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We characterize the Wishart distributions on a symmetric cone C. If
C = (0, + ), this has been done by Lukacs in 1955. If C is the cone of
positive definite symmetric matrices, this has been done by Olkin and
Rubin in 1962. We both shorten and extend the Olkin-Rubin proof
(sometimes obscure) by using three modern ideas: (i) try to avoid artificial
coordinates in differential geometry; (ii) the variance function of a natural
exponential family F characterizes F; (iii) symmetric matrices are a
particular example of a Euclidean simple Jordan algebra.

1. Introduction. The last decade of this century does not seem to be
fond of characterizations of distributions in statistics: too many trivial theo-
rems about the characterizations of the uniform or exponential laws have
appeared in the literature, and even elegant theorems are in disrepute
because they have not yet proved useful in applied statistics. However, they
give insight into the laws of nature and they may reveal quite beautiful
mathematics.

One of these elegant theorems is due to Lukacs (1955). We state it as
follows.

THEOREM 1.1. Let o> 0 and p > 0. The gamma distribution on R with
scale parameter o and shape parameter p is

(1.1) v, ,(dx) = exp(—xa )P Yo P(T(p)) Lo () dx.

Let U and V be two independent non-Dirac and nonnegative random variables
such that U + Vis a.s. positive, and define Z = U/(U + V). Then U + V and
Z are independent if and only if there exists o > 0, p > 0 and q > 0 such that
Z2WU)=v,, and ZV) =y, ,.

We shall give a proof of Theorem 1.1 in Section 2: intrinsically, it is the
Lukacs proof, but here Laplace transforms replace characteristic functions;
an essential idea to permit the use of natural exponential families.

Theorem 1.1 has been nicely generalized by Olkin and Rubin (1962). We
shall state their result in Theorem 1.2 in a slightly different but more general
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764 M. CASALIS AND G. LETAC

form. Their paper suffers from several obscurities, and we comment on them
in Section 7.

Let us first introduce some notation, including the Wishart distributions
on symmetric matrices. For the sake of convenience and future generaliza-
tions, we change the traditional notation for Wishart distributions slightly
[as described in e.g., Muirhead (1982) and Seber (1984)], just as it is easier to
work with gamma distributions instead of y? if we do not have practical
purposes.

For a fixed integer » > 1, M D E > E, D E, denote, respectively, the (r, )
real matrices, the symmetric matrices, the positive matrices and the positive
definite matrices. If o isin E, and if p belongs to the set

1 r—1 r—1
(1.2) —,1,..., U ,+00),
2 2

2
then the Wishart distribution v, , on E . with scale parameter o and shape
parameter p is defined by its Laplace transform as follows: for 6 in E,

(1.3) /E exp(—Trace 6x)y, ,(dx) = (det(l, + 60)) ",

where I, is the identity matrix. [For explanations about the gaps of (1.2)
consult Gindikin (1975); a self contained proof is in Casalis and Letac (1994).]

We are not going to give too many details here about v, ,; see the
references above. Let us just recall that if Z(U) = v, ,, then U ~1 exists a.s.
if p>(r—1)/2, and U ! exists with probability 0 if p < (r — 1)/2. Here is
now our version of the Olkin—Rubin theorem [Olkin and Rubin (1962)].

THEOREM 1.2. With the previous notation, let w: E,— M be a measurable
function such that, for all b in E, one has w(b) w(b)' = b. Let U and V be
two independent non-Dirac random variables of E, such that U + Visin E,
almost surely, and define

Z = (w(U + V) 'U((w(U +V))") .

Then we have equivalence between the following:

(a) U+ V and Z are independent, U and V are not concentrated on the
same one-dimensional space and, for any orthogonal matrix T, A(Z) =
ATZ T

(b) there exist o in E_, p and q in (1.2), such thatp + q > (r — 1)/2, and
Z2WU)=v,,and Z(V) =y, ,.

Olkin and Rubin seem to assume that U and V are in E,. They do not
prove (b) = (a); they call the proof straightforward: in this case one can
actually use the fact that U and V have densities; this enables us to compute
the joint density of (Z, U + V). Details appear in a later paper by Olkin and
Rubin (1964). If U and V are not necessarily invertible, this method is no
longer available, and we shall give a proof of (b) = (a) in Section 4 which uses
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only the fact that #(U) and (V) belong to natural exponential families
which are generated by measures on E, which are quasi-invariant by
transformations E — E of the form u — wuw".

Anyway, the hard part is (a) = (b). We became interested in Theorem 1.2
because of the fact that many properties of gamma and Wishart distributions
have recently been extended to Wishart distributions on symmetric cones
[Casalis (1990, 1991), Letac (1994) Massam (1994), Casalis and Letac (1994),
Massam and Neher (1996) and Letac and Massam (1995)]. See also Artzner
and Fourt (1974). However, understanding the Olkin—Rubin proof of Theorem
1.2 appears to be a strenuous task [we gave up after their identity (23)]. In
fact, we have realized that considering their beautiful ideas before their
identity (17), but using modern tools like:

(1) differentiation without coordinates,
(i1) variance functions of natural exponential families and
(iii) Euclidean simple Jordan algebras,

leads to a neater proof, ready for a generalization to a general symmetric
cone.

We are aware that concepts (i) and (ii) belong to the realm of statisticians,
and not (iii) per se (although there are some timid appearances, in the
statistical literature, of Wishart distributions on Hermitian complex or
quaternionic matrices). For this reason we organize this paper as follows:
Section 2 contains a reminder of the variance function of a natural exponen-
tial family, as well a proof of Theorem 1.1. Section 3 recalls the definitions
about Euclidean Jordan algebras, symmetric cones and Wishart distributions
on them, and states the extension of Theorem 1.2 in this context (Theorems
3.1 and 3.2). Section 4 proves the (b) = (a) part of Theorem 1.2 by proving
Theorem 3.1. Sections 5 and 6 are really the heart of the paper and prove the
(a) = (b) part of Theorem 1.2 through Theorem 3.2. Things are explained in
such a way that the reader who is interested only in Theorem 1.2 and in
classical Wishart distributions can follow the proofs of Sections 4, 5 and 6.
The concluding Section 7 offers some comments on Olkin and Rubin (1962).

2. The variance function of a natural exponential family. Since
coordinates are a special burden in Olkin and Rubin (1962), we try to work
without them as much as possible.

Let E be a finite-dimensional real linear space, and let E* be its dual. We
let

(0,x) =<6, x), E*XE - R
denote the canonical bilinear map on E* X E. The set .#(E) is the set of
positive (possibly unbounded) measures u on E such that the following hold:

1. w is not concentrated on any affine hyperplane;
2. if L(6) = [z exp(0, x)u(dx) (< +=) is the Laplace transform of w, then
the interior ®( w) of the convex set
{0 € E*; L(0) < +}
is not empty.



766 M. CASALIS AND G. LETAC

If uisin #(E) and if 6 is in ©(u), we write k,(6) = log L,(6) and
P(6,n)(dx) = exp({0, x) — k,(6))u(dx).

The set F = F(u) ={P(6, uw); 6 € O(wn)} is called the natural exponential
family (NEF) generated by u. The differential £/(6) of &,: ®(u) — R, evalu-
ated in 0, is a linear form on E*, that is, an element of E, which is related to
P(6, u) by

(2.1) EL(0) = fExP(e, w)(dx).

It is a standard exercise to see that &, is strictly convex and real analytic on
O(w). Thus 6 — k;(6) is one-to-one. The set k,(O(w)) = My of the images is
called, because of (2.1), the domain of the means of the NEF F( u). Since k), is
a bijection, let ), denote its inverse function My — ©(u), and define

(2.2) P(m,F) =P(¢,(m), n).

It is easily seen that if F(u) = F( '), that is, if there exists (6,,¢) in E* X R
such that

w(dx) = exp({,, x> + c)u(dx),

then neither M nor (2.2) change when replacing u by w'.

Finally, for m in My, we define the symmetric linear operator
Vy(m): E* — E as the covariance operator of the probability P(m, F') on E.
Denoting by Lg(E*, E) the space of the symmetric operators from E* to E,
the map

(2.3) M; - Ly(E*,E), m = Vp(m)

is called the variance function of the NEF F; it has the important property
that it characterizes F in the following sense: if F' and F' are NEF’s on E
such that V, and V, are equal on a nonvoid open set I contained in
My N Mg, then F = F'. This fact is easily deduced from the following for-
mula: if F = F(pu), then, for all § in O( w),

(24) ki (0) = VF(k;L(()))
Note that, in (2.4), k;(0) is in Lg(E*, E).

Of course, if U is a connected open set of E, not all analytic maps V from
U to the set of positive definite elements of Li(E*, E) are such that there
exists a NEF F on E with U C My and V =V, on U. In particular, for
dim E > 1, variance functions have to satisfy the symmetry condition (2.5). It
is similar to the fact that a smooth vector field ¢: U — E* is the differential
of some function f: U — R only if ¢’'(m) is symmetric, that is, belongs to
Ly(E, E*). This symmetry condition (2.5) will be the crux of our proof of
Theorem 1.2 and Theorem 3.2 [see after (6.18)].

ProposITION 2.1. Let F be a NEF on E. Then, for all m in My and for all
a and B in E*, we have

(2.5) (Ve(m)(Vp(m)()))(B) = (Vi(m)(Vr(m)(B)))(a).
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PrOOF. From the definition of y,: My — O(w), (2.4) gives

k(¢ (m)) = Vp(m),
which implies that, since &, (4,(m)) = m, for all 2 in E,

’ -1
(2.6) B (m)(h) = (Vp(m)) “(h).
Differentiating (2.6) with respect to m gives, for all 2 and % in E,

@7 (#(m))(h, k) = =(Ve(m)) " (Vi(m)(k))(Vi(m)) ' (R).
From the symmetry property of Hessians, that is, from
U (m)(h, k) =y (m)(k,h),

we get that (2.7) is symmetric in (k, k). Writing « = (Vz(m))"'(h) and
B = (Vx(m))~ (k) now gives (2.5). O

To complete this presentation of NEF’s, let us define the Jorgensen set of a
w in #(E) and of a NEF. For u in .Z(E), the Jorgensen set is

A ) = {p >0;3p, ind(E) with®( ) = 0( p,) and (L,(6))" =L, (6)}.

It is trivial to check that if F = F(u)=F(W), then A(p) = A(w) and
F(u,) = F(w,). Thus we are allowed to talk about the Jorgensen set A(F) of
F and to write F, = F(pu,) if p € A(F).

Our best examples of NEF’s for the present paper are made with the
Wishart distributions on the space E of (r, r) real symmetric matrices. We
still denote by E, the cone of positive definite matrices. Let us fix p in (1.2),
with p # 0. Then one can find a u, in .Z(E) such that

F,=F(u,) ={y,,; 0€E.},

where v, , is defined by (1.3). In this case M r, = E.. To describe Vj it is
convenient to introduce the bilinear form on E,

(a, b) — Trace(ab).

Writing ¢,(b) = Trace(ab), then a — ¢, is an isomorphism between E and
E*. Identifying E and E* through it, the variance function of F, is the
element of Ly(E, E) = Li(E) defined by

1
(2.8) 0~ ;m@m = Vi (m)(0).

Details about this example can be found in Letac (1989). Note that if r = 1,
My = (0,%) and Vz(m) = m?/p. Note also that the Jorgensen set of F, is
equal to (1.2). We shall comment on this nontrivial fact, called Gindikin’s
theorem, in Sections 3 and 7.

Having done this, we now recall the proof of the necessary part of Theorem
1.1 in such a way that the concepts of NEF become apparent.
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PROOF OF THEOREM 1.1 (= First part). [If the law u of a random variable
X, with values in a linear space E, happens to belong to .#(E), we adopt the
obvious notations Ly, kx, ®(X),... instead of L,, k,,0(u),... ]

Note that U and V > 0 imply that ®(U) and ©(V) contain (—=,0), and
that 0 < Z < 1 implies that ®(Z) = R. Observe that, for (8, £)in (—«,0) X R,
we have

(2.9)  E(exp{0(U + V) + £éZ}) = exp(ky(0) + ky(0) +ky(£)).
() Write ¢, = k,(0) = E(Z). Applying 92/30 d¢ to both sides of (2.9) and
setting & = 0 gives, since (U + V)Z = U,
kyLyLy = (ky + ky)e LyLy.
Writing x = k&, for simplicity, we get
(2.10) ky=cix and ky=(1-c))yx,

that is, ¢; and 1 — ¢, are in the Jorgensen set of U + V, and (Z(U + V), =
20), (ZU + V)),_, =ZAV).

(i) Write ¢, = E(Z?) = k%(0) + c2. Applying d*/30% 3¢% to both sides of
(2.9) and letting ¢ = 0 gives, since (U + V)?Z2 = U?,

(ki + (ky)*)LyLy = (X" + (x)’)e2LyLy.
Using (2.10), we get, for 8 < 0,

2

)

(2.11) X'(0) = (X' (0))*

1
Cy—C
(¢ — ¢; = 0 would imply that U and V both have Dirac distributions; our
hypothesis excludes this; the same remark holds for ¢, — ¢ = 0).

Taking A = (¢, — ¢;)/(c, — ¢?) and comparing (2.11) with (2.4), we see
that the variance function of the NEF F = F(U + V) is such that Vi(m) =
m?/\ for m > 0, that is, U + V is gamma distributed with shape parameter
A O

Of course, in the above proof, NEF’s are not really useful, since (2.11) can
be easily integrated. However, in higher dimensions, (2.11) is replaced by a
complicated system of differential equations and, as we shall see in Section 6,
NEF’s become an essential tool.

3. Wishart distributions on irreducible symmetric cones. We first
recall the essential definitions and facts about these objects and about the
Euclidean Jordan algebras.

A Euclidean Jordan algebra is a Euclidean space E (with scalar product
denoted {a, b)) equipped with a bilinear application

(a,b) »a-b, EXE—-E
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and a neutral element e in E such that, for all a, b, ¢ in E, one has
(i) a-b=b"aq,
() a-((aa)-b)=(a a) (a-b),
(iii) <a,b-c¢)=<a-b,c),

(iv) a-e=a.

(3.1)

If E is the Cartesian product of two Euclidean Jordan algebras E; and E,
with positive dimension, E is nonsimple. Otherwise, E is said to be simple.
There are essentially (up to linear isomorphism) only five kinds of Euclidean
simple Jordan algebras. If K denotes either the real numbers R, the complex
ones C, the quaternions H or the octonions O, write S,(K) for the space of
(r, r) Hermitian matrices valued in K, endowed with the Euclidean structure
(a,b) = Trace(ab) and with the Jordan product

a-b=3(ab+ ba),

where ab is the ordinary product of matrices. Then S,(R), r > 1, S,(C), r > 2,
S.(H), r > 2, and the exceptional S;(0) gives the list of the four first kinds.
The fifth kind is the Euclidean space R”, n > 3, with Jordan product

(xo,xl,...,xn_l) '(y07y1""7yn—1)

(3.2) n-1
= | X %y Xo¥1 F YoXise s XoYu1 F YoXpo1 |-
i=0
For our purposes E = S, (R) is the most important example.
Now, to each Euclidean simple Jordan algebra E, we attach the set of
Jordan squares

E .= {x € E; there exists a in E such that x = a - a}.

Its interior is denoted E,.If E = S,(R), E, and E, are the familiar cones of
positive and positive definite symmetric matrices. For (3.2), E, is a closed
cone of revolution. In general, E, is a symmetric cone, that is, a convex cone
which is as follows:

(3.3)

(i) selfdual, thatis, E, = {x eE;{x,y)>0V ye E+\{O}};
(ii) homogeneous, that is, the group of linear automor-
phisms of E which preserve E | acts transitivelyon E, ;
(iii) salient, that is, £, does not contain a line.

Furthermore it is irreducible, in the sense that it is not the Cartesian
product of two convex cones. One can prove [see, e.g., Faraut and Koranyi
(1994) Theorem 3.3.1, p. 49] that an open convex cone is symmetric and
irreducible if and only if it is the E, of some Euclidean simple Jordan
algebra.

Given a Euclidean simple Jordan algebra E, we denote by G(E) the
subgroup of the linear group GL(E) of linear automorphisms which preserves

E_, and we denote by G the connected component of G(E) containing the
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identity. Recall that if E = S,(R) and GL(R") is the group of invertible (r, r)
matrices, elements of G(E) are the maps g: E — E such that there exists a
in GL(R") with
(3.4) g(x) = axa’.
If E is given by (3.2), G(E) is made with two of the four connected compo-
nents of O(1, n — 1).

We also write K = G N O(E), where O(E) is the orthogonal group of E.
The elements % of K satisfy

(3.5) k(x-y) =kx-ky

and are called Jordan automorphisms. In particular, ke = e and this equality
characterizes K,

(3.6) K={geG;ge=c¢e}.
Now for x in E, one denotes by L(x) the linear operator on Ey — x -y and
(3.7) P(x) =2L(x)" — L(x-x).

From (3.1), L(x) and hence P(x) are symmetric.
The map P: E —» Ly(E): x —» P(x) is called the quadratic representation
of E. It satisfies the following properties:

1. P(e) = idg, P(x)e = x - x;

2. P(x) is invertible if and only if x is invertible in E, that is, there exists
y=x"!in E such that x-y = e; then P(x)"! = P(x1);

3. if x is in E_, P(x) is positive definite and P(x) € G;

4. for g in G, with transpose g*, and for x in E,

(3-8) P(gx) = gP(x)g*.
This last equality is not obvious and relies on the following three facts:
kP(x)k* = P(kx) for all (x,%) in E X K [from (3.5)];
P(P(y)x) =P(y)P(x)P(y) forall(x,y)in E?;

and, for g in G, there exists (y,%k) in E_ X K such that g = P(y)k [see
Faraut and Koranyi (1994), Proposition 2.3.3, p. 33 and Theorem 3.5.1, p. 55].

We now briefly introduce some useful decompositions in E. An element ¢ of
E is said to be a primitive idempotent if ¢ -c = ¢ # 0 and if ¢ is not the sum
t + u of two nonnull idempotents ¢ and u such that ¢-u = 0. A complete

system of primitive orthogonal idempotents is a set {cy, ..., ¢,} such that
r
(3.9) Yc;=e and ¢;cc;=8,c, forl<i,j<k.
i=1

The size r of such a system is a constant called the rank of E. When E is
S.(R), this is the set of projection matrices on the r lines generated by the
vectors of an orthogonal basis. Hence the rank is . When E is given by (3.2),
then r=2 and ¢, = 3(1,x,,...,x,_,), ¢y =21, —x4,..., —x,_;), with
xZ 4+ +x2 =1
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Any element x of a Euclidean simple Jordan algebra can be written
x = XI_,A;c; in a suitable complete system of primitive orthogonal idempo-
tents. The real numbers A,,..., A, are the eigenvalues of x, and this decom-
position is called the spectral decomposition of x. One then defines the trace
of x by Trace(x) = L/_,A; and its determinant by det x = I'l/_;A,. When x is
invertible, clearly x 1 = X7_,A; !¢, and, E, being the set of squares of E, x
belongs to E, if and only if its eigenvalues are strictly positive. Its square
root is then defined by x'/2 = Y7_ A}2¢c; and satisfies x'/2-x'/2 = x. All
these definitions are the usual ones in S,(R). For the cone of revolution,
Trace(x) = 2x,, det x = x2 — x? -+ —x2_,.

If ¢ is a primitive idempotent of E, the only possible eigenvalues of L(c)
are 0, 1, and 1. We denote by E(c,0), E(c, 3) and E(c, 1) the corresponding
eigenspaces. The decomposition

E=E(c,0)® E(c,%) ® E(c,1)

is called the Peirce decomposition of E with respect to c.
Now, we fix a complete system of primitive orthogonal idempotents {c,;}/_;
and for any (i, j) we write

E,=E(c;,1) =Re,
E;=E(c;,5) NE(c;,5) ifi#j.
It can be proved that
(3.10) E= @ E,;
i<j
[see Faraut and Koranyi (1994) Theorem 4.2.1, p. 68]. This is the Peirce

decomposition of E with respect to {c;};_,. Moreover the dimension of E;
when i # j is a constant d, so that (3.10) yields the relation

dr(r—1)

2
between the dimension n of E, its rank r and the integer d. Any x of E can
then be written x = X/_,x,¢; + X, ;x;; with x;; in E;;. When E is S,(K), if

1< j¥ij
(ey,...,e,) is an orthonormal basis of R”, then E; = Reef and E;; =
K(e;e} + eje;) for i <jand d is equal to dim K. For the cone of revolution,

E,=R(1,x,...,%,_1), Ey=R(1, —x,...,%,_1)

with x2 + - +x2_, =1,

(3.11) n=r+

E={(0, 51,y ¥p_1); X1y, + - +2, 1Y, =0} and d=n-2.

Let us conclude with the following remark: the bilinear map (x, y) —
Trace(x - y) defines a scalar product satisfying (3.1) which is often chosen as
canonical scalar product. [Actually this is the only one satisfying (3.1) up to a
factor.] Observe then from (3.1) and (3.9) that, for x in E_,

(3.12) (x,x"') = Trace(e) = r.
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We now define the Wishart distributions on E,, where E is a Euclidean
simple Jordan algebra with structural constants n, r and d as defined in
(3.11). Consider the set

(3.13) A={o,§,d,...,g(r—1)}u(@,w

[if E = S,(R), this is (1.2)]. Let p be greater than 0. One can prove that there
exists a w, in .#Z(E) concentrated on E, such that, for all § in E_, one has

(3.14) fEexp(—Trace(ex))pp(dx) — (det 6) "

if and only if p is in A [Gindikin (1975); a self-contained proof is in Casalis
and Letac (1994)].
If p >d(r —1)/2, one has

w,(dx) = C(p)(det x)”~ "7 1, (x)dx,

where C(p) is a constant depending on p and on the structural constants
(d, r,n) of the Jordan algebra E. Here dx is the Lebesgue measure on E
with the normalization naturally induced by the Euclidean structure of E.

If p=dk/2 with £ =0,1,...,r — 1, p, is a singular measure concen-
trated on E,\ E .. Observe from (3.14) that u,,, is just the convolution
M, * . Note also that u, is a quasi-invariant measure for the group G: if
g€ G and 0 € E, then

(3.15) det(g(0)) = (det g)"/" det 6

[see Faraut and Koranyi (1994), Proposition 3.4.3, p. 53]. [Note that in
formula (3.15), det g is taken in the ordinary sense, since g is a linear
transformation of E into itself, although det(g(6)) and det 6 are taken in the
sense of E.] From (3.14) and (3.15) we get that, for all p in A and all g in G,
we have

(3.16) g(m,) = (detg) """,
and this proves the quasi-invariance of w, by g.

For instance, if E = S,(R) and g is given by (3.4), then det g = (det a)""!
(a classical exercise). If p > (r — 1)/2, then

w,(dx) = C(p)(detx)” P21, (x) da,

but if p <(r — 1)/2, w, is concentrated on the boundary of the cone E., of
positive symmetric matrices, it is not easy to get an explicit form of the
measure [see Uhlig (1994) for the case S,(R) and Casalis (1990) for the
general case].

For p in A and for o in E_, we then define the Wishart distribution v, ,
on E_ by

(3.17) ¥, ,(dx) = exp(—Trace(xo ™ '))(det o) * u,(dx).
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The NEF Fp = {Yp,a, o € E_} is characterized by its variance function de-
fined on M, = E, by

1
Vi(m) = —P(m),

where P is the quadratic representation of E. [Here again, as in (2.8), E and
E* are identified through the isomorphism E — E*: a — ¢,, where ¢ (b) =
Trace(a - b).] Recall here that if E = S,.(R), then P(m)(0) = mém.

We now come to the generalization of the Olkin—Rubin theorem to irre-
ducible symmetric cones. Let us point out an important fact. One of the clever
ideas of Olkin and Rubin (1962) is to find a right way to replace the ordinary
division in real numbers which defines Z = U /(U + V) in the Lukacs theo-
rem. Although the product of symmetric matrices is not symmetric, they
observe that several substitutes are available. Since U + V is positive defi-
nite, one could write

(a) U+V=VU+VVU+V,
(b) U+V-=TT,
(c) U+V=TT,

where T and T, are unique lower-triangular matrices with positive diagonal.
Then one can define possible Z as

(a) Z=U+V)"?’Uuwu+v)
(b) Z=T'U(T",
(c) Z ='T *UT,.

Since an infinity of such algorithms are possible, we have restated Olkin
and Rubin with the form given in Theorem 1.2. However, from (3.4), one can
observe that, actually, considering a map b — w(b) from E, to M, as we do
in Theorem 1.2, and then considering maps

g(b):u = (w(b) u((w(b) )

from E to itself is equivalent to considering a map b — g(b) from E, to G.
For this reason, we coin the following definition

DEFINITION. Let E be a Euclidean simple Jordan algebra. A division
algorithm is a measurable map

E,~G, bwg(b)
such that g(b)(b) =e for all b in E_.
On E, g(b) = P(b~'/2) corresponds to the above algorithm (a). If {c;}/_; is

a complete system of primitive orthogonal idempotents, one can define a
triangular subgroup T of G from the Peirce decomposition (3.10) [see Faraut
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and Koranyi (1994), p. 110, 111 and Theorem 6.3.6]. Thus the map b — g(b)
= t, ! gives the equivalent of the above algorithm (b).

We now state Theorem 1.2 for symmetric cones. For convenience we split
its two parts (b) = (a) and (a) = (b) into two theorems. Actually, we expand a
little bit on the first part (b) = (a): instead of dealing with a kind of Beta
distribution of the first kind on symmetric cones, we deal with a kind of
Dirichlet distribution, which slightly extends the one considered in Theorem
4.1 of Massam (1994). See Seber (1984) for a careful study of Dirichlet
distributions on symmetric real matrices. Note also that Theorem 3.1 general-
izes the first part of Theorem 7 of Uhlig (1994).

THEOREM 3.1. Let E be a Euclidean simple Jordan algebra, o inE,,
Dos P1s--+s P in A defined by (3.13) with p =p, +p, + - +p,, > d(r —
1)/2, and let U,,U,,...,U, be independent random variables valued in E
with respective Wzshart dzstrtbutzons Yo, 00 j=0,...,m. Write S =U, +

- +U, with distribution v, ,. Let b —'g(b), E - G be a division algo—
rlthm Then the following hold:

(1) the distribution of
Z= (Zl""vzm) = (g(S)(U1)77g(S)(Um))

depends neither on the particular division algorithm nor on o and is K-
invariant, that is,

Z((k(Z,),...,k(Z,))) =<((Z,,...,Z,))
forall kin K;
(i) Z and S are independent.

Theorem 3.2 is the converse of Theorem 3.1 for m = 1.

THEOREM 3.2. Let E be a Euclidean simple Jordan algebra with rank
r > 2. Let U and V be independent non-Dirac random variables valued in E ,
such that U and V are not concentrated on the same one-dimensional subspace
and such that U + V is almost surely in E. . Let b —» g(b) be a division
algorithm and consider

Z=g(U+V)UU).

If the distribution of Z is K-invariant and if Z and U + V are independent,
then there exist p and q in A withp + q > d(r — 1)/2, and o in E, such that
U and V have respective Wishart distributions v, , and v, ,.

4. Proof of Theorem 3.1. With the hypothesis of the Theorem 3.1, we
first prove the following.

LemMMA 4.1. Denote by K[(du,,...,du,) the conditional distribution
AU,,...,U,|S = s) and, for g in G, write g™ for the action on E™ defined
by g Nxy,...,x,) = (glx)),...,g(x,)). Then g"K =K, w,almost
everywhere.
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Proor. Let G: E - R and F: E™ — R be any continuous functions with
compact support. Then

I=fEm”G(s)F(xl,...,xm)g(m)(Ks)(dxl,...,dxm)/up(ds)
- ,/Em+1G(S)(FO g(’”))(ul,..., u,)K,(du,,..., dum),up(ds)

= [ Gy ) (F o g ) e w) (i) ().

Now write x; = g(u;), j = 0,..., m. We get

1= [ Gl (o ) F (s ) (81y,)(d0) = (811, ) (d,)

= (det g) P"/" /Emﬂc:(érl(x0 +oe 4 2,) ) F (%, 2) 1y ()
ey, (dxy,)

from the quasi-invariance (3.16). Thus [ is

(det g) """ fEmHG(g’l(s))F(xl,...,xm)Ks(dxl,...,dxm),up(ds).

Denoting s’ = g~ 1(s), I is again

(det &) """ [ G()F (1, ) Ko (o) (7, ) (d5)

= /Em+1G(S,)F(x1’ ey xm)Kg(Sr)(dxl, ey dxm)l-Lp(dS,),

where we have used (3.16) a second time. Comparing this last expression with
the definition of I, the lemma is proved. O

We can now prove Theorem 3.1. With the notation of Lemma 4.1, we shall
prove that A(Z) = K,: this implies (i), since K, is defined independently of
the division algorithm and since e (and thus K,, by the lemma) is K-
invariant.

Let us take (as in the proof of the lemma) arbitrary continuous functions
with compact support G: E - R and F: E™ — R. Then

J =EG(S)F(Z,,...,Z,))

= /EG(s)exp[—Trace(sa*)](det o) " m,(ds)

xfEmF(g(s)(m)(ul,...,um))KS(dul,...,dum).
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Writing z; = g(s)u,), j = 1,..., m, in the last integral, using Lemma 4.1 and
the fact that g(s)(s) = e [since s — g(s) is a division algorithm], we get

J = fEG(s)exp[—Trace(sa‘l)](det U)fp,udp(ds) X /;EmF(zl,...,zm)Ke(dz)

=E(G(S))KF(Z,,...,Z,)).
This proves part (ii) and A(Z) = K, thus part (). O

The following extends Theorem 1 of Uhlig (1994).

COROLLARY 4.2. With the hypothesis and notation of Theorem 3.1, let H be
a random variable independent of Z with Wishart distribution v, ,. Then, for
J=1,...,n, the G, = (g(H))_le are independent with distribution Yoo

PrOOF. Since S is independent of Z, then (G,,...,G,) and
(g(SN'Z,,...,(g(S)"'Z ) = (U,,...,U,) are identically distributed. O

5. Proof of Theorem 3.2 (first part). As in the proof of Theorem 1.1,
the proof here is split into two parts. The first one, also the easiest, is devoted
to the analog of (2.10). To get it, we first fix 6 in —E, and, for a in the space
L(E) of the linear endomorphisms of E and for ¢ in E, we consider the two
random variables

F(a) = exp(Trace(ag " (U + V)) +(0,U + V)),
G(¢) =expl{,Z).

The relation between the log Laplace transforms ., and y = &y will be
deduced from some expression linking F(a), F'(a), G({¢), G'({) together
[relation (5.6)]. We first state the following lemma, which is essentially (5) in
Olkin and Rubin (1962).

LEmMmA 5.1. Ifxisin E, then k(x) = x for all k in K if and only if x € Re.

Proor. Write x = X]_;A;c; the spectral decomposition of x in a complete
system of primitive orthogonal idempotents {c;}/_;. Now, for all i in {2,..., r},
choose k; in K inducing a permutation between c, ..., c, such that k,c; = c;.
Then, from the equality k,x = x, we get A, = A, for any i > 2 and hence
x = Aje. The converse is trivial from (3.6). O

We now prove the existence of E(G(¢)) for all ¢ in E an E(F(a)) for small
a in L(E).

One sees easily that 1ZI1? < r; for this, observe that if z and 2z’ are in E+
with z + 2’ =e, then z:-z + z-2' = z. Since {z, z2’) = Trace(z-2') > 0 from
(3.3), this implies that

|zl|* = Trace(z - z) < Trace(z) < Trace(e) =r,

and we apply this to z =g(U + V)U and z' = g(U + V)V. Thus EG({))
exists for all ¢ in E.
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We now show that there exists a neighborhood of 0 in L(E), depending on
0, such that f(a) = E(F(a)) exists. To do so, we prove the following inequal-
ity. Defining C = max(1, /d/2), we have for all x in E, and all a in L(E),
(5.1) Trace(ag™'(x)) < C(Trace aa*)"* Trace x.

[Recall that x — g(x), E,— G is a division algorithm.] We equip L(E) with
the Euclidean structure

{a, a, L) = Trace(aa}).

Schwarz’s inequality gives

(Trace(ag™*( x)))2 < (Trace aa* )Trace(g ™~ "(x)(g *( x))" ).
Now we write x = L/_;A;¢c;, where {cy,...,c,} is a complete system of primi-
tive orthogonal idempotents and where A; > 0 (recall that x is in E_ ). We
get, from (3.8),

g '(x)g (x)" =g () P(e)(g” (%)) = P(g'(%)(e)),

and this is simply P(x), since x — g(x) is a division algorithm. Now

L] —

r r 2
Trace P(x) = ), AZ + 2; Y M < Cz( Y /\i) ,
i=1 i<j i=1
as easily seen. Relation (5.1) is now proved. We take 6 = —Y!_; u;c;, with
{cq,...,c,} being a suitable complete system of primitive orthogonal idempo-
tents with 0 < u; < py < -+ < p,. Thus, from (5.1) we get that if [lall <
C~'w,, we have, for all x in E_,

(5.2) Trace(ag '(x)) + (6, x) < (Cllall = py)Trace (x) < 0.

Replacing x by U + V, (5.2) shows that E(F(a)) exists for [lal < C™'u,.

One beautiful idea of Olkin and Rubin is to consider the differential of
a — E(F(a)). Clearly, in {a € L(E); llall < C™'u,}, it is
(5.3) E(F'(a)) = E(F(a)g (U + V).

[Here, we identify the space of linear maps from L(E) to R to L(E) itself by
the bilinear map on L(E) X L(E): (a, b) — Trace(ab).]

Similarly, the differential of 7 — E(G(¢)) is identified with an element of
E, through the Euclidean structure of E, and is
(5.4) E(G'({)) =E(G({)Z)

We now introduce the canonical bilinear map

¢: L(E) XE > E, (f,h) = &(f, ) =[(h).

Using (5.3) and (5.4) and the fact that U + V and Z are independent, and
from the fact that

(5.5) g U+VY2Z)=¢(g (U+V),Z)=TU,
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we get

(56:6) @(E(F'(a)),E(G'({))) = E(¢(F'(a),G({))) = E(F(a)G({)U).

We now set @ = Oy, and { = Oy in (5.6). From (5.4), E(Z) = E(G'(0)) is an
element of E which is K-invariant [since .#(Z) is K-invariant by the hypoth-
esis of Theorem 3.2]. Thus Lemma 5.1 implies that there exists ¢; in R such
that E(G'(0)) = c,e. Thus (5.6) gives

E(exp<0,U>U)E(exp(0,V))
- (b (E(F(0)). e)
= ¢,E(exp(0,U + V)g " (U + V)(e)) [from (5.3)]
= c,E(exp{0,U + VY(U + V))

[since x — g(x) is a division algorithm].
If L,;(0) = Eexp{0,U)), ky; =log L, (for 6 in —E ), and if L, k, and
X = ky, v are similarly defined, (5.7) yields

LykyLy = c¢iLyLy X',

(5.7)

thus
(5.8) ky=cix and ky=(1-1c))yx,
as in (2.10), since %k;(0) = £(0) = x(0) = 0.

6. Proof of Theorem 3.2 (second part). This second part is devoted to
the analog of (2.11). The notations are those of §5. Using the second differen-
tial of F(a) and G({) as it is done on R would here give too complicated
relations. On the other hand the simple computation of E(F(0)Q(U)) for two
special quadratic polynomials @ on E [cf. (6.9) and (6.13)] leads to the
fundamental equality (6.17) equivalent to (2.11). From this point, as ex-
plained at the end of Section 2, we come back to the variance function of the
NEF generated by U + V to conclude. The following proposition is the
version for symmetric cones of (6) in Olkin and Rubin (1962).

PROPOSITION 6.1. Let f be a symmetric endomorphism of E such that
f=Fkfk* for all k in K. Then there exists (A, u) in R? such that
f=Aidg + pe ® e,

where e ® e denotes the endomorphism x — e{x,e).

ProOOF. The result is trivial if » = 1, that is, E = R. Thus we assume
r > 2. Let E, be the orthogonal subspace of Re in E, and let x, be in
E, \ {0}. Then {k(x,); k € K} generates E,.

If not, there exists xj, in E, \ {0} such that {xj, k(x,)) = 0 for all %2 in K.
Let {c,}/_; be a complete system of primitive orthogonal idempotents such
that there exists (X))/_, in R” with

r
r /
xp = 2 Ne;.
i=1
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Since xj, is in E;, \ {0} we have L/_;X; = 0 and there exist i and j such that
X; # X;. Without loss of generality, we assume A} # A,. Since K acts transi-
tively on the set of complete systems of primitive orthogonal idempotents,
there exists £ in K and (A,)/_; in R” such that

R(x0) = X Aic;.
i=1

Here again, X;_;A; = 0 and there exist i and j such that A; # A;. Since K
includes the permutations between the (c;)!_;, without loss of generality we
may again assume A; # A,. Eventually, since {xj, k(x,)) = 0 for all % in K,
we get, in particular,

MA] + A Ay + (AgXg + - +A,AL) =0,
AMAy + A Xy + (AgAy + - +A,X,) = 0;
and the difference yields the contradiction (A; — A,)(X; — A,) = 0.

The second observation to be made is that e is an eigenvector of f. To see
this, we write, for all %2 of K,

f(e) = (kfk*)(e) = k(f(e)),
and Lemma 5.1 implies that there exists « in R such that f(e) = ae.
Now, since [ is symmetric, this last observation implies that E is stable
by f. Let F, be the eigenspace of f restricted to E, for the eigenvalue A. Then
F, is stable by K. To see this, we take A4 in F, and % in K. We obtain

Ah = f(h) = (k*fk)(h).
Since k* = k™!, we have Ak(h) = (fk)(h), and k(h) is in F,. However, as we
have seen, if x, € E, \ {0}, then {k(x,); & € K} generates E, that is, the
only nonnull stable subspace of E, by K is E,. We get F, = E,, that is, [
restricted to E, is Aidy. Finally, if m: E — E, is the orthogonal projection,
we write, for A in E,

1
h=m(h) + 7<e,h>e,

and we get

o —

A
{e,hye.

f(h) = Am(h) + ;(e,h>e — b+

r

Thus f= Aid; + [(a — M /rle ® e and the proof of Proposition 6.1 is com-
plete. O

To apply Proposition 6.1, let us consider a quadratic polynomial @ on E
and valued in the space Lg(E) of symmetric endomorphisms on E. We
further assume that @ is G-invariant, that is,

(6.1) gQ(x)g* = Q(gx) forall(x,g)in E X G.

Two basic examples of such a @ are Q(x) =x @ x: y — (x, y)x (thisis a
standard fact of Euclidean spaces, that this @ is G-invariant) and @ = P, the
quadratic map of the Jordan algebra E [see (3.8)].
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For such a @, since #(Z) is K-invariant, f = E(Q(Z)) fulfills the hypothe-
sis of Proposition 6.1, that is, there exists (A, ug) in R? such that

(6.2) E(Q(Z)) = Agidg + pge ® e.
We have now the following explicit result.

PROPOSITION 6.2. Let Q: E — Ly(E) be a quadratic and G-invariant
polynomial, and let Ay and uq be defined by (6.2). Under the hypothesis of
Theorem 3.2, we have the following for 6 in —E_, cie = E(Z) and x(0) =
log E(exp{0,U + V)):

d d
(6.3) le(a_e)X +ciQ(x) = AQ(P(O?—O)X +P(Xx)

+ p,Q( X'+ x ®x).

ProorF. With the notation of Section 5 we write, for simplification, F(0) =
exp{0,U + V). Recall also that we have

(6.4) P(y(x)) = yP(x)y* forall (x,y)in E X G.

We now have

E(F(0)g™ (U + V(g™ (U + V))*) CE(F(0) P(U + V)

@)

(6.5) =€X(P((3%)X+P(X,))'

In (6.5), (1) comes from (6.4) applied to y=g (U + V) and to x = e, and
from P(e) = idz; (2) is standard, since P is quadratic.
To obtain (6.3), we now compute E(F(0)Q(U)) in two ways. We have first

E(F(0)Q(U)) CE(F(0)Q(g (U + V)(2)))

(i)[E(F(O)gfl(U +V)Q(Z)(g (U + V)Y

DHF0)g (U + VIE(Q(Z))(g (U + V")

@ - - ¥
= AE(F(0)g™ (U + V)(g (U + V)))
+ noE(F(0)(U + V) © (U + V))

(6.6)

(5) " ! !
=eX + (X" + X ®X)|

’\Q(P(%)X"‘P(){/)

In (6.6), (1) comes from the definition of Z, (2) comes from the G-invariance
(6.1) of @, (3) comes from the independence of U + V and Z, (4) is (6.2) and
(5) is (6.5).
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The second way is easier:

E(F(0)Q(U)) T E(e® V) (e 1 QU))

(2) v J 0 U
6.7) 26 )@ ) b + QU ECE )

Lerfe,@[ =) x+ 2@ x)
=eX[c,Q| — c .
1 20 X 19 X

In (6.7), (1) comes from the independence of U and V, (2) comes from the
quadratic character of @ and (3) comes from (5.8). Combining (6.6) and (6.7),
we get (6.3). O

We now apply (6.3) to Q(x) = x ® x and to @ = P. Keeping the notation of
Olkin and Rubin [(1962), formula (14)], we write

(6.8) E(Z®Z) =cyidg + cye ® ¢,

that is, if @(x) =x ®x, Ay =c3 and py = c,. In this case, formula (6.3)
becomes

J
(6.9) ¢y x" + ccx ey = ch(£ X+ esP(X') tegx" +eyx ©x'.

Now, to apply (6.3) to @ = P, we have to compute E(P(Z)) with respect to
¢; and c, as defined by (6.2), that is, to compute A, and up in the sense of
(6.2). For this, we need a lemma in linear algebra.

LEMMA 6.3. Let E be a Euclidean space, and let @ be the space of
homogeneous quadratic polynomials on E valued in the space Lg(E) of
symmetric endomorphisms of E. Let L(Lg(E)) be the space of endomorphisms
of Lg(E). Then there exists a unique map

Q— g, Q- L(Ls(E))

such that, for all x in E, one has

(6.10) bo(x ®x) = Q(x).

Furthermore, if j: E - R is a C? function, one has
J

(6.11) Q| )i = wat.

Finally, if E is a Euclidean simple Jordan algebra and if @ = P is the
quadratic map, then
d

d
(6.12) l,llp(ldE) = (1 - E)ldE + Ee ® e.

Proor. Here, the best way is simply to start from an orthonormal basis
(ey,...,e,) of E. Thus

(e;®e;,i=1,...,n;e;,®e;+e;®e;,1 <i<j<n)
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is a basis of Lg(E). We define ¢, by
Yo(e; ®e;) =Q(e;) fori=1,...,n,
Yo(e; ®e; +e;®e;)=Q(e; +e;) —Q(e;) —Q(e;) forl<i<j<n.
Clearly, this proves the existence and uniqueness of i, and (6.11) is easily

proved by watching the coordinates and the Hessian matrix of j.
To prove (6.12), we observe that, for all (x, g) in E X G,

Yp(g(x ®x)g*) = ¥(g(x) ®g(x)) = P(g(x)) =gP(x)g*.
Thus, by linearity, since {x ® x; x € E} generates Li(E), we get, for all (f, g)
in Lg(E) X G,
Up(8fg™) = gvp(f)8™.

Taking f=id; and g in K, and using Proposition 6.1, there exists (A, w) in
R? such that ¢(idy) = Aid; + e ® e. To compute (A, u) we start from the
Peirce decomposition (3.10) associated to a complete system of primitive

orthonormal idempotents {cy, ..., ¢,}. Denote by (c/)f_; an orthonormal basis
of E;; for 1 <i <j <r. Then
r d
idy= Y ¢;®c;,+ Y, Y, clkj®clkj
i=1 k=11<i<j<r

Thus ,(id ) applied to ¢; gives

Yp(idg)(cy) = Z P(c;)(cy) + E )» P(ij)(ﬁ)

k=11<i<j<r

d
c, + —e.

Ce Y Y c—(—f .

J
k= 11<J<7‘2 2

For the computation, we have used the relations cf;-¢; = (8;; + 8;,)5¢f,
k

ckock = 5(c; + ¢) and ¢; - ¢; = §,,c; [see Faraut and Koranyl (1994), Proposi-

tion 4.1.4, p. 65 and Theorem 4.2.1,p.68]. Thus A\=1-d/2 and u=d/2.
O

This lemma enables us to compute A, and u, as follows. We have, from
Lemma 6.3, with G({) = exp({, Z),

d
E(G({)P(2)) =P(a—g)[E(G(§)) = ¥p(E(G"(£)))-
Setting ¢ = 0 in this equality, we obtain
E(P(Z)) = yp(E(Z® Z)) = p(cyidg + cye ® e),
from (6.8). Using (6.12) we get
d
[E(P(Z)) = (03(1 - E) + Cy

thus Ap = ¢3(1 —d/2) + ¢, and pp = c;3d /2.

d

idg + C35e ® e;
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We can now apply Proposition 6.2 to @ = P, yielding
J
CIP(%)X + C%P( X')

_ (63(1 _ ;) +e, (P(&%)NP()(’)

We now put together identities (6.9) and (6.13) in order to eliminate
P(3/96)x. We skip this little computation. Writing, for simplicity,
d

C4=C1_Cz+03§,

(6.13) d
+ (335( X"+t x ®x).

we finally get the essential identity
cy(cy — ey —eg) X" = c3e(1 — ) P(X')
+(cq(ey —€f) +eg(eg +cf =o)X ® X'

We now spend some effort to prove that in (6.14) neither the coefficient
c,(c; — ¢y — ¢3) of x” nor the coefficient c;c,(1 — ¢;) of P(x')is 0.

First ¢,(1 — ¢;) = 0 is impossible. We have that
(6.15) Z=0 o U=0 and Z=e o V=0.
Thus ¢; = 0 implies Z(U) = §,, and ¢; = 1 implies A(V) = §,: this contra-
dicts the hypothesis of Theorem 3.2.

We now show that c¢; = ¢; — ¢, = 0 is impossible. Assume the contrary;
then

(6.14)

E(Z®Z)=ce®e and E(Z) =c,e

imply that there exists a real random variable z such that Z = ze [write
Z = ze + Z,, with Z; orthogonal to e, and observe that E(Z, ® Z,) = 0 and
thus Z, = 0]. Since Z and e — Z are in E,, we have 0 < z < 1. Furthermore,
E(z) = E(z?) = ¢, implies F(z(1 —2)) =0 and A(z) =1 —¢,)8, + ¢, 6,.
From (6.15) we deduce that {U = 0} and {V = 0} are complementary events,
both with positive probability (since 0 < ¢; < 1): this contradicts the indepen-
dence of U and V.

If now ¢,(c; — ¢y, — ¢3) = 0, then ¢; # 0. If not, we have ¢; = 0 and ¢,(¢c; —
¢y — c3) = (¢; — ¢y)? = 0; as we have just seen, this is an impossibility. Thus
c3¢4(1 — ¢;) # 0 and from (6.14) there exists some « in R such that P(y’) =
ay' ® x'. However, since U+ V isin E_, ¥ is also in E_, and P(y’') is
invertible and cannot be proportional to y' ® x’, which has rank 1. Thus
cle; — ey —c3) # 0.

If now ¢y = 0, from (6.14) there exists B8 in R such that x" = By’ ® x'.
Since x"(6) is the covariance of
(6.16) Fy(dx) = exp({6, x) — x(0)) Ly, v(dx)
and since x'(6) is its mean, this implies that P, is concentrated on R x'(6),
and thus Z(U + V) is concentrated on R x'(#) for all § in —E,, so that there
exists x, in E \ {0} such that (U + V) is concentrated on Rx,. Since U

and V are independent, there exist x; in E and real independent random
variables (u,v) such that U = x; + ux, and V = —x; + vx,. Furthermore,
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since c¢; =0, then Z = ze for some real random variable z. Since ze =
gU + V)U), we have z(U + V) = U, and this implies, since z # 0, that
x, = 0; since U and V are now concentrated on Rx,, the hypothesis of
Theorem 3.2 is contradicted.

Thus the coefficients of x” and P(x’) in (6.14) are not zero, and we can
claim that there exist A in R \ {0} and B in R such that, for all 6 in —E_,

1
(6.17) X"(0) = ~P(x'(6)) + Bx'(0) ® x'(6).

We deduce first from (6.17) that #(U + V) is not concentrated on any
affine hyperplane of E. Since x'(0) is valued in E,, P(x'(9)) is positive
definite on E. Since x’ ® x’ has rank 1, and since x"(0) is positive, 1/A > 0.
Now suppose that x”(6) is positive definite for no 6 in —E,. Then (6.17)
implies that P,, as defined by (6.16), is concentrated on x'(6)* , the orthogo-
nal complement of x'(6), that is,

(x—x'(0), x'(0)) =0, Pralmosteverywhere.

This implies that, for all 6 and 6, in —E_, we have {x — x'(0), x'(6)) = 0,
P, -a.e. Integrating this, we get ( x'(6,) — x'(8), x'(6)) = 0. This leads by
symmetry to { x'(6,) — x'(6), x'(6,) — x'(#)) =0 and 6 — x'(6) is a con-
stant: this contradicts (6.17). Then there exists 6, in —E such that x"(6,) is
positive definite, and (U + V') is not concentrated on any affine hyperplane
of E. Therefore, the natural exponential family F generated by Z(U + V)
exists. If My is its domain of the means (C E,) and if V is its variance
function, (6.17) can be rewritten as follows: for all m in My,

1
(6.18) Ve(m) = XP(m) + B(m ® m).

We now use (6.18) to prove that g = 0.

For this, we consider the set 7° of analytic maps W: My — Li(E) such
that, for all (m, x, y) in M, X E?,

(6.19) W' (m)(W(m)(x))(y) = W (m)(W(m)(y))(x) = 0.

As we have seen in the basic Proposition 2.1, V; is in 7". Since, for p in
(3.13), E,—» Ly(E) m — (1/p)P(m) is the variance function of a Wishart
family, Proposition 2.1 shows also that the restriction of P to M also
belongs to 7. Finally, it is easy to check that @: m — m ® m, restricted to
My, is also in 77, since

Q(m)(y)=moy+yom.
However, condition (6.19) is quadratic in W, not linear. This implies that 7

is not a vector space. Since P, @ and V, = (1/M)P + BQ are in 77, condition
(6.19), by polarization, implies that, for all (m, x, y) in My, X E?,

(6.20) %P’W)(Q(m)(x))(y)+Q’(m)<P(m)(x))(y)
—P'(m)(Q(m)())(x) — @ (m)(P(m)(»))(x)] = 0.
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Since the first member of (6.20) is a polynomial in m, this identity (6.20) is
even true for (m, x,y) in E3 We now take m =e in (6.20) [recall that
(P'(e)a)X(b) = 2a - b] and obtain

§(<e, x)y —e,y>x) =0,

which implies 8 = 0 as soon as dim E > 1. Thus
1
Va(m) = P (m).

Since V; is a variance function, from Gindikin’s theorem, A must belong to
(3.13), and F is a Wishart family with Jorgensen’s parameter A. The proof of
Theorem 3.2 is now complete. O

7. Comments. Olkin and Rubin (1962) is an extraordinarily clever pa-
per. We comment on certain parts of it.

1. The first bright idea is to realize that there exist several division algo-
rithms in the space S,(R) of (r, r) symmetric matrices, and one does better
to choose none of them in particular. However, they never make it clear
that the factorization WW* = U + V should depend on U + V only, that
is, W has to be (U + V)-measurable. (For instance, if T' is orthogonal such
that T*UT is diagonal and W= yU + VI, then WW!=U +V but Z =
W lUW~1) is not independent of U + V)

2. The hypothesis of Theorem 1 about (n, m) is unclear. A proof of Theorem 1
appears in Olkin and Rubin (1964) using Jacobians and therefore assum-
ing n>p—1and m > p — 1; presumably this is also assumed in the
1962 paper (our Theorem 3.1 actually proves it for n + m > p — 1 only).

3. The second bright idea is to include invariance of #(Z) by maps Z — I'Z T,
when I' is orthogonal. This leads them to the essential Lemma 1, which we
have imitated and split in two parts in our Lemma 5.1 and Proposition 6.1.

4. The statement of Theorem 2 is not quite correct without the assumption
that Z(U) and #(V) should not be concentrated on the same line RX,,
where X, is a symmetric positive definite matrix. Actually, in this case,
with

Z=(U+V) UNT+V) ', say,

and U = uX, and V = vX,, such that u and v are independent and gamma
distributed, then Z and U + V are independent and #(U) and #(V) are
not Wishart.

5. The third bright idea is to consider the Laplace transform (2) of (W,U + V)
[we have adapted the idea in our Section 5 by considering E(F(a))]. Note
that the existence of f(A, B) on a domain big enough to allow differentia-
tion is not mentioned [our Section 5 between (5.1) and (5.2) addresses this
problem].
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6. Their formulae (11), (14) and (16) have lead us to our formula (6.9).
However, we have not been able to understand, then to follow and to
adapt, the remainder of their paper after their Lemma 2, and we have
chosen the different and shorter road which computes not only K(Z ® Z)
but also E(P(Z)) and gives (6.13). Techniques inherited from exponential
families lead us from there to the result.

7. Their Appendix contains a proof of the Gindikin theorem for S,(R). We
have commented elsewhere [Casalis and Letac (1994)] on this appendix,
explaining why this proof did not convince us.
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