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A CLASS OF ESTIMATORS OF THE SURVIVAL
FUNCTION FROM INTERVAL-CENSORED DATA1

BY ZHIMING WANG AND JOSEPH C. GARDINER

Michigan State University

A model of interval censorship of a failure time T is considered when
there is only one inspection time Y. The observable data are n indepen-

Ž . w xdent copies of the pair Y, d , where d s T F Y . We construct a class of
self-consistent estimators of the survival function of T defined implicitly
through two equations and show their strong consistency under certain
conditions. The properties of the nonparametric maximum likelihood esti-
mator are also investigated.

1. Introduction. Some epidemiologic investigations and natural history
studies of infectious diseases are characterized by periodic examination of
subjects for events of interest. The exact occurrence time T of an event is not
observed, but what is known is the interval in which the event took place.
Therefore T is said to be interval censored, with the censoring interval
obtained from the pattern of examination times. It is possible that the event
in question may not have occurred by the time of the last examination in
which case T is right censored. Several examples of studies where interval-
censored data arise naturally have been reported, particularly in connection
with the time of seroconversion or manifestation of AIDS in subjects exposed
to the human immunodeficiency virus. Since only periodic assessment of
patients is feasible, the time of seroconversion will be recorded to within an
interval specified by the last negative and the first positive assessment.
Where no positive assessment was made by the time of the last examination,
the time of seroconversion will be right censored. In assessing the incidence of
intraventricular hemorrhage, a brain lesion that is common in preterm

Ž .infants, Pinto-Martin, et al. 1992 report on a study that ascertained hemor-
rhage status by cranial ultrasonography at three times in the first week of
life in a large cohort of low-birthweight infants. The time of onset of hemor-
rhage T is interval censored because it can only be specified to within an
interval between the first positive and last negative ultrasound scan. Estima-
tion of the distribution of T from these data utilizing the nonparametric

Ž . Ž .scheme of Turnbull 1976 is reported in Paneth, et al. 1993 . For other
Ž .examples from medicine, see Rucker and Messerer 1988 and Peckham¨

Ž .1991 .
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Estimation of the distribution of T from interval-censored observations
has become the focus of intensive research recently. Groeneboom and Wellner
Ž . Ž .1992 obtain the nonparametric maximum likelihood estimator NPMLE in
two models of interval censorship. The first model, called Case I, considers a

Ž .single inspection time Y and the datum on each subject is Y, d , where
w xd s T F Y is the indicator of the displayed event T F Y. In this case T is

Ž . Ž .either left censored d s 1 or right censored d s 0 . The second model,
called Case II, allows for two examination times. Wang, Gardiner and

Ž .Ramamoorthi 1994 have shown the identifiability of the distribution of T in
two models of interval censorship, one that considers a fixed number of
examinations per subject and another in which the follow-up period is fixed
but the number of inspections made on a subject is random. Rabinowitz,

Ž .Tsiatis and Aragon 1995 have addressed estimation in regression models
with interval-censored observations arising from multiple inspections on the

Ž .subjects. Turnbull 1976 first developed an algorithm for computing an
estimator of the survival function from interval-censored observations. His
method of estimation is based on maximum likelihood considerations and

Ž .yields a system of equations self-consistent equations that may be solved
Ž .using the EM algorithm. Groeneboom and Wellner 1992 provide a remark-

ably elegant development of the asymptotic properties of the NPMLE in
Cases I and II that exploits the connection between NPMLE and the least
squares isotonic regression estimate.

This article focuses on a class of estimators of the distribution of T in the
single inspection model of interval censorship. An example of this single
inspection model comes from bioassay or toxicity studies where Y denotes the
dose of a drug assigned to a subject and T its tolerance level. In some
carcinogenicity studies T denotes the time of tumor appearance in animals
that have been exposed to a carcinogen and Y the time of death or sacrifice of
the animal.

This article introduces a class of estimators defined implicitly through two
equations, which we demonstrate are equivalent to the solution of the self-

Ž .consistency equation Theorem 3.1 . Although the solution to our equation is
not unique, the NPMLE is shown to satisfy it. Under a certain condition that
is also met by the NPMLE, we establish the strong consistency of our

Ž . Ž .estimators Theorem 4.1 . However, Groeneboom and Wellner 1992 have a
direct proof of the consistency of the NPMLE.

The substantive material of this paper is divided as follows. Section 2
introduces the basic notation used in the sequel and the definition of our
sequence of estimators. Section 3 is devoted to proving the self-consistency
of these estimates followed by Section 4 which addresses their strong
consistency.

2. Notation and definition of estimators. Let the nonnegative ran-
Ž . Ž .dom variable T be an event time with survival function S t s P T ) t and

q w . Ž .Y be the inspection time on R s 0, ` with survival function S t sY
Ž . Ž . w xP Y ) t . Observation is confined to the pair Y, d , with d s T F Y ,
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Ž .in n independent and identically distributed copies of Y, d , denoted
�Ž . 4Y , d : i s 1, 2, . . . , n . The following conditions are assumed to hold in thei i
sequel:

Ž .A1 T and Y are independent.
Ž . Ž . Ž .A2 S is continuous, and S s y S t ) 0 for all 0 F s - t - `.Y Y Y
Ž . Ž . Ž .A3 S is continuous, and S s y S t ) 0 for all 0 F s - t - `.

We define the subdistributions, W , i s 1, 2, byi

wW t s P Y ) t , d s 1 and W t s P Y ) t , d s 0 , t g 0, ` ,Ž . Ž . Ž . Ž . .1 2

which can be written in terms of the survival functions as

`

2.1 W t s y 1 y S s dS s ,Ž . Ž . Ž . Ž .Ž .H1 Y
t

`

2.2 W t s y S s dS s .Ž . Ž . Ž . Ž .H2 Y
t

The two counting processes N and N corresponding to left and rightL R
censorship are given by

n n

w x w xN t s Y F t , d s 1 and N t s Y F t , d s 0 .Ž . Ž .Ý ÝL i i R i i
is1 is1

Žn.Ž . Ž .Ž Ž . Ž .. Žn.Ž . Ž .Ž Ž . Ž ..Then W t s 1rn N ` y N t and W t s 1rn N ` y N t are1 L L 2 R R
Ž . Ž .the empirical processes corresponding to 2.1 and 2.2 . The empirical sur-

vival distribution of the examination times Y , . . . , Y is denoted by1 n

n1
Žn.˜ w xS t s Y ) t .Ž . ÝY in is1

Throughout we adhere to the following convention on denoting integrals
that would allow us to write many expressions in a less cumbersome form:

` ` t w .H is H , H is H and H is H . Let l be Lebesgue measure on 0, ` andŽ t, `. tq w t, `. t w0, t x 0
w .by convention we take 0r0 s 0. A function on 0, ` is said to be a subsurvival

function if it is nonnegative, nonincreasing and right continuous. It is called
a survival function if, additionally, its values at 0 and ` are 1 and 0,
respectively.

DEFINITION OF ESTIMATORS. We construct two sequences SŽn. and SŽn.
Y

implicitly through

`
Žn.

`1 y S tŽ .
Žn. Žn. Žn. Žn.2.3 W t q dW s s y S sy dS s ,Ž . Ž . Ž . Ž . Ž .H H1 1 YŽn.1 y S sŽ .tq tq

`
Žn. Žn. Žn.2.4 W t s y S s dS s ,Ž . Ž . Ž . Ž .H2 Y

tq

Žn.Ž . Žn.Ž . w .with S 0 s S 0 s 1, t g 0, ` .Y
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In the next section, we will show that a solution SŽn. exists and that it is a
self-consistent estimator of S, but first some important remarks regarding
Ž . Ž .2.3 and 2.4 are in order.

Ž .REMARKS. a An obvious approach to obtaining estimators of S and SY
Ž . Ž .is to replace all functions in 2.1 and 2.2 by their estimators, and search for

a solution to the equations. For this approach, we would solve for SŽn. and
SŽn. from the equations:Y

`
Žn. Žn. Žn.W t s y 1 y S s dS s ,Ž . Ž . Ž .Ž .H1 Y

tq
`

Žn. Žn. Žn.W t s y S s dS s .Ž . Ž . Ž .H2 Y
tq

This scheme can be applied to both right censorship and double censorship
Ž . Ž .using expressions analogous to 2.1 and 2.2 in those cases. The method was

Ž .used by Chang and Yang 1987 to obtain consistent estimates of S in the
case of double censorship. However, in our case of interval censoring, if we
solve for SŽn. and SŽn. from the above equations, then SŽn. is easily seen to beY Y

Ž̃n. Žn.the empirical survival distribution S of S but S will not be a survivalY Y
Ž .function. The modification made in 2.3 leads to an appropriate solution of

SŽn. as a survival function.
Žn. Ž̃n.Ž . Ž . Ž .b Although S in 2.3 and 2.4 is not the empirical S , it is veryY Y

closely related to it. Later, in Section 4, we obtain a relationship between SŽn.
Y

Ž̃n. Žn. Žn.Ž .and S . See also 3.4 for an explicit definition of S in terms of S .Y Y
Ž . Žn. Žn.c The estimators S and S are specified only at the observed pointsY

� 4Y : 1 F i F n . We may extend them in a natural way to be right-continuousi
step functions with jumps only at the Y ’s.i

Ž .3. Self-consistent estimators. Given the information s-field ,
�Ž . 4s Y , d : i s 1, 2, . . . , n s AA , computation of the conditional expectationi i n
ŽŽ . n w x < .E 1rn Ý T F t AA givesis1 i n

F t n u F t y F t n uŽ . Ž . Ž .w x w xx F u q x ) u dP x , u ,Ž .HH n½ 5F u 1 y F uŽ . Ž .
where

n1
w xP x , u s T F x , Y F uŽ . Ýn i in is1

and F s 1 y S. A self-consistent estimator of S is a sequence SŽn. that
Ž .satisfies the equation self-consistency equation :

n1
Žn. w xS t s E T ) t AA ,Ž . Ý i nž /n is1

where the right-hand side is evaluated at SŽn.. The next theorem establishes
Ž .the equivalence between the self-consistent estimator and the solution to 2.3

Ž .and 2.4 .
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THEOREM 3.1. If SŽn. is a self-consistent estimator of S, then there exists a
Žn. Žn. Žn. Ž . Ž .survival function S , such that S and S satisfy 2.3 and 2.4 . Con-Y Y

Žn. Žn. Ž . Ž . Žn.versely, if S and S are a solution of 2.3 and 2.4 , then S is aY
self-consistent estimator of S.

PROOF. Suppose SŽn. is a self-consistent estimator of S. Then

Žn. <Žn.3.1 1 y S t s E F t Y , . . . , Y ; d , . . . , d ,� 4Ž . Ž . Ž .S n 1 n 1 n

Ž . Ž . n w xwhere F t s 1rn Ý T F t is the empirical distribution of F s 1 y S,n is1 i
and E Žn. is the expectation under the assumption that the T have theS i
survival distribution SŽn. for any i. Hence

n1
Žn. <w xŽn.1 y S t s E T F t Y , d� 4Ž . Ý S i i in is1

n Žn. Žn. Žn.1 1 y S t n Y S t n Y y S tŽ . Ž . Ž .i is d q 1 y dŽ .Ý i iŽn. Žn.½ 5n 1 y S Y S YŽ . Ž .i iis1

Žn.
`1 1 y S tŽ .

s N t q dN sŽ . Ž .HL LŽn.n 1 y S sŽ .tq

3.2Ž .

Žn. Žn.S s y S tŽ . Ž .t
q dN s .Ž .H RŽn.S sŽ .0

Žn. Žn. Ž . Ž .Using the definition of W and W and the fact that N ` q N ` s n,1 2 L R
we get

`
Žn.1 y S tŽ .

Žn. Žn. Žn. Žn.S t s W t q W t q dW sŽ . Ž . Ž . Ž .H1 2 1Žn.1 y S sŽ .tq
3.3Ž .

SŽn. tŽ .t Žn.y dW s .Ž .H 2Žn.S sŽ .0

Now define an estimator of S byY

1tŽn. Žn. w3.4 S t s 1 q dW s , t g 0, ` .Ž . Ž . Ž . .HY 2Žn.S sŽ .0

Žn. Žn.Ž . Žn.Ž . Ž .The definition of S is valid, since S t G W t by 3.3 and 0r0 s 0.Y 2
Žn. w . Žn.Ž .Also, S is a right-continuous nonincreasing function on 0, ` with S 0 sY Y

Ž .1. Differentiating 3.4 yields

1
Žn. Žn. Žn. Žn. Žn.3.5 dS s s dW s or dW s s S s dS s .Ž . Ž . Ž . Ž . Ž . Ž .Y 2 2 YŽn.S sŽ .

Ž . Ž .Integrating 3.5 leads to 2.4 .
Let Y be the largest of the inspection times Y , . . . , Y and Y ) YŽn. 1 n Žnq1. Žn.

be an arbitrary point on which the remaining mass of SŽn. and SŽn. is placed.Y
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Žn.Ž . Žn.Ž . Žn.Then S ` s S ` s 0. This does not affect the self-consistency of S .Y
Ž .Then 3.3 becomes

` `
Žn.1 y S tŽ .

Žn. Žn. Žn. Žn. Žn.S t s W t y S s dS s q dW sŽ . Ž . Ž . Ž . Ž .H H1 Y 1Žn.1 y S sŽ .tq tq

tŽn. Žn.y S t dS s ,Ž . Ž .H Y
0

Žn.Ž . Ž .with S 0 s 1. Using the integration-by-parts formula d UV s V dU qY
U dV for discontinuous functions U and V, this becomesy

`
Žn.

`1 y S tŽ .
Žn. Žn. Žn. Žn.3.6 W t q dW s s y S sy dS s ,Ž . Ž . Ž . Ž . Ž .H H1 1 YŽn.1 y S sŽ .tq tq

Ž . Žn.which is 2.3 . Hence we have shown that the self-consistent estimator S of
Ž . Ž . Ž .3.1 satisfies 2.3 and 2.4 .

Conversely, the entire argument above can be reversed. Suppose SŽn. and
Žn. Ž . Ž . Žn.Ž . Žn.Ž . Žn.Ž .S are a solution of 2.3 and 2.4 with S 0 s S 0 s 1 and S ` sY Y
Žn.Ž . Ž . Ž . Ž .S ` s 0. Then we will get 3.4 from 2.4 , and substituting it in 2.3 willY

Ž . Ž .lead to 3.3 , which is the self-consistency equation 3.1 . I

Žn. Žn. Ž .As noted previously, the estimators S and S defined through 2.3 andY
Ž . � 42.4 have mass only at the inspection points Y : 1 F i F n , but not necessar-i
ily at all points. They may be extended to be right-continuous step functions
with jumps at these Y ’s. Unlike the right-censoring and double-censoringi
cases wherein estimators of S are defined through expressions analogous to
Ž . Ž .2.3 and 2.4 , the self-consistent estimator obtained here from interval-

Ž .censored data is not unique. See Chang and Yang 1987 for the double-
Ž . Ž .censorship case. Both Turnbull 1976 and Groeneboom and Wellner 1992

n � Ž .4d i� Ž .41yd iobtain an NPMLE by maximizing Ł F Y 1 y F Y , and they showis1 i i
the NPMLE to be self-consistent and unique under the conventions of right
continuity stated here.

The following is an example of a self-consistent estimator which is not the
NPMLE.

Ž .EXAMPLE 3.1. Suppose we have the following values for Y, d on n s 5
Ž . Ž . Ž . Ž . Ž .subjects: 1, 1 , 2, 0 , 3, 1 , 4, 1 and 5, 0 . The NPMLE may be obtained

Ž x Ž xby direct optimization of the likelihood using the intervals 0, 1 , 2, 3 and
Ž . w x5, ` to introduce pseudoparameters u , u , u , where u s P T F 1 , u s1 2 3 1 2

w x w xP 2 - T F 3 , u s P T ) 5 with u q u q u s 1. The MLE’s of these pa-3 1 2 3
rameters are u s 1r2, u s 1r6 and u s 1r3 which yields the right-con-1 2 3

Žn. Žtinuous NPMLE S below. The arbitrary point Y s 6 is used to place the1 Ž6.
. Žn. Žn.unassigned mass. It can easily be verified that S and the estimator S1 2
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Ž .below both satisfy 3.3 which makes them self-consistent estimators. How-
ever, SŽn. is not the NPMLE.2

w¡1, t g 0, 1 ,. w¡1, t g 0, 1 ,.w1r2, t g 1, 3 ,.Žn. Žn.~ ~ w2r5, t g 1, 6 ,.S t s S t sŽ . Ž .1 2w1r3, t g 3, 6 ,. ¢ w0, t g 6, ` ..¢ w0, t g 6, ` ,.

4. Strong consistency. We already defined S, S , W , W , SŽn., SŽn.,Y 1 2 Y
Žn. Žn. Ž̃n.W , W and S . They are either survival or subsurvival functions on1 2 Y

w . Ž . Ž . Ž . Ž .0, ` and their relationships are given in 2.1 , 2.2 , 2.3 and 2.4 . We will
Žn. Ž̃n. Žn.first show that the left limits of S and S agree at the jump points of S .Y Y

Žn. Ž .A self-consistent estimator S of 3.1 is a nonincreasing right-continuous
� 4step function. Let J s t : k s 1, 2, . . . , m be the set of jump points ofn k

Žn. � 4 �S . Let 0 s t - t - ??? - t - `. Then t : k s 1, 2, . . . , m ; Y : i s0 1 m k i
41, 2, . . . , n . Define

`
Žn.1 y S tŽ .

Žn. Žn. Žn.4.1 V t s W t q dW s .Ž . Ž . Ž . Ž .H1 1 1Žn.1 y S sŽ .tq

Ž .Then 2.3 becomes
`

Žn. Žn. Žn.4.2 V t s y S sy dS s .Ž . Ž . Ž . Ž .H1 Y
tq

Žn. Žn. Ž̃n.Ž . Ž . Ž . Ž .Since W t q W t s S t , and using 3.5 , we get1 2 Y

Žn. Ž̃n. Žn.dW t s dS t y dW tŽ . Ž . Ž .1 Y 2

Ž̃n. Žn. Žn.4.3 s dS t y S t dS tŽ . Ž . Ž . Ž .Y Y

Ž̃n. Žn. Žn. Žn.s d S t y S t q 1 y S t dS t .Ž . Ž . Ž . Ž .Ž .Ž .Y Y Y

Ž .Differentiating both sides of 4.1 and using integration by parts yields

`
Žn. Žn.dW s 1 y S tŽ . Ž .1Žn. Žn. Žn. Žn.dV t s dW t y dS t y dW tŽ . Ž . Ž . Ž .H1 1 1Žn. Žn.1 y S s 1 y S tŽ . Ž .t

`
Žn.dW sŽ .1Žn.s ydS tŽ .H Žn.1 y S sŽ .t

Ž̃n. Žn.
` d S s y S sŽ . Ž .Ž .Y YŽn.s ydS tŽ .H Žn.1 y S sŽ .Ž .t

4.4Ž .

`
Žn.1 y S sŽ .

Žn. Žn.q dS t dS sŽ . Ž .H YŽn.1 y S sŽ .t

Ž̃n. Žn.
` d S s y S sŽ . Ž .Ž .Y YŽn. Žn. Žn.s ydS t q dS t S ty .Ž . Ž . Ž .H YŽn.1 y S sŽ .Ž .t



Z. WANG AND J. C. GARDINER654

Ž . Žn.Ž . Žn.Ž . Žn.Ž . Ž .From 4.2 , dV t s S ty dS t and so 4.4 gives1 Y

Ž̃n. Žn.
` d S s y S sŽ . Ž .Ž .Y YŽn.4.5 dS t s 0, t G 0.Ž . Ž .H Žn.1 y S sŽ .Ž .t

Žn.Ž . Žn. Ž .Since dS t / 0 at the points of jump t of S , 4.5 impliesk k

Ž̃n. Žn.
` d S s y S sŽ . Ž .Ž .Y Y

4.6 s 0, k s 1, 2, . . . , m.Ž . H Žn.1 y S sŽ .Ž .tk

Hence

Ž̃n. Žn.d S s y S sŽ . Ž .Ž .Y Y s 0 for each k s 1, 2, . . . , m ,H Žn.1 y S sŽ .w . Ž .t , tky1 k

Žn. w .and since S is constant on t , t ,ky1 k

1
Žn. Žn.˜d S s y S s s 0,Ž . Ž .Ž .H Y YŽn.1 y S tŽ . w .t , tky1 ky1 k

which implies

`
Žn. Žn.˜d S s y S s s 0.Ž . Ž .Ž .H Y Y

tk

Therefore,

Žn. Ž̃n.4.7 S t y s S t y , k s 1, 2, . . . , m ,Ž . Ž . Ž .Y k Y k

Žn. Ž̃n.which shows that the left limits of S and S agree at every point of jumpY Y
of SŽn..

To obtain the strong consistency of a sequence of self-consistent estimators
Žn. Ž .S , we need to assign some condition on the random set J of points ofn

Žn. �jump of S . For any t ) 0 and « ) 0, let A s v: ' N such that, for anyt, «

Ž . Ž . 4n ) N, J v l ty « , t q « / B .n

Ž .CONDITION C. For each t ) 0 and « ) 0, P A s 1.t, «

The above condition also means that, for each v outside some P-null set
Ž .and t ) 0 and « ) 0, there exists N s N t, « , v such that, for any n ) N,

Ž . Ž .J v l ty « , t q « / B. Therefore, almost surely, in any neighborhood ofn
t, we can always find points of jump of SŽn. for n large enough. Since we are
assuming S to be strictly decreasing, Condition C is also necessary for the
almost sure uniform convergence of the sequence of random step functions
SŽn. to S. We will show in Theorem 4.2 that the NPMLE satisfies Condition
C. We now establish the strong consistency of a sequence of self-consistent
estimators SŽn..
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THEOREM 4.1. Under Condition C, SŽn. uniformly converges to S almost
surely. That is,

< Žn. <P lim sup S t y S t s 0 s 1.Ž . Ž .ž /nª` w .tg 0, `

The proof of the theorem will follow from several auxiliary results which
� Žn.Ž .4are stated as lemmas below. First, we observe that, since S t and

� Žn.Ž .4S t are sequences of survival functions, by Helly’s theorem, there existsY
� Žn9.Ž . Žn9.Ž .4 0Ž . 0 Ž .a subsequence S t , S t and subsurvival functions S t and S tY Y

such that SŽn9. ª S0 at continuity points of S0 and SŽn9. ª S0 at continuityY Y
0 Ž . Žn.Ž . Ž . Žn.Ž . Ž .points of S t . Also, with probability 1, W t ª W t , W t ª W tY 1 1 2 2

Ž̃n.Ž . Ž . w .and S t ª S t uniformly for t g 0, ` , since W , W and S are contin-Y Y 1 2 Y
uous. Hence, without loss of generality, we may assume uniform convergence
on the whole space V. Furthermore, since we will show every subsequence

� 4 � 4has the same limit, we will assume n9 s n .

0 Ž . w .LEMMA 4.1. S t is continuous on 0, ` .Y

Ž .PROOF. From 3.4 ,

1tŽn. Žn. wS t s 1 q dW s , t g 0, ` .Ž . Ž . .HY 2Žn.S sŽ .0

0 Ž .For continuity points of S t 0 F s - s , we haveY 1 2

1
Žn. Žn. Žn.y S s y S s s y dW sŽ . Ž . Ž .Ž . HY 2 Y 1 2Žn.S sŽ .Ž xs , s1 2

y W Žn. s y W Žn. sŽ . Ž .Ž .2 2 2 1F Žn.S sŽ .2

4.8Ž .

y W Žn. s y W Žn. sŽ . Ž .Ž .2 2 2 1F ,Žn.W sŽ .2 2

Žn.Ž . Žn.Ž . Ž .where the last inequality follows from S s G W s by 3.3 . Letting2 2 2
n ª `,

y W s y W sŽ . Ž .Ž .2 2 2 10 04.9 y S s y S s F .Ž . Ž . Ž .Ž .Y 2 Y 1 W sŽ .2 2

0 w .Hence S is continuous on 0, ` by the continuity of W . Therefore,Y 2
Žn.Ž . 0 Ž . w .S t ª S t uniformly for t g 0, ` . IY Y
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`
0 0Ž . Ž . Ž .LEMMA 4.2. W t s y S s dS s .H2 Y

t

0 Ž .PROOF. Let t be a continuity point of S . By 2.4 ,
`

Žn. Žn. Žn.W t s y S s dS sŽ . Ž . Ž .H2 Y
tq
` `

Žn. Žn. Žn. Žn.s y d S s S s q S sy dS sŽ . Ž . Ž . Ž .H HY Y
tq tq

`
Žn. Žn. Žn. Žn.s S t S t q S sy dS s .Ž . Ž . Ž . Ž .HY Y

tq

Hence from Lemma 4.1 we obtain
`

Žn. 0 0 0 0W t ª S t S t q S s dS sŽ . Ž . Ž . Ž . Ž .H2 Y Y
tq

`
0 0s y S s dS s .Ž . Ž .H Y

t
0 w .Since the continuity points of S are dense in 0, ` and W is continuous, we2

Ž . ` 0Ž . 0 Ž . w .have shown W t s yH S s dS s , t g 0, ` . I2 t Y

LEMMA 4.3. SŽn. converges to S , that is, S0 ' S .Y Y Y Y

w . < < � < < 4PROOF. For t g 0, ` , let s g J such that s y t smin t y t ; t g J .n n n k k n
Žn. Ž̃n.Ž .Then, under Condition C, we have s ª t. Recall that S s y s Sn Y n Y

Ž .s y , son

Žn. Žn. Žn. Žn.˜S t yS t s S t yS s y q S s y yS s yŽ . Ž . Ž . Ž . Ž . Ž .Y Y Y Y n Y n Y n

4.10Ž . q S s y y S tŽ . Ž .Y n Y

s I q I q I , say.1n 2 n 3n

Žn. 0 0 w . Ž .Since S ª S uniformly and S is continuous on 0, ` Lemma 4.1 , weY Y Y
Ž̃n. w .have I ª 0. Also, I ª 0, because S ª S uniformly on 0, ` . Finally,1n 2 n Y Y

Ž . Žn.Ž . Ž .I ª 0, by the continuity of S . Hence 4.10 yields S t ª S t for3n Y Y Y
w . 0 w . 0t g 0, ` . Then S ' S on 0, ` , since both S and S are continuous. IY Y Y Y

w .PROOF OF THEOREM 4.1. In view of Lemmas 4.2 and 4.3, for each t g 0, `
Ž . ` 0Ž . Ž . Ž . `Ž 0Ž .we have W t s yH S s dS s . From 2.2 this implies H S s y2 t Y t

Ž .. Ž . w . 0 w x 0S s dS s s 0, t g 0, ` . Hence S s S a.s. l . But S is right continuousY
0 w . Žn.and S is continuous, so S ' S on 0, ` . Therefore, S ª S, and the

continuity of S makes the convergence uniform. This completes the proof of
Theorem 4.1. I

Ž .Groeneboom and Wellner 1992 have shown the self-consistency of the
NPMLE of S and established its strong consistency without the aid of
Condition C. We will prove here that, if SŽn. is the NPMLE, then SŽn. does
satisfy Condition C and therefore, by Theorem 4.1, is strongly consistent.



ESTIMATION FROM INTERVAL-CENSORED DATA 657

THEOREM 4.2. If SŽn. is the NPMLE of S, then SŽn. satisfies Condition C.

PROOF. Let F Žn. s 1 y SŽn.. Then F Žn. is the MLE of F. Let Y - ??? -Ž1.
Y be the ranked Y ’s and let d be the d corresponding to Y . It is shownŽn. i Ž i. Ž i.

Ž . Žn.in Groeneboom and Wellner 1992 that the value of F at Y is the leftŽ i.
derivative of H* at i, where H* is the convex minorant of the points
Ž . w x � 4i,Ý d on 0, n . Call a point t g Y : i s 1, 2, . . . , n a vertex of thejF i Ž j. i

Žn.Ž . Žn.Ž .convex minorant if it satisfies F t - F Y for any Y ) t , that is, if H*i i
changes its slope at k if t s Y .Žk .

We know F Žn. ª F 0 at continuity points of F 0. If we could prove that F 0 is
strictly increasing, then Condition C will be satisfied. Suppose F 0 is not

0Ž .strictly increasing. Then there exist s and s , s - s , such that F s s1 2 1 2 1
0Ž . 0 0Ž .F s . For convenience, assume F is continuous at s and s , with F s -2 1 2
0Ž . 0Ž . 0Ž .F s for any s - s and F s ) F s for any s ) s . Such points s and1 1 2 2 1

s can be found, because, if F 0 is not continuous at s andror s , we can2 1 2
consider s q « andror s y « for small « , and the proof is similar.1 2

� Žn.4 �Let s s max t F s : t is a vertex of F and s s min t G s : t is a1n 1 2 n 2
Žn.4 Žn. 0vertex of F . Then s ª s and s ª s , since F ª F . Therefore, since1n 1 2 n 2

H* is convex minorant, we have

xthe number of d ’s equal to 1 in s , sŽi 1n 2 nŽn. Žn.4.11 F s F F F s .Ž . Ž . Ž .1 2xthe number of d ’s in s , sŽi 1n 2 n

Žn.Ž . 0Ž . Žn.Ž . 0Ž . 0Ž .As n ª `, F s ª F s , F s ª F s s F s . Then in the numer-1 1 2 2 1
Ž .ator of 4.11 we get

1
xthe number of d ’s equal to 1 in s , sŽŽ .i 1n 2 nn

n1
xs T F Y , Y g s , sŽÝ i i i 1n 2 nn is1

s2n Žn.s y dW yŽ .H 1
s1n

s2ª F y dF y ,Ž . Ž .Hnª` Y
s1

Žn. Ž . ` Ž . Ž . Ž .since W ª W and W t s H F s dF s by 2.1 . Likewise the denomina-1 1 1 t Y
Ž .tor of 4.11 becomes

n1 1
x xthe number of d ’s in s , s s Y g s , sŽ ŽŽ . Ýi 1n 2 n i 1n 2 nn n is1

s2ª dF y .Ž .Hnª` Y
s1
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So, as n ª `, we have

H s2 F y dF yŽ . Ž .s Y1 04.12 s F s .Ž . Ž .1s2H dF yŽ .s Y1

Ž .By the mean value theorem for integrals, there exists u g s , s such that1 2
Ž . 0Ž .F u s F s . Also, since H* is the convex minorant, we get1

the number of d ’s equal to 1 in s , uŽ .i 1n Žn.G F s .Ž .1the number of d ’s in s , uŽ .i 1n

Ž .Following the same argument leading to 4.12 , we obtain, as n ª `,

Hu F y dF yŽ . Ž .s Y1 0G F s s F u .Ž . Ž .1uH dF yŽ .s Y1

Ž .By the mean value theorem of integrals, there exists u g s , u such that1 1
Ž . 0Ž . Ž .F u G F s s F u , which is contrary to the fact that F is strictly increas-1 1

ing. Therefore, F 0 must be strictly increasing. I
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