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ASYMPTOTICALLY OPTIMAL AND ADMISSIBLE
DECISION RULES IN COMPOUND COMPACT

GAUSSIAN SHIFT EXPERIMENTS

BY SUMAN MAJUMDAR

University of Connecticut

Asymptotically optimal and admissible compound decision rules are
obtained in a Hilbert-parameterized Gaussian shift experiment. The com-
ponent parameter set is restricted to compact. For the squared error loss,
every compound Bayes estimator is admissible and every compound esti-
mator Bayes versus full support hyperprior mixture of iid priors on the
compound parameter is asymptotically optimal. For the latter class of
rules induced by full support hyperpriors, asymptotic optimality and

Ž .admissibility extend to equi- in decisions uniformly continuous and
bounded risk functions. Normality of certain mixtures of the standard
Gaussian process and qualitative robustness of the component Bayes

Ž .estimator results of independent interest used in the paper are derived.

1. Introduction, notation and preliminaries. In this paper, we de-
w Ž .xrive asymptotically optimal in the sense of Robbins 1951 and admissible

compound decision rules when the component experiment is a Gaussian shift
w Ž .xexperiment in the sense of Le Cam 1986 . The next paragraph describes the

notational conventions adopted. Then the idea of compounding a decision
Ž . Ž .problem called the component problem , first espoused by Robbins 1951 , is

Ž .discussed, followed in that order by a one-paragraph summary and some
preliminaries relating the paper to the pertinent literature.

Ž . Ž . n Ž n .For probabilities sets P , . . . , P A , . . . , A , = P = A denotes1 n 1 n i iis1 is1
Ž . Ž . ntheir measure set theoretic product; when P s P A s A ; i, = Pi i iis1

Ž n . n Ž n.= A is denoted by P A . To denote the integral of a function f withiis1
Ž .respect to wrt a measure m, we shall interchangeably use the standard

wintegral notation Hf dm with the dummy variable of integration sometimes
Ž . x Ž . Ž .partially displayed and the left operator notation m f or even m f . Sets
Ž . Žprobabilities are always identified with their indicator functions induced

.expectations ; R stands for the real line. If X is a random element on a
Ž . y1probability space ?, ? , P , the a PX denotes the P-induced distribution of

X on the range space. The notation a [ b will mean that a is defined to
Ž .be b. For any n-tuple x [ x , . . . , x , x will denote the a-delete vector1 n a

Ž .x , . . . , x , x , . . . , x .1 ay1 aq1 n
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Roughly speaking, in standard iid statistics one models the data available
as independent realizations of a random variable whose distribution is gov-
erned by the unknown state of nature u ; in other words, the data are
considered to be generated under identical states of nature. However, from a
modeling perspective, it is often appropriate to consider the scenario when
the data are generated under similar, but not identical, states of nature. In
that case, it is only sensible to use the available data to infer about the entire
collection of similar states of nature. In the compound formulation of a
decision problem this idea is formally dealt with. Asymptotics, as in the
standard iid case, is in terms of n, the number of data points, going to
infinity. Thus one looks at the decision problem with parameter set Qn,

� n4 Ž n n.family of probability measures P : u g Q on the measurable space XX , FF ,u

where P [ =n P , observations X ; P under u, action space AAn, deci-u u uas1 an n Ž .sion rules t: XX ¬ AA such that each L t , Q is measurable, loss anda a

corresponding risk
n

y1L t, u [ n L t , u ,Ž . Ž .Ýn a a
as1

R t, u [ P L t, u .Ž . Ž .n u n

Ž � 4 .The decision problem XX , FF, P : u g Q , AA, L is traditionally referred to asu

the component problem.
For consideration of Bayes rules, we fix a s-algebra of subsets of Q such

Ž . Ž Ž . . �that each of the maps x, u ¬ L t x , u is jointly measurable. Let V s v:
4 Ž .v is a probability on Q . For v g V, let r v and t , respectively, denote thev

Žminimum Bayes risk and a Bayes rule versus v we assume existence of tv

.for every v ; that is,

r v s inf R t , u dv u : t s R t , u dv u .Ž . Ž . Ž . Ž . Ž .H H v½ 5
Q Q

Ž . Ž .A compound rule t, for which t x s t x ; a s 1, . . . , n, where t is aa a

component rule, is called simple symmetric. Let G denote the empiricaln
distribution of u. The compound risk at u of a simple symmetric t reduces to

Ž . Ž .the component Bayes risk of t versus G , where t x s t x ; a s 1, . . . , n;n a a

Ž .as such it is at least r G , which is referred to as the simple envelope at u.n
Ž . Ž . Ž .For a compound rule t, the difference D t, u s R t, u y r G is called then n n

� 4modified regret of t at u and a sequence of compound rules t: n G 1 is said
Ž .to be asymptotically optimal a.o. if

sup D t, u : u ª 0 as n ª `.� 4Ž .n

w Ž .xNow, it has long been recognized Hannan and Robbins 1955 that the
compound problem is invariant under the group of n! permutations of co-
ordinates. Thus, one might consider using the more stringent equivariant
envelope, the minimum compound risk of equivariant rules, to judge the

w Ž .xperformance of a compound rule see Gilliland and Hannan 1986 . However,
Ž .the uniform in states asymptotic equivalence of the two envelopes, estab-
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Ž .lished by Mashayekhi 1990 under fairly general conditions, enables one to
Ž .start with the simple envelope and extend the asymptotic optimality result

to the equivariant envelope by verifying Mashayekhi’s conditions.
� 4A sequence of compound rules t: n G 1 is said to be admissible if, for

every n, t is admissible in the usual sense.
The component experiment considered in this paper is a Gaussian shift

Ž .experiment indexed by a real separable Hilbert space H in the sense of Le
Ž . Ž . Ž . Ž .Cam 1986 Section 2 . When Q : AA : H is strongly compact and L a, u s

5 5 2 Ž .a y u , we derive Section 3 that all compound Bayes rules are admissible
and compound rules that are Bayes versus a hyperprior mixture of iid priors
on the compound parameter are asymptotically optimal if the mixing hyper-

Ž .prior has full support. We extend Section 4 the asymptotic optimality and
admissibility of the Bayes rules induced by full support hyperpriors to loss

Ž . Žfunctions L that yield an equi- in t uniformly continuous and bounded in
.u risk function R.

Ž .Since the formulation of the compound problem by Robbins 1951 , a lot of
different component problems have been compounded, generating a huge

Ž .literature. Of special pertinence are Gilliland, Hannan and Huang 1976 ,
Ž . Ž . Ž .Datta 1988, 1991 , Mashayekhi 1990, 1993 , Zhu 1992 , Majumdar, Gilliland

Ž . Ž .and Hannan 1993 and Majumdar 1994 . The common feature of these
Ž .works including this one is the consideration of compound Bayes rules

Ž .versus a hyperprior L on V mixture of iid priors on the compound parame-
Žter. The a-th component of such a rule is a component Bayes rule evaluated

. Ž .at X versus the posterior mean of v under L given X when v ; L anda a

given v, X ; P ny1. As shown below, this is a consequence of disintegrabilitya v

w Ž .xof joint distributions under the Polish assumption Le Cam 1986 , a fact
obscured by unnecessary domination assumptions in the previous exposi-
tions.

Assuming that Q is a Polish space, by Theorem II.6.2 and II.6.5 of
Ž .Parthasarathy 1967 , V with the topology of weak convergence is also a

Ž .Polish space; let BB V denote its Borel s-field. Let L be a hyperprior on
Ž Ž .. n Ž .V, BB V . We take L-mixture of iid priors on Q for each n and denote

wthat prior by b . The measure b is defined on the class of measurableL , n L , n
rectangles by

n

1.1 b B = B = ??? = B s v B dL v ,Ž . Ž . Ž . Ž .ŁHL , n 1 2 n i
V is1

and then extended to the product s-field. Note that by Lemma A.1 of
Ž . xMajumdar 1993 the above integrand is measurable.
Ž . nLet t s t , . . . , t , where t : XX ¬ AA is a measurable function, be a1 n a

decision rule in the compound problem. The a-th component Bayes risk of t
versus b isL , n

ny11.2 R t , b s L t , u dP dv dP dL .Ž . Ž . Ž .HH HHa L , n a a u vany1V XX Q XX
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Disintegrating the joint probability on XX ny1 = V determined by dP ny1 dLv

Ž .as dL dP , where L is the posterior distribution of v under La , n b a , nL , ny1 ny1 wgiven X when v ; L and, given v, X ; P since V is a Polish space, bya a v

Ž . xTheorem 10.2.2 of Dudley 1989 , such a disintegration exists , we get

1.3 l.h.s. 1.2 s L t , u dP db dP ,Ž . Ž . Ž .H HH a a u L ba a , n L , ny1ny1XX Q XX

Ž .where b denotes the L -mixture of v ’s. Clearly, the r.h.s. of 1.3 isL a , nna ,

Ž . Ž .minimized by t x s t x . Since the compound risk is the average of thea b aLa , n
component risks, a compound rule Bayes versus b is given by t , whereL , n L

1.4 t x s t x .Ž . Ž . Ž .L , a b aLa , n

2. The Gaussian shift experiment. Let H be a real separable Hilbert
Ž 5 5 ² :space with f denoting the norm of an element f in H and ? , ? denoting

. � 4the inner product . Let P : u g H be a family of probabilities on a measur-u

Ž . Ž . � 4able space XX , FF specified by strictly positive densities p : u g H wrtu

m [ P such that the following holds:0

Ž . Ž . 5 5 2the map u ¬ l ? [ ln p ? q u r2 is linear from H intou u

the linear space of real-valued measurable functions onAŽ .
Ž .XX , FF .

Ž .Each of the following conclusions can be deduced from a combination of A
w Ž .xand the preceding ones for details, see Majumdar 1993 :

y1 ² : 5 5 22.1 P l s NN u , j , u ; u , j g H ;Ž . Ž .j u

� 42.2 l : u g H is a centered Gaussian process on XX , FF , m ;Ž . Ž .u

² : ² : ² :2.3 P l y u , j l y h , j s u , h ; u , h , j g H .Ž . Ž .j u h

w Ž .Actually, the linearity assumption in A can be weakened to a.s. equality of
Ž . Ž . Ž .l and l q l r2, where j s u q h r2, ; u and h; see Le Cam 1986 ,j u h

Ž . Ž . Ž . xLemma 9.3.2. Also, for the derivation of 2.1 ] 2.3 , see Millar 1983 , V.3 .
� 4Thus, l : u g H is a standard Gaussian process in the sense of Definitionu

Ž . � 468.3 of Strasser 1985 . Clearly, that identifies the experiment P : u g H tou

be a Gaussian shift one, not only in the broader sense of Definition 2 of Le
wŽ . x ŽCam 1986 , Chapter 9 , but in the somewhat narrower compared to Le

. Ž . wCam sense of Definition 69.2 of Strasser 1985 as well via the characteriza-
Ž . x � 4tion in Strasser 1985 , Theorem 69.4 . Note that, the experiment P : u g Hu

Ž .is what Le Cam 1986 calls a standard Gaussian shift experiment of H.
ŽIn the remainder of this section, we state and prove Theorem 2.1 estab-

.lishing normality of certain mixtures of the standard Gaussian process ,
which is used in the proof of Theorem 3.1, and give four examples of Gaussian
shift experiments.
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Ž5 5.THEOREM 2.1. Let v be a Borel probability measure on H such that v ?
is finite. For x g XX , let

l x [ l x dv u .Ž . Ž . Ž .Hv u
H

y1 Ž Ž² :. 2Ž² :..Then, ; j g H, P l s NN v ? , j , v ? , ? .j v

w Ž .x � ² :PROOF. Let G be the closure in L P of the linear subspace l y u , j :2 j u

4 y1u g H . Note that P f is a centered Gaussian distribution on the line forj

Ž .every f g G. The crucial normality assertion is proved by showing that
Ž² :.l y v ? , j is an element of G. The three main steps of the proof are asv

follows:

Ž . y1i P l is well defined;j v

Ž . Ž .ii l g L P ;v 2 j

Ž . Ž Ž² :..2 2Ž² :. Ž .2iii P l y v ? , j s v ? , ? s P P , where P is the projec-j v j G G
Ž² :.tion of l y v ? , j on G.v

Ž² :. Ž .2 Ž .2
H HNote that, since l y v ? , j s P q P and P P q P P sv G G j G j G

Ž Ž² :..2 w Ž .P l y v ? , j by the properties of projection Rudin 1987 , Theoremj v

x H Ž .4.11 , where G is the ortho-complement of G, step iii proves the theorem,
including the expression for the variance.

Ž . Ž . Ž .Now, the proofs of i , ii and the first equality in iii are essentially
w Ž . xcareful applications of the Fubini theorem Rudin 1987 , Theorem 8.8 . Note

Ž . Ž . w Ž .that the map u , x ¬ l x is measurable see Majumdar 1993 , Lemmau

x Ž . Ž .3.0 . Use that, 2.1 and the Fubini theorem to conclude l g L m , whencev 1
Ž . Ž .x ¬ l x is measurable and l is finite P -a.s., establishing i .v v j

Ž . w Ž . ² :xw Ž . ² :xUse the measurability of u , h, x ¬ l x y u , j l x y h, j , theu h

Ž . Ž . Ž .Cauchy]Schwarz inequality in L P , 2.1 , the Fubini theorem and 2.32 j

Ž .not necessarily in that order , and conclude that

2 22² : ² : 5 5P l y v ? , j s v ? , ? F v ? - `,Ž . Ž .Ž . Ž .Ž .j v

by the assumption of the theorem.
Ž .For the second equality of iii , note that

² :2.4 P hP s P h l y h , j dv h ; h g G ,Ž . Ž . Ž .Hj G j vž /H

which on interchange of the order of integration gives

² :2.5 l.h.s. 2.4 s P h l y u , j dv u .Ž . Ž . Ž .Ž .H j u
H

Ž .Using 2.5 with h s P ,G

2 ² :2.6 P P s P P l y h , j dv h ;Ž . Ž . Ž .Ž .Hj G j G h
H
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Ž . ² :by 2.5 again, with h s l y h, j ,h

² : ² : ² :P l y h , j P s P l y h , j l y u , j dv uŽ .Ž . Ž .Hj h G j h u
H

² :s h , u dv u by 2.3 .Ž . Ž .H
H

2.7Ž .

Ž . Ž . Ž .The second equality of iii is now obtained from 2.6 and 2.7 . I

2.1. Examples of Gaussian shift experiments. Multivariate normal distri-
butions with a common covariance constitute a Gaussian shift experiment
when the usual Euclidean inner product is replaced by an inverse covariance

w xweighted version. The translation of the standard Brownian motion on 0, 1
w xby the indefinite integrals of square integrable functions on 0, 1 generates a

w Ž . xGaussian shift experiment Millar 1983 , Example V.3.13 . The log-likelihood
ratio of a LAN experiment differs from that of a Gaussian shift experiment by
an additive remainder term, which is asymptotically zero in probability
w Ž . xIbragimov and Khas’minskii 1991 , Section 2 . Gaussian shift experiments

Žalso occur as limits of products of nonparametric experiments in the sense of
weak convergence of experiments introduced by Le Cam, as the number of

.factors goes to infinity indexed by square integrable mean-zero functions on
Ž .an arbitrary probability space XX , FF, P , so that for eligible functions the

corresponding distribution has a smooth density wrt P and otherwise the
wexperiment is a contraction map in the Hellinger distance Le Cam and Yang

Ž . Ž . x1990 , Lemma 6.4.1, and Strasser 1985 , Example 80.4 .

3. Compound Bayes estimation of the Gaussian shift parameter.
Ž .In this section, we consider the component problem with Q initially a

Ž . � 4bounded subset of H we shall further restrict Q later , P : u g Q au

Ž .sub-experiment of the H-indexed Gaussian shift experiment on XX , FF , Q : AA
Ž . 5 5 2: H and L a, u s a y u . In Section 3.1, we specialize the compound rule

Ž . Ž .t of 1.4 to this context and reduce via Proposition 3.1 and Theorem 3.1L

the question of asymptotic optimality of such rules to that of consistency of
Ž . Ž .certain posteriors Theorem 3.2 , which is settled in Majumdar 1993 for

hyperpriors with full topological support. Remark 3.1 interprets the result of
Theorem 3.1 as a qualitative robustness property of the component Bayes

Ž .estimator wrt the prior specification. Remark 3.3 verifies Mashayekhi’s 1990
condition for asymptotic equivalence of the simple and the equivariant en-
velopes. To begin with, we show that the component Bayes estimator is the

Ž .Petis integral of the identity wrt the posterior distribution Lemma 3.1 ; the
uniqueness is used to establish admissibility of every compound Bayes esti-

Ž .mator Section 3.2 .
ŽBefore proceeding further, let us note that V with the topology of weak

. w Ž .convergence is a separable metric space see Parthasarathy 1967 , Theorem
x Ž . Ž . Ž . Ž . Ž . Ž .II.6.2 and note that u , x ¬ p x and v, x ¬ p x [ Hp x dv u areu v u

wjointly measurable when V is endowed with the Borel s-field see Majumdar
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Ž . x1993 , Lemma 3.0 . That justifies the interchange of the order of integration
in subsequent calculations without further comment. The component Bayes
estimator versus v is denoted by t . Throughout the remainder of thisv

section, let

5 5� 43.1 D [ sup u : u g Q ,Ž .
5 5 Ž .and let f denote the L m norm of a function f.q q

� 4LEMMA 3.1. On the common support of P : n g V , t is the uniquen v

² : ² :Ž . Ž .mapping into H satisfying t , h s H h, h p rp dv h ; h g H.v Q n v

² : Ž .PROOF. Since the map h ¬ H h, h dp h is a linear functional on HQ

wwhose norm is bounded by D ; p g H, by the Riesz]Frechet theorem see
Ž . x Ž .Dudley 1989 , Theorem 5.5.1 , ' a unique element v p in H satisfying

² : ² :3.2 v p , h s h , h dp h ; h g H .Ž . Ž . Ž .H
Q

Ž . Ž . Ž . ŽNote that if p x is positive, the map u ¬ p x rp x is a density wrtv u v

. Ž .v of the posterior measure v on Q. By 3.2 , it is enough to show that˜x
Ž . � 4t s v v on the common support of P : n g V . Now, by Fubini’s theorem,˜v n

Ž .the Bayes risk versus v of an estimator t is equal to

5 5 23.3 t x y u dv p x dm x .Ž . Ž . Ž . Ž .˜H H x v
XX Q

Ž .Triangulating around v v and expanding the norm square of the sum, the˜x
Ž .inner integral in 3.3 is

5 5 2 5 5 2t x y v v q v v y u dv ,Ž . Ž . Ž .˜ ˜ ˜Hx x x
Q

Ž . Ž .which is minimized iff t x s v v , completing the proof. I˜x

3.1. Asymptotic optimality of t . In this subsection, we first obtain aL

useful upper bound on the absolute modified regret of t in Proposition 3.1. InL

Theorem 3.1, we obtain an upper bound on the expected distance between two
component Bayes estimators in terms of the total variation distance between
the corresponding mixtures, which is used in conjunction with Proposition 3.1
to reduce the asymptotic optimality of t to consistency of certain posteriorsL

Ž .Theorem 3.2 .

PROPOSITION 3.1. We have

n
y1< < 5 5D t , u F 4Dn P P t y t ,Ž . Ýn L u u b Ga L na , n

as1

Ž .where G is the empirical distribution of u and b is as in 1.3 .n La , n
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PROOF. By definition of the quantities involved, for any compound estima-
tor t,

n
2 2y1 5 5 5 5˜D t, u s n P t y u y t y u ,Ž . Ý ž /n u a a a a

as1

Ž . Ž .˜where t x s t x . Using the Cauchy]Schwarz inequality to bound thea G an
5 5 2 5 5 2 5 5 5 5absolute difference between d and b by d q b times d y b , triangle

Ž .inequality in H and 3.1 , we get
n

y1< < 5 5˜3.4 D t, u F 4Dn P t y t .Ž . Ž . Ýn u a a
as1

Ž . Ž .Since t x s t x ,L , a b aLa , n

5 5 5 5˜3.5 P t y t s P P t y t ,Ž . u L , a a u u b Ga L na , n

completing the proof. I

Ž . 5 5In Theorem 3.1 we derive a uniform in u bound on P t y t in terms ofu v p

the total variation distance between P and P . Abusing notation, we shallv p

5 5 Ž .let s denote the total variation norm of a signed measure s on XX , FF as
well.

The next three lemmas are used to prove Theorem 3.1.

Ž . 5LEMMA 3.2. For y, z, Y, Z, L g R such that z / 0 and L G 0,

y Y y
< < < < < <z y n L F y y Y q q L z y Z .½ 5 ž /z Z z

wŽ . xPROOF. See Datta 1988 , Lemma A.1 .

� 4 �LEMMA 3.3. For every finite sequence u : 1 F i F k ; H and a : 1 F i Fi i
4k ; R,

2k k k
2a i 5 52 log p dm s a u y a u .Ł Ý ÝH u i i i iiž /is1 is1 is1

wŽ . xPROOF. See Majumdar 1993 , Lemma 3.1 .

LEMMA 3.4. For every v g V and every integer q G 1,

5 5 Žqy1.D 2 r2p g L m and p F e .Ž . qv q v

wŽ . xPROOF. See Majumdar 1993 , Lemma 3.2 .

Ž .THEOREM 3.1 The key step and the robustness result . Assume Q is
strongly totally bounded. Then, for every g ) 0, ' a number HH such that

5 5 5 5P t y t F 5g q HH P y P .u v p v p
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PROOF. By Lemma 3.1,

² : ² :H h , h p dv h H h , h p dp hŽ . Ž .Q h Q h
5 53.6 t y t s y ,Ž . Ev p ½ 5p pv pWW

� 5 5 4where WW [ h g H: h F 1 .
Ž .Applying Lemma 3.2 to get rid of the difference of ratios with z s p ,v

² : Ž . ² : Ž .y s H h, h p dv h , Z s p , Y s H h, h p dp h and L s 2 D,Q h p Q h

² : ² :H h , h p dv h H h , h p dp hŽ . Ž .Q h Q h
p yv p pv p3.7Ž .

² : < <F h , h p d v y p h q 3D p y p .Ž . Ž .H h v p
Q

Ž .It turns out that we can bound p uniformly in u by a multiple of p on au v

5 5subset of XX with m-measure arbitrarily close to 1. Since t y t F 2 D andv p

5 5 Ž 2 . Ž . 5 5p F exp D r2 see Lemma 3.4 , P -expectation of t y t on the com-2u u v p

plement can be made arbitrarily small, which allows us to concentrate on
5 5P -expectation of t y t on the set of large m-measure.u v p

More specifically, for all real numbers a and b,
2 w x w x3.8 exp yD r2 y a q b p l F a l ) b F p .Ž . Ž . u u v v

Ž 5 5 2 . Ž .Because, p s Hexp l y u r2 dv by definition, whence using 3.1 to boundv u

Ž 5 5 2 . wexp y u r2 below, applying Jensen’s inequality and noting that p l Fu u

x Ž . Ž . Ž .w x Ž .a exp ya F 1 and exp l G exp b l ) b , 3.8 follows. Note that the m-v v

w xw xmeasure of the complement of l F a l ) b is bounded byu v

w x w x3.9 m l ) a q m l F b .Ž . u v

y1 Ž 5 5 2 . wŽ .x y1 Ž 2Ž² :.. Ž .Since ml s NN 0, u 2.1 and ml s NN 0, v ? , ? Theorem 2.1 ,u v

and since both the variances are bounded by D2, we have, for a ) 0 and
b - 0,

w x w x3.10 3.9 F Pr Z G arD q Pr Z F brD ,Ž . Ž .
Ž . Žwhere Z ; NN 0, 1 . Therefore, by appropriate choice of a and b to be made

. Ž .later , 3.9 can be made arbitrarily small uniformly in u and v.
w xw xFor a ) 0 and b - 0, partitioning XX into l F a l ) b and its comple-u v

5 5ment, bounding t y t by 2 D on the complement and P -measure of thev p u

Ž .complement using the Cauchy]Schwarz inequality in L m along with2
5 5 Ž 2 . Ž .p F exp D r2 and 3.10 , we get2u

1r225 5P t y t F 2 D exp D r2 r.h.s. 3.10� 4Ž .Ž .u v p3.11Ž .
5 5w x w xq m p t y t l F a l ) b .Ž .u v p u v

In the next three paragraphs, we develop a bound for the second term
Ž . Ž .above, culminating in the bound 3.17 for the l.h.s. of 3.11 .

Ž .By 3.8 ,
2 5 53.12 second term in r.h.s. 3.11 F exp D r2 q a y b m p t y t .Ž . Ž . Ž .Ž . v v p
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Ž . Ž .By 3.6 and 3.7 ,

5 5 ² : 5 53.13 m p t y t F m h , h p d v y p h q 3D P y P .Ž . Ž . Ž .Ž . E Hv v p h v pž /QWW

Now, WW is weakly compact by a very special application of the
w Ž . xBanach]Alaoglu theorem Rudin 1973 , Theorem 3.15 . Since H is separa-

w Ž . xble, the weak topology of WW is metrizable Rudin 1973 , Theorem 3.16 . Since
Ž X.Q is strongly totally bounded, given « ) 0, ' d ) 0 such that d h, h - dw

implies
<² : ² X: <3.14 u , h y u , h F « ,Ž . E

Q

Ž .where d is a metric for the weak topology of WW . By 3.14 ,w

X X² : ² :3.15 m u , h y u , h p dv F « if d h , h - d .Ž . Ž . Ž .H u w

� 4If d -balls of radius d around h , . . . , h cover WW , then triangulating aroundw 1 I
Ž .appropriate h , using 3.15 and dominating the maximum of I nonnegativei

terms by their sum, we get
I

² : ² :3.16 m u , h p d v y p F 2« q m u , h p d v y p .Ž . Ž . Ž .E ÝH Hu i už /
is1WW

w Ž . Ž .Substituting the bound on the second term obtained via 3.12 , 3.13 and
Ž .x Ž .3.16 in the r.h.s. of 3.11 , we get that, given « ) 0, ' d ) 0 such that

1r225 5P t y t F 2 D exp D r2 r.h.s. 3.10� 4Ž .Ž .u v p

q exp D2r2 q a y bŽ .
3.17Ž .

=
I

² : 5 52« q m u , h p d v y p q 3D P y P ,Ž .Ý H i u v p
is1

� 4where a ) 0 and b - 0, and d -balls of radius d around h , . . . , h cover WW .w 1 I
Ž .The culminating point of the next segment spread over three paragraphs

Ž . < ² : Ž . <is the bound 3.22 for m H u , h p d v y p , h g WW .u

Ž ² :.Expanding the function l ¬ exp l u , h in a Taylor series around l s 0
Ž .up to second order, collecting the terms in the l.h.s. of 3.18 on one side of the

Ž .equality, and using the Cauchy-Schwarz inequality in H and 3.1 to bound
the other side, we get, for l ) 0 and h g WW ,

1
2² : ² :3.18 u , h y exp l u , h y 1 F lD exp lD r2.Ž . Ž . Ž .Ž .

l

Ž .By 3.18 and the triangle inequality,

² :m u , h p d v y pŽ .H u

F lD2exp lDŽ .3.19Ž .
1

5 5 ² :q P y P q m Hexp l u , h p d v y p .Ž . Ž .v p ul
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We now show

² : < <3.20 m exp l u , h p d v y p s P p y pŽ . Ž . Ž .H u lh v p

as a consequence of

y1
y1² : ² :3.21 m exp l u , h p dv , exp l u , h p dp s P p , p .Ž . Ž . Ž . Ž .H Hu u lh v pž /

Ž . Ž .By 2.1 , linearity of inner product and the map in A , we get, ; m G 1 and ;
Ž . mu , . . . , u g Q ,1 m

y1 y1ism ism2 25 5 5 5u ui i² :m l u , h q l y s P l y ,i u lh ui i½ 5 ½ 52 2ž / ž /is1 is1

or, equivalently,

y1 y1ism ism² : � 4m exp l u , h p s P p .Ž .� 4 ž /i u lh už /i iis1 is1

Ž .Hence, if v and p are finitely supported, 3.21 holds. Since, by Theorem
Ž .II.6.3 of Parthasarathy 1967 , V has a dense subset consisting of finite-

Ž .ly supported measures, to prove 3.21 for arbitrary v and p it suffices
Ž ² :. Ž .w xto show that if n ª n in V, Hexp l u , h p dn u p goes tok u k n k

Ž ² :. Ž . w x Ž . w Ž .xHexp l u , h p dn u p in L m L P . Actually we show the continu-u n 2 2 lh
Ž X . Ž . w Ž .xity of the map taking n , n to the L m L P inner product of2 2 lh

Ž ² :. Ž . w x Ž ² :. XŽ . w xXHexp l u , h p dn u p and Hexp l h, h p dn h p , by interchang-u n h n
2 Žing the order of integration on XX and Q , using Lemma 3.3 with k s 2, a s1

. Ža s 1 to evaluate the m-integral which is continuous by continuities of2
.vector addition and inner product and the exponential function and bounded

w Ž .x 2 Ž .via 3.1 on Q , and applying Lemma III.1.1 of Parthasarathy 1967 . The
w xsecond bracket assertion is proved by a similar argument.

Ž . Ž .Combining 3.19 and 3.20 , we get

1 1
2 5 5 < <3.22 l.h.s. 3.19 F lD exp lD q P y P q m p y p p .Ž . Ž . Ž . Ž .v p v p lhl l

w x w xBy partitioning XX into p ) c and p F c , and applying thelh lh
Ž .Cauchy]Schwarz inequality in L m ,2

1r22< < 5 5 5 5 w x3.23 m p y p p F c P y P q p y p m p p ) c .Ž . � 4Ž . 2v p lh v p v p lh lh

Ž . Ž .Weakening the bound 3.22 by enlarging its r.h.s. using 3.23 and substi-
Ž . Žtuting the resulting bound in the r.h.s. of 3.17 , we obtain via some rear-
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.rangement of terms that, given « ) 0, ' d ) 0 such that

1r22D a b
5 5P t y t F 2 Dexp Pr Z G q Pr Z Fu v p ½ 5ž /2 D D

2D
y1 5 5q exp q a y b 3D q Il 1 q c P y PŽ . v pž /2

D2

q 2«exp q a y bž /2

D2
2q exp q a y b IlD exp lDŽ .ž /2

3.24Ž .

D2
y1 5 5ql exp q a y b p y p 2v pž /2

I
1r22 w x= m p p ) c� 4Ý lh lhi i

is1

[ T q T q T q T q T ,1 2 3 4 5

where a ) 0, b - 0, l ) 0 and c ) 0 are arbitrary, d -balls of radius dw
� 4 Ž .around h , . . . , h cover WW and Z ; NN 0, 1 .1 I

Ž 2Now choose a and b so that T - g . Then choose « so that exp D r2 q1
. 2 Ž .a y b - gr« , implying T - 2g . Now choose l so that lD exp lD - «rI,3

Ž .implying T - g . Then choose c so that, uniformly in v, p and h g WW ,4
Ž .5 5 � 2 w x41r2 w1rl p y p m p p ) c F «rI which is possible since, by Lemma2v p lh lh

Ž . 5 5 Ž 2 .3.4 and the triangle inequality in L m , p y p F 2 exp D r2 and, by22 v p

� 2 4the existence of uniformly bounded higher moments, the family p : h g WWlh
xis uniformly m-integrable . That makes T - g , completing the proof with5

w y1Ž .x Ž 2 .HH s 3D q Il 1 q c exp D r2 q a y b . I

Ž . 5 5Remark 3.1 Robustness of the Bayes estimator . Since P y P is av p

metric distance between v and p for the topology of weak convergence on V
w Ž . x Ž .Majumdar 1993 , Remark 3.1 , Theorem 3.1 establishes equi- in u g Q

Ž . Ž .uniform continuity of v ¬ t g H in L P , which can be interpreted as av 1 u

Ž .frequentist qualitative robustness property of the component Bayes estima-
tor wrt the prior specification.

Combining Proposition 3.1 and Theorem 3.1,

n
y1< < 5 5D t , u F 4D 5g q 4DHHn P P y P .Ž . Ž . Ýn L u b GL na , n

as1
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Since the bound in the display above holds for arbitrary g ) 0, to establish
asymptotic optimality of t it suffices to showL

n

5 53.25 P P y P ª 0 uniformly in u , as n ª `.Ž . E u b GL na , n
as1

Ž .Theorem 3.2 formulates sufficient conditions for 3.25 and, hence, for asymp-
totic optimality of t .L

For a finite measure m on the Borel s-field of a separable metric space SS ,
by topological support of m we mean the smallest closed subset of SS carrying
the total mass; let S denote the topological support of m.m

Ž .THEOREM 3.2 Asymptotic optimality . If Q is strongly compact and S sL

V, then t is asymptotically optimal.L

Ž .PROOF. As already observed, it suffices to establish 3.25 even if Q is only
strongly totally bounded. Fix u g Qn and 1 F a F n. Let G denote thena

w Ž . xempirical distribution based on u . Then see Datta 1991 , Lemma 4.3 ,a

5 5y1 5 5y1
P P y P s P P y P .u b G u b GL n a a L ny1a , n n , n

Since u and a are arbitrary, from the above we get
n

5 5P P y PE E u b GL n aa , nn as1ugQ

5 5F P P y P ª 0 as n ª `,E u b GL ny1n , n
ny1ugQ

3.26Ž .

Ž .by Theorem 3.1 of Majumdar 1993 .
y1Ž . 5 5Next, note that G y G s n d y G . Therefore, P y P sn na u na G Ga n n ay1 5 5 y1n P y P F 2n and the proof now ends by the triangle inequalityu Ga n a

and subadditivity of supremum. I

Ž .REMARK 3.2. The reduction of asymptotic optimality of t to 3.25 usesL

Ž .neither compactness of Q total boundedness suffices nor S s V. The proofL

Ž .of Theorem 3.2, which involves reduction of 3.25 to Theorem 3.1 of Majum-
Ž . Ž .dar 1993 via 3.26 , uses no assumption either. However, Theorem 3.1 of

Ž .Majumdar 1993 assumes that Q is strongly compact and S s V.L

ŽREMARK 3.3 Asymptotic equivalence of the equivariant envelope and the
. Žsimple envelope . If the component problem involves a compact in total
.variation norm class of mutually absolutely continuous probability mea-

sures, then the excess of the simple envelope over the equivariant envelope
w Ž . xgoes to zero uniformly in the measures Mashayekhi 1990 , Remark 4 . By

� 4assumption the measures P : u g Q are mutually absolutely continuous. Leu 'wŽ . x 5 5 5 5Cam 1986 , page 158 shows that P y P - 2 u y h , implying continu-u h

� 4ity of u ¬ P . Therefore, if Q is compact, P : u g Q is compact and theu u

asymptotic equivalence is established.
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3.2. Admissibility. The argument we use to prove admissibility of com-
Žpound Bayes estimators is fairly standard in decision theory: a unique up to

.equivalence Bayes rule in a mutually absolutely continuous family is admis-
w Ž . xsible Ferguson 1967 , Theorem 1, Section 2.3 .

Let j be a prior on the compound parameter u. Let Q denote the joint
Ž . y1 n 5 5 2 Ždistribution j (P on x, u . Note that n Ý Q t y u , the Bayes versusu as1 a a

. 5 5 2j risk of a compound estimator t, is minimal iff Q t y u is minimala a

5 5 2 Ž 5for every a . Now Q t y u can be represented as HP HH t ya a u a

5 2 . Ž .u dP dj dj , where j is the conditional distribution under j of ua u a a aa

5 5 2given the rest of the u ’s. Since HH t y u dP dj has, by Lemma 3.1, aa a u aa

unique minimizer, a compound estimator Bayes versus j is unique and,
hence, admissible.

4. Compound Bayes decisions for the Gaussian shift parameter.
The asymptotic optimality and admissibility results for t obtained in theL

Ž .previous section are extended to include other loss risk functions. We restrict
wQ to be a strongly compact subset of H. Using Theorem 4.1 which is Theorem

Ž . Ž .x3 of Zhu 1992 , based on Theorem 1 of Mashayekhi 1993 , Theorem 4.2
Ž .establishes asymptotic optimality of t when the component risk R t, u is anL

Ž .equi- in t uniformly continuous and bounded function of u and S s V.L

� 4THEOREM 4.1. Let Q be compact metric and P : u g Q be compact in theu

Ž .total variation norm. Suppose that v ¬ P is one-to-one and u ¬ R t, u isv

Ž . ˆequi- in t uniformly continuous and bounded. Then t defined by

ˆ4.1 t x [ t x ,Ž . Ž . Ž .a v Žx . aˆ a

where v is a symmetric mapping from XX ny1 into V, is asymptotically optimalˆ
if

5 54.2 P P y P ª 0 as n ª `.Ž . E u v Gˆ n
ny1ugQ

Ž . Ž . Ž .ˆNote that, with v x s b , t of 4.1 becomes t of 1.4 . Hence, toˆ a L La , n

establish asymptotic optimality of t under Theorem 4.1 assumption on theL

Ž . � 4risk function, it suffices to verify the other assumptions that P : u g Q isu

Ž .compact in the total variation norm Remark 3.3 , v ¬ P is one-to-onev

w Ž . x Ž . Ž .Majumdar 1993 , Lemma 3.4 and 4.2 holds with v x s b . Withˆ a La , n
Ž . Ž . Ž .v x s b , 4.2 is equivalent to the convergence of the r.h.s. of 3.26 toˆ a La , n wŽ . xzero, which is the assertion of Majumdar 1993 , Theorem 3.1 for full

support L. Summarizing the discussion of this paragraph, we have the
following theorem.

Ž .THEOREM 4.2 Asymptotic optimality . If Q is strongly compact and S sL

Ž .V, then t is asymptotically optimal if the component risk function u ¬ R t, QL

Ž .is equi- in t uniformly continuous and bounded.
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Ž .REMARK 4.1 Admissibility of t . Under Theorem 4.2 assumption on theL

Ž .component risk function, by Theorem 1 of Zhu 1992 , the compound risk is a
continuous function of u. Hence the admissibility of every compound rule

w Ž .Bayes versus a full support compound prior Ferguson 1967 , Theorem 3,
x Ž .Section 2.3 . By Theorem 2 of Zhu 1992 , b has full support if L has.L , n

Therefore, t is admissible under the assumptions of Theorem 4.2.L
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