLE 2.2. Let X ; N u , 1 , X ; N u , 2 , Y s X , Y s X . X are1 2 1 2 2 1 i
independent. Here we have X = Y , because Y can be randomized in the1 1 1

Ž . Ž .following way from X . Let Z ; N 0, 1 , then X q Z ; N u , 2 , that is no1 1
matter what u is, X q Z has the same distribution as Y . Obviously X , X1 1 1 2
f Y , Y .1 2

Ž X .We will explain now why X , X = Y , Y . Observe that X f Y , D ,1 2 seq 1 2 1 1
Ž X .where Y , D is the experiment consisting of two independent experiments1

X Ž . Ž . Ž X . Ž X .Y ; N u , 2 and D ; N u , 2 . Thus, X , X f Y , D , X f Y , D , Y .1 1 2 seq 1 2 seq 1 1
Ž X . Ž X .Similarly, Y Y f Y , Y , D . Hence it is enough to show Y , D , Y =1 2 seq 1 1 1 1 seq

Ž X .Y , Y , D . This is easy because an experimenter observing at the first stage1 1
Ž X . XY , D may ignore D and act as if only Y was observed, doing as well as an1 1
experimenter observing Y . In the second stage, the first experimenter ob-1
serves D and Y , and can do as well as the second experimenter who observes1
Ž X .Y , D at that stage. In Theorem 3.2 we will see that the factorization of X1 1

Ž X .to Y , D is also a necessary condition for sequential sufficiency in this1
setting.

In Example 2.2 we have shown a case where X are independent, Y arei i
� 4 � 4independent and X = Y , other than the obvious case where X = Y fori seq i i i

each i.
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3. Main results.

Ž .CONVENTION. In this section, for a given measure H dx , . . . , dx ,1 m
Ž . Ž .H dx , . . . , dx will be understood as the marginal of H dx , . . . , dx oni i 1 m1 k

Ž .the s-algebra generated by X , . . . , X .i i1 k

X ˜ YŽ� 4 . Ž� 4 .Let XX , BB , F , u g Q and YY , B , G , u g Q be two sequential experi-i u i u

ments. Let S be a sufficient statistic for u based on X , . . . , X , n s 1, 2, . . . .n 1 n
Ž . Ž .Let Y s Y , . . . , Y . Let F ds , ds , . . . be the induced measure on S =Žn. 1 n u 1 2 1

S = ??? .2

� 4THEOREM 3.1. Suppose S is boundedly complete, n s 1, 2, . . . . Then Xn n
� 4= Y if and only if S = Y for every n.seq n n Žn.

Before proving the theorem we need the following lemmas and definitions.

� 4 � 4 � 4DEFINITION 3.1. Let X and Y be two sequential experiments. Let Si i n
� 4be a sequence of sufficient statistics for u based on X , . . . , X . Let T be a1 n n

Ž Sn. Ž Y .sequence of Markov kernels from S , BB to Y , BB . The sequence willn Žn. Žn.
be called compatible if and only if

< < < Y3.1 T A S s E T A S S , A g BB ,Ž . Ž . Ž .Ž .n k n k k k n k Žk .

for every n, k, 1 F k F n.

LEMMA 3.1. Suppose S = Y for every n, and suppose S is boundedlyn Žn. n
complete. Let T be the Markov kernel from the experiment S to Y ; that is,n n Žn.

Ž < . Ž . Ž . YT satisfies HT A s F ds s G A , A g BB , 1 F k F n, n s 1, 2, . . .n n k n u n u k k Žk .
Ž .by completeness T is unique . Then the sequence T is compatible.n n

PROOF. Observe that

< < <T A s F ds s F ds s T A s F ds s G A .Ž . Ž . Ž .Ž . Ž . Ž .H H Hk k k k n u n k k k u k u k

Ž < . Ž .Here F ds s is independent of u by sufficiency. Now 3.1 follows fromk n
bounded completeness. I

� 4 � 4LEMMA 3.2. Let X and Y be two sequential experiments. Let S bei i n
sufficient for X , . . . , X , n s 1, 2, . . . . Assume there exists a sequence of1 n
Markov kernels T satisfying:n

Ž . � 4i T is a compatible sequence;n
Ž . Ž < . Ž . Ž . Yii HT A s F ds s G A , A g B .n n n u n u n n Žn.

� 4 � 4Then X = Y .n seq n

Ž < . Ž < . Ž < .PROOF. Define d dy s s T dy s . Define d dy s , y to be the1 1 1 1 1 1 n n n Žny1.
Ž < .conditional distribution formed from T dy s by conditioning on Y . An Žn. n Žny1.
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Ž < .proof that d ? ? , ? satisfy the conditions in Definition 1.1 may be found inn
w x Y Y6 . Here y , BB , BB play the role of a , AA , AA in Definition 1.1.n n Žn. n n Žn.

� 4 � 4Consider the process described in Section 1 induced by S and D s d .n n
Ž .Denote the measure on this process H ds , dy , ds , dy , . . . . The marginalu , D 1 1 2 2

Ž .H dy , . . . , dy was denoted m in Section 1. By Theorem 1.1a in order tou , D 1 n u , D

establish the proof of this lemma, it is enough to show that m su , D

Ž .G dy , dy , . . . . By Kolmogorov consistency it is enough to show for every nu 1 2
Ž . Ž .that G dy , . . . , dy s m dy , . . . , dy . Suppose we have shown for everyu 1 n u , D 1 n

k - n that

<H dy s T dy s F ds .Ž .Ž . Ž .Hu , D Žk . k Žk . k u k

Ž . Ž .We will show it for n. This will imply H dy s G dy , because byu , D Žn. u Žn.
Ž . Ž . Ž . Ž .construction H ds s F ds , and now H dy s G dy follows fromu , D n u n u , D Žn. u Žn.

Ž .ii :

H ds , ds , dy , dyŽ .u , D ny1 n Žny1. n

< < <s F ds T dy s F ds s d dy s , yŽ . Ž .Ž . Ž .u ny1 ny1 Žny1. ny1 u n ny1 n n n Žny1.

< < <s F ds s T dy s F ds d dy s , y .Ž .Ž . Ž . Ž .ny1 n ny1 Žny1. ny1 u n n n n Žny1.

The first equality follows from the induction hypothesis upon realizing that
Ž . Ž .F ds s H ds . The second equality follows becauseu ny1 u , D ny1

< <F ds F ds s s F ds s F ds .Ž . Ž .Ž . Ž .u ny1 u n ny1 ny1 n u n

From the compatibility assumption it follows that

< < <T dy s F ds s s T dy s .Ž . Ž . Ž .H ny1 Žny1. ny1 Žny1. n n Žny1. n

Thus,

H ds , ds , dy , dyŽ .H u , D ny1 n Žny1. n
Sny1

< <s T dy s d dy s , y F dsŽ .Ž . Ž .n Žny1. n n n n Žny1. u n

<s T dy s F ds .Ž .Ž .n Žn. n u n

Finally,

H ds , ds , dy , dyŽ .H H u , D ny1 n Žny1. n
S Sn ny1

<s T dy s F ds s G dy .Ž . Ž .Ž .H n Žn. n u n u Žn.

This completes the proof. I

PROOF OF THEOREM 3.1. From Lemmas 3.1 and 3.2, it is easy to conclude
the proof. I
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Ž 2 .Consider Example 2.2. We have shown that if X ; N u , s and Y ;1
Ž 2 . 2 2 Ž . Ž .N u , s , s F s are independent, then X, Y = Y, X . Now it can also2 1 2 seq

be deduced from Theorem 3.1. Originally it was shown by a factorization of
the experiment X, that is, showing that X is equivalent to two independent

X Ž 2 . Ž 2 .experiments Y ; N u , s and D ; N u , s . In the following theorem we2 3
will show that this factorization criterion is necessary for a sequence X , X1 2
to be sequentially sufficient for Y , Y , where Y s X and Y s X . This1 2 1 2 2 1
result will imply a general factorization theorem for exponential experiments.

First we introduce some notation and other preliminaries. Suppose
Ž . Ž . ŽŽ . X1 X 2Y1Y2X , X = Y , Y . Consider the experiment XX , XX , YY , YY , BB ,1 2 seq 1 2 1 2 1 2

Ž .. Ž < .H dx , dx dy dy , u g Q, where H is the measure induced by d dy xuD 1 2 1 2 uD 1 1 1
Ž < .and d dy x , x , y . We will refer in the sequel to experiments that are2 2 1 2 1

Ž .induced from the experiment X , X , Y , Y in the following way: for each u1 2 1 2
Ž < .there is a conditional distribution H dx , dx Y s y and an experimentu , D 1 2 1 1

ŽŽ . X1, X 2 Ž < . .XX , XX , BB , H dx , dx Y s y , u g Q . Denote such an experiment1 2 uD 1 2 1 1
Ž < . Ž < . Ž < .as X , X Y s y . Similarly define Y Y s y and X Y s y .1 2 1 1 2 1 1 1 1 1

Ž . Ž .REMARK 3.1. In the experiment X , X , Y , Y , X , X is a sufficient1 2 1 2 1 2
statistic. The reason is that the distribution of Y , Y conditional on X s x1 2 1 1
and X s x is independent of u .2 2

THEOREM 3.2. Let X , X and Y , Y be two sequential experiments. As-1 2 1 2
sume:

Ž .i X , i s 1, 2, are independent, and Y , i s 1, 2, are independent.i i
Ž .ii X f Y and X f Y .1 2 2 1

Ž . Ž . Ž . Ž .Then X , X = Y , Y if and only if X f Y , D , where Y , D is the1 2 seq 1 2 1 1 1
experiment consisting of two independent experiments Y and D.1

Before proving Theorem 3.2 we need the following:
Ž X . � 4Let XX , BB , F be an experiment and let l be the set of allu

� 4probability distributions on the parameter set u with a finite
Ž .support. Here the value of l ? at a point u is the point mass of the

distribution l.

DEFINITION 3.2. The functional

lŽu . � 4H l s f x dh x , l g l ,Ž . Ž . Ž .ŁHX u
ugQ

Ž . Ž . Ž .where f x s dF x rdh x for some dominating measure h, is the Hellingeru u

transform of the experiment X.

Ž w x.The following can be shown Strasser 13 :

Ž . Ž . Ž . � 4a X = Y implies H l F H l for every l g l .X Y
Ž . Ž . Ž . � 4b X f Y if and only if H l s H l for every l g l .X Y
Ž . Ž . Ž . Ž .c X and Y are independent implies H l s H l ? H l .Ž X , Y . X Y
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Ž w x.Another general fact we will use Strasser 13 is: for dominated families
F and G , u g Q.u u

Ž . Ž X . Ž Y .d XX , BB , F , u g Q = YY , BB , G , u g Q if and only if for every finiteu u
˜ X ˜ Y ˜Ž . Ž .subset Q, XX , BB , F , u g Q = YY , BB , G , u g Q .u u

Ž . Ž . Ž < .LEMMA 3.3. Suppose X , X = Y , Y . Then X , X Y s y =1 2 seq 1 2 1 2 1 1
Ž < .Y Y s y for almost every y .2 1 1 1

PROOF. Let A g BBY2 ; then

< < <H A Y s y s H A x , x , y dH x , x Y s y .Ž . Ž . Ž .Hu , D 1 1 u , D 1 2 1 u , D 1 2 1 1

Ž . Ž < . Ž < .By sufficiency Remark 3.1 H A x , x , y s H A x , x , y is indepen-u , D 1 2 1 D 1 2 1
dent of u and can be viewed as the desired Markov kernel between the
experiments. I

Ž .PROOF OF THEOREM 3.2. ‘‘If ’’ is obvious; let us prove ‘‘only if.’’ By d it is
Ž .enough to prove X f Y , D for every experiment with finite parameter1 1

˜ Ž < . Ž < .space Q : Q. Applying Lemma 3.3 we get: X , X Y s y = Y Y s y1 2 1 1 2 1 1
Ž . Ž < . Ž < .a.e. H dy . Our first step is to show that X , X Y s y f Y Y s yu , D 1 1 2 1 1 2 1 1

Ž . Ž . Ž .a.e. Observe that X , X is sufficient for X , X , Y Remark 3.1 ; hence by1 2 1 2 1
Ž . Ž . Ž . � 4b H l s H l for every l g l . ThusŽ X , X . Ž X , X , Y .1 2 1 2 1

Ž .l uH l s h x , x , y dh x , x , y ,Ž . Ž . Ž .ŁHŽ X X . u 1 2 1 1 2 11 2
ugQ

Ž .where h is any measure dominating H dx , dx , dy , dy and h su , D 1 2 1 2 u

dH rdh. Nowu , D

<dH x , x Y s y h x , x , yŽ .Ž .u , D 1 2 1 1 u 1 2 1s ,
<dh x , x Y s y C yŽ .Ž .1 2 1 1 u 1

Ž . Ž . Ž < . Ž .where C y s Hh x , x , y dh x , x Y s y . Notice that C y su 1 u 1 2 1 1 2 1 1 u 1
Ž . Ž . Ž .dH y rdh y . H l can be written now asu , D 1 1 Ž X , X .1 2

i H l s C lŽu . yŽ . Ž . Ž .ŁHHŽ X , X . u 11 2
˜ugQ

=
hlŽu . x , x , yŽ .u 1 2 1

<dh x , x Y s y dh yŽ .Ž .1 2 1 1 1lŽu .C yŽ .u 1

s H l C lŽu . y dh y .Ž . Ž . Ž .ŁH Ž X , X <Y sy . u 1 11 2 1 1
˜ugQ

Ž < . Ž < .Suppose X , X Y s y = X and X W X , X Y s y on a set of positive1 2 1 1 1 1 1 2 1 1
Ž .measure h dy . We will show this implies that there exists l such that1 0
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Ž . Ž . Ž .H l - H l on a set with positive measure h dy which willŽ X , X <Y sy . 0 X 0 11 2 1 1 1

imply

ii H l C l0Žu . y dh y - H l H lŽ . Ž . Ž . Ž . Ž . Ž .ŁH Ž X , X <Y sy . 0 u 1 1 X 0 Y 01 2 1 1 1 1
˜ugQ

s H l H l .Ž . Ž .X 0 X 01 2

Ž . Ž . Ž . Ž .Results i and ii lead to the contradiction H l - H l .Ž X , X . Ž X , X .0 01 2 1 2

˜ Ž .Now we will show the existence of such l . Let Q s u , . . . , u , and consider0 1 n
the following measure space: sample space Rn = Y , where Rn is the n1
dimension Euclidean space, with the obvious s-algebra and measure which is

Ž . �Ž . < nthe product of h dy and Lebesgue. Let A s l, y l g R , y g Y ,1 1 1 1
Ž . Ž .4 Ž . Ž .H l - H l . By assumption and using a and b there exists aŽ X , X <Y sy . X1 2 1 1 1

Ž . Ž . Ž .set of positive measure h dy satisfying: H l - H l for some1 Ž X , X <Y sy . X1 2 1 1 1
� 4l g l . Since the Hellinger transform is a continuous function if

Ž . Ž .H ? - H ? for some l, the strict inequality holds for a set ofŽ X , X <Y sy . X1 2 1 1 1

positive Lebesgue measure. Then by Fubini’s theorem A has a positive
measure, and, using Fubini’s theorem again, we deduce that there exists l0

Ž . Ž . Ž .such that H l - H l on a set of positive measure h dy . AsŽ X , X <Y sy . 0 X 0 11 2 1 1 1
Ž < .noted, this leads to a contradiction. Hence X , X Y s y f X almost1 2 1 1 1

Ž .everywhere h dy .1
Since by assumption X is independent of X , and by construction Y is2 1 1

Ž < . ŽŽ < . .independent of X , we may conclude: X , X Y s y f X Y s y , X ,2 1 2 1 1 1 1 1 2
Ž <where the last experiment consists of two independent experiments X Y s1 1

. Ž . Ž .y and X . By b and c we get1 2

H l s H l s H l ? H lŽ . Ž . Ž . Ž .X Ž X , X <Y sy . Ž X <Y sy . X1 1 2 1 1 1 1 1 2

for every l and almost every y . Hence there exists y0 such that1 1
Ž . Ž .0H l s H l for every l and almost every y . Denote theŽ X <Y sy . Ž X , X <Y sy . 11 1 1 1 2 1 1

Ž < 0.experiment X Y s y as D. Then1 1 1

H l s H lŽ . Ž .Ž X . Ž X , Y .1 1 1

Ž .l u <s h x , y dh x y dh yŽ . Ž .Ž .ŁHH 1 1 1 1 1
˜ugQ

Ž .l uh x , yŽ .1 1lŽu .s C y dh x ry dh yŽ . Ž . Ž .ŁHH u 1 1 1 1lŽu .C yŽ .˜ u 1ugU

s H l ? H l .Ž . Ž .D X 2

Ž . Ž .By b we conclude X f X , D . I1 2

Applications. In the remaining part of this section we will show how the
Ž X . � 4theory is applied for experiments XX , BB , F , u g Q when F is an exponen-u u

tial family. The following is an immediate corollary of Theorem 3.1.
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� 4m � 4mTHEOREM 3.3. Let X and Y , m F `, be two sequential experi-i is1 i is1
ments with parameter set Q : Rk. Suppose:

Ž . Ž .i There exists a sequence of sufficient statistics S s S X , . . . , X suchn n 1 n
that

dF n x s exp u ? S y C u dm x .Ž . Ž . Ž .Ž .u Žn. n n Žn.

Ž .ii Q has a nonvoid interior.

� 4 � 4Then X = Y if and only if X = Y for every n.i seq i Žn. Žn.

PROOF. This is true because S is complete and sufficient when Q has an
nonvoid interior. I

EXAMPLE 3.1. Consider the linear experiments:

Y Z1 1
. . 2. .s M ? b q « and s M ? b q « , « ; N 0, s I ,Ž .1 1 2 2 i. .� 0 � 0Y Zm m

where M and M are two m = k-dimensional matrices and « are m-dimen-1 2 i
sional random vectors. Here the unknown parameter u is the k-dimensional

w x Ž . Ž .vector b. Hansen and Torgersen 10 showed that Y , . . . , Y = Z , . . . , Z1 m 1 m
ŽŽ X . Ž X .. � 4if and only if M M y M M is positive semidefinite. If we consider Y1 1 2 2 i

� 4and Z as sequential experiments, the conditions of Theorem 3.3 are satis-i
Ž . Ž .fied and we can deduce the following: Y , . . . , Y = Z , . . . , Z if and only1 m seq 1 m

ŽŽ Žn.X Žn.. Ž Žn.X Žn... Žn.if for every n, M M y M M is positive semidefinite. Here M1 1 2 2
is the matrix consisting of the first n rows of X.

Another application gives a slight improvement of the following theorem,
w x w xwhich was proved independently by Ehm and Muller 5 and Janssen 11 .¨

Ž X . Ž Y .THEOREM 3.4. Let XX , BB , F and YY , BB , G , u g Q, be two experi-u u

� 4 � 4ments. Suppose F and G are exponential families and Q has nonvoidu u

interior. Assume X and Y are the canonical observations and Q is the
canonical parameter set. Then X = Y implies:

Ž . Ž . Ž .i X f Y, D , where Y, D is an experiment consisting of two indepen-
Ž Y . Ž D .dent experiments YY , BB , G and DD, BB , K .u u

Ž . � 4ii K is an exponential family.u

THEOREM 3.4a. The conclusion of Theorem 3.4 remains valid if we replace
Ž .the condition that Q has nonvoid interior by the weaker condition that

X q Y is boundedly complete when X, Y are independent.

Ž .PROOF. i Consider the two-stage sequential experiments X, Y and Y, X,
Ž . Ž .where X and Y are independent. By Theorem 3.1, X, Y = Y, X ; hence,seq

Ž .by Theorem 3.2, X f Y, D .
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Ž . Ž . Ž < .ii Consider the measure H dx, dy induced by d dy x . Thenu , d 1

<H dx , dy s exp u ? x y C u d dy x dm x ,Ž . Ž . Ž .Ž .Ž .u , d 1

Ž . Ž Ž .. Ž .where F dx s exp u ? x y C u dm x . From the proof of Theorem 3.2, D fu

Ž < . Ž . Ž < . Ž .X Y s y . Denote v dx, dy s d dy x m dx . Then0 1

< <dK dH X Y s y exp u ? x y C u v dx Y s yŽ .Ž .Ž . Ž .u u , d 0 0s s . I
<dm dm Hexp u ? x y C u v dx Y s yŽ .Ž . Ž .0

Further application of the results in this section to sequential testing may be
w xfound in Greenshtein 7 .

Concluding remarks.

ŽŽ .REMARK 1. Consider the two nonsequential experiments XX , . . . , XX ,1 m
X . ŽŽ . Y .BB , F and YY , . . . , YY , BB , G , u g Q. Let DD be the set of all sequentialu 1 m u

Ž .Markov kernels D see the end of Section 1 between the experiments. A
w xnatural generalization of Le Cam’s 12 concept of deficiency to sequential

5 5experiments is to define: « s inf sup F D y G . Here the norm is ofD g DD u g Q u u

total variation, and « is defined as the deficiency between the induced
sequential experiments.

The concept was shown to be fruitful in asymptotic theory in defining
limits of sequences of experiments. The analogue is to consider limits of
sequences of sequential experiments.

REMARK 2. The first generalization of sufficiency concepts to sequential
w xanalysis was done by Bahadur 1 . He introduced the idea of transitivity,

extending the concept of sufficient statistics to sequential analysis. His
motivation was to summarize given data.

� 4 � 4Let X be a sequential experiment, and let S be a sequence of sufficienti i
statistics. A natural question in the context of our paper is whether the two
sequential experiments are equivalent. This is plausible since for every fixed

Ž . Ž .n the nonsequential experiments X , . . . , X and S , . . . , S are equivalent.1 n 1 n
Ž .In our setting a decision at stage n may be a function of S , . . . , S s V ,1 n n

w xsince, unlike in 1 , we are not motivated by summarizing the data. Still,
� 4examples may be given where the sequence V is not transitive and whencei

� 4 � 4the experiments X and S are not equivalent. Such examples were firsti i
pointed out by Bahadur, and they demonstrate a phenomenon similar to our
Example 2.1. Theorem 3.1 implies that if a sequence of complete sufficient

� 4 � 4statistics exists, then the experiments S and X are sequentially equiva-n n
lent.
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