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ROBUSTNESS PROPERTIES OF S-ESTIMATORS OF
MULTIVARIATE LOCATION AND SHAPE

IN HIGH DIMENSION1

By David M. Rocke

University of California, Davis

For the problem of robust estimation of multivariate location and
shape, defining S-estimators using scale transformations of a fixed ρ func-
tion regardless of the dimension, as is usually done, leads to a perverse
outcome: estimators in high dimension can have a breakdown point ap-
proaching 50%, but still fail to reject as outliers points that are large dis-
tances from the main mass of points. This leads to a form of nonrobust-
ness that has important practical consequences. In this paper, estimators
are defined that improve on known S-estimators in having all of the fol-
lowing properties: (1) maximal breakdown for the given sample size and
dimension; (2) ability completely to reject as outliers points that are far
from the main mass of points; (3) convergence to good solutions with a
modest amount of computation from a nonrobust starting point for large
(though not near 50%) contamination. However, to attain maximal break-
down, these estimates, like other known maximal breakdown estimators,
require large amounts of computational effort. This greater ability of the
new estimators to reject outliers comes at a modest cost in efficiency and
gross error sensitivity and at a greater, but finite, cost in local shift sensi-
tivity.

1. Introduction. Maronna (1976), in introducing M-estimators of mul-
tivariate location and shape, showed that such estimates with monotone ψ
function have a breakdown point of at most 1/�p+ 1�, where p is the dimen-
sion of the data. Subsequently, most other robust estimators of multivariate
location and shape were shown independently by Donoho (1982) and Stahel
(1981) to have the same bound. They each proposed a projection-based estima-
tor that has breakdown approaching 1/2 [also see Donoho and Huber (1983);
Hampel, Ronchetti, Rousseeuw and Stahel (1986); Huber (1985)]. Since that
time, several high-breakdown estimators have been defined, with the greatest
attention being paid to Rousseeuw’s minimum volume ellipsoid (MVE) estima-
tor, Rousseeuw and Yohai’s S-estimators and Huber’s M-estimators [Camp-
bell (1980, 1982); Davies (1987); Hampel, Ronchetti, Rousseeuw and Stahel
(1986); Huber (1981); Kent and Tyler (1991); Lopuhaä (1989); Lopuhaä and
Rousseeuw (1991); Maronna (1976); Rousseeuw (1985); Rousseeuw and Leroy
(1987); Rousseeuw and Yohai (1984); Rousseeuw and van Zomeren (1990a, b,
1991); Tyler (1983, 1988, 1991)]. At first, Donoho’s and Stahel’s results were
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taken to mean that even redescending M-estimators had breakdown bounded
by 1/�p+ 1�; however, it has become clear that, with a high-breakdown point
start, these too can have high breakdown [Lopuhaä (1989); Tyler (1991)].

The main point of this paper concerns the definition of S-estimators in
terms of the function ρ. Although this is often not explicitly stated, it is clear
that the function ρ is intended not to vary with the dimension, by analogy with
the multivariate normal distribution, in which ρ�x� = 0:5x2 for any dimension.
The only accommodation to the dimension is to scale the Mahalanobis distance
d, so that one considers ρ�d/c�, and c varies with the dimension to maintain
the desired breakdown. We show that this implies that the estimator in high
dimension loses the ability to reject as outliers points that are very far from the
main mass of points, even if they are few. We also show that this phenomenon
is not necessary, and provide two new examples of classes of S-estimators with
high breakdown and better outlier rejection properties. We give an example in
which the application of this idea allows construction of an M-estimator that
has more robust behavior than the standard biweight S-estimator.

2. Breakdown and outlier rejection. An S-estimate of multivariate
location and shape is defined as that vector t and positive definite symmetric
(PDS) matrix C which minimize �C� subject to

n−1∑ρ���xi − t�>C−1�xi − t��1/2� = b0;(2.1)

where ρ is a nondecreasing function on �0;∞�. We write this as

n−1∑ρ�di� = b0:(2.2)

The function ρ is usually differentiable (the major exception being the MVE,
in which ρ is 0 or 1). For this to have nonzero breakdown, ρ must be bounded;
the breakdown point is given by the ratio of b0 to the maximum of ρ [Lopuhaä
and Rousseeuw (1991)].

The function ρ is usually chosen to be a scaled version of a base function
ρ0 such as the biweight, which reaches its maximum at c0. We can then write
the constraint (2.2) as

n−1∑ρ�di/c� = b0;(2.3)

where b0 and c are chosen so that E�ρ�d/c�� = b0 and b0 = rρ�c0� for break-
down r. Often a value of r near 0.5 is used to obtain very high breakdown.

It is known [Lopuhaä (1989); Rocke (1993)] that such an S-estimate is also
a root �t;C� of an M-estimation iteration in which weighted estimation

t
�j�
i =

∑
w�d̃�j�i �xi∑
w�d̃�j�i �

;(2.4)

C�j� = p
∑
w�d̃�j�i ��xi − t�j���xi − t�j��>∑

v�d̃�j�i �
(2.5)
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is alternated with determination of c to satisfy (2.3). Here

w�d̃� = ψ�d̃�/d̃;(2.6)

ψ�d̃� = ρ′�d̃�;(2.7)

v�d̃� = d̃ψ�d̃�(2.8)

and the d̃ are the Mahalanobis distances of the points after rescaling to satisfy
(2.3).

Perhaps the main point of conducting an analysis using a very high break-
down estimator is to avoid letting the outlier have much influence on the es-
timates. Since the weight given to points whose distance lies beyond c is zero,
one might expect that points that are a great distance from the main body of
points will receive a weight of zero. That is certainly true in estimation on the
real line, where the 50% breakdown biweight S-estimator gives zero weight
to any point that lies more than 1.55 estimated standard deviations from the
middle.

As it happens, this behavior changes dramatically as the dimension rises. In
20 dimensions, the square distances under normality have a χ2

20 distribution
with mean 20 and standard deviation 6.32. In order for a point to receive
zero weight from a 50% breakdown biweight S-estimator, it must lie a square
distance of 94.5 from the middle. Under normality, such distances occur with
very low probability (∼ 10−11) so that even points much closer to the center
are clear outliers. Yet these clear outliers are given positive weight in the
analysis.

This suggests a new concept in robustness theory which is called here the
asymptotic rejection probability. This begins with the rejection point which is
defined in Hampel, Ronchetti, Rousseeuw and Stahel [(1986), page 88] as the
smallest distance at which all points at larger distances have zero influence.
We then determine the chance, in large samples, that when the estimator
is presented with all “good” data, a randomly chosen point lies beyond the
rejection point. Although this should be small for the sake of efficiency, it is
useful to be able to reject as outliers (by giving zero weight) points that are
very improbable under the null model. We now define formally the property
of the estimator that concerns this ability to reject outliers completely.

Definition 1. Consider a redescending M- or S-estimator, in which c0 =
inf�d0 �w�d� = 0; ∀d > d0�, where w is given by (2.6). The asymptotic rejec-
tion probability (ARP) α of this estimator is then defined as the probability
in large samples under a reference distribution (usually multivariate normal)
that a Mahalanobis distance exceeds c0. If the estimator is normed to the
normal distribution, this is 1−Fχ2�p��c2

0�.

We now show that the ARP of the usual class of S-estimators, in which the
ρ function varies by dimension only by scaling, tends to zero as p rises.
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Theorem 1. Let ρ: <+ 7→ <+ be a continuously differentiable, function
which is increasing on �0; c0� and constant at ρ�d� = ρ�c0� for all d ≥ c0.
Given a data set of n points in <p; let �t;C� be defined by minimizing �C�
subject to

n−1
n∑
i=1

ρ���xi − t�>C−1�xi − t��1/2/cp� = n−1
n∑
i=1

ρ�di/cp� = bp;(2.9)

where bp = E�ρ�d/cp�� and where cp is chosen so that the breakdown point
of the estimator is r for every p [so that bp = rρ�cp��. The expectation is
taken over a fixed elliptical distribution with finite fourth moments. Let αp
be the ARP of this estimator when the dimension is p and the data have the
given multivariate elliptical distribution. Then limp→∞ αp = 0. If the reference
distribution is multivariate normal, then for large dimension,

ln�αp� ≈ 0:5p�ln�k� − k+ 1�;(2.10)

where k = 1/M2 and ρ�M� = rρ�c0�.

Proof. Because the Mahalanobis distance is affine equivariant, we may
analyze, without loss of generality, the case in which the elliptical distribution
is centered at zero and has identity shape. Also, without loss of generality,
let c0 = 1. The components xi1; xi2; : : : ; xip of a data point xi are identically
distributed and uncorrelated (but not independent unless the distribution is
normal). Suppose E�x2

ij� = A and Var�x2
ij� = B (these would be A = 1 and

B = 2, respectively, under normality). Then d2 = ∑p
j=1 x

2
ij is asymptotically

(in p) normal with mean pA and variance pB.
In large dimension

E�ρ�d/cp�� = E
(
ρ
(√
d2/cp

))

≈ ρ
(√
pA/cp

)
:

(2.11)

For this to have breakdown r we need E�ρ�d/cp�� = rρ�1� [Lopuhaä and
Rousseeuw (1991)]. Let M be the unique value satisfying ρ�M� = rρ�1�. Then,
for large p,

√
pA/cp ≈M, so cp ≈

√
pA/M and

Pr�d/cp ≥ 1� = Pr�d2 ≥ c2
p�

= Pr
(
d2 − pA√

pB
≥
c2
p − pA√
pB

)

= Pr
(
d2 − pA√

pB
≥ pA/M

2 − pA√
pB

)

= Pr
(
d2 − pA√

pB
≥ √pA1/M2 − 1√

B

)

=→ 0:
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If the reference distribution is multivariate normal, then A = 1 and in large
dimension and large samples, using the first term of an asymptotic expansion
for the χ2-distribution [Abramowitz and Stegun (1972), Section 26.4.12], we
have

αp ≈ Pr�d2 ≥ kp�

≈ �kp�
p/2−1e−kp/2

2p/2−10�p/2� ;
(2.12)

where k = 1/M2, so that, using Stirling’s formula,

ln�αp� ≈ 0:5p�ln�k� − k+ 1� − 0:5 ln�p� − ln�k� − 0:5 ln�π�;(2.13)

≈ 0:5p�ln�k� − k+ 1�(2.14)

as required. 2

Remark 1. The conclusions of this theorem also hold for M-estimators if
the central part of the weight function is matched to the center of the distri-
bution of d in any of a number of ways. For example, if c/2 is chosen to match
the median of the distances, then this is the case.

Remark 2. The stated conditions for this theorem are somewhat stronger
than required. The main condition is that there exist M satisfying ρ�M� =
rρ�c0�, and that ρ be continuous atM. The MVE does not satisfy this condition,
which allows this estimator to have an ARP of 0.5.

2.1. Example: the biweight. Suppose

ψb�dy c� =
{
d�1− �d/c�2�2; 0 ≤ d ≤ c;
0; d > c;

(2.15)

so that

ρb�dy c� =
{
d2/2− d4/�2c2� + d6/�6c4�; 0 ≤ d ≤ c;
c2/6; d > c;

(2.16)

and

wb�dy c� =
{
�1− �d/c�2�2; 0 ≤ d ≤ c;
0; d > c:

(2.17)

Figure 1 (solid line) shows the asymptotic rejection point of the S-estimator
with breakdown 0.5 using the biweight ρ. For example, when p = 20, then
c = 9:72 and the ARP is 1−Fχ2�20��94:5� = 10−11. Otherwise put, the “average”
multivariate normal data point has d2 = 20; the point at which a data point is
unequivocally declared an outlier is d2 = 94:5, which is 12 standard deviations
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Fig. 1. Asymptotic rejection probabilities of four S-estimators.

away. Thus, although points sufficiently far away fail to influence the estimate
(achieving high breakdown), outliers may drag the estimates a long distance
away, even though that distance is bounded.

2.2. Two improved S-estimation procedures. The perverse behavior shown
above for standard S-estimators is not a necessary consequence of the defini-
tion of S-estimator. First, an S-estimator is exhibited whose weight function
is the same as the biweight’s, except it has been translated so that it begins
rising from zero at a point M, rather than 0. It is defined by a two-parameter
class of ρ functions. This will be called the t-biweight (for translated biweight).

Let

wt�dy c;M� =





1; 0 ≤ d < M;

�1− ��d−M�/c�2�2; M ≤ d ≤M+ c;
0; d > M+ c;

(2.18)

ψt�dy c;M� =





d; 0 ≤ d < M;

d�1− ��d−M�/c�2�2; M ≤ d ≤M+ c;
0; d > M+ c;

(2.19)
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ρt�dy c;M� =





d2/2; 0 ≤ d < M;

M2/2

−M2�M4 − 5M2c2 + 15c4�/�30c4�
+ d2�1/2+M4/�2c4� −M2/c2�
+ d3�4M/�3c2� − 4M3/�3c4��
+ d4�3M2/�2c4� − 1/�2c2��
− 4Md5/�5c4� + d6/�6c4�; M ≤ d ≤M+ c;

M2/2+ c�5c+ 16M�/30; d > M+ c:

(2.20)

The limit of this as c→ 0 is the least Winsorized squares (LWS) estimate
in which

wLWS�dy c� =
{

1; 0 ≤ d ≤ c;
0; d > c;

(2.21)

ψLWS�dy c� =
{
d; 0 ≤ d ≤ c;
0; d > c;

(2.22)

ρLWS�dy c� =
{
d2/2; 0 ≤ d ≤ c;
c2/2; d > c:

(2.23)

(This is least metrically Winsorized squares, as distinguished from that based
on order statistics, as is used in least trimmed squares [Rousseeuw and Leroy
(1987)].)

Now the two parameters c and M of the t-biweight can be chosen to give
the desired breakdown point and ARP, subject to the following constraint.

Theorem 2. An S-estimator with breakdown point r in dimension p using
the t-biweight ρ function with parameters c and M has ARP no larger than
that of LWS with the same breakdown. The ARP of this latter estimator also
goes to 0 as p→∞; but much more slowly than the biweight. In particular, for
multivariate normal data and for large p; the ARP αp of the biweight satisfies

ln�αp� ≈ −1:13p(2.24)

and the ARP of LWS satisfies

ln�αp� ≈ −0:15p:(2.25)

Proof. We show in the Appendix that

ρt�dy c;M�
ρt�c+My c;M�

≥ ρLWS�dy c+M�
ρLWS�c+My c+M�

:(2.26)

Since the two functions are normed to have the same maximum, the fact that
the t-biweight curve lies above the LWS curve means that each fractile of the
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t-biweight lies to the left of the equivalent fractile of LWS. This means that
the ARP is smaller for the t-biweight than for LWS. The relative behavior of
the ARP for the biweight and LWS estimators, each with breakdown 0.5, are
shown in Figure 1. Using Theorem 1, together with the fact thatM = 0:4542c0
for the biweight ρ and M = 0:7071c0 for the LWS ρ, we arrive at the stated
expressions. The expression (2.24) is fairly accurate even for dimensions as
low as 30–50. The expression (2.25) is less exact, since the linear term in p is
smaller, so (2.13) should be used if an approximation is needed. 2

An estimator that can be set to have a given breakdown point and ARP for
any dimension is given by the following. We call it the biflat, because the ρ
function is flat for small values and for large values of d. The weight function
is similar to the biweight in between. Note that Davies (1987) suggests, ap-
parently for technical reasons, a ρ function that is flat in a neighborhood of
zero.

Let

ψf�dy c;M� =





0; 0 ≤ d < M− c;
�1− ��d−M�/c�2�2; M− c ≤ d ≤M+ c;
0; d > M+ c;

(2.27)

wf�dy c;M� =





0; 0 ≤ d < M− c;
�1− ��d−M�/c�2�2/d; M− c ≤ d ≤M+ c;
0; d > M+ c;

(2.28)

ρ�d� =





0; 0 ≤ d < M− c;
�8c/15+ 2M3/�3c2�
−M5/�5c4� −M�
+ d�1+M4/c4 − 2M2/c2�
+ d2�2M/c2 − 2M3/c4�
+ d3�2M2/c4 − 2/�3c2��
−Md4/c4 + d5/5c4; M− c ≤ d ≤M+ c;

16c/15; d > M+ c:

(2.29)

In this case, the constraints on c and M can be simply satisfied by setting
M + c = �F−1

χ2�p��α��1/2, which forces the ARP to α, and then solving for the
breakdown point, which can be done by monotonicity so long as E�ρ� > 8c/15
with M = c = 0:5F−1

χ2�p��α�. For α = 0:01, this requires p ≥ 4 and for α = 0:001
this requires p ≥ 7. The problem is that, for p = 3, for example, no member
of the class with breakdown 0.5 has an ARP as bad as 0.01. In these cases,
one can use the 50% breakdown estimator with M = c and whatever ARP is
produced, or one can reasonably use the biweight.
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As an example, Figure 2 shows the weight functions for the biweight, t-
biweight and biflat estimators, each with breakdown 0.5 for dimension 10.
The latter two have been set to have ARP of 0.01, whereas the ARP of the
biweight is 10−6. Also shown is the density of the square root of a χ2

10 vari-
ate. The t-biweight has weight near 1 for most of the data (when normally
distributed), so the efficiency will be high. The biflat has the ability to down-
weight inliers as well as outliers, and can be set at an arbitrary ARP even in
high dimensions. Both these should be useful in different circumstances. The
ordinary biweight seems to have little advantage over the other two, and has
the severe problem of failing to reject outliers. This problem and the differ-
ences among the estimators are even more pronounced when the dimension
is higher than 10.

3. Efficiency, gross error sensitivity and local shift sensitivity. The
biweight, LWS and biflat estimators have ARP properties studied in the last
section. In this section, three other properties of these estimators are studied:
the normal theory statistical efficiency, the gross error sensitivity and the local
shift sensitivity. Limiting the ARP does have consequences for the efficiency
and gross error sensitivity, but they seem to be modest compared to the serious
consequences for outlier rejection of using the biweight in high dimension.
Consequences for local shift sensitivity are greater, but the LWS exhibits a

Fig. 2. Three weight functions.
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large improvement in local behavior over the MVE, and the biflat exhibits an
equally large improvement in local behavior over the LWS.

Figure 3 shows the asymptotic (in n) efficiency of the location estimators
for multivariate normal data as a function of p. (Behavior of the shape es-
timation values is similar.) Both the biweight and the LWS estimator have
efficiency that approaches 1 as p→∞, while the biflat in high dimension has
an efficiency that depends on the ARP setting. Thus the biflat estimator can
be chosen in high dimension to fit any relative valuation of efficiency versus
ARP; the smaller the ARP that can be tolerated, the larger the efficiency at
the normal model. The theorem below gives the large dimension values for
these efficiencies.

The gross error sensitivity is the limit as ε → 0 of ε−1 times the largest
displacement of the estimate obtainable by contamination of size ε [Hampel,
Ronchetti, Rousseeuw and Stahel (1986)]. In order to compare these across
dimension, this is then divided by

√
p, which is the approximate mean distance

of points from the center. Also, the average random displacement of the sample
mean from the true value is of order

√
p. Figure 4 shows the gross error

sensitivity values for the biweight, LWS and two biflat estimators. While the
values for the other estimators are larger than that for the biweight, the
difference seems modest, especially with the biflat with α = 0:001.

The local shift sensitivity is defined in Hampel, Ronchetti, Rousseeuw and
Stahel (1986) to be the limit as ε→ 0 and 1→ 0 of ε−11−1 times the largest
distance the estimate can be moved by shifting a fraction ε of the data a

Fig. 3. Large sample normal efficiency of four S-estimators of location.
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Fig. 4. Large sample scaled gross error sensitivity of four S-estimators of location.

distance 1. For reasons that will be clear shortly, this will be described in
terms of nonzero quantities ε and 1, and in terms of movement of a single
point in finite samples, so that ε = n−1. First consider the location problem on
the real line. It is easily seen that the sample mean has local shift sensitivity
of 1, since moving one of n points a distance of 1 moves the sample mean
by 1/n. For the sample median, moving the central point (n odd) moves the
median by 1, so that the local shift sensitivity is O�n� and is thus infinite. The
MVE in one dimension is the shorth [Andrews, Bickel, Hampel, Huber, Rogers
and Tukey (1972)] and this can be moved essentially from the midrange of the
left half of the data to the midrange of the right half of the data by a shift
of 1 in one point, so that the local shift sensitivity is O�n/1�. This is doubly
infinite, both in n and in 1, indicating that the local shift sensitivity of the
shorth is worse than that of the median, even though both have infinite local
shift sensitivity. The LWS estimate has a maximum shift obtained by moving
a single point from just where the weight is one to just where it is zero, a
simple computation shows that this is O�1/1�. The LWS estimate thus has
local shift sensitivity that is infinite (like the median), but is better behaved
than the shorth (MVE). The biflat has finite local shift sensitivity, but one
that increases with the dimension and is higher than that of the biweight, as
shown in Figure 5.

The following theorem gives the large p values for these robustness mea-
sures.
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Fig. 5. Large sample local shift sensitivity of three S-estimators of location.

Theorem 3. For large p; the normal efficiency, gross error sensitivity and
local shift sensitivity of the biweight, MVE, LWS and the biflat for α = 0:01
and α = 0:001; each with 50% breakdown, are given by Table 1.

Proof. For the biweight, the part of the weight function with nonnegligi-
ble probability becomes a smaller and smaller fraction of the support, so that,
for large p, the biweight is essentially an unweighted mean, which thus has
asymptotic efficiency 1. A similar statement holds even more strongly for the
LWS estimator, since the weight function is constant at 1 from 0 to c. The ef-
ficiency values for the biflat are less straightforward, since the rejection point
does not continue to move further out in the tail, so the values were derived
by a direct numerical calculation using a normal approximation for the dis-

Table 1

Gross error Local shift
Estimator Efficiency sensitivity sensitivity

Biweight 1 1.00 1.59
MVE 0 ∞ O�n/1�
LWS 1 1.41 O�1/1�
Biflat, α = 0:01 0.87 1.36 1.26

√
p

Biflat, α = 0:001 0.94 1.21 0.85
√
p
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tance. Note that, for large p, the constants are approximately M = √p and
c = zα/

√
2.

To determine the gross error sensitivity for the biweight, note that the max-
imum value of ψ occurs at d = c/

√
5 and the achieved maximum is 16c

√
5/125.

Using the large p approximation c = √p/M, we obtain 16
√

5p/�125M�. Now,
for large p, the influence function of the location estimate is ψ�d�/ω, where
ω = E�w�d�� [Lopuhaä (1989); Maronna (1976)], and ω = �1 − 2M2 +M4� +
2M4/p for large p, so the large p gross error sensitivity is approximately

16
√

5p
125M�1− 2M2 +M4� :

When scaled by
√
p and using M = 0:454202, we arrive at the stated number.

For LWS, the expectation of w�d� for large p is 1, and the maximum of ψ
is c at d = c. Using the approximation c = √p/M, we obtain a scaled gross
error sensitivity of 1/M. Since M ≈ 1/

√
2, the large p gross error sensitivity

is
√

2. The values for the biflat were computed numerically using the normal
asymptotic distribution of d.

Local shift sensitivity of the biweight is determined by noting that the
maximum slope of ψ is 1, which occurs at d = 0. The local shift sensitivity for
large p is thus 1/�1− 2M2 +M4� = 1:5874. The LWS local shift sensitivities
are infinite and the MVE local shift sensitivity is doubly infinite, as in the
dimension 1 case. The local shift sensitivities for the biflat were computed
numerically using the normal asymptotic distribution of d. 2

A comparison of smooth ρ function S-estimators to the MVE estimator
seems called for at this point. In large samples, the MVE has breakdown
50% and ARP of 50%. These extremely robust properties are balanced by zero
asymptotic efficiency, infinite gross error sensitivity, doubly infinite local shift
sensitivity, difficult computation and poor small sample properties. While it
has been suggested for use as a starting value for S-estimation, the minimum
covariance determinant (MCD) estimator [Rousseeuw (1985)] seems superior
both in efficiency and in computability [Woodruff and Rocke (1993, 1994)]. In
any case, the properties of the MVE and MCD as estimators in their own right
may be of less interest than their performance in achieving a high-breakdown
starting value for iterative estimators [Woodruff and Rocke (1994); Rocke and
Woodruff (1996)] which offer the potential of good efficiency as well as good
robustness properties.

The biflat, on the other hand, has ARP bounded away from zero, with small
disadvantages compared to the biweight in efficiency and gross error sensitiv-
ity. The local shift sensitivity is measurably worse than the biweight, but still
finite, unlike the MVE, or even the LWS and sample median. Even the LWS
estimator, which has infinite local shift sensitivity, is still “infinitely better” in
this property than the MVE.

The biflat does suffer from a computational problem in small samples when
the contamination is heavy. Suppose that the majority of the data were nor-
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mally distributed with mean 0 and covariance I and that the remainder were
displaced a distance η. Using the covariance of the good data, the distribution
of the Mahalanobis distances would be bimodal with a region of small proba-
bility in between. It could easily happen in that case that the “bulge” of the
biflat weight function could fall in the empty region, leading to instability.

This instability happens in part because the S-estimator standardization
constraint is based on the mean of ρ�d�. If this is replaced by a constraint
using the median of ρ�d�, this problem disappears, since it insures that there
are data where the weight function is high. In fact, one can standardize by
fixing the ��n + p + 1�/2� order statistic of the set of Mahalanobis square
distances to the ��n+p+ 1�/2�/�n+ 1� quantile of a χ2

p. As in the case of the
MVE [Lopuhaä and Rousseeuw (1991)], this insures a high breakdown.

The resulting estimator is no longer an S-estimator, since the location and
shape iterations use a ρ function that is not used for standardization. This
M-type estimator appears to be statistically and computationally robust. The
same scaling can be used with any M-estimator; we call it “median”scaling, al-
though the order statistic used is not quite the median. The efficiency, gross er-
ror sensitivity and local shift sensitivity properties should remain unchanged.
In Rocke and Woodruff (1996), an M-type estimator based on the t-biweight
is successfully applied to the detection of multivariate outliers.

4. An example. We illustrate in this section the difference that it can
make to take account of points made in this paper. We take a data set of 50
points in 10 dimensions distributed as independent standard normal. Consider
a succession of data sets in which i of the 50 points have 5 added to each value
(this is a distance of

√
250 away from the main body of data). We iterate the

biweight S-estimator and the median scaled biflatM-estimator to convergence
from two starting points. The first is the mean and covariance of the data; this
is the worst case for such estimators. The second is the mean and covariance
of the unperturbed data; this approximates the best case in which a good,
robust starting point is found.

The quality of the resulting estimate will be measure by the largest eigen-
value of the estimated shape matrix. Other measures of the goodness of either
the location or shape estimate yield comparable results, since the main point
is whether the estimate breaks down and follows the outliers or resists and
stays with the good data.

Figure 6 shows the results of a 40% breakdown biweight S-estimator and
a 40% breakdown, 1%-ARP biflat M-estimator with median scaling applied
to each of 22 data sets having from 0 to 21 outliers in 50. Here, the starting
point is the mean and covariance of the good data. As promised by the nominal
breakdown, both estimators give good results until the contamination nears
40%. In this case, the biweight breaks down at 36% contamination and the
biflat breaks down at 42%, but this could be mere finite-sample fluctuations.

Figure 7 shows the real advantage of the biflat. From a bad starting point
(mean and covariance of all the data), the biweight breaks down at 10% out-
liers (perhaps not coincidentally, this is the reciprocal of the dimension). The
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Fig. 6. Estimation and breakdown: good start.

Fig. 7. Estimation and breakdown: bad start.



1342 D. M. ROCKE

biflat, on the other hand, converges to a good solution until the contamination
reaches 24%. This remarkable behavior gives hope that this class of estima-
tors will allow robust estimation in the presence of substantial contamination
without excessive computation. Even here, however, large amounts of con-
tamination will require a robust starting point such as the MCD, of which
the successful computation in even moderate dimension requires considerable
sophistication in algorithms and large amounts of computer time [Woodruff
and Rocke (1993, 1994); Rocke and Woodruff (1993, 1996)].

Similar good results were obtained using the t-biweight M-estimator with
median scaling. The t-biweight S-estimator performed about the same as the
biweight S-estimator. In larger dimension, however, some experimentation
suggests that the t-biweight will do much better at resisting outliers than the
biweight.

5. Conclusion. In this paper, it has been shown that 50% breakdown S-
(and M-) estimates as usually defined do not apply zero weight to obvious
outliers in high dimension due to the use of an inflexible family of ρ functions.
This problem is repaired by use of a two-parameter class of ρ functions, so that
both the breakdown and the asymptotic rejection probability can be chosen.
This greater ability to reject outliers comes at a modest cost in efficiency and
gross error sensitivity and at a greater, but finite, cost in local shift sensitivity.

APPENDIX

Proof of Theorem 2. We show that, for all c ≥ 0; M ≥ 0; d ≥ 0;

ρt�dy c;M�
ρt�c+My c;M�

≥ ρLWS�dy c+M�
ρLWS�c+My c+M�

:(A.1)

Without loss of generality, we norm the problem so that c +M = 1; so we
must show that

ρ�dyβ�
ρ�1; β� ≥

ρLWS�dy1�
ρLWS�1y1�

;(A.2)

where

ψ�dyβ� =





d; 0 ≤ d < β;
d�1− ��d− β�/�1− β��2�2; β ≤ d ≤ 1;

0; d > 1;

(A.3)

and

ρ�dyβ� =





d2/2; 0 ≤ d < β;
β2/2+

∫ d
β x�1− ��x− β�/�1− β��2�2 dx; β ≤ d ≤ 1;

�4β2 + 6β+ 5�/30; d > 1:

(A.4)
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This is obviously true for d ≥ 1 and is immediate for 0 ≤ d ≤ β; so we need
to show that

ρ�dyβ�
ρ�1; β� ≥

d2/2
1/2

(A.5)

for all 0 ≤ β ≤ 1 and β ≤ d ≤ 1; that is,

β2/2+
∫ d
β
x�1− ��x− β�/�1− β��2�2 dx ≥ d2ρ�1; β�;(A.6)

∫ d
β
x�1− ��x− β�/�1− β��2�2 dx ≥ d2�4β2 + 6β+ 5�/30− β2/2:(A.7)

Now, letting y = �x−β�/�1−β� and z = �d−β�/�1−β� the integral becomes
∫ d
β
x�1− ��x− β�/�1− β��2�2 dx

=
∫ z

0
�β+ �1− β�y��1− y2�2�1− β�dy

(A.8)

= β�1− β�
∫ z

0
�1− y2�2 dy+ �1− β�2

∫ z
0
y�1− y2�2 dy(A.9)

= β�1− β��z− 2z3/3+ z5/5� + �1− β�2�1− �1− z2�3�/6(A.10)

This makes (A.7)

β�1− β��z− 2z3/3+ z5/5� + �1− β�2�1− �1− z2�3�/6
≥ �β+ �1− β�z�2�4β2 + 6β+ 5�/30− β2/2;

(A.11)

which can also be expressed as

�1− β��1− z���10β2 + 4β3� + z�20β− 2β2 − 4β3� + z2�10+ 4β�
+ z3�10− 16β� − z4�5+ β� − z5�5− 5β��/30 ≥ 0;

(A.12)

�10β2 + 4β3� + z�20β− 2β2 − 4β3� + z2�10+ 4β�
+ z3�10− 16β� − z4�5+ β� − z5�5− 5β� ≥ 0:

(A.13)

We now show that the left-hand side of (A.13) is increasing in β for every
0 ≤ z ≤ 1. The derivative of (A.13) with respect to β is

�20β+ 12β2� + z�20− 4β− 12β2� + 4z2 − 16z3 − z4 + 5z5:(A.14)

This derivative is nonnegative since (1) it is nonnegative at β = 0, where it is
20z+4z2−16z3−z4+5z5, since 20+4z−16z2−z3+5z4 > 20+4�0�−16�1�−1+
5�0� = 4 and (2) it is increasing in β because its derivative 20+24β−z�4+24β�
is clearly at least 16.

Thus, we may show the inequality (A.13) by showing it is true for β = 0, in
which case it becomes

10z2 + 10z3 − 5z4 − 5z5 = z2�10+ 10z− 5z2 − 5z3� ≥ 0;(A.15)
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where the last inequality follows since 10 + 10z − 5z2 − 5z3 > 10 + 10�0� −
5�1� − 5�1� = 0. 2
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