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SMOOTHED FUNCTIONAL PRINCIPAL COMPONENTS
ANALYSIS BY CHOICE OF NORM1

BY BERNARD W. SILVERMAN

University of Bristol

The principal components analysis of functional data is often en-
hanced by the use of smoothing. It is shown that an attractive method of
incorporating smoothing is to replace the usual L2-orthonormality con-
straint on the principal components by orthonormality with respect to an
inner product that takes account of the roughness of the functions. The
method is easily implemented in practice by making use of appropriate

Ž .function transforms Fourier transforms for periodic data and standard
principal components analysis programs. Several alternative possible in-
terpretations of the smoothed principal components as obtained by the
method are presented. Some theoretical properties of the method are
discussed: the estimates are shown to be consistent under appropriate
conditions, and asymptotic expansion techniques are used to investigate
their bias and variance properties. These indicate that the form of smooth-
ing proposed is advantageous under mild conditions, indeed milder than
those for existing methods of smoothed functional principal components
analysis. The choice of smoothing parameter by cross-validation is dis-
cussed. The methodology of the paper is illustrated by an application to a
biomechanical data set obtained in the study of the behaviour of the
human thumb]forefinger system.

Ž . Ž .1. Introduction. Suppose we have data X t , . . . , X t that are as-1 n
sumed to be drawn from a stochastic process X on a bounded interval JJ, say.

Ž .Data that are or may be considered as being of this kind, rather than the
vectors of standard multivariate analysis, arise in an increasing number of

Ž .fields of application. Rice and Silverman 1991 discussed a method for
smoothed principal components analysis of such functional data, and some

Ž .properties of this method were described by Pezzulli and Silverman 1993 .
For an important perspective on the analysis of functional data, see Ramsay

Ž .and Dalzell 1991 and its published discussion.
In this paper, an alternative approach to functional principal components

Ž .analysis PCA will be proposed and investigated. This approach is simpler
both conceptually and computationally than the Rice]Silverman approach.
We present both theoretical and empirical results which indicate that the
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method allows the principal components of interest all to be estimated
simultaneously with a single choice of smoothing parameter; in the
Rice]Silverman method a sequence of estimation steps with decreasing
smoothing parameters was necessary. We investigate conditions under which
applying smoothing in the new framework will allow an improvement in
accuracy of the principal component weight functions. These conditions are
even milder than the corresponding conditions for the Rice]Silverman ap-

w Ž .xproach Pezzulli and Silverman 1993 .
The method proposed has in common with the Rice]Silverman method the

property of being a ‘‘nonparametric’’ method, in that the estimated principal
component functions are not constrained a priori to lie in any particular
finite-dimensional space; the data are allowed to speak for themselves to a
greater extent in the estimation process than would be the case if, for
example, we projected onto a finite-dimensional basis and then performed a
standard multivariate analysis. The way in which the roughness penalty is
included in the procedure is in some ways analogous to the approach of

Ž .Leurgans, Moyeed and Silverman 1993 to the canonical correlation analysis
of functional data.

The paper is set out as follows. In Section 2, we first of all establish
notation and review the existing approach. In Section 3, the new method is
set out, and the details of its implementation in practice are described. The
estimated principal components produced by the method have various possi-
ble interpretations, and these are discussed in Section 4. In Section 5, the
estimates are shown under suitable conditions to be consistent. The theoreti-
cal accuracy of the smoothing method is investigated in Section 6, where an
argument based on asymptotic expansions is used to obtain approximations
for the bias and variance of the estimators. These expressions are used to
determine conditions under which smoothing is advantageous, and to find
the ideal values of the smoothing parameter. In Section 7, a practical cross-
validation method for the automatic choice of the smoothing parameter is set
out, and in Section 8 the methodology of the paper is illustrated by its
application to a set of biomechanical data collected in a study of the way the
human thumb and forefinger squeeze an object.

2. Notation and more detailed background. We first of all set out
some notation that will be useful throughout the paper. For simplicity, we
shall assume that the mean function of the process X is known and has been

Ž .subtracted off, so without loss of generality we assume that EX t s 0.
Define G to be the covariance function

G s, t s EX s X tŽ . Ž . Ž .

ˆand G to be the sample covariance

n
y1Ĝ s, t s n X s X t .Ž . Ž . Ž .Ý i i

is1
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Ž . 2Given functions f and g, let f , g be the usual L inner product

f , g s f t g t dt .Ž . Ž . Ž .H
JJ

Ž 2 .We shall assume that G has an orthonormal expansion in the L sense in
terms of eigenfunctions g , so thatj

`

G s, t s l g s g t ,Ž . Ž . Ž .Ý j j j
js1

Ž .with l G l G ??? G 0. The g , X are the principal components of the1 2 j
Ž .stochastic process X. Dauxois, Pousse and Romain 1982 showed that the

ˆeigenfunctions and the eigenvalues of the sample covariance G are consistent
estimators of the g andl , respectively, and obtained some asymptoticj j
results for them. However, in many cases the principal component weight

ˆfunctions g estimated purely by a decomposition of G are excessively vari-j
able or rough.

The approach adopted in this paper will be based on a roughness penalty.
In order to quantify the ‘‘roughness’’ of a function f on JJ, a roughness
penalty such as H f 0 2 is used; for a detailed discussion of the use of roughness
penalties in statistical problems, see, for example, Green and Silverman
Ž .1994 . To define the roughness penalty, we shall assume that SS is a space of
suitably smooth functions on JJ and that R is a linear differential operator

w xdefined on SS . For functions f and g in SS , define the bilinear form f, g s
Ž . w xRf, Rg . The roughness penalty will be assumed to be f, f for all f in SS .

Define the operator Q s R*R, where R* is the adjoint of R. Let VV be the
space of ‘‘very smooth’’ functions f for which R*Rf is defined and falls in L2.

w x Ž . Ž .Then, provided f g SS and g g VV , we will have f , g s Rf, Rg s f, Qg .
In our case, the space SS will usually be the space of functions with

square-integrable second derivative on JJ, subject to periodic boundary condi-
tions if appropriate. We will have Rf s f 0 and

w xf , g s f 0 t g 0 t dt .Ž . Ž .H
JJ

Ž .2The roughness penalty will be H f 0 t dt. In this case, subject to the periodicJJ

boundary conditions, the operator R is self-adjoint. The space VV will be the
space of functions g such that g and its first three derivatives are absolutely
continuous on the periodic extension of JJ, and H g 99992 is finite. IntegratingJJ

by parts twice, it can be seen at once that H f 0 g 0 s H fg 9999 for sufficientlyJJ JJ

regular functions f and g. If we are not assuming periodicity, then VV will be
the space of functions g for which g has square-integrable fourth derivative
on SS and g 0 and g - are zero at the boundaries. In either case Q is the
fourth-derivative operator, and it is easy to check that H f 0 g 0 s H fg 9999,JJ JJ

integrating by parts twice.
Ž .The approach of Rice and Silverman 1991 to smoothed functional princi-

pal components analysis is also based on a roughness penalty idea. Their
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method depends on a sequence of smoothing parameters a ; the estimate ĝj j
of the jth principal component weight function is found by maximizing

ˆ w x1 g s G s, t g t ds dt y a g , g ,Ž . Ž . Ž . Ž .HH j

2 Ž .subject to the constraints Hg s 1 and g , g s 0 for k - j. It has been foundˆk
in practice to be appropriate to use smaller values of the smoothing parame-
ter for higher-order principal components.

The basic idea of this approach, as with roughness penalty methods
Ž .generally, is that the form 1 quantifies the trade-off between ‘‘fidelity’’ to the

Ž .data in this case the sample variance of the projection in the direction of g
and roughness as measured by the roughness penalty. The smoothing param-
eter controls the relative importance of the two terms. In the next section, a
different method for making this trade-off will be described.

3. Modifying the norm.

3.1. Rearranging the roughness penalty. The alternative approach inves-
tigated in this paper is obtained by a simple rearrangement of the maximiza-

Ž .tion in 1 . Rather than penalizing the variance of a principal component for
roughness, we build the roughness penalty into the orthonormality constraint
instead. For a given smoothing parameter a , define the inner product

w x2 f , g s f , g q a f , g ,Ž . Ž . Ž .a

5 5 2 Ž . wwith corresponding squared norm f s f , f . These are of course slighta a

generalizations of standard Sobolev inner products and norms; see Adams
Ž . x1975 .

Consider, now, the effect of performing a principal component analysis
Ž .imposing orthonormality with respect to the inner product ?,? . In othera

words we find a series of functions g such that g maximizes˜ ˜j j
ˆ 2Ž . Ž . Ž . 5 5 Ž .HHg s G s, t g t ds dt subject to g s 1 and g , g s 0 for k - j. We then˜a k a

estimate the jth eigenvalue of the variance operator by

˜ ˆ3 l s g s G s, t g t ds dt .Ž . Ž . Ž . Ž .˜ ˜HHj j j

In order to understand the motivation for this procedure, consider the
leading eigenfunction first of all. In the Rice]Silverman procedure the idea
was, subject to the eigenfunction being of fixed L2-norm, to maximize ‘‘vari-

Ž .ance’’ minus ‘‘roughness’’ with a suitable weighting . In the current proce-
dure, we maximize ‘‘variance’’ subject to ‘‘L2-norm’’ plus ‘‘roughness’’ being
fixed. To make a fair comparison, let us consider scale-invariant versions of
the procedure, where only the direction of the function matters. The
Rice]Silverman approach will maximize

w xvar g , X y a g , gŽ . 1
,

g , gŽ .
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while the new approach will maximize

var g , XŽ .
.w xg , g q a g , gŽ .

In both cases roughness will be penalized, but in a somewhat different way.

3.2. Practicalities. In this subsection we set out an algorithm for per-
Žforming the PCA in the way described above. Let us assume as is the case in

.many applications that the interval JJ may be considered as being periodic.
We concentrate on the case where R is the second-derivative operator.

In the context of periodic boundary conditions the algorithm now works in
terms of real Fourier transforms. The formulas obtained using complex
Fourier transforms are slightly simpler, but if we wish to use a standard
SPLUS routine such as prcomp for the principal component decomposition
step below, then complex data will present problems.

Let f be a series of Fourier functionsn

2pn t¡ y1r21r2 < <2 JJ sin , for n ) 0,ž /< <JJ~f t sŽ .n 2pn ty1r21r2 < <2 JJ cos , for n - 0,¢ ž /< <JJ

< <y1r2f t s JJ .Ž .0

ŽDefine r to be the eigenvalues of the differential operator R, so that sincen

.the Fourier functions are the eigenfunctions of R Rf s r f ; since R is then n n

second-derivative operator, we have

4p 2n 2

r s y .n 2< <JJ

Define the operator Q to be the fourth-derivative operator, so that Q has
eigenvalues r 2. Define an operator S byn

y1r2S s I q a Q .Ž .
This simple operator notation means that S is an operator such that if f is

Ž . 2 2any function in JJ, we will have I q a Q S f s f , so that S f is a solution in
JJ of the differential equation

g q a g 9999 s f .

In the periodic case the easiest way to write down S explicitly is in the
Ž 2 .y1r2Fourier domain: if f s Ý f f , then Sf s Ý s f f , where s s 1 q ar .n n n n n n n n

It is also interesting to note that S2 has the property that, given any
Ž .2 w xfunction f , the minimum over g of H f y g q a g, g will be given by

setting g s S2 f. Thus S2 corresponds in a certain sense to the usual spline
w Ž .xsmoothing operator see Green and Silverman 1994 . In spline smoothing

Ž . Ž .one is given a sequence of values f t possibly subject to error and thei
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smoother g is defined to be the minimizer of the penalized mean square error
y1 Ž Ž . Ž ..2 w x Ž .2 w xn Ý f t y g t q a g, g ; the expression H f y g q a g, g mini-i i

mized by S2 f is simply the continuous analog of the penalized mean square
error, and in this sense S2 f can be regarded as the ‘‘spline smoother’’ of a
continuously observed function f.

We can now develop an algorithm for PCA with respect to the inner
Ž .product ?,? in the periodic case. In the succeeding discussion, we usea

boldface letters to denote vectors of Fourier coefficients, so that f is the vector
of coefficients f of a function f. We use letters Q and S to denote then

corresponding operators in either domain; in the Fourier domain they are, of
course, diagonal matrices, with diagonal entries r 2 and s , respectively. Itn n

will always be entirely clear from the context whether Q and S represent
matrices or linear operators on functions.

For any functions f and g, we have

f , g s f Tg q a f TQg s f TSy2 g.Ž . a

˜Let G denote the sample covariance matrix of the Fourier transformed data,

˜ y1 TG s n X X .Ý i i
i

Suppose that the required estimated eigenfunctions are g and that g s˜ ˜j j
Sa . In the Fourier domain we will then have the corresponding vectors ofj

T ˜coefficients g successively maximizing g Gg subject to orthonormality re-˜j
quirements of the form g TSy2g s d . This implies that the vectors of˜ ˜j k jk

T ˜Fourier coefficients a successively maximize a SGSa subject to standardj
T ˜orthonormality a a s d . The matrix SGS is the covariance matrix of thej k jk

‘‘half-spline-smoothed’’ Fourier transforms SX . Hence this yields the follow-i
ing algorithm, which is easily implemented in SPLUS.

1. Fourier-transform the data.
Ž .2. Operate by S analogous to a ‘‘half-spline-smooth’’ .

3. Perform a standard PCA on the resulting sample Fourier coefficients, and
get eigenfunctions a , say.j

4. Let g s Sa .˜ j j
5. Apply an inverse Fourier transform to g to get the required estimated˜ j

eigenfunctions g .˜j

In practice the algorithm is implemented by truncating the Fourier series
at some point. Typically, but by no means necessarily, the data will be
obtained by sampling the continuous curves at some regular rate, and the
Fourier transforms will then be obtained by fast Fourier transformation of
that data. An SPLUS program for carrying out the analysis is available by
anonymous FTP from ftp.statistics.bristol.ac.uk in the directory
pub / reports/ FDA.

The principal components analysis of the half-smoothed data yields stan-
dard deviations s , say, each of which is the sample standard deviation of thej

2 ˜�Ž . 4 Ž . Ž .set a , SX : i s 1, . . . , n . Since a , SX s g , X , we have s s l , where˜j i j i j i j j
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˜ Ž .l are as defined in 3 . We shall refer further to these standard deviations inj
Section 4.

In this section we have concentrated exclusively on the roughness penalty
H f 0 2 with periodic boundary conditions on the functions in SS . To deal with
more general roughness penalties and spaces of smooth functions, one possi-
ble approach is to replace the Fourier functions f by eigenfunctions of then

operator Q s R*R, and to let r 2 be the eigenvalues of Q. At somewhatn

greater cost in linear algebra, one could expand, if it is more convenient, in a
basis other than eigenfunctions of Q. The operator S would of course then not
be diagonal in the basis f .n

4. Some interpretations of the estimated PCA. It turns out that
there are a number of interesting alternative interpretations of the smoothed
PCA as we have developed it. We shall consider these in turn.

4.1. The half-smoothed data. By construction, the a define principalj
wcomponents of the half-spline-smoothed data SX . Other authors e.g., Ram-i

Ž .xsay and Dalzell 1991 have suggested carrying out functional principal
components by first of all smoothing the data in some way and then carrying
out a PCA. Our construction illustrates an interesting connection between the
type of smoothing applied to the data and that implicitly used in the
estimation of the principal components in that the following two procedures
are equivalent:

1. Smooth the data by S, then perform a PCA, and then smooth the principal
components by operating by S.

2. Estimate the principal components by the smoothed PCA procedure using
w xthe roughness penalty ?,? .

4.2. PCA of the smoothed data. The g are principal components of the˜j
2 Ž .smoothed original data S X with respect to the inner product ?,? , in thea

following sense:

Ž .1. The g are orthonormal with respect to ?,? .˜j a

�Ž 2 . 4 �Ž 2 . 42. The sample correlation of g , S X and g , S X is zero for j / k.˜ ˜j i a k i a

Thus the smoothed data can be decomposed as a sum of uncorrelated terms
Ž .orthogonal with respect to ?,? asa

4 S2 X s g , S2 X g .Ž . ˜ ˜Ž .Ýi j i ja
j

The first property is immediate from the construction. To demonstrate the
� T 4second, we know that the sample correlations of the g X are zero for˜ j i

T T y2Ž 2 . Ž 2 .varying j; we then have g X s g S S X s g , S X .˜ ˜ ˜j i j i j i a

The variances s 2 can be interpreted as contributions to the variability ofj
2 5 5 2the smoothed data S X , measuring variability in the ? -norm, which ofai

course incorporates information about variability of derivatives. However, it
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can be seen that the total variability in this sense is the sample variance of
5 2 5 2 Ž . 5 5 2S X s SX , SX s SX , and so the smoothing will have more effect inai i i i
the calculation of the total variance than the implicit roughening involved in

5 5 2the norm ? .a

It can also easily be seen from the above discussion that the g can be˜j
�Ž 2 . 4found successively by maximizing the sample variance of g , S X subjecti a

5 5 2 Ž .to g s 1 and g , g s 0 for k - j.˜a k a

Note that this is the usual sense in which PCA with respect to a particular
inner product is understood. The PCA as we have carried it out in Section 3 is

Ž .a hybrid procedure, in that we consider the variances of g , X but we impose
Ž .orthonormality with respect to ?,? .a

4.3. A biorthogonal expansion of the original data. One of the most
instructive ways of viewing the PCA we have derived is in terms of a
‘‘biorthogonal’’ expansion of the original data. Define functions b s Sy1a sj j
Sy2g , in practice most easily found in the Fourier domain. Then it follows˜j

Ž .from 4 that

5 X s g , S2 X b s g , X b .Ž . ˜ ˜Ž .Ž .½ 5Ý Ýi j i j j i ja
j j

Although the functions b are not orthogonal in the usual sense, this expan-j
sion does indeed give a decomposition of the observations into effects that are
uncorrelated with one another. Thus the usual interpretation of PCA as
yielding ‘‘modes of variability’’ of the data remains. The price that is paid for
the nonorthogonality of the b is that the principal component scores arej
obtained by taking inner products with the g , which are of course smoothed˜j
versions of the b . The variances s 2 are the sample variances of the coeffi-j j

Ž .cients in the expansions in 5 .

4.4. PCA of the data with respect to a dual inner product. Another
interpretation of the roughened principal components b can be given byj

Ž .considering an inner product dual to ?,? . Given functions f and g, definea

²² :: T 2 2 2f , g s f S g s Sf , Sg s S f , S g .Ž . Ž . a

It then follows from the discussion of Section 4.2 that the b are the principalj
components of the original data with respect to the norm generated by
²² :: y2? ,? . Since b s S g , the b successively maximize the sample variance˜j j j

�²² ::4 ²² :: ²² ::of b, X subject to b, b s 1 and b, b s 0 for k - j, as required.i k
Ž .The expansion 5 can be rewritten as

²² ::X s b , X b .Ýi j i j
j

Relative to this norm, the variances s 2 do indeed quantify the contributionj
of the jth principal component to the overall variability of the original data.
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5. Consistency results.

5.1. Preliminary remarks. In this section, the consistency of the proposed
method is proved, under suitable conditions.

Before embarking on the proof, some remarks about the role of consistency
proofs and the framework within which we are working may be helpful. In
the author’s view, asymptotic results, such as consistency proofs and also

Žresults on rate of convergence, should be seen not as limiting results which
are of course of no immediate practical use, because all real samples are

.finite but as large-sample approximation results, which are of great use as
an aid to our general intuition about the method and are often of direct use

wwhen we have a reasonably large amount of data. Of course, if e.g., following
Ž .xTukey 1977 one views smoothing methods as data-analytic procedures

without an underlying probability model, then there is little meaning in any
finite-sample or asymptotic results based on models. However, in the author’s
view it is ultimately more fruitful to consider smoothing methods as model-
based methods for data exploration and summary, in which case theoretical
results are clearly relevant. For further discussion of the distinction between
model-based and non-model-based approaches see, for example, Green and

Ž .Silverman 1994 .
In the case of functional data analysis, consistency results are particularly

important because in some contexts certain ‘‘obvious’’ procedures are not
consistent and do not give meaningful information about the data under

Ž .consideration. See Leurgans, Moyeed and Silverman 1993 for an example
where a consistency proof is valuable in distinguishing between useful and
misleading approaches.

Finally, we remark that the asymptotic framework in which we shall work
is to assume we have an increasing number of observations, each of which is
a continuously observed function. Of course in practice functional observa-
tions can only ever be made discretely, but the whole aim of functional data
analysis is to gain additional intuition by considering functions as single
observations in function space rather than as high-dimensional vectors. With
modern data collection techniques it is in any case very often the case that
the data are observed at extremely rapid sampling rates and so are most
naturally considered as being continuously observed.

5.2. Statement of assumptions and the consistency theorem. Suppose that
we have independent identically distributed observations X drawn from ai
finite-variance stochastic process X defined on a compact set JJ. Except
where otherwise stated, our notation is as defined in Sections 2 and 3. Our
proof applies to a more general roughness penalty than H f 0 2 ; we can allow
w xf , g to be any nonnegative-definite, symmetric bilinear form defined on a

2Ž .subspace SS of L JJ . We then pursue all the definitions of Section 3,
substituting this more general roughness penalty. The choice of such matters
as the boundary conditions imposed on ‘‘smooth’’ functions is then governed
by the specification of the subspace SS .
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We shall make the following assumptions:

1. The covariance function G is strictly positive-definite, and the trace of G,
Ž . w Ž .xH G s, s ds, is finite. It then follows see, e.g., Taylor and Lay 1980 that

there is a complete sequence of eigenfunctions g of G, with eigenvaluesj
l G l G ??? ) 0.1 2

2. Each of the eigenfunctions g falls in SS and hence has finite roughnessj
w xg , g .j j

3. All the eigenvalues l have multiplicity 1, so that l ) l ) ??? ) 0. Thej 1 2
method we describe can be extended to deal with the case of multiple
eigenvalues but for simplicity we shall not do this.

THEOREM 1. Define the functions g as in Section 3, and set˜j

U 5 56 g s g r g for each j.Ž . ˜ ˜j j j

Assume that a ª 0 as n ª ` and that the assumptions set out above hold.
Then, for each j, with probability 1,

l̃ ª l as n ª `j j

and
2U7 g , g ª 1 as n ª `.Ž . Ž .j j

REMARKS. Throughout this section, convergence of any random quantity
Žwill be taken to be convergence with probability 1 in other words, conver-

.gence almost surely and will always be as n ª `. Note that the conclusion
Ž .7 is equivalent to either of the following conclusions:

Ž . U 5 U 5i The sign of g can be chosen to ensure that g y g ª 0.j j j
Ž .ii Defining P as the projection onto the subspace generated by g ,g

y18 P x s g , g g , x g ,Ž . Ž . Ž .g

we have

5 59 P y P ª 0.Ž . g g˜j j

5.3. Proof of Theorem 1.

General structure. The proof of Theorem 1 is carried out by induction. For
any positive integer k, define the statement HH to be the following threek
convergences as n ª `:

˜10 l ª l ;Ž . k k

11 a g , g ª 0; andŽ . ˜ ˜k k

2U12 g , g ª 1.Ž . Ž .k k



SMOOTHED FUNCTIONAL PCA 11

5 5 2 Ž .Because g s 1, the limit 11 is equivalent to˜ ak

5 5 213 g ª 1.Ž . ˜k

Ž .The limit 12 is, as noted above, equivalent to the limit
5 514 P y P ª 0.Ž . g g˜k k

We shall prove the following: for any j G 1, if HH is true for all k - j, thenk
HH is true also. In the case j s 1 our proof will demonstrate the unconditionalj
truth of HH . In the case of any j ) 1 we will have shown that if HH is true for1 k
k s 1, . . . , j y 1, then HH is true for k s 1, . . . , j y 1, j. By induction this willk

wdemonstrate the truth of HH for all j, completing the proof of Theorem 1. Thisj
form of the principle of mathematical induction is sometimes called the

Ž . xprinciple of complete induction; see, e.g., Spivak 1967 , page 23.

Details of the proof. Now consider any fixed j G 1, and assume induc-
Ž .tively that HH is true for all k - j. If j s 1 there is nothing to assume.k

Let P be the projection perpendicular to g , . . . , g ,1 jy1
jy1

Px s x y x , g g ,Ž .Ý k k
ks1

˜ Ž .and let P be the projection in the space SS in the ?,? inner producta

perpendicular to g , . . . , g ,˜ ˜1 jy1
jy1

P̃x s x y x , g g for x in SS .Ž .˜ ˜Ý k ka
ks1

˜For j s 1, the sums are empty and we define P and P each to be the identity.
˜We can now demonstrate the closeness of P and P in a useful sense.

LEMMA 1. For any j G 1, suppose that HH holds for all k - j. Then,k
˜defining P and P as above,

˜ ˆ ˜< <15 sup Px , GPx y Px , GPx ª 0.Ž . Ž . Ž .
5 5x F1a

PROOF. Consider j G 2. Confining attention throughout to x in SS , for
each k - j, using the triangle and Cauchy]Schwarz inequalities and the fact

5 5 5 5that x F x , we havea

5 5sup x , g g y x , g gŽ . Ž .˜ ˜k k k ka
5 5x F1a

5 5 5 5F sup x , g g y x , g g q sup a x , g gŽ . Ž .˜ ˜ ˜ ˜k k k k k k
5 5 5 5x F1 x F1a a

5 U U 5 5 U U 5F sup x , g g y x , g g q sup x , g g y x , g gŽ . Ž . Ž . Ž .˜ ˜k k k k k k k k
5 5 5 5x F1 x F1

1r21r2 5 5w x16 q sup a x , x a g , g gŽ . Ž . ˜ ˜ ˜Ž .k k k
5 5x F1a

5 5 5 5 217 s P y P q 1 y g q o 1 .Ž . Ž .˜Ž .g g k˜k k
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Ž . Ž . Ž .The quantity in 16 is o 1 because of the inductive assumption 11 and the
w x 5 5 2 5 5facts that a x, x F x and g F 1. Substituting the alternative forms˜a k

Ž . Ž . Ž .14 and 13 of the inductive hypotheses into 17 now gives

5 518 sup x , g g y x , g g ª 0 for all k - j.Ž . Ž . Ž .˜ ˜k k k ka
5 5x F1a

It follows by summing over k - j that

˜5 5P y P xŽ .
19 sup ª 0.Ž .

5 5x axgSS

Ž .In the case j s 1, 19 of course holds trivially.
Ž .Dauxois, Pousse and Romain 1982 showed, by appealing to the strong

ˆ5 5law of the large numbers in Hilbert space, that G y G ª 0. By combining
Ž .this result with the uniform convergence result 19 , we have

˜ ˆ ˜< <sup Px , GPx y Px , GPx ª 0,Ž . Ž .
5 5x F1a

completing the proof of the lemma. I

We can now prove the three parts of HH successively.j

Ž . 5 5 Ž .PROOF OF 10 FOR k s j. The maximum value over g F 1 of Pg , GPg
˜ ˆ ˜Ž . 5 5is l and is attained at g , and the maximum of Pg , GPg over g F 1 isaj j

l̃ , and is attained at g . We therefore have˜j j

20 l s Pg , GPg G Pg U , GPg U G Pg , GPgŽ . ˜ ˜Ž . Ž . Ž .j j j j j j j

˜ ˆ ˜ ˜21 s Pg , GPg q o 1 s l q o 1 ,Ž . Ž . Ž .˜ ˜j j jž /
Ž . Ž .using property 15 . On the other hand, we have, again using 15 ,

˜ ˆ ˜Pg GPgj j˜ ˜ ˆ ˜l s Pg , GPg G ,˜ ˜j j jž / 5 5 5 5g gž /aj ja

Pg GPgj jG , q o 1Ž .ž /5 5 5 5g ga aj j

22Ž .

l js q o 1 s l q o 1 ;Ž . Ž .j25 5g aj

5 5 w xthe fact that g ª 1 holds since a ª 0 and g , g remains fixed. Combin-aj j j
Ž . Ž . Ž .ing 21 and 22 now completes the proof of 10 for k s j. I
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Ž . Ž .PROOF OF 11 FOR k s j. Since all the inequalities in 20 tend to equali-
ties, it also follows that

Pg , GPg˜ ˜Ž .j j25 5a g , g s 1 y g s 1 y ª 0,˜ ˜ ˜j j j U UPg , GPgŽ .j j

Ž .completing the proof of 11 , the second part of HH , for k s j. Ik

Ž . Ž .PROOF OF 12 FOR k s j. We first consider j G 2 and set x s g in 18 .˜j
5 5Since g s 1 and, for each k - j,˜ aj

5 5 5 5 < <g , g g y g , g g s g , g g s g , g ,˜ ˜ ˜ ˜ ˜ ˜Ž . Ž . Ž .Ž .j k k j k k j k k j ka

Ž . Ž .it follows from 13 for k s j and from 18 that, for each k - j,

lim g , g U s lim g , g s 0,Ž . ˜Ž .k j k j

so that
2U23 g , g ª 0.Ž . Ž .Ý k j

k-j

Ž .For j s 1, 23 is trivially true since the sum is empty.
We now consider the expansion of g U in terms of the complete orthonormalj

sequence g . We havei

` `
U U U24 Pg s P g , g g s g , g gŽ . Ž . Ž .Ý Ýj j i i j i i

is1 isj

since Pg s 0 for i - j and 1 for i G j. Now using the fact that Gg s l gi i i i
yields

`
U U25 GPg s l g , g g .Ž . Ž .Ýj i j i i

isj

Ž . Ž .Putting 24 and 25 together, and using the orthonormality of the g , nowi
gives

2U U U26 Pg , GPg s l g , g .Ž . Ž .Ž . Ýj j i i j
iGj

5 U 5 2 5 U 5 2The fact that P is a projection implies that Pg F g s 1; combiningj j
Ž .this with 26 now gives

22U U U U5 5l y Pg , Gg G l Pg y l g , gŽ .Ž . Ýj j j j j i i j
iGj

2Us l y l g , gŽ .Ž .Ý j i i j
i)j

27Ž .

2UG l y l g , g G 0Ž .Ž . Ýj jq1 i j
i)j

Ž .since l is a decreasing sequence.i
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Ž . Ž U U .Since all the inequalities in 20 tend to equalities, l y Pg , Gg ª 0j j j
Ž .and so all the inequalities in 27 tend to equalities. Since l / l , it followsj jq1

that

2U28 g , g ª 0.Ž . Ž .Ý i j
i)j

Ž . Ž . Ž U .2 5 U 5 2Combining 23 and 28 with the property that Ý g , g s g s 1i i j j
Ž U .2 Ž .demonstrates that g , g ª 1, completing the proof of 12 for k s j. By thej j

inductive argument laid out above, the proof of Theorem 1 is now complete. I

6. The effect of smoothing. In this section, some heuristic calculations
are carried out to investigate the effect that smoothing, in the sense we have
described, has on the estimation of the eigenfunctions and eigenvalues of G.

Ž .The calculations parallel those given in Pezzulli and Silverman 1993 for the
Rice]Silverman method of smoothing. They will demonstrate that the method
of smoothing proposed in this paper is appropriate under even milder condi-
tions than the Rice]Silverman method.

6.1. Asymptotic expansions. We shall concentrate on the estimation of
˜any particular eigenfunction g with eigenvalue l, and we shall let g and l be˜

the estimates as defined in Section 3. The basic idea of our heuristic calcula-
tions is to consider an asymptotic expansion to find the leading bias and

˜variance terms in both l and g . Because we have already shown that the˜
method is consistent, it is reasonable to assume that an asymptotic expansion
will have good approximation properties.

It will be assumed that g is the kth eigenfunction g of G and that itk
corresponds to an eigenvalue l of multiplicity 1. The subscript k will bek
omitted almost throughout. We shall measure accuracy in the estimation of g
in terms of integrated square error. We shall assume that the eigenfunctions
g all fall in the space of ‘‘very smooth’’ functions VV .j

The asymptotic expansions are carried out as follows. It can be seen from
the definition of g that the g are solutions of the generalized eigenproblem˜ ˜j j

ˆ ˜29 Gg s l I q a Q g .Ž . Ž .˜ ˜
y1r2 ˆWe set « s n , because in various senses the difference between G and G

is exactly of order « ; specifically, the covariance structure of the process
1r2 ˆŽ .n G y G does not vary with n.

Ž .The eigenproblem 29 is a perturbation of the eigenproblem Gg s lg in
two ways, in that the matrices on both sides of the equation are subject to

Ž .small perturbations. With this in mind, we expand 29 by setting

Ĝ s G q «D ,

g s g q «g Ž1. q ag Ž2. q « 2g Ž11. q «ag Ž12. q ??? ,˜
˜ Ž1. Ž2. 2 Ž11. Ž12.l s l q «l q al q « l q «al q ??? .
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Set

w xr s g , g s g ,Qg .Ž .
Write P for the projection P onto the space generated by g . Define P to beg

the mapping onto the space perpendicular to g given by

y1
30 P s l y l PŽ . Ž .Ý j g j

j/k

Ž .so that, for any x, P l y G x is the projection of x onto the space perpendic-
Ž . Ž .ular to g , namely, I y P x. Note also that Pg s 0, so that P I y P s P.

˜We will need to substitute the expansions of g and l in two equations. The˜
Ž .first is the eigenfunction condition 29 , which gives

G q «D g q «g Ž1. q ag Ž2. q ???Ž . Ž .
31 s l q «lŽ1. q alŽ2. q ??? I q a QŽ . Ž . Ž .

= g q «g Ž1. q ag Ž2. q ??? ,Ž .
Ž Ž . .and the second is the normalization condition g , I q a Q g s 1, which˜ ˜

becomes

32 g q «g Ž1. q ag Ž2. q ??? , I q a Q g q «g Ž1. q ag Ž2. q ??? s 1.Ž . Ž .Ž . Ž .Ž .
Our strategy will now be to match the coefficients of powers of a and « in

Ž . Ž .31 and 32 . These will give various expressions for the terms in the
˜expansions of g and l, which will then be used to investigate the mean˜

integrated squared error properties of g as an estimator of g . We shall not˜
give explicit expressions for all the terms considered but will confine our-
selves to obtaining properties that will be needed in the summing-up discus-
sion in Section 6.2.

Ž . Ž .Terms in « . Matching terms in « in 31 and 32 , respectively, gives

33 Gg Ž1. q Dg s lg Ž1. q lŽ1.gŽ .
and

34 g , g Ž1. s 0.Ž . Ž .
Ž .The second equality follows from the property g , g s 1 and can be written

Ž1. Ž .as Pg s 0. We now take the inner product of g with 33 . Using the fact
Ž Ž1.. Ž Ž1.. Ž Ž1..that g , Gg s Gg , g s lg , g , this yields

lŽ1. s g , Dg .Ž .
We also have

l y G g Ž1. s ylŽ1.g q Dg .Ž .
Ž . Ž1. Ž1.Operating by P and using the fact that I y P g s g then yields

35 g Ž1. s PDg .Ž .
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Ž .Terms in a . We now match the terms in a in the two expansions 31 and
Ž .32 . This yields

36 Gg Ž2. s lg Ž2. q lŽ2.g q lQgŽ .
and

37 2 g , g Ž2. q g , Qg s 0.Ž . Ž .Ž .
Ž .As before, taking the inner product of g with 36 gives

38 lŽ2. s yl g , Qg s ylr ;Ž . Ž .
Ž . Ž . Ž2.rearranging 36 to give an expression for l y G g and then operating by

P gives

I y P g Ž2. s ylPQg .Ž .
Ž2. Ž .The component of g parallel to g is given from 37 ; we have

1 1Ž2. Ž2.Pg s g , g g s y g , Qg g s y rg ,Ž .Ž . 2 2

1Ž2.so that g s y rg y lPQg and2

2 1 2Ž2. 2 25 5 5 539 g s r q l PQg .Ž . 4

Terms in a« . We now consider terms in a« . We will only need an
Ž . Ž12.expression for I y P g , which we shall find by following the same steps as

Ž .previously. From 31 we have

Gg Ž12. q Dg Ž2. s lg Ž12. q lQg Ž1. q lŽ1.g Ž2. q lŽ1.Qg
40Ž .

q lŽ2.g Ž1. q lŽ12.g .

Ž .Rearranging 40 and operating by P gives

I y P g Ž12. s P l y G g Ž12.Ž . Ž .
s P Dg Ž2. y lPQg Ž1. y lŽ1.Pg Ž2. y lŽ1.PQg y lŽ2.Pg Ž1. .

Ž .We now use the property that P s P I y P and the values we have already
derived for lŽ1., lŽ2., g Ž1. and g Ž2. to yield

1Ž12. 2I y P g s ylP DPQg y rP Dg y lPQP Dg q l g , Dg P QgŽ . Ž .2

y g , Dg PQg q lrP2 DgŽ .
41Ž .

1 2s ylP DPQg y rP Dg y lPQP Dg q lP QP Dg2

y PQP Dg q lrP2 Dg .

Terms in « 2. Matching terms in « 2 and going through the familiar
manipulations gives

42 Gg Ž11. q Dg Ž1. s lg Ž11. q lŽ1.g Ž1. q lŽ11.gŽ .
and

1 1 2Ž11. Ž1. Ž1. 5 5g , g s y g , g s y P Dg .Ž . Ž .2 2
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Ž .It follows from 42 that

I y P g Ž11. s P D y lŽ1. g Ž1. s P DP Dg y P2 D P Dg .Ž . Ž .

6.2. Mean integrated square error calculations. In order to proceed we
need some moment properties of D. It is clear that ED s 0. In order to deal
with quadratic forms, suppose that A is any self-adjoint operator. Then,
using the fact that

cov X s X t , X u X v s G s, u G t , v q G s, v G t , u ,Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .Ž .
we can conclude that

43 E D AD s GAG q tr AG G.Ž . Ž . Ž .
Ž .For further details, see Pezzulli and Silverman 1993 .

Ž . Ž . Ž11.Applying 43 to find E I y P g yields the value zero, since the relation
Pg s 0 eliminates all four terms one has to consider. Therefore we have

1 1 1Ž11. 2 2Eg s y g E P Dg , P Dg s y g g , E DP Dg s y l tr P G g ,Ž . Ž .Ž .2 2 2

5 5 2and hence, since g s 1, we have
1Ž2. Ž11. 244 g , Eg s lr tr P G .Ž . Ž .Ž . 4

Ž . Ž1.Bias terms. Using the fact that ED s 0, we have from 35 that Eg s 0.
Therefore the leading terms in the bias of g will be ag Ž2. q « 2Eg Ž11., and so˜
we will have

5 5 2 2 5 Ž2. 5 2 2 Ž2. Ž11. 4 3 2 2 3Eg y g f a g q 2a« g , Eg q O « , a« , a « , aŽ .Ž .˜
1 2 12 2 2 2 25 5f a r q l PQg q a« lr tr P G ,Ž .Ž .4 2

45Ž .

Ž . Ž .substituting 39 and 44 .
The corresponding approximation for the norm of the leading bias term in

wthe Rice]Silverman procedure with smoothing parameter a is from Pezzulli˜
Ž .x 2 2 5 5 2and Silverman 1993 a l PQg ; this is not on its own directly comparable˜

Ž .with 45 because of the different roles that the smoothing parameters play in
the two procedures.

Variance terms. The variance part of the mean integrated square error is
5 5 2E g y Eg , which can be expanded as a power series in a and « by˜ ˜

substituting the expansion of g . Since g Ž2. is purely deterministic, the leading˜
y1 Ž Ž1. Ž1.. y1 Ž 2 .variance term will be n E g , g s n l tr P G . This does not depend on

the amount of smoothing applied, and the effect of the smoothing is on the
Ž .next term in the variance. Define V a to be the variance term withn

Ž .smoothing parameter a , and define V 0 to be the variance term when then
principal components analysis is carried out without any smoothing. Then we
have

46 V a y V 0 f 2a ny1E g Ž1. , g Ž12. q O a« 3 , a 2« 2 .Ž . Ž . Ž . Ž .Ž .n n
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Ž . Ž . Ž12.There are six terms in the expression 41 for I y P g . Take the inner
Ž1. Ž .product of each of them with g s P Dg and then apply 43 ; this gives 12

terms in all, 9 of which are zero. For example,

E P Dg , P DPQg s E g , DP2 DPQgŽ . Ž .
s g , GP2 GPQg q tr GP2 g , GPQg ,Ž . Ž .Ž .

Ž . Ž . Ž .which is equal to zero, because, for any x, g , GP x s Gg , P x sl g , P x s0.
Pursuing manipulations of this type, we obtain

1Ž1. Ž12. 2 2 2 2 347 E g , g s y lr tr P G y l tr P QPG q l r tr P G .Ž . Ž . Ž .Ž . Ž .2

Ž .Pezzulli and Silverman 1993 show that for the Rice]Silverman procedure
Ž .with smoothing parameter a the approximation corresponding to 46 is˜

Ž . Ž . y1� Ž 2 . Ž 3 .4V a y V 0 f 2a n yl tr P QPG q lr tr P G . Just as in the case of˜ ˜n n
Ž .the leading bias term, this cannot in isolation be compared directly with 47 ,

but it is interesting to note that the expression depends linearly on the
eigenvalue l rather than quadratically on l and the roughness r of the
eigenfunction.

6.3. Is smoothing advantageous? In this section we put together the
results obtained above to determine under what conditions the estimation of
g will be improved by smoothing to some degree. We shall investigate thisk
question by considering whether the mean integrated square error of g̃k
increases or decreases as a moves away from zero. If the derivative of the
mean square error, considered as a function of a , is negative at a s 0, then
we can conclude that some degree of smoothing will give better estimation of
g in the L2 sense. We shall make the dependence on k explicit from herek
onward. We shall write r for the roughness of the jth eigenfunction,j

w xr s g , g s g , Qg .Ž .j j j j j

Ž .Let M a be the mean integrated square error of g for sample size n and˜n k
Ž . Ž .smoothing parameter a . We can then see, by combining 46 and 45 , that

48 nM X 0 s 2 g Ž2. , Eg Ž11. q 2 E g Ž1. , g Ž12. q o 1 as n ª `.Ž . Ž . Ž .Ž . Ž .n

Ž .Substituting for the terms in 48 then gives
1

X 2 2 2 2 3nM 0 f y l r tr P G y 2l tr P QPG q 2l r tr P GŽ . Ž . Ž .Ž .n k k k k k2
1 l l rj j j2s y l r y 2lÝ Ýk k k2 32 l y l l y lŽ . Ž .j/k j/kk j k j

l j2q 2l r Ýk k 3
l y lŽ .j/k k j

49Ž .

1
2 Ž1. Ž2.s y2 l b q r l b s y2b ,k k k k k kž /4

say, where
y3Ž1.b s l l y l r y rŽ .Ž .Ýk j k j j k

j/k
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and
y2Ž2.b s l l y l .Ž .Ýk j k j

j/k

X Ž .In order for M 0 to be negative, we require b ) 0. This is a mild condition,n k
Ž Ž2. .indeed since b is necessarily positive milder than the correspondingk

Ž1. Ž .criterion b ) 0 obtained by Pezzulli and Silverman 1993 for thek
Rice]Silverman method. A sufficient, but by no means necessary, condition
for both b and b Ž1. to be positive is for r - r if and only if j - k, so thatk k j k
the eigenfunctions of lower index than k are smoother than g and those ofk
higher index are rougher than g .k

6.4. The ideal amount of smoothing. Define

w xr s g , Qg s g , g .Ž .jk j k j k

Ž . Ž .For small a , the results 45 and 49 give the approximation

50 M a f M 0 q h a 2 y 2b ny1a ,Ž . Ž . Ž .n n k k

Ž .where b is as defined in 49 andk

2 12 25 5h s l PQg q rk k k k4

y21 2 2 2s r q l l y l r .Ž .Ý Ýk k j l lk4
l j/l

51Ž .

Ž .Up to the degree of approximation in 50 , the optimal a for the estimation
of g will bek

52 aU s ny1hy1 max b , 0 .Ž . Ž .k k k

It can be seen from the definitions of h and b that these quantities are bothk k
weighted sums depending on the quantities r ; the weights depend on thei j
ratios between the various l ’s. Although the way in which a depends onj k
the quantities l and r is not transparent, this provides theoretical supportj i j
for the empirical observation that the appropriate amount of smoothing does
not depend dramatically on the index k.

It may be interesting to compare the results of Pezzulli and Silverman
Ž . Ž .1993 . From equation 25 of that paper, but using our notation, the asymp-
totically optimal value of the smoothing parameter for the estimation of g byk
the Rice]Silverman method will satisfy

U y1 5 5y2 Ž1.a s n PQg max l b , 0˜ Ž .k k k k

ny1 max first term of 49 , 0Ž .Ž .
s l .k first term of 51Ž .

53Ž .

Leaving aside any differences caused by the fact that it is only the first terms
Ž . Ž . Uof 49 and 51 that are involved, it is striking that a is l multiplied by an˜k k

expression that depend on the l ’s only through the ratios between them. Inj
most practical cases, the l decay rapidly, and this illustrates why in practicek
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it is found appropriate in the Rice]Silverman method to choose much smaller
smoothing parameters for the estimation of higher-order eigenvalues.

Ž .7. Choosing the smoothing parameter. Rice and Silverman 1991
discussed a cross-validation method for choosing the smoothing parameter in
their procedure. Of course, in many problems a subjective choice of smoothing
parameter is satisfactory or even preferable; for general remarks on this

wŽ . xmatter, see, for example, Green and Silverman 1994 , Section 3.1 . Never-
theless there are many contexts where an automatic choice of smoothing
parameter may be helpful, and cross-validation provides a natural approach.

Because the estimation procedure works essentially by estimating all
the eigenfunctions simultaneously, it is most natural to construct a cross-
validation score that takes all the eigenfunctions into account. In order to
consider how such a score could be calculated, suppose that X is an observa-
tion from the population. Then for each m the principal components g , . . . , g1 m
have the property that they explain more of the variation in X than any
other collection of m vectors. Suppose g , . . . are estimates of the principal˜1

Ž .component functions. Let G be the m = m matrix whose i, j element is them
Ž .inner product g , g . Then the component of X orthogonal to the subspace˜ ˜i j

spanned by g , . . . , g is of course˜ ˜1 m

m m
y1j s X y G g , X g .Ž .˜ ˜Ž .Ý Ý i jm m i j

is1 js1

If we wished to consider the efficacy of the first m components, then a natural
5 5 2measure to consider would be E j ; in order not to be tied to a particularm

5 5 2m, one could, for example, seek to minimize Ý E j . In both cases, ofm m
course, we do not have new observations X to work with, and the usual
cross-validation paradigm has to be used, as follows:

1. Subtract off the overall mean from the observed data X .i
w i xŽ .2. For a given smoothing parameter a , let g a be the estimate of g˜j j

obtained from all the data except X .i
w i xŽ .3. Define j a to be the component of X orthogonal to the subspacem i

� w i xŽ . 4spanned by g a : j s 1, . . . , m .˜j
w i xŽ .4. Combine the ‘‘deleted remainders’’ j a to obtain the cross-validationm

scores
n

2w i x5 554 CV a s j aŽ . Ž . Ž .Ým m
is1

and possibly
`

55 CV a s CV a .Ž . Ž . Ž .Ý m
ms1

Ž .In practice one would of course truncate the sum in 55 at some conve-
nient point. Indeed, given n data curves one can estimate at most n y 1
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principal components and so the sum must be truncated at m s n y 1 if
not at a smaller value.

Ž . Ž .5. Minimize CV a or CV a to provide the choice of smoothing parameter.m

Ž .Clearly there are other possible ways of combining the CV a to produce am
cross-validation score to take more than one value of m into account; this is a
matter for future investigation.

There are various computational tricks that can be used to compute the
Žcross-validation score efficiently. For example, the covariance matrix in the

.Fourier transform domain of the population with the ith observation deleted
ˆcan be calculated economically from the full covariance operator G, and

ˆfurthermore its eigenvalues can be related to those of G. We shall not pursue
these in detail here.

8. An example. In this section, the methodology described above is
applied to an example. The records consist of the force exerted by the thumb
and forefinger during each of 20 brief squeezes. The task required of the
subject during each squeeze was to maintain a background force on a force
meter and then to give a force impulse aimed at peaking at a predetermined
maximum value, returning to the baseline afterward. The interest in the
experiment is to study the behaviour of the muscle group controlling the
thumb]forefinger muscle group and the way in which the brain controls this
system. The data were collected at the MRC Applied Psychology Unit, Cam-
bridge, by R. Flanagan, and were kindly supplied to the author by J. O.
Ramsay. For a detailed description of the data and of another approach to its

Ž . Ž .analysis see Ramsay, Flanagan and Wang 1995 and Ramsay 1995 .
In Figure 1, the raw data curves are presented. It can be seen that these

exhibit considerable local variability, and we shall see this reflected in the
Ž .principal components. Ramsay, Flanagan and Wang 1995 fitted a paramet-

ric curve to each of these curves and then smoothed the residual curves

FIG. 1. Grip force data.
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FIG. 2. First four raw principal components for grip force data.

before applying their own approach to functional PCA. We shall work with
the raw data and investigate the consequences of our method of smoothed
PCA.

In Figures 2 and 3 the effect of applying principal components analysis
without smoothing and of using our method for smoothed PCA are compared.
In both cases, the first four principal component curves are plotted. It can be
seen that the raw principal component curves are very noisy. The smoothing

Ž .parameter in Figure 3 is chosen by minimizing the score CV a defined in
Section 7. It was found satisfactory to calculate the cross-validation score at a

Ž .grid on a logarithmic scale of values of the smoothing parameter a and pick
out the minimum. The grid can be quite coarse since small changes in the
numerical value of a do not make very much difference to the smoothed
principal components. For this example the cross-validation scores were

FIG. 3. First four smoothed principal components for grip force data, smoothing parameter
chosen by cross-validation.
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calculated for a s 0 and a s 1.5iy1, for i s 1, . . . , 30, and the minimum of
Ž .CV a was attained by setting a s 37.
In Figure 4, the effect on the mean curve of adding and subtracting a

multiple of each of the first four smoothed principal components is given. It
can be seen that the first component corresponds to an effect whereby the
shape of the impulse is not substantially changed, but its overall scale is

Ž .increased. The second component with appropriate sign corresponds roughly
to a compression in the overall time scale on which the ‘‘squeeze’’ takes place.
Both of these effects were removed in the analysis of Ramsay, Flanagan and

Ž .Wang 1995 before any detailed analysis was carried out. It is, however,
interesting to note that they occur as separate components and therefore are
essentially uncorrelated with one another, and with the effects found subse-
quently. The third component corresponds to an effect whereby the main part
takes place more quickly but the tail after the main part is extended to the
right. This corresponds to an effect detected by Ramsay, Flanagan and Wang
Ž .1995 expressed in rather different terms. The fourth component corresponds
to a higher peak correlated with a tail-off that is faster initially, but subse-
quently slower than the mean. The first and second effects are transparent in
their interest, and the third and fourth are of biomechanical interest in
indicating ways in which the system compensates for departure from the
Ž .remarkably reproducible overall mean. The smoothing we have described
makes the effects very much clearer than they are in the raw principal
component plot.

The estimated variances s 2 indicate that the four components displayed
respectively explain 86.2, 6.7, 3.5 and 1.7% of the variability in the original
data, with 1.9% accounted for by the remaining components. Examination of
the individual principal component scores indicates that there is one curve

FIG. 4. Effect on the overall mean curve of adding and subtracting a suitable multiple of each of
the first four smoothed principal components.
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Žwith a fairly extreme value of principal component 2 corresponding to
.moving more quickly than average through the cycle , but this curve is not

unusual in other respects.
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