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COMPLETE ORDER STATISTICS IN PARAMETRIC MODELS

BY L. MATTNER

Universitat Hamburg¨
For a given statistical model PP it may happen that the order statistic

is complete for each IID model based on PP. After reviewing known
relevant results for large nonparametric models and pointing out general-
izations to small nonparametric models, we essentially prove that this
happens generically even in smooth parametric models.

As a consequence it may be argued that any statistic depending
symmetrically on the observations can be regarded as an optimal unbi-
ased estimator of its expectation.

In particular, the sample mean X is generically an optimal unbiasedn
estimator, but, as it turns out, also generically asymptotically inefficient.

1. Introduction and results.

1.1. Completeness in statistical theory. The existence of a complete and
sufficient statistic in a given statistical model may greatly simplify the
application of various statistical theories, such as unbiased estimation, me-

wdian unbiased estimation, unbiased tests, and conditional inference see, e.g.,
Ž . Ž . Ž .Lehmann 1983, 1986 , Pfanzagl 1979, 1994 , Ruschendorf 1987 and¨

Ž .xLehmann and Scholz 1992 . Hence it is unfortunate that so far only few
techniques have proved successful for deducing completeness.

1.2. Contents of this paper. In this paper we consider IID models only,
with the emphasis on sample sizes n G 2, thus excluding from the discussion

w Ž .xcompleteness results for, for example, linear models see Anderson 1962 ,
w Ž . xsampling from finite populations see Lehmann 1983 , page 209 or full shift

w Ž . Ž .xmodels Isenbeck and Ruschendorf 1992 and Mattner 1992, 1993 . In an¨
IID model it may happen that the order statistic is complete. Subsection 1.4

Žrecalls known relevant results for large nonparametric models Theorems 1
.and 2 and points out generalizations to smaller nonparametric models

Ž .Theorems 3, 4 and 5 . In subsection 1.5 we state as Theorems 6 and 7 the
main result of this paper: the order statistic is generically complete even in
smooth parametric models. Section 2 discusses two somewhat interrelated
applications, the first more practical, the second purely theoretical. Section 3
contains remarks on generalizations and the history of Theorems 1 to 7.
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Finally, Section 4 presents proofs of the new results of this section, Theorems
3 to 7 and a corollary.

Ž n n n.1.3. IID models. Let n g N and let XX , AA , PP be the IID model based
Ž .on a given model XX , AA, PP . Here XX is the sample space for one observation,

AA is a s-algebra on XX and PP is a nonempty set of probability measures on
Ž . Ž n n. Ž n n .XX , AA . XX , AA [ = XX , m AA is the n-fold product of the measurablens1 ns1

Ž .space XX , AA and
n � n 4PP s P : P g PP

is the set of all product measures
nn

nP [ P [ P ,m m
ns1

with identical marginals belonging to PP.

1.4. Complete order statistics in nonparametric models. It may happen
Ž .that the order statistic i.e., the observations ignoring their order is complete

and sufficient. More precisely, let AAn denote the sub-s-algebra of AAn
sym

consisting of all permutation-invariant events. If XX s R, then AAn is just thesym
s-algebra generated by the usual order statistic. In any case, a real-valued
function on XX n is measurable with respect to AAn iff it is measurable withsym
respect to AAn and permutation invariant. AAn is always sufficient for PP n,sym
regardless of PP. AAn is called complete for PP n, according to the generalsym
definition of a complete s-algebra, if for every real-valued AAn -measurablesym
function h the relation

1 h dP n s 0 P g PP ,Ž . Ž .H
implies

w n x2 h s 0 PP .Ž .
w Ž . n n nThe statement in 2 means: for every P g PP , we have h s 0 P -almost

xsurely. In this case it is natural to say that the order statistic is complete for
n Ž .PP even without giving any general definition of ‘‘order statistic’’ . Alterna-

tively, we may say that PP n is symmetrically complete, and this is the
Žterminology used in this paper. In the literature we also find the somewhat

misleading terminology of calling PP, rather than PP n, symmetrically com-
.plete. The two basic symmetric completeness results are the following.

Ž .THEOREM 1 Convex models . Let PP be a complete and convex model on
Ž . nXX , AA . Then PP is symmetrically complete for every sample size n.

Ž .THEOREM 2 Uniform densities . Let m be a nonnegative measure without
Ž .atoms on XX , AA and let RR be a ring generating AA. Then each IID model based

on
1B

PP s ? m : B g RR, 0 - m B - `Ž .½ 5m BŽ .
is symmetrically complete.
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The history of Theorem 1 is sketched in Remark 1 in Section 3. Theorem 2
Ž .is due to Fraser 1954 .

Although Theorems 1 and 2 are somewhat incomparable, it seems that
Theorem 1 yields symmetric completeness results for more interesting mod-
els. As an example we mention the following easy, but apparently so far
unnoticed, consequence of Theorem 1, which does not seem to be easily

Ž .deducible from Theorem 2 see also Remark 2 below .

Ž .THEOREM 3 Unimodal densities . Each IID model based on the set of all
probability measures on the real line with unimodal Lebesgue densities is
symmetrically complete.

Symmetric completeness results are usually thought of as referring to
‘‘large’’ nonparametric models, containing many ‘‘unrealistic’’ probability
measures. Hence statistical optimality results, for example, in unbiased
estimation, based on symmetric completeness may appear to rest on doubtful
assumptions. This picture changes somewhat if we observe the following two
variations of Theorem 1. Similar results have been obtained before in

Ž .Ruschendorf 1988 , page 298.¨

Ž .THEOREM 4 Contamination models . Let PP be an arbitrary model on0
Ž . Ž . Ž .XX , AA . For each P g PP let QQ P be a complete and convex model on XX , AA0 0 0

Ž . Ž xsatisfying P < QQ P . Then, for every « g 0, 1 , each IID model based on0 0

w xPP s 1 y t ? P q t ? Q : P g PP , Q g QQ P , t g 0, «� 4Ž . Ž .« 0 0 0 0

is symmetrically complete.

Ž .THEOREM 5 Nonparametric neighborhoods . Let PP be an arbitrary model0
Ž .on XX , AA . Then, for every « ) 0, each IID model based on

dP
w xPP s P : P < P and sup y 1 F « P for some P g PP« 0 0 0 0½ 5dP0

is symmetrically complete.

1.5. Complete order statistics in parametric models. So far the existence
of a complete sufficient statistic or s-algebra for parametric IID models seems
to have been established only either for exponential families or in certain
so-called irregular cases. Disregarding the latter, this appears to have led to
the belief that the applicability of the theory of optimal unbiased estimation

Žin the parametric case is essentially restricted to exponential families see,
wŽ . x wŽ .e.g., statements in Pfanzagl 1980 , page 3 , Lehmann 1983 , pages 115 and

x wŽ . x.163 and Witting 1985 , page 304 . The main and perhaps somewhat
surprising results of this paper, stated below, imply that this belief is

Žerroneous: generically, the order statistic is complete. In particular: exis-
.tence of a complete and sufficient statistic is the rule, not the exception. As a
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consequence, symmetric functions are generically optimal unbiased estima-
Žtors of their expectation. For simplicity, we have just stated slightly more

than what is rigorously stated and proved below: under reasonable condi-
tions, we prove, e.g., only generic quadratic completeness instead of generic

.completeness.
We need some notation in order to state our results precisely.

`Ž .Let LL AA denote the Banach space of all bounded, real-valued AA-mea-
surable functions on XX , the norm being the supremum norm simply denoted

5 5by ? .
ŽLet GG denote the set of all infinitely often differentiable functions G s g :q

. `Ž .q g Q defined on an interval Q and taking values g in LL AA , whichq

satisfy
5 Žk . 5 5 Žk . 5G [ sup g - ` k g N ,Ž .q 0

qgQ

where g Žk . denotes the kth derivative with respect to q , andq

15 5 5 53 G s sup g - .Ž . q 2
qgQ

GG is a metric space with metric d defined by
`

yly1 Ž l . Ž l .˜ ˜5 54 d G , G s 2 min 1, G y G .Ž . Ž . Ž .Ý
ls0

Ž .For any parametrized model PP s P : q g Q and any G g GG, putq

1 q g PŽ .q q
PP [ P : q g Q [ : q g Q .Ž .G G , q ž /H 1 q g dPŽ .XX q q

We are interested in the symmetric completeness properties of IID models
based on PP . First we consider bounded completeness.G

Ž . Ž . nIf the implication ‘‘ 1 « 2 ’’ holds for every bounded AA -measurablesym
n Ž .function h, then we call the model PP occurring in 2 symmetrically

boundedly complete.

Ž . Ž .THEOREM 6 Generic bounded completeness . Let PP s P : q g Q be aq

Ž .parametrized statistical model over the sample space XX , AA . Suppose:

Ž .i AA is countably generated.
Ž .ii Q is a nondegenerate interval on the real line.
Ž .iii PP is infinitely often differentiable with respect to total variation dis-

tance.

Then

5 GgGG : PP n symmetrically boundedly complete for every sample size n� 4Ž . G

contains a dense G -subset of GG.d

w x Ž . Ž . nIf p g 1, ` and if the implication ‘‘ 1 « 2 ’’ holds for every AA -mea-sym
< <p n nsurable function h such that h is integrable with respect to every P g PP ,
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n Ž .then we call the model PP occurring in 2 symmetrically p-complete for
sample size n.

Ž . w . ŽTHEOREM 7 Generic p-completeness . Let p g 1, ` and let q s pr p y
. Ž .1 denote the exponent conjugate to p. Let PP be as in Theorem 6 but with iii

replaced by the following more restrictive assumption:

Ž .iii PP is homogeneous and for every q g Q there exists an a ) 0 suchp 0
that

dPq qw xQ l q y a , q q a 2 q ¬ g L PŽ .0 0 q0dPq @

qŽ .is infinitely often differentiable with respect to the L P -norm.q0

Then

G g GG : PP n symmetrically p-complete for every sample size n� 4G

contains a dense G -subset of GG.d

Finally, if PP n is symmetrically p-complete for every p ) 1, then we call
n Ž .PP symmetrically 1 q -complete.

COROLLARY. If PP satisfies the assumptions of Theorem 7 for every p ) 1,
then

G g GG : PP n symmetrically 1 q -complete for every sample size n� 4Ž .G

contains a dense G -subset of GG.d

The reason for stating the corollary is the following: for p ) 1, assumption
Ž .iii of Theorem 7 is true for every exponential family with open parameterp
space, whereas for p s 1, there are many counterexamples.

Note that, for example, Theorem 7 can roughly be stated as follows: If PP is
Ža sufficiently smooth parametric model with ‘‘sufficiently’’ depending on

w ..p g 1, ` , then not only the neighborhood model PP from Theorem 5 gives«

rise to symmetrically p-complete IID models, even most smooth parametric
submodels PP of PP do. See subsection 2.1 below for a more concreteG «

discussion.
Theorems 6, 7 and the corollary are existence results: no models with the

wstated completeness properties are actually constructed in their proofs un-
less one insists that the standard proof of Baire’s theorem is constructive; see

Ž . xthe discussion in Oxtoby 1980 , pages 2, 7 and 46 . In fact, no such models
seem to be known, at least not in the statistical literature. So the main
implication of our results seems to be the following: if we take any smooth

Žparametric model which is not too special e.g., not an exponential family, not
.a group family, . . . , then we should not be surprised if it has the complete-

ness properties under discussion. However, to prove that it actually has will
typically be difficult, as is witnessed by the sparsity of known parametric
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completeness results in general. This situation might be compared with the
state of knowledge about, say, transcendental numbers: there are many, but
few are recognized as such.

2. Applications.

2.1. Estimation of a Poissonian variance. Consider the problem of esti-
mating the variance of an unknown probability distribution P which is
believed to be well described by a member of

PP s P : l g l , l ,� 4Ž .0 l 1 2

where P denotes the Poisson distribution with expectation s variance s ll

and 0 - l - l - `. Let X , . . . , X denote independent observations accord-1 2 1 n
ing to P. What does the theory of unbiased estimation say for our task?
Consider three cases.

y1 nŽ .a If PP is assumed as an exactly true model, then X s n Ý X is0 n is1 i
Ž .optimal unbiased for Var X .1

Ž .b If not PP but rather the associated model PP as in Theorem 5 with0 «
2 y1 n 2Ž . Ž .some « ) 0 is taken as a true model, then S s n y 1 Ý X y X isn is1 i n

Ž .optimal unbiased for Var X .1
Ž .c If we like to think in exact but not precisely known parametric models,

then the corollary to Theorem 7 is relevant for us. It says that most models
Ž .PP close to PP are 1 q -symmetrically complete. If we use just symmetricalG 0

2 Ž .2-completeness, then S is in particular UMVU for Var X under mostn 1
Ž .models PP . We also note that, by a theorem of Plachky 1993 , X is notG n

Ž .UMVU for Var X under any model PP containing at least one non-1 G
Poissonian distribution.

We observe here a remarkable discontinuity property of optimal unbiased
estimators with respect to the underlying model which has apparently been

Ž .neglected in the literature: for example, in the notation of case b , we have
PP x PP as « x0, but the ‘‘limit’’ S2 of the optimal unbiased estimators in the« 0 n
model PP differs markedly from the optimal unbiased estimator X in the« n

2 Ž .model PP . The former has, for instance, a variance lrn q 2l r n y 1 , more0
Ž .than 1 q 2l times as large as the variance lrn of the latter. This is quite

different from the classical case of the discontinuity property, n IID observa-
� Ž 2 . 2 < < 4tions according to PP s N a, s : s ) 0, a F « , where the difference«

2 Ž . n 2between the respective optimal unbiased estimators S and 1rn Ý X ,n 1 i
2 Ž . 2measured in terms of their variances 2s r n y 1 and 2s rn under PP ,0

becomes small for n large.
Ž . Ž .Clearly, the optimality results in cases b and c do not imply uncondi-

2tionally that S should be considered as a good estimator or superior to X .n n
For example, we may assess the quality of both estimators according to their

2Ž . Ž . Ž .mean squared errors MSE X and MSE S in the model PP of case b .n n «

Then we may check that, for fixed n and sufficiently small « , these quantities
2Ž . Ž .are close to corresponding quantities MSE X and MSE S in the modell n l n
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2Ž . Ž .PP . Hence MSE X may be appreciably smaller than MSE S . However, it0 n n
is not obvious how to get reasonable quantitative criteria for choosing be-
tween the two estimators.

2.2. Asymptotically inefficient sequences of UMVU estimators. Assume
that PP is a model on the real line satisfying the assumption of the corollary
to Theorem 7 and, in addition,

w 2 x6 E X F M q g Q ,Ž . Ž .Pq

d
7 P F M q g Q ,Ž . Ž .qdq V

5 5for some finite M, where ? denotes the total variation norm and X is theV

identity on R, and, for the sake of simplicity,

w x8 E X s q q g Q ,Ž . Ž .Pq

as well as the assumptions used to construct asymptotically efficient se-
quences of approximate maximum likelihood estimators for q given in

Ž . w Ž . Ž .Lehmann 1983 , pages 422, 415 and 406 note that 6 and 8 imply the
' xexistence of an n -consistent estimator sequence for q . Assume further that

PP is either dominated by Lebesgue measure or concentrated on the integers
but not on only one or two points.

For example, PP could be any of the usual one-parameter exponential
wfamilies with appropriate parameter space and suitably parametrized such

Ž . x � Ž .that 8 holds , except for subfamilies of the binomial family Bin 1, p :
40 - p - 1 . A specific possible choice for PP is the Poisson family of 2.1.

n Ž .Let PP with G g GG be a model with PP symmetrically 1 q -complete forG
every sample size n. We claim that:

Ž .i PP is not an exponential family in the identity.G
Ž .ii If G is taken sufficiently close to 0 with respect to the metric in GG,

Ž .then PP satisfies all the assumptions made above for PP except that 8 isG
replaced by

w x9 g q [ E X q g Q ,Ž . Ž . Ž .PG , q

has an everywhere strictly positive derivative.

Ž .It will then follow from i that X does not everywhere achieve the
Ž . wCramer]Rao bound for estimating g q with one observation see, e.g.,´
Ž .xMuller-Funk, Pukelsheim and Witting 1989 . Hence, by linearity, the esti-¨

Ž .mator sequence X : n g N is not everywhere asymptotically efficient in then
sense of asymptotically achieving the Cramer]Rao bound for estimating´
Ž . Ž . wg q . Since asymptotically efficient estimator sequences for g q exist re-

'Ž . Ž .parametrize P through g q and use X : n g N as an n -consistentG, q n
x Ž .estimator sequence , we see that X : n g N is asymptotically first-ordern

Ž . Ž .inadmissible for estimating g q although, by symmetric 1 q -completeness
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n Ž .of PP , X is optimal unbiased within the class of all 1 q -integrableG n
Ž .estimators hence in particular UMVU for every n.

Ž .Earlier examples of models such that X : n g N is asymptotically inad-n
missible although X is optimal unbiased for every n have been given byn

Ž . Ž .Portnoy 1977 and Pfanzagl 1993 . The above argument shows that this
phenomenon is generic for sufficiently smooth parametric models, if optimal-

Ž .ity refers to the class of 1 q -integrable estimators.
Ž .To prove the above claim i , assume the contrary. Let n g N and let

Ž .g s g X , . . . , X be a quadratically integrable statistic depending symmetri-1 n
cally on the X . By symmetric 2-completeness, g is UMVU for its expectation.n

Since, by assumption, Ýn X is sufficient, an application of the Rao]ns1 n

Blackwell theorem yields the existence of some Borel function h satisfying

n
nw x10 g s h X PP .Ž . Ý nž /

ns1

In the case that PP is concentrated on the integers, we may choose integers
Ž� 4. Ž� 4. Ž� 4.k , k , k with k - k - k such that P k ? P k ? P k ) 0 for1 2 3 1 2 3 q 1 q 2 q 3

Ž .some hence every q g Q. Put n [ k y k , n [ k y k and n [ n y3 1 1 2 1 2
n Ž .n s k y k . Then nk s n k q n k . Put g [ Ý 1 X s k . Then the1 3 2 2 1 3 2 3 ns1 n 2

� n 4 � n 4events Ý X s nk , g s n and Ý X s nk , g s 0 both have positivens1 n 2 ns1 n 2
n Ž .P -probability, contradicting 10 .q

In the case that PP is dominated by Lebesgue measure, we take n s 2 and
Ž . < < Ž .g X , X s X y X . Then 10 implies that1 2 1 2

2 < <x , y g R : x y y s h x q y� 4Ž . Ž .

has positive two-dimensional Lebesgue measure. By a change of variables,
the same must be true for

2 < <s, t g R : t s h s ,� 4Ž . Ž .

a union of two graphs, which is impossible.
Ž .To see that claim ii is true, first observe that

1 q gq
g q s X dP .Ž . H qH 1 q g dPŽ .q q

Hence

d 1 q gqXg q s X dPŽ . H qž /dq H 1 q g dPŽ .q q
11Ž .

1 q g dqq X d P .H qž /H 1 q g dP dqŽ .q q

Ž .Obviously, if G is close to 0 with respect to the metric in GG, then 1 q g rq

Ž . Ž .wŽ . Ž . xH 1 q g dP is close to 1 and drdq 1 q g rH 1 q g dP is close to 0,q q q q q
`Ž .in both cases with respect to the supremum norm in LL AA and uniformly in
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Ž . Ž .q . Hence, using 6 , the first integral in 11 is close to 0 uniformly in q , and,
Ž . Ž . Ž .using 6 and 7 , the second integral in 11 is close to

d
X d P s 1,H qž /dq

Ž .the latter equality holding in view of 8 . Hence the statement involving the
derivative of g is true.

Ž .Checking the other statements concerning PP made in claim ii is easy.G

3. Remarks. This section contains remarks on possible and nonpossible
generalizations and the history of the theorems in Section 1. The numbers of
the remarks are the same as the numbers of the corresponding theorems.

REMARK 1. A proof of Theorem 1, paralleling the classical one given by
Ž .Halmos 1946 for the special case where PP consists of all discrete measures,

Ž . wmay be found in Pfanzagl 1994 , page 21. A more general result suggested
Ž . xby Lehmann 1959 , page 152 is given in Mandelbaum and Ruschendorf¨

Ž . X1987 , Theorem 7 , with a more complicated proof. Both proofs rely on a
Ž .result of Landers and Rogge 1976 .

REMARK 2. Contrary to statements made in Bell, Blackwell and Breiman
Ž . Ž .1960 and in Mandelbaum and Ruschendorf 1987 , page 1239, the word¨
‘‘ring’’ in Theorem 2 cannot be replaced by ‘‘strong semi-algebra’’ and, in

wparticular, not by ‘‘strong semi-ring’’ the terminology used here being as in
Ž . x ŽBillingsley 1986 , pages 164 and 170 . Note that if Theorem 2 were true

with ‘‘strong semi-ring’’ instead of ‘‘ring,’’ then Theorem 3 would trivially
follow by considering the strong semi-ring consisting of the empty set and all

.left-open and right-closed intervals. A counterexample is given by taking
Ž . Ž xXX , AA, m as the interval 0, 1 with Lebesgue measure on its Borel s-algebra
generated by the strong semi-algebra consisting of the empty set and all
left-open and right-closed subintervals: for sample size 3, an example of a

Ž . Ž .function not obeying the definition ‘‘ 1 « 2 ’’ is the difference of the sample
mean and the sample median, since the latter two statistics have, by symme-
try, identical expectations under every P g PP.

On the other hand, Theorem 2 as stated is a slight extension of results
stated in the literature in that no assumption of s-finiteness is imposed on m.
w Ž . xFraser 1954 considered finite measures m only. To see that this extension
is valid, use Theorem 2 for finite m and apply it, for every B g RR with

˜ ˜ ˜Ž . � 4 � 40 - m B - `, to XX [ B, AA [ A l B: A g AA , RR [ A l B: A g RR , m [˜
˜Ž .m ?l B and PP defined in terms of m as PP has been defined in terms of m.˜

˜ ˜Since RR is a ring generating AA, we see, for any AA -measurable function,sym
that

h dP n s 0 P g PP ,Ž .H
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˜n ˜ ˜ n
n n< < w ximplies, via Hh dP s 0, P g PP, in particular, h s 0 m . Hence˜B B

n1B
h s 0 m 0 - m B - ` ,Ž .Ž .ž /m BŽ .

wholds, which is the desired conclusion. This argument is almost given in
Ž . xHeyer 1982 , page 137.

REMARK 3. This has obvious discrete and multivariate analogs. Further, it
suffices to consider either step functions or smooth functions only as densi-
ties.

Ž .REMARK 4. More generally, one can write « s « P in Theorem 4, and it0
Ž .suffices in fact to have « P ) 0 on a subset of PP having the same null sets0 0

as PP .0

REMARK 5. This could alternatively have been formulated in terms of the
metric defined for probability measures P and Q by

P A y Q AŽ . Ž .
d P , Q [ sup : A g AA .Ž . ½ 51r2 P A q Q AŽ . Ž . Ž .Ž .

In any case it is clear that PP is a rather small neighborhood, much smaller«

than, for example, a total variation neighborhood.
Ž .A possible extension is to replace the constant « by a function « ? ) 0.

REMARK 6. It introduces only further notational complexity, not real
difficulties, to extend Theorem 6 and its proof to parameter spaces in higher
dimensions.

REMARK 7. The above remark concerning higher dimensions would also
apply to Theorem 7. But a moment of reflection shows that, for example, the
obvious two-dimensional analog follows, in view of the homogeneity condition,
already from the stated one-dimensional version.

4. Proofs.

PROOF OF THEOREM 3. First fix x g R and consider the family of all0
unimodal probability measures which have a mode at x . This family is0

w xobviously convex and, by considering uniform distributions on x , x q h0 0
w xand x y h, x , easily seen to be complete. Hence Theorem 1 yields the0 0

symmetric completeness of each corresponding IID model. The theorem as
Ž .stated i.e., without a mode specified follows by observing that any union of

symmetrically complete models is symmetrically complete. I
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PROOF OF THEOREM 4. For fixed P g PP , the model0 0

w xPP P [ 1 y t P q tQ: Q g QQ P , t g 0, «� 4Ž . Ž . Ž .« 0 0 0

is easily seen to be convex and complete. Hence Theorem 1 yields that
nŽ .PP P is symmetrically complete for every sample size n, for each P , and so« 0 0

n nŽ .must be PP s D PP P . I« P g PP « 00 0

PROOF OF THEOREM 5. For P g PP put0 0

PP P [ fP : sup f x y 1 F « .Ž . Ž .½ 5« 0 0
xgXX

Ž . Ž .Each PP P is obviously convex. To prove completeness of each PP P , fix« 0 « 0
Ž . Ž 1 1.P and assume that h: XX , AA ¬ R , BB satisfies Hh dP s 0 for every P g0

Ž .PP P . Then, for every A g AA, we may put« 0

1 q « ? 1A
f sA 1 q « ? P AŽ .0

Ž .and easily check that f P g PP P . This implies Hh ? f dP s 0 and hence,A 0 « 0 A 0
w xsince Hh dP s 0, H h dP s 0. Since A was arbitrary, we get h s 0 P and0 A 0 0

w Ž .x n nŽ .thus h s 0 PP P . Hence symmetric completeness of PP s D PP P« 0 « P g PP « 00 0

follows again from Theorem 1, for each n. I

PROOF OF THEOREM 6. We denote the total variation norm of signed
5 5 `Ž .measures by ? and the supremum norm of bounded real- or LL AA -valuedV

5 5 nfunctions simply by ? . We write m Q for the n-fold product of a signed
Ž .measure Q. Denote the set in 5 by CC.

1Step 1. GG is an open subset of the metric space GG defined with ‘‘F ’’2
1 Ž . Ž .instead of ‘‘- ’’ in 3 and with metric d as in 4 . GG is easily seen to be2

complete. Hence GG is a Baire space, that is, a topological space such that
every countable intersection of open dense subsets is dense.

Strategy of this proof. We will exhibit a countable family of sets, consisting
of the sets CC introduced in step 6, such that their intersection isn, q , w , m0

Ž . Ž .contained in CC steps 2, 5 and 6 , and each of them is open step 7 and dense
Ž .step 8 . Steps 3 and 4 are preparations, necessitated by the countability
requirement, for performing step 5, the goal of which is to simplify condition
Ž . n14 in the definition of CC to Hh d m wP s 0, with n, q and w fixed. Then q 00

aim of step 6 is to make steps 7 and 8 possible.
The idea underlying the crucial but unfortunately somewhat messy step 8

may be described as follows. We would like to have

kq1g s w ? q y q q near q ,Ž . Ž .q̃ 0 0
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so that
nn 1

Žkq1.nwP s D 1 q g PŽ .˜m mq b q qŽkq1.n0 0ž /b qsq0

n1
Žkq1.nf D 1 q g PŽ .˜mb q qŽkq1.nž /b qsq0

n

g span 1 q g P : q g Q ,Ž .m½ 5q q

where D denotes differencing with respect to q , with sufficiently smallb

increment b, and ‘‘f ’’ should hold by smoothness of PP. The actual definition
Ž .20 of g contains, of course, g , with suitable smooth cutoff functions, suchq̃ q

Ž .that 22 can be proved while the above argument can still be made rigorous;
Ž .that is, 23 is true. The mess comes in when we start choosing the constants

appropriately.

Step 2. We have CC s F CC , whereng N n

CC [ G g GG : PP n symmetrically boundedly complete for sample size n .� 4n G

Step 3. Choose a countable set Q ; int Q such that0
n n

P : q g Q ' P : u g Qm m½ 5q 0 0 q½ 50

in the sense that both of the above sets of probability measures have the
� n 4same null sets. This is possible since m P : q g Q is separable with respectq

w Ž .to total variation distance, hence dominated compare Witting 1985 , page
x139 .

`Ž .Step 4. For each q g Q we choose a countable set D ; LL AA with0 0 q0

1 g D ,q0

5 5w G 0, w F 1, w g D ,q0

and such that the IID model based on the family

12 wP : w g D� 4Ž . q q0 0

wis symmetrically complete for sample size n. The definitions of ‘‘complete-
ness’’ and ‘‘symmetrical completeness’’ as well as the following argument are
in no way affected by the possible non-normedness of the finite measures

Ž . xwP occurring in 12 .q0

For example, we may take a countable generator EE of AA which contains XX
and is closed with respect to finite intersections and put

N

D s r 1 : N g N, E g EE , r G 0 rational and r s 1 ,Ý Ýq k E k k k0 k½ 5
ks1

Ž .independently of q . Then the family in 12 is complete and weakly convex in0
Ž .the sense of Mandelbaum and Ruschendorf 1987 , page 1233, and hence¨
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symmetric completeness for every sample size follows, for example, from
Ž .Mandelbaum and Ruschendorf 1987 , page 1239, Theorem 7.¨

Step 5. We have

CC > CC ,F Fn n , q , w0
q gQ wgD0 0 q0

where
n

` nCC s G g GG : h g LL AA , h d 1 q g P s 0 q g QŽ . Ž .Ž . mHn , q , w sym q q½0

n

« h d wP s 0 .mH q 50

Proof. Let G g CC for each q and w and assume thatn, q , w 00

n
` n13 h g LL AA , h d P s 0 q g Q .Ž . Ž .Ž . mHsym G , q

By the definition of CC we have, for each q g Q ,n, q , w 0 00

n

h d wP s 0 w g D .Ž .mH q q0 0

Ž .The symmetric completeness of the IID model based on the family in 12 and
1 g D implyq0

n

h s 0 P .m q0

Since q g Q was arbitrary, step 3 implies0 0

n

h s 0 P q g Q ,Ž .m q

and thus
n

14 h s 0 P q g Q .Ž . Ž .m G , q

Hence G g CC .n

Step 6. For each q g Q and w g D ,0 0 q0

CC > CC ,Fn , q , w n , q , w , m0 0
mgN

where
n 1

CC [ G g GG : wP y Q -mn , q , w , m q½0 0 V m
n

for some Q g span 1 q g P : q g Q .Ž .m½ 5q q 5
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Proof. Let G g F CC and assumemg N n, q , w , m0

n
` nh g LL AA , h d 1 q g P s 0 q g Q .Ž . Ž .Ž . mHsym q q

� nŽ . 4Let m g N and choose Q g span m 1 q g P : q g Q withq q

n 1
15 wP y Q - .Ž . m q0 V m

Then
n n 1

5 516 h w d m P s h d wP y Q F h .Ž . m mH Hq qž /0 0 m

Since m was arbitrary, we conclude that Hh d mnwP s 0. Hence G g CC .q n, q , w0 0

Step 7. For each q , w, m, the set CC is open in GG.0 n, q , w , m0

Proof. Let G g CC . Thenn, q , w , m0

n nN 1
h [ wP y a 1 q g P -Ž .m Ý mq k q q0 k k mks1 V

for some N g N, a , . . . , a g R and q , . . . , q g Q. Put1 k 1 k

1rm y h
d [ .ny1 N < <n 3r2 Ý aŽ . 1 k

Then CC contains the open ball of radius d around G.n, q , w , m0

Step 8. For each q , w, m, the set CC is dense in GG.0 n, q , w , m0

1 5 5Proof. Let G g GG and « ) 0. We may assume that « - y G . Choose a2
` yjy1 `Ž .positive integer k such that Ý 2 - «r2. Let h g CC R be a functionjskq1

w Ž . x w Židentically 1 on the interval 0, k q 1 n and identically 0 outside y1, k q
. x2 n . Put

5 Ž l . 5C [ max h1
0FlFk

and
«

d [ .kq12C k q 1 ! 2 k q 2 nŽ . Ž .Ž .1

Put
R [ P y P q g Q ,Ž .q q q0

w x Žand choose a ) 0 such that q , q q a ; Q possible, since q g int Q by0 0 0
.step 3 .

During this step, we write as shorthand

t s q y q0

and let D denote differentiation with respect to q .
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Put

n1

Žkq1.n kq1C [ sup D wP tm2 q0ž
w xqg q , q qa ,0 0

n qn qn sn1 2 3

n n2 3k
Ž l . l kq11 q g t P w t R .m m Ý m mq q q0ž / /

ls0 V

17Ž .

Ž Ž . . w Ž . xChoose b ) 0 and -min d , 1r k q 1 n such that I [ q , q q k q 1 nb0 0
w x; q , q q a ,0 0

ky ilkyi < <t « t
Ž i. Ž iql .g y g F ,Ýq q k0 kq2l!18Ž . C 2 k q 2 nŽ .Ž .ls0 1

< <t F b k q 2 n , i s 0, . . . , k ,Ž .
and

Ž .kq1 nk q 1 n 1Ž .Ž .
Žkq1.n 5 519 2 sup R - ,Ž . Vq nk q 1 n ! m3Ž .Ž . qgI

bC 12
d - .nk q 1 n ! m3Ž .Ž .

˜ Ž .Define G s g : q g Q byq̃

k lt d t t
Ž l . kq120 g [ g q w t h qg 1yh qgQ .Ž . Ž .˜ Ýq q q0 ž / ž /ž /ž /l! b b bls0

Then

k lt t d t
Ž l . kq121 g y g s g y g h y w t hŽ . ˜ Ýq q q q0 ž / ž /ž /l! b b bls0

< < Ž . < < Ž .is identically 0 for t G b k q 2 n, whereas for t F b k q 2 n an applica-
Ž .tion of the Leibniz formula to both terms on the right-hand side in 21 yields

Ž .together with 18 , for j s 0, . . . , k,

j ky i< <« t Cj 1jD g y g FŽ .˜ Ýq q k jyiž / kq2i bC 2 k q 2 nŽ .Ž .is0 1

jd k q 1 ! CŽ .j 1kq1yi5 5 < <q w tÝ jyiž /ib k q 1 y i ! bŽ .is0

« « «
F q s

4 4 2
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w < < Ž .for the next to the last step, first replace j by k, then t rb by k q 2 n,
Ž . 5 5k y i by k, and k q 1 y i ! by 1, then remember that w F 1 and look at the

xdefinition of d . Hence

«
Ž j. Ž j.˜5 5G y G F j s 0, . . . , k ,Ž .

2

˜so that G g GG and

˜22 d G , G F « .Ž . Ž .

˜It remains to prove that G g CC . To this end, putn, q , w , m0

n1
Žkq1.nQ [ D 1 q g P .Ž .˜mb q qn k n ž /qsqk q 1 n !d bŽ .Ž . 0

Here D denotes the difference operator defined by D S [ S y S . Thenb b q qqb q

� nŽ . 4Q g span m 1 q g P : q g Q and we claim thatq̃ q

n 1
23 wP y Q - .Ž . m q0 V m

Ž . w Ž . xTo prove 23 , note that, for q g q , q q k q 1 nb ,0 0

kd
kq1 Ž l . l1 q g P s 1 q ? w ? t q g t P q RŽ .˜ Ž .Ýq q q q q0 0ž /b ls0

kd d
kq1 Ž l . l kq1s wP t q 1 q g t P q w t R .Ýq q q q0 0ž /b bls0

Now the tensor product

n kd d
kq1 Ž l . l kq1wP t q 1 q g t P q w t Rm Ýq q q q0 0ž /ž /b bls0

occurring in the definition of Q can be computed in an obvious way as a sum
of 3n tensor products. One of these products is

n nd
Žkq1.nt wP .m qn 0b

Its contribution to Q is precisely mnwP .q0

There are 2 n y 1 further products containing only the factors
Ž . kq1 Ž . kq1drb wP t and drb w ? t R , and the latter at least once. Using theq q0

fact that the operator norm of DŽkq1.n with respect to the supremum norm isb
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2Žkq1.n, the contribution to Q of each of these products is seen to be bounded
in norm by

n1 d Ž .kq1 nŽkq1.n Žkq1.n 5 52 k q 1 n b sup RŽ .Ž . Vqn k n ž /bk q 1 n !d bŽ .Ž . qgI
24 .Ž . Ž .kq1 nk q 1 n 1Ž .Ž .

Žkq1.n 5 5s 2 sup R -Vq nk q 1 n ! m3Ž .Ž . qgI

Each of the remaining 3n y 2 n products contains at least once the factor
Ž k Ž l . l .1 q Ý g t P . By applying the inequality connecting the norm of als0 q q0

difference operator with the norm of the corresponding differential operator
w Ž . x Ž .see, e.g., Dieudonne 1960 , Section 8.12, Problem 4 and by looking at 17 ,´
the contribution to Q of each of these products is seen to be bounded in norm
by

ny11 d bC 12Žkq1.nb C s - .2 nn k n ž /b k q 1 n !d m3k q 1 n !d b Ž .Ž . Ž .Ž .

Ž .Hence 23 is true.

Step 9. By steps 2, 5, 6, 7 and 8 and the Baire property of GG, the theorem
is proved. I

PROOF OF THEOREM 7. This is very similar to the proof of Theorem 6, so it
suffices to indicate the necessary changes.

Step 1. Same as for Theorem 6.
Step 2. Replace ‘‘boundedly complete’’ in the definitions of CC and CC byn

‘‘p-complete.’’
Steps 3 and 4. Same as for Theorem 6.

`Ž n . Ž .Step 5. Replace ‘‘h g LL AA ’’ in the definition of CC and in 13 bysym n, q , w0n Ž n . Ž .‘‘h g F LL m P ’’ with the obvious meaning of the subscript ‘‘sym’’ .q g Q sym q
`Ž n . p Ž� n 4. 5 5 5 5 p nStep 6. Replace LL AA by LL m P : q g Q and h by h .L Žm P .sym sym q q 0

5 5 5 5 q Ž .nAlso replace ? by ? in the definition of CC and in 16 .V L Žm P . n, q , w , mq 00
5 5 5 5 q nStep 7. Replace ? by ? .V L Žm P .q 0
5 5 5 5 q Ž . Ž .nStep 8. Replace ? by ? in 17 and 23 and choose the a oneV L Žm P .q 0Ž . Ž .line before 17 also in accordance with assumption iii , so that C is wellp 2

5 5 5 5 q Ž . Ž .defined and finite. Also replace ? by ? in 19 and 24 .V L ŽP .q 0

Step 9. Same as for Theorem 6. I

PROOF OF THE COROLLARY. An obvious consequence of the Baire property
of GG, since the set in the corollary may be written as a countable intersection
of the sets occurring in Theorem 7. I
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