A LOWER BOUND ON THE ARL TO DETECTION OF A CHANGE WITH A PROBABILITY CONSTRAINT ON FALSE ALARM¹

By Benjamin Yakir

Hebrew University of Jerusalem

An inequality that relates the probability of false alarm of a changepoint detection policy to its average run length to detection is proved. By means of this inequality, a lower bound on the rate of detection, when the change occurs after a long delay, is derived.

1. Introduction. Let $f_{\theta}(x) = \exp\{\theta x - \Psi(\theta)\}$ be the density, with respect to some σ -finite measure, of a one-parameter exponential family. Let (a, b) be an open interval of real numbers on which Ψ is finite, and let θ_0 and θ be known, $a < \theta_0 < \theta < b$. We will assume, as in [2, page 1268], that $\theta_0 = 0$.

Consider the following simple formulation of a change-point detection with a probability bound on false alarm: Let X_1, X_2, \ldots be an infinite sequence of random variables, and let $1 \leq \nu \leq \infty$, an (extended) integer, be an unknown parameter: the change-point of the sequence. With each $1 \leq \nu \leq \infty$ and $a < \omega \leq 0$, a probability measure on the sequence of observations is associated by which the observations are independent. Under the probability measure $\mathbb{P}_{\omega,\theta}^{(x)}$, the marginal density of the first $\nu - 1$ observations is f_{ω} whereas the density of the observations are i.i.d. with density f_{ω} . Under the probability measure $\mathbb{P}_{\omega,\theta}^{(x)}$ (= \mathbb{P}_{ω}) the observations are i.i.d. with density f_{ω} . Benote the log-likelihood ratio of an observation, and set $Z_i^{\theta} = Z_i^{0,\theta}$. Denote by $I(\omega, \theta)$ the \mathbb{P}_{θ} -expectation of $Z_i^{\omega,\theta}$ [$I(\theta) = I(0, \theta)$].

A detection policy is a stopping time, defined on the sequence of observations. For the most part of this paper, the stopping times that will be considered are those that satisfy the probability constraint

(1)
$$\mathbb{P}_0(N < \infty) \le \alpha,$$

for a given $0 < \alpha < 1$. Among such policies one seeks the policy that minimizes the average run length (ARL) to detection:

(2)
$$\mathbb{E}_{0,\theta}^{(\nu)}(N-\nu+1|N\geq\nu).$$

However, which among the policies that satisfy (1) is best depends on the value of ν in (2). It is well known, for example, that when $\nu = 1$ the power-1

Received August 1994; revised April 1995.

¹This work supported in part by NIH Grant T32 ES07271.

AMS 1991 subject classifications. Primary 62L10; secondary 62N10.

Key words and phrases. Quality control, control charts, change-point detection, sequential tests.

⁴³¹

SPRT minimizes (2) among all stopping times that satisfy (1). Nevertheless, the performance of the SPRT is poor when large values of ν are considered.

The main result in this article is an inequality that relates the probability of a false alarm in (1) to the ARL to detection, given in (2). As a corollary of this inequality (Corollary 2), we are able to confirm part of a conjecture of Pollak and Siegmund [2, Section 6], regarding the rate of divergence of (2), considered as a function of ν , as $\nu \to \infty$.

At the end of this paper we will look at stopping times that satisfy the stronger constraint

(3)
$$\mathbb{P}_{\omega}(N < \infty) \le \alpha,$$

for all $a < \omega \le 0$. The conjecture in [2] states that, for any stopping rule satisfying (3),

(4)
$$\limsup_{\nu \to \infty} \mathbb{E}_{\omega,\theta}^{(\nu)} (N - \nu + 1 | N \ge \nu) / \log \nu \ge 1 / I(0, \theta).$$

It will be shown, via a counterexample, that the conjecture as stated is not true.

2. The main inequality. The main result is the following theorem.

THEOREM 1. Assume that Z_i^{θ} , the log-likelihood ratio of an observation, is nonlattice under \mathbb{P}_0 and has a finite \mathbb{P}_{θ} -expectation $I(\theta)$. Then there exists a finite constant c such that

(5)
$$\sum_{\nu=1}^{\infty} \exp\{-I(\theta) \mathbb{E}_{0,\theta}^{(\nu)} (N-\nu+1|N \ge \nu)\} \le \frac{\alpha \exp[c/(1-\alpha)]}{1-\alpha}$$

The constant c does not depend on α , ν or N. However, it does depend on θ .

PROOF. Define, for each $n = 1, 2, \ldots$,

×

$$R_n^{ heta} = \sum_{\nu=1}^n \exp\left\{\sum_{i=\nu}^n Z_i^{ heta}
ight\}$$

These statistics are known as the Shiryayev–Roberts statistics. It is easy to check that, for any stopping time N,

$$\begin{split} \mathbb{P}_0(N < \infty) &= \sum_{j=1}^{\infty} \mathbb{E}_0 \big[\mathbbm{1}\{N=j\} \big] \\ &= \sum_{j=1}^{\infty} \sum_{\nu=1}^{j} \mathbb{E}_{0,\theta}^{(\nu)} \bigg[\frac{1}{R_j^{\theta}} \mathbbm{1}\{N=j\} \bigg] \\ &= \sum_{\nu=1}^{\infty} \mathbb{E}_{0,\theta}^{(\nu)} \bigg[\frac{1}{R_N^{\theta}} \mathbbm{1}\{N \ge \nu\} \bigg] \\ &\geq \sum_{\nu=1}^{\infty} \exp \big\{ -\mathbb{E}_{0,\theta}^{(\nu)} \big[\log R_N^{\theta} | N \ge \nu \big] \big\} \mathbb{P}_{0,\theta}^{(\nu)}(N \ge \nu). \end{split}$$

In particular, if N satisfies (1), then $\mathbb{P}_{0,\theta}^{(\nu)}(N \ge \nu) \ge 1 - \alpha$, hence

(6)
$$\sum_{\nu=1}^{\infty} \exp\left\{-\mathbb{E}_{0,\theta}^{(\nu)}\left[\log R_{N}^{\theta}|N\geq\nu\right]\right\} \leq \frac{\alpha}{1-\alpha}.$$

For each $n \ge \nu$, the statistic R_n^{θ} can be represented as a product of two terms:

$$\begin{split} R_n^{\theta} &= \exp\left\{\sum_{i=\nu}^n Z_i^{\theta}\right\} \left(\sum_{j=1}^{\nu-1} \exp\left\{\sum_{i=j}^{\nu-1} Z_i^{\theta}\right\} + 1 + \sum_{j=\nu+1}^n \exp\left\{-\sum_{i=\nu}^{j-1} Z_i^{\theta}\right\}\right) \\ &= \exp\left\{\sum_{i=\nu}^n Z_i^{\theta}\right\} \times W^{\theta}(\nu, n). \end{split}$$

It follows, since Z_{ν}^{θ} , $Z_{\nu+1}^{\theta}$,... are i.i.d. under the measure $\mathbb{P}_{0,\theta}^{(\nu)}(\cdot|N \geq \nu)$, that

(7)

$$\mathbb{E}_{0,\theta}^{(\nu)} \Big[\log R_N^{\theta} | N \ge \nu \Big] = I(\theta) \mathbb{E}_{0,\theta}^{(\nu)} (N - \nu + 1 | N \ge \nu) + \mathbb{E}_{0,\theta}^{(\nu)} \Big(\log W^{\theta}(\nu, N) | N \ge \nu \Big) \\
\leq I(\theta) \mathbb{E}_{0,\theta}^{(\nu)} (N - \nu + 1 | N \ge \nu) + \frac{\mathbb{E}_{0,\theta}^{(\nu)} \Big(\log W^{\theta}(\nu, N) \Big)}{1 - \alpha}.$$

(Notice that $\log W^{\theta}$ is positive when $N \ge \nu$, and its definition can be extended to be zero when $N < \nu$.)

However, the $\mathbb{P}_{0,\theta}^{(\nu)}$ -distribution of the random variable $W^{\theta}(\nu, N)$ is stochastically dominated, uniformly in ν and N, by the distribution of $W_{\infty}^{\theta} + 1 + W_{1}^{\theta}$, where W_{∞}^{θ} and W_{1}^{θ} are independent of each other, the distribution of W_{1}^{θ} is the \mathbb{P}_{θ} -distribution of $\sum_{j=1}^{\infty} \exp\{-\sum_{i=1}^{j} Z_{i}^{\theta}\}$ and the distribution of W_{∞}^{θ} is the \mathbb{P}_{0} -distribution of $\sum_{j=1}^{\infty} \exp\{\sum_{i=1}^{j} Z_{i}^{\theta}\}$ To assert this claim, notice that the $\mathbb{P}_{0,\theta}^{(\nu)}$ -distribution of $\sum_{j=1}^{\nu-1} \exp\{\sum_{i=1}^{j-1} Z_{i}^{\theta}\}$ is identical to the \mathbb{P}_{0} -distribution of $\sum_{j=1}^{\nu-1} \exp\{\sum_{i=1}^{j} Z_{k}^{\theta}\}$ which is \mathbb{P}_{0} -almost surely smaller than $\sum_{j=1}^{\infty} \exp\{\sum_{i=1}^{j} Z_{i}^{\theta}\}$. Likewise, $\sum_{j=\nu+1}^{N} \exp\{-\sum_{i=\nu}^{j-1} Z_{i}^{\theta}\}$ is $\mathbb{P}_{0,\theta}^{(\nu)}$ -almost surely smaller than $\sum_{j=\nu}^{\infty} \exp\{-\sum_{i=\nu}^{j} Z_{i}^{\theta}\}$.

From Theorem 4 in [1] it follows that the second term on the right-hand side of (7) is bounded, uniformly in ν and *N*. Plugging (7) into (6) completes the proof. \Box

COROLLARY 1. Assume that Z_i^{θ} is nonlattice under \mathbb{P}_0 and has a finite second moment under \mathbb{P}_{θ} . Let a_1, a_2, \ldots be a sequence of positive numbers. Then the upper limit

(8)
$$\limsup_{\nu \to \infty} \left[\mathbb{E}_{0,\theta}^{(\nu)} (N - \nu + 1 | N \ge \nu) + \frac{\log a_{\nu}}{I(\theta)} \right]$$

is infinite for every stopping time N that satisfies (1) iff $\sum_{\nu=1}^{\infty} a_{\nu} = \infty$.

B. YAKIR

PROOF. Assume first that $\sum_{\nu=1}^{\infty} a_{\nu} < \infty$. Let

(9)
$$\alpha_{\nu} = \frac{\alpha a_{\nu}}{\sum_{k=1}^{\infty} a_{k}}, \qquad 1 \le \nu < \infty.$$

The stopping time

$$N = \inf igg\{ n \colon \sum_{
u=1}^n lpha_
u \exp igg\{ \sum_{i=
u}^n Z_i^ heta igg\} + \sum_{
u=n+1}^\infty lpha_
u \ge 1 igg\},$$

which is similar to a policy suggested in [2], would produce a finite upper limit in (8). The last claim follows from the relation

$$N \leq \inf igg\{ n \colon \sum_{i=
u}^n Z_i^ heta \geq -\log lpha_
u igg\}, \qquad
u = 1, 2, \dots,$$

Wald's lemma and from the fact that the expectation of the overshoot is bounded.

Assume next that the sum of the sequence $\{a_\nu\}$ diverges. Inequality (5) can be rewritten in the form

$$\sum_{\nu=1}^{\infty} a_{\nu} \exp\left\{-I(\theta) \left[\mathbb{E}_{0,\theta}^{(\nu)} (N-\nu+1|N\geq\nu) + \frac{\log a_{\nu}}{I(\theta)} \right] \right\} \leq \frac{\alpha \exp[c/(1-\alpha)]}{1-\alpha}$$

It is easy to see that a finite upper limit in (8) would produce a contradiction. $\hfill \Box$

COROLLARY 2. Under the assumptions of Corollary 1, relation (59) in [2] holds for $\omega = 0$; that is,

$$\limsup_{\nu \to \infty} \mathbb{E}_{0,\theta}^{(\nu)}(N-\nu+1|N \ge \nu) / \log \nu \ge 1/I(0,\theta),$$

for any stopping rule that satisfies (3) [and hence (1)].

PROOF. The proof follows immediately from the proof of Corollary 1 with $a_{\nu} = 1/\nu$. \Box

3. A counterexample. Corollary 2 states that the conjecture of Pollak and Siegmund is true for $\omega = 0$. It is false, however, for $a < \omega < 0$. For any such ω one can find a stopping rule σ , satisfying (3), for which (4) is false. Indeed, fix $a < \omega < 0$. Consider, for any integer *m* and negative real η , $a < \eta \leq 0$, the auxiliary stopping rule

$$N(m,\eta)=\infigg\{n\geq m+1\colon \sum_{
u=m+1}^nlpha_
u\expigg\{\sum_{i=
u}^nZ_i^{\eta, heta}igg\}+\sum_{
u=n+1}^\inftylpha_
u\geq 2igg\},$$

where α_{ν} is defined in (9) with $a_{\nu} = 1/(\nu \log^2 \nu)$. Note that, for any $a < \zeta \leq \eta$,

$$\mathbb{P}_{\zeta}ig(N(m,\eta)<\inftyig)\leqrac{lpha}{2}$$

434

and that, for any $\nu > m$,

$$\mathbb{E}_{\zeta,\theta}^{(\nu)}\big(N(m,\eta)-\nu+1|N(m,\eta)\geq\nu\big)\leq\frac{-\log(\alpha_{\nu}/2)+\mathrm{const.}}{I(\eta,\theta)}$$

The constant is a bound on the expected overshoot. It depends only on η and θ .

Given $0 < \varepsilon < -\omega$, let δ_m be a test of H_0 : $\eta \ge \omega + \varepsilon$ versus H_1 : $\eta < \omega + \varepsilon$, based on the first *m* observations, with significance level $\alpha/2$. Let $m = m(\omega, \varepsilon)$ be a sample size needed to assure that the power of the test, at $\eta = \omega$, is at least $1 - \varepsilon$.

Consider the stopping rule

$$\sigma = \sigma(\omega, \varepsilon) = N(m, (\omega + \varepsilon)\delta_m).$$

The stopping rule σ satisfies (3), since $\mathbb{P}_{\eta}(\sigma < \infty)$ is less than $\alpha/2$ for $\eta \leq \omega + \varepsilon$ and less than α for $\omega + \varepsilon < \eta \leq 0$. This stopping rule is a random mixture of the two stopping times N(m, 0) and $N(m, \omega + \varepsilon)$. The mixture is based on the first *m* observations. It can be shown that

$$\mathbb{P}^{(
u)}_{\omega, heta}ig(\delta_m=0|\sigma\geq
uig)<rac{arepsilon}{(1-lpha/2)(1-arepsilon)}.$$

As a result it follows that the ARL to detection, for all $\nu > m$, satisfies the relation

$$\mathbb{E}_{\omega,\theta}^{(\nu)}(\sigma - \nu + 1 | \sigma \ge \nu) \\ \le \frac{-\log a_{\nu}/2 + \text{const.}}{I(\omega + \varepsilon, \theta)} + \frac{\varepsilon}{(1 - \alpha/2)(1 - \varepsilon)} \frac{-\log a_{\nu}/2 + \text{const.}}{I(0, \theta)}$$

A contradiction to (4) can be derived from the above inequality since $I(\omega + \varepsilon, \theta) > I(0, \theta)$ and ε can be chosen arbitrarily small.

REFERENCES

- KESTEN, H. (1973). Random difference equations and renewal theory for products of random matrices. Acta Math. 131 207-248.
- [2] POLLAK, M. and SIEGMUND, D. (1975). Approximations to the expected sample size of certain sequential tests. Ann. Statist. 3 1267-1282.

DEPARTMENT OF STATISTICS THE HEBREW UNIVERSITY OF JERUSALEM JERUSALEM 91905 ISRAEL