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This paper develops a nonparametric density estimator with para-
metric overtones. Suppose f(x, 6) is some family of densities, indexed by a
vector of parameters 6. We define a local kernel-smoothed likelihood func-
tion which, for each x, can be used to estimate the best local parametric
approximant to the true density. This leads to a new density estimator of
the form f(x, 6(x)), thus inserting the best local parameter estimate for
each new value of x. When the bandwidth used is large, this amounts to
ordinary full likelihood parametric density estimation, while for moderate
and small bandwidths the method is essentially nonparametric, using only
local properties of data and the model. Alternative ways more general than
via the local likelihood are also described. The methods can be seen as ways
of nonparametrically smoothing the parameter within a parametric class.

Properties of this new semiparametric estimator are investigated. Our
preferred version has approximately the same variance as the ordinary
kernel method but potentially a smaller bias. The new method is seen to
perform better than the traditional kernel method in a broad nonparamet-
ric vicinity of the parametric model employed, while at the same time being
capable of not losing much in precision to full likelihood methods when the
model is correct. Other versions of the method are approximately equiva-
lent to using particular higher order kernels in a semiparametric frame-
work. The methodology we develop can be seen as the density estimation
parallel to local likelihood and local weighted least squares theory in non-
parametric regression.

1. Introduction and summary. Let X,,..., X, be independent and
identically distributed with density f. The traditional kernel estimator of f
is f(x) =n" 1Y%, K,(x; — x), where K,(z) = h"1K(h~'z) and K(-) is some
chosen unimodal density, symmetric about zero. The basic properties of }? are
well known, and under smoothness assumptions these include

Ef(x) = f(x) + o2 h2f"(x) + O(h?),
Var f(x) = R(K)(nh) " f(x) — " f(x)? + O(h/n),

where 0% = [22K(z)dz and R(K) = [ K(z)?dz. See Scott [(1992), Chapter
6] or Wand and Jones [(1995), Chapter 2], for example.

Our aim in this paper is to propose and investigate a class of semiparamet-
ric competitors which have precision comparable to that of f, but sometimes
better. For any given parametric family, f(-, 0) = f(-, 64, ..., 8,), and, for each
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given x, we will present ways of estimating the locally best approximant to f
and then use

(1.2) F(x) = F(x, 01(x), ..., 6,(x)).

Thus the estimated density at x employs a parameter value which depends on
x and whose choice is to be tailored to good estimation at x. In other words, the
method amounts to a version of nonparametric parameter smoothing within
the given parametric class.

1.1. Local likelihood for densities. A central idea in our paper is the con-
struction of a local likelihood function for density estimation. Local likelihood
ideas have been employed in non- and semiparametric regression for some
time (see Section 1.2), but the concept is far less immediate in the present
context of density estimation. Around each given x we define the local log-
likelihood to be

Ly(x, 0) = [ Ky(t - x){log f(¢, ) dF,(¢) - (¢, 0)dt}
(1.3) n
=n"1 Y Ky(x; - x)log f(x;, 0) — [ Ky(t — x)f (2, 0)dt,
i=1

writing F',, for the empirical distribution function. When #4 is large, this is close
to the constant K(0)2~! times the ordinary, normalized log-likelihood function
n~1y"  log f(x;, 0) — 1, and maximizing the (1.3) function with respect to the
parameters becomes equivalent to ordinary full maximum likelihood estima-
tion. When 4 is moderate or small, however, maximizing L ,(x, 6) will be seen
to be a fruitful way of obtaining an estimate of the best local approximant to
f. This is made clear in Section 2.

A related and in fact more general apparatus is as follows. Decide on suit-

able weight functions v;(x,¢,0),j = 1,..., p, guidelines for which will be
discussed later, and let g(x) be defined as the solution to the p equations

V,(x,0) = /Kh(t — x)v(x, t, 0){dF, (t) — f(t, 0)dt}

(1.4) =n"1Y Kju(x; — x)v(x, x;, 0)
i=1

. /Kh(t — x)o(x, t, 0)f (¢, 0)dt = 0.

Maximizing the (1.3) function amounts to solving (1.4) with v(x,¢,0) =
u(t, 0) = (d/90)log f(¢, 6), the p x 1 score function of the model, with one
component u ;(x, §) per parameter. The generalization is analogous to that
of M-estimation over maximum likelihood estimation in ordinary estimation
theory.

This strategy, with (1.4) or its special case (1.3), gives 79\(x) and in the end
(1.2). We call this local parametric estimation of the density f, hence the title
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of our paper. An attractive motivation for this approach is that as A — oo, }?
tends to a global parametric fit of the model f(-, #). As in other attempts
at semiparametric density estimation (cf. references mentioned below), our
methodology should be particularly useful when f exhibits small or moderate
departures from a standard parametric form. However, f(-, ) need not even
be a crude moﬁel for the data because, if not, & will be chosen small, and local
properties of f will largely be divorced from global properties of f(-, 6). Thus
we view our method as a “continuous bridge” between fully parametric and
fully nonparametric options.

The local likelihood function is more fully motivated—in several ways—
in Section 2, and a connection is also established to the dynamic likelihood
methods for nonparametric hazard rate estimation of Hjort (1991, 1997). Apart
from the local likelihood connection, we note that the (1.4)-type approach is
natural in that a weighted difference of dF,,(¢) — f(¢, 0) d¢, which in the limit
is a weighted difference of {f(¢) — f(¢, 6)} d¢, is set to zero.

The new estimator can and will be motivated also on the grounds of per-
forr/r\lance, of course. We start our investigation of the large sample properties
of f(x) in Section 3, with concentration on one-parameter local fits. This is
extended in Section 4 to the multiparameter case, with particular focus on
two parameters. The two-parameter case affords an attractive simplification
of O(h?) bias and forms our favored class of locally parametric density esti-

mators. It turns out that the bias and variance properties of /* are remarkably

comparable to those of the classic estimator f. For many situations it will be
seen that

Ef(x) = f(x) + 10%h2b(x) + O(h* + (nh)™),

(1.5) -
Var f(x) = R(K)(nh)"' f(x) —n~ f(x)* + O(h/n),

just as in (1.1), but with a bias factor function b(x) related to but different from
f"(x), with characteristics inherited from the parametric class and the weight
functions used. To the order of approximation used, the variance is simply the
same, regardless of parametric family and of v(x, ¢, ). The statistical advan-
tage will be that for many f's, typically those lying in a broad nonparametric
neighborhood of the parametric f(-, 8), b(x) will be smaller in size than f"(x)
for most x. It should also be the case that in aiming for improved performance
by choice of f(-, 8) we will rarely lose too much in performance terms in the
sense that |b(x)| should not be too much greater than |f”(x)| on occasions
when £(-, ) is a totally inappropriate global model.

In Section 4 it is also shown that a bias of the potentially smaller size O(h*)
is attainable if the vehicle model has three or four parameters and the un-
derlying true density is sufficiently smooth. This is achieved without having
to (explicitly) resort to higher order kernels. Our method is, however, in its
kernel-dependent quantities, asymptotically equivalent to a particular class
of higher order kernels which are of the form a suitable polynomial times K.
The same higher order kernels arise in local polynomial regression (see Sec-
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tion 1.2 below), but we stress that this result is consequent on the number of
parameters fitted and not on using any particular form of local parameteri-
zation (which shows up only in the bias factor). We conjecture that the same
is true in the local least squares regression context. Thus locally smoothing
a three- or four-parameter model leads to a superior asymptotic performance.
We nevertheless favor two-parameter families for their comparative simplicity
conceptually and computationally, and with experience of higher order kernels
raising doubts about the transfer of such asymptotic advantages to finite sam-
ple practice [Marron and Wand (1992)].

A variety of particular examples are discussed in Section 5. These are not
practical examples but rather features and properties of interesting special
cases of our methodology. Particular attention is given to the case of an esti-
mated “running normal” density and to estimates that incorporate local mod-
elling of level, slope and curvature. Sections 6 and 7 provide further extensions
of the earlier theory. In Section 6, we present results on the boundary behavior
of our estimators and note attractive properties thereof. Section 7 indicates
extensions to the multivariate case, where the new method could prove to
be particularly useful, since the ordinary methods are problematic in higher
dimensions. In Section 8 we discuss some other issues such as automatic band-
width selection and inspection of “running parameters,” while our conclusions
are offered in Section 9. Our focus throughout this paper is on intuitive and
theoretical considerations. Implementation issues and comparative work are
left to future studies.

1.2. Related work. In nonparametric regression, there has been much re-
cent interest in fitting polynomial functions locally. Relevant references in-
clude Fan (1992, 1993), Fan and Gijbels (1992, 1996), Hastie and Loader (1993)
and Ruppert and Wand (1994), building on earlier work of Stone (1977) and
Cleveland (1979). This has been done by local least squares, which is a normal
error distribution version of local likelihood fitting; see Tibshirani and Hastie
(1987), Staniswalis (1989), Jones and Hjort (1994) and Fan, Heckman and
Wand (1995). Local linear fitting is particularly attractive. It affords asymp-
totic bias depending only on the second derivative of the regression function,
without sacrificing anything in terms of variance [this is not at all trivial to
achieve; cf. Jones, Davies and Park (1994)]. It also automatically has very good
boundary properties. Higher degree polynomials behave rather like “higher or-
der” kernels. In the large bandwidth limit, the parametric form approached
is, of course, a global polynomial regression. Given the large impact of these
methods in regression, it is natural to ask if parallel methods can be invented
for density estimation. It is indeed an aim of this paper to provide such a
methodology.

At around the same time as we were developing our ideas, Loader (1996)
independently proposed a version of local likelihood density estimation. A key
component is specification of an appropriate likelihood function, and Loader’s
definition is indeed similar to our (1.3). Loader uses his definition to fit local
polynomials to the log density, perhaps the most immediate analogue of the
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regression work. OQur motivation differs from Loader’s in preferring to work
with more general local parametric models, seeking semiparametric density
estimators, with standard parametric models as limiting cases. However, our
methodology covers interesting nonstandard parametric forms and other local
estimation methods as well. We arrived at (1.3) and its relative (1.4) partly via
the hazard rate case, for which local likelihood specification is more immediate
[see Hjort (1991, 1997)], and partly via local weighting of the dF, (¢)—f (¢, 0) d¢
difference; see Section 2.

Some semiparametric density estimators already exist. Our approach has
similar intentions to that of Copas (1995), but ours appears to be both simpler
and more general. A semiparametric method which works by multiplying an
initial parametric description with a nonparametric kernel-type estimate of
the necessary correction factor is developed in Hjort and Glad (1995). Their
estimator also has properties (1.5), but with yet another b(x) bias factor func-
tion. Another similarly spirited method consists of using an estimated orthog-
onal expansion for this multiplicative correction factor; see, for example, Hjort
[(1986), Chapter 5], Buckland (1992) and Fenstad and Hjort (1996). An initial
nonparametric estimator “corrected” towards the parametric is the topic of
recent work of Efron and Tibshirani (1996). These authors also note the role
of backfitting as in Hastie and Tibshirani (1990) in a similar context. Various
semiparametric density estimators of Bayesian flavor are discussed in Hjort
(1995). Earlier work, somewhat less attractively involving an extra parameter
in a linear combination of parametric and nonparametric estimators, includes
Schuster and Yakowitz (1985) and Olkin and Spiegelman (1987). Jones (1993a)
argues that (the natural variance-corrected version of) the kernel density es-
timator can itself be thought of as a semiparametric estimator.

2. Local likelihood for density estimation. This section gives support
for the local parametric estimation method of (1.2) and (1.3). It first relates
the method to a well-defined local statistical Kullback—Leibler-type distance
function from the true density to the parametric approximant. This is followed
by a connection to similar concepts for hazard rate estimation in survival data.
Finally, included in this section are alternative motivations, also of others, for
considering the same definition of local likelihood.

2.1. Local parametric approximation. To explain why maximizing (1.3) is
a good idea, note first that

L(%,0) >, Ax, 0) = [ Ku(t = 2){f(t)log (£, 0) — £ (¢, 6)} dt

as n grows. The maximizer a(x) hence aims at the parameter value 6;(x)
that maximizes A(x, 0). This is a well-defined statistical quantity in that it
minimizes the distance

(1) dlf.FC 0= [ Kt )| FOlog 1)

£, 6)

~{F) - fe, e)}} as
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between true density (which need not belong to the parametric class under con-
sideration) and approximating parametric density. Noting that the Kullback—
Leibler distance from f to f, can be written

Q)
£t 6)

we see that (2.1) is a version of the same, locally weighted around x. These
arguments show that using (1.2) with (1.3), which is (1.4) with weight func-
tion chosen to be the score function u(z, 0), aims at the best local parametric
approximant to the true f. Note also that if f is not far from f(-, 8), then
dlf, f(, 0)] ~ %f K, (t — x){f(t) - f(¢, 0)}%/f(t)dt. An alternative L,-based
local distance measure is discussed briefly in Section 5.6.

[ Feenogtrey e oae= | fotos 110 17 - £ 0} a,

2.2. The hazard connection. For a moment, consider survival data on
[0, ), and switch attention from density f(¢, ) and cumulative distribution
F(t, 6) to survival function S(¢,60) = 1 — F(¢, ) and, particularly, hazard
function «(¢, 0) = f(¢, 0)/S(¢, 6). The likelihood is [ ; a(¢;, 6)S(¢;, ), so
that the log-likelihood, after a little manipulation, and disregarding a mul-
tiplier of n, takes the form [{loga(t, 0)dF,(¢t) — S,(¢)a(¢, 6)dt}, where
S,(t) = 1 — F,(t) is the proportion of individuals still at risk just prior to
time ¢. The kernel-smoothed local log-likelihood for the model at location x is,
therefore,

(2.2) Lo (x, 0) = / K, (t — x){log a(t, 0)dF, (t) — S, (t)a(t, 6) dt}.

This local likelihood for hazard models is well motivated and explored in Hjort
(1991, 1997). Note that

f(t, 0) f(t, 0)
sco “Dsa 9)}‘“'

Loa(5,6) =, Mo 0) = [ Kyt = )| F() o

Maximizing L, ,(x, 6) aims at the best local approximant in the sense of min-
imizing the local distance function

dolf, £ )]
— [ Kt 0| reor]1og L

TONY) F £t 0)
S() 8 s, 0>} (){S(t) S(n@”dt

This underlies the theory of locally parametric nonparametric hazard rate
estimation, and is as in Hjort [(1997), Sections 2 and 3], but now suitably
reexpressed as a distance between densities and not hazards.

To see a connection from this context to density estimation, put in a(¢, 0) =
f(t, 6)/S(t, 0) to see

LO,n(x> 6)

= [ Ku(t = x)[{log £(¢, 6) —log S(z, )} dF () — S, (OF (£, 0)/S(2, 0) dt].
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Now replace S(z, 0) here with the estimate S, (¢) (this step will be discussed
in Section 2.3). This leads to

f K (t — x)[{log f(¢, 0) —log S, (1)} dF,(¢) — f (¢, 6) d¢],

and since the log S, (¢) term is immaterial, this is the same as L,(x, 8) of
(1.3). We point out that the hazard connection makes it clear how censoring
can be coped with also; see Hjort (1997).

2.3. Justification of L,(x, 0) as local log-likelihood. We think of (1.3) as
the local log-likelihood, or local kernel-smoothed log-likelihood, for the model
at x. The main justification for this is via the best local approximation frame-
work laid out in Section 2.1 above, combined with the appealing feature that
large bandwidths lead back to global likelihood analysis, and not least with
the fact that the method works, as this paper demonstrates. We also know of
four additional justifications for the (1.3) construction.

The first completes the argument of Section 2.2. One can argue that the
insertion of S, (¢) for S(¢, 0) here should not alter things very much since S ,(¢)
is a more precise estimate than is any local parameter estimate (or hence local
density estimate) for its population version. Indeed, S, (¢) has mean squared
error of order n~!, which is insignificant compared with the mean squared
error of our density estimate which, it will turn out, will be O(n=4/%).

However, what of a more direct local likelihood argument? The naive local
log-likelihood | K (¢t —x)log f(¢, 8) dF ,(t) does not work, as inspection in the
normal case pedagogically reveals, for example. Similarly the naive nonpara-
metric log-likelihood [ log f(¢) dF ,(t) has problems, whether kernel smoothed
or not; it can be made infinite by putting infinite spikes at the data points.
Loader (1996) argues that the log-likelihood is truly ['log f(¢) dF,(¢)— [ f(¢)dt
(think of likelihood estimation of a Poisson intensity function), but the final
term is usually discarded since it takes the value 1. Leaving the second term
in and then localizing by kernels yields precisely (1.3) again.

Another argument stems from personal communication with J. B. Copas.
Note first that the derivative of the simplistic [ K (¢ — x)log f(¢, 6) dF ,(¢) is
[ K (¢ — x)u(¢, 6)dF,(¢), which does not have expectation zero, even under
model conditions. To remedy this, subtract its expectation, which is [ K, (¢ —
x)u(t, 0)f(t)dt. Alternatively, at least, if we approximate this last f(¢) by
f(t, 6), we obtain the score function case of V,(x, 0) of (1.4), and hence moti-
vate L, (x, 6) at (1.3) once more. [Copas’ (1995), suggestion differs from this.
The current version replaces Copas’ expression (7), w(x)log f(x,0) + {1 —
w(x)}log B(0) (in Copas’ notation) by w(x)log f(x, 6) + B(0) — 1.]

Comments from a referee triggered the following fourth justification of (1.3).
This is interesting in that it connects the density estimation problem to the
more well-developed local likelihood methodology for nonparametric regres-
sion. It is based on a discretization argument: split the data region into small
intervals Dy, ..., D,, oflengths d;, ..., d,, and let s, ..., s,, be the number of
points falling in each. Modelling the s ;s as independent Poisson variables with
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parameters ym;(0), where 7;(0) = |, D, f(x, 6)dx, gives (omitting an additive
constant) the log-likelihood Z;ﬂzl{—yﬂ'j(ﬁ)—i—sj log y+s;log 7;(6)}. Condition-
ing the Poisson model on 3" s; = n, which is also the maximum likelihood
estimate of y, corresponds to the multinomial model for the s; counts. This
formal equivalence to the Poisson model was exploited in Lindsey (1974) and
more recently in Efron and Tibshirani (1996).

The present point is that there is a well-established way of localizing such
a likelihood [see Tibshirani and Hastie (1987), Jones and Hjort (1994), Fan,
Heckman and Wand (1995) and Fan and Gijbels (1996)], since it has been
made to belong to nonparametric smoothing of Poisson parameters rather
than density estimation. This gives

(e, 0) = 3 Ko(x — ) [—ym;(0) + 5, log{ym,()}].
j=1

where x(j is a convenient point in D;. Taking a fine limit, via 7;(6) =~

d;f(xj), 0), leads to

~

~ n
L(x, 0) = —y [ Ky(x =) (t, 0)dt+(log y) nf(x)+ 3 K(x —x;)log f(x;, 0).
i=1
Putting y = n here, as suggested by the original Poisson connection, gives (1.3)
again. The connection is not quite as clear-cut, however, since the maximizer
is ¥y = nf(x)/(K;, * f)(x), which still depends on 6, and this delivers yet
another proposal, namely, the profile log-likelihood

L3 0) = ~n () og| | Ki(x = (¢, )| + 3 Ko = ) log £ (. )
i=1
We would still have y, = n(1 + Op(h2)) for small /4 and for the 6s of interest,
however, leading again to (1.3). See Jones (1995) for more on discretized forms
of local likelihood.

3. Large sample properties.

3.1. hfixed, large n. Let 0 be p-dimensional in this subsection. Estimating
0 by solving (1.4) is like M-estimation, with the extra complication that we do
not assume the true f to belong to the parametric (-, 8) class. For simplicity,
suppress the fixed x and write v(z, 0) = v(x, ¢, 0) for the p weight functions.
Assume that

(3.1) V(x, 0) = /Kh(t — x)u(t, O{f(t) — f(t, 0)}dt =0

has a unique solution 6, = 6y(x) (which also depends on £, held fixed here).
This essentially says that f(¢) should be within reach of f(¢, ) as 6 varies
and that the p functions v (¢, ) should be functionally independent; see the
examples of Section 5. That V,(x, 6,) has mean zero plays a role in developing
the following facts. First, /B\(x) converges to this best local parameter 6,(x)
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in probability. In the score function case v = u this is also the parameter
minimizing (2.1). Second,

(3.2) (nh)V2{0(x) = 00} — g Hp10, I3 M (J4) 71},

where
Jy = /Kh(t — x)[v(t, Bo)u(t, o) f (2, 60) + v*(t, 0){f (¢, 60) — f(t)}] d¢,
M, = Varf{h1/2Kh(Xi —x)v(X;, 0)}

= [ RE (& = x)P0(t, 90)u(t, 60)'F(£) dt — hé

and &, = [ K, (¢ — x)v(t, 0y)f(¢) d¢. Again u(¢, 0) is the model’s score function
while v*(¢, 0) is the px p matrix of derivatives of the v ;(¢, 0) functions. Proving
these claims is not very difficult, using variations of arguments used to prove
asymptotic normality of M-estimators; see Section 8.4 for relevant details and
an additional result. By the delta method,

(nh)Y2{f(x) - f(x, 6)}

(3.3)
—aq A0, f(x, 00)*u(x, 60)"J; My(J5) " ulx, 6,)}.
3.2. Decreasing h. The (3.3) result is valid for a fixed positive A. We are
also interested in being increasingly fine-tuned about A as n grows. Observe
that, as A — 0,

(3.4) [ Kt — x)g(t)dt = g(x) + Jokhg"(x) + O(h*)

for each smooth g function, by a standard simple Taylor series argument.
Using this in conjunction with (3.1) shows that f(x, 8y(x)) — f(x) = O(h?) in
general. Indeed,

(3:5) vy o(@{fo(x) = F(2)} = 0k h*{v, o(f — fo)} () + O(R?)

under smoothness assumptions on f and the weight functions, writing f,(x) =
f(x,0), v o(x) = v;(x,0y) and so on [and where 6, = 6,(x) also depends
on x]. Furthermore (v; ¢f()"(x), for example, means taking the second x-
derivative of the v ;(x, 0)f(x, #) function, and then inserting the parameter
value 6 = 0y(x). Under mild regularity assumptions this also implies

Ef(x) = f(x) + o2 h?b(x) + O(h* + (nh)™?),

where the precise nature of the b(x) function will be quite important and will
be analyzed more later.

We need to assess the size of J; 1M, (J%)"! of (3.2) and of the variance
appearing in (3.3), when A tends to zero. To this end, it proves to be convenient
to reparametrize quantities in J, and M. Rewrite f(¢, 6y) as f(t — x, ¥g),
where the new parameters s are easily related to the old parameters 6 and

we note that the first element of 17[1\ is the only one directly specifying }?(x)
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Also, replace u(t, 6,) and v(¢, 6,) by u,(h™1(¢t — x), ¢y) and v, (A 1(¢ — x), ¥)
respectively, the subscript h referring to dependence of u; and v, on A to
accommodate the A1 attached to ¢ — x. [For an example, reparametrize 6, +
Ot + 05t% to iy + hohz + Y3h?2?, where z = (¢t — x)/h.] We then find that

Ty, = folx) [ K(2)oa(z, o)un(z, o) dz + O(h?),
(3.6)
M, = f(x) [ K(2)?vu(z, o)on(z, o) d2 — héoésf (x)* + O(h?),

where &, = [ K(2)vy(z, ) dz.

3.3. The one-parameter case. Let f(x, 0) have just one parameter and let
the weight function v(¢, 6) be smooth and nonzero at x. From (3.5) and previ-
ous arguments one finds

(3.7) b(x) = ["(x) = fo(x) + 2{vg(x)/vo(x)H{f"(x) — fo(x)},

differing from the kernel estimator’s bias factor f”(x) by a term depending
on properties of f(-, 0). If f, = f, that is, if we are working with the correct
parametric class, then b(x) = 0. Otherwise, (3.7) should be small when f,
is close to f and perhaps not too large in absolute value even when f and
fo differ considerably. Notice that the expression for b(x) simplifies when the
weight function used is v(¢, #) = 1. It also simplifies in the multiparameter
case of the next section. An expression for the variance is found from (3.3) and
(3.6). Assuming that v;(z) and u,(z) are of the form ¢ + O(hz) for small A,
the weight function as well as other traces of the parametric model are seen
to cancel out, for the leading terms, and the result is

(3.8) Var }?(x) = R(K)(nh) ' f(x) = n7 f(x)> + O(h/n).

That is, the variance is the same, to the order of approximation used, as that
of the ordinary kernel density estimator.

4. The multiparameter case. In this section, let the parametric model
be fo(x) = f(x, 61, ..., 0,) with p > 2. The results we shall obtain for approx-
imate biases and variances again hold under suitable regularity assumptions,
including permission to interchange limits and expectation. That these are
met can be checked directly for the most important special cases, like those
listed in Section 5.

4.1. The bias. We have Ef(x) = f(x, 8,) + O((nh)™!) again, and the p
equations [ K (¢t — x)v;(t, 0p){f(¢) — f(t, 6y)} dt = 0 can be used to see how
far f(x, 6y) is from f(x). From (3.5) it is seen that

f(x, 00) — f(x)
= 50k W[ (x) = f5(x) +2{V; o(2)/v; 0 () HF'(x) = F5(x)}] + O(h*)

for each j, under smoothness assumptions. Since there are p > 2 equations
giving the A2 coefficient, this can hold only when f/(x)—fy(x) = o(1) as h — 0.
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This is not, in general, true in the one-parameter case and is the cause of the
extra term making up (3.7). For p > 2, however, we have

(4.1) Ef(x) = f(x) + 0% h*{f"(x) = F§(x)} + O(K® + (nh) ™).

Introduction of further local parameters has simplified the bias to depending
solely on f”(x) — fo(x). This is appealingly interpretable. The bias is of a fa-
miliar second derivative, local curvature type, and the way in which closeness
of f, to f affects the bias is abundantly clear.

The foregoing remarks are really most relevant to the case of two param-
eters exactly. For p > 3, an extension of the above argument shows that
(f — fo) is also o(1). To see this, write g, = (f — fo)") ~ Y= a(r,i)h’ for
r = 0,...,4. Then look at the general equations governing asymptotic bias
and equate terms in powers of 4. These are

8o+ %k2h2(vj,0g0)///vj,0
+ z%k4h4(vj,ogo)(4)/vj,o + Wlok6h6(vj,0g0)(6)/vj,0 =0,

for j=1,..., p, where we write & ; = fzjK(z) dz; in particular, by = 0'12{. For
instance, when p = 3, a little manipulation yields a(0,i) = 0 = a(j, k) for
1=0,1,2,3, j=1,2, k=1, 2. Also of importance are a(0, 4) + %k2a(2, 2) +
2—14k4a(4, 0) =0 and kya(1,2) + %k4a(3, 0) = 0. To make further progress, we
need to consider the 2 term which involves three equations in four unknowns,
where, in particular, two of these, say ¢ and u, satisfy

t = 2kya(0,4) + 1k,a(2,2) + £kea(4,0) and u = tksa(l,2)+ xkea(3,0).
We can thus write ¢ = Au for appropriate A and hence find that

kokg — k% 1
ky— k3
Reinterpreting this in bias terms results in
~ kokg — k2
Ef(x) = f(x) - 2= A R[4 F O () — £ (0)}

(4.2) ky— k3
— LAL{FO(x) = £ (x)}] + o(hY),

where, being explicit about A, A is the solution to the system of equations
XV o+ yv o+ A= -V for j=1,2,3.

Increasing p from 3 to 4 results in the considerable simplification that the
term involving A in (4.2) disappears due to being able to set t = u = 0 so that
we then have

koks — k2
ky — k3

Therefore, one gets an exact parallel of properties of the local polynomial re-
gression referred to in Section 1.2; see Ruppert and Wand (1994) and Fan

(4.3)  Ef(x)=f(x)— LA [FO) = £37(2)) + o(h?).
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and Gijbels (1996). Fitting one or two parameters, using a second-order ker-
nel K, corresponds to O(h?) bias, with two parameters exhibiting advantages
in terms of simplicity. There is a parallel story for nonparametric regression,
involving local models with one or two parameters; this is well known for the
local constant and the local linear model. Three and four parameters yield
O(h*) bias, as do local quadratic and cubic regressions, and four parameters
afford a simple dependence on (f — f,)*. And, we conjecture, so on, with
five and six parameters (sufficient smoothness of f and the parametric densi-
ties used permitting). An important point emerging here is that we have not
had to impose any particular local parametric form to achieve this behavior.
Rather it is a consequence of the number of local parameters fitted. See also
Sections 4.2 and 4.3. Since the practical value of these asymptotic results is
perhaps dubious, we prefer to concentrate on the two-parameter case and con-
sequent improvements in leading constant rather than rate, allied with more
obvious practical interpretation.

4.2. The variance. We use (3.3) with (3.6), assuming, as is reasonable, that
the vy, (z, o) and u,(z, ;) functions are of the form c; + cy(hz) +c5(hz)? +---
for small A, and that there is at least one nonzero c; coefficient in each of
the vectors v; and u. It should be no surprise that v and u functions can be
subjected to arbitrary linear transformations without effect on the resulting
estimates, and it is easy to see by consideration of utJJ;* M, (J% ) 'u and (3.6)
that the variance is unaffected by this. As far as this asymptotic assessment
is concerned, therefore, where # — 0 and nh — oo, it follows that we can
replace both v and u by the canonical function

Vi (2)=(1, hz, W22, ..., hp_lzp_l)t.
Thence, from (3.3) and (3.6), we see that
(4.4) Var f(x) = (nh) Hf(x)7(K)? - f(2)®/n+ O(h + h/n),

where, letting e; = (1,0, ..., 0),
-1

-1
7(K)2:e§</KVhV§Ldz) (/szhvgdz></thV';Ldz) er.

A particularly natural local parameterization takes f(z, 6) as exp(Zﬁ-’;& 0; t)),
so that u(¢,0) = (1,¢,...,tP~ 1)t This is the special case—with v = u—
explored by Loader (1996), who gives essentially the same variance expression
as above, but we must emphasize that this variance result also holds for any
(sensible) local parameterization and not just for Loader’s: it is purely a con-
sequence, as is the kernel-dependent part of the bias, of the number of local
parameters fitted.

4.3. Two, three, four parameters. In the case of two parameters, (4.4) sim-
ply reduces to

(4.5) Var f(x) = (nh) " f(x)R(K) — n" f(x)? + O(h/n).
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This nicely joins with the two-parameter bias to mean all the usual properties
of the ordinary kernel density estimator with the single exception that the
bias depends now on (f — f)” rather than just f”.

For either three or four parameters, (4.4) yields

J(ky2? — kg2 K(2)2dz
(ky — k3)? -

(4.6) Var f(x) = (nh)" f(x) n~ f(x)? + O(h/n),

and this variance quantity associates appropriately with the kernel-dependent
quantity given for the three parameters in (4.2) and for four parameters in
(4.3). The two are the bias and variance of the fourth-order kernel {(%ky2? —
ky)/(ks — k3)} K(2); see Jones and Foster (1993). This equivalence is familiar
for local quadratic or cubic regression [Ruppert and Wand (1994)], but here we
observe it for density estimation and, most importantly, for any local three- or
four-parameter model.

As the pattern is that, for example, five and six parameters afford O(h%)
bias, so O((nh)~!) variance can be expected, and an equivalent kernel that is
an appropriate quartic multiple of K.

We should note briefly that p parameters afford, again in parallel with (p—
1)th degree polynomial fitting, natural estimators of the first p —1 derivatives
of f. The usual rates for derivative estimation, which involves a variance
contribution of order n=1A~(2"+D for the rth derivative, can be shown to obtain,
and equivalent derivative kernels [Ruppert and Wand (1994)] will arise.

5. Special cases. This section exhibits various special cases of the gen-
eral methodology.

5.1. The classic kernel method. The simplest special case is to set f(x, 0) =
0. Semiparametrically, this is not especially attractive since the limiting form
of the estimator as 2 — oo is uniform (albeit an improper uniform), but for
small &, that is, locally to x, this makes perfect sense. Moreover, the resulting
density estimator is given explicitly by

nl Z K, (x; — x)//Kh(t — x)dt.
i=1

Since the integral is 1, the denominator may Ee ignored and the result is
precisely the classical kernel density estimator /. We mention the denomina-
tor, however, because it is not unity near any boundary of f’s support, but
rather effects a renormalization near the boundary as discussed further in
Section 6.1.

Following on from this, a natural first two-parameter locally parametric
estimator is provided by fitting a line 6; + 65(¢ — x), say, locally to x. Provided
we need not worry about boundaries, [ K,(t — x)(t — x)d¢ = 0, and hence

it turns out that f(x) = }? (x) once more. Note that both local constant and
linear models have fj(x) = 0, and the bias formula (4.1) gives the classic
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answer %o%{ h%f"(x). (Near boundaries, local lines automatically adjust }? in a
way that has good consequences which are described in Section 6.2.)

Local polynomials are the obvious further extension, higher degree polyno-
mials corresponding to higher orders of bias in a way entirely analogous to
local polynomial fitting in regression [(e.g., Ruppert and Wand (1994)]. Local
polynomials are not so attractive (in density estimation) in semiparametric
terms, however.

5.2. Local log-linear density. Consider the local model a exp(b(¢ — x)) for
f around x [as does Loader (1996)]. The score function is (1/a, t — x)’, and the
two equations to solve, in order to maximize the local likelihood, are

—IZKh(x —x)( 1/_‘1 ) /Kh(t—x)< )aexp(b(t—x))dt

The components on the right-hand side can be written ¢(bh) and ahiy'(bh),
where (u) = [exp(uz)K(z)dz is the moment-generating function for K.
The two equations therefore become }?(x) = ay(bh) and g(x) = ahiy/(bh),
where g(x) is the average of K, (x; — x)(x; — x). Note that the general recipe
says ﬂx) = f(x,ii(x),g(x)) = a(x), so the g(x) is only somewhat silently
present when using this local reparametrization. Here one solves g(x)/ }? (x) =
hy'(bh)/y(bh) for b and in the end uses F(x) = f(x)/y(bh).

This apparatus can be used in particular when K is the standard normal.
Some mild caution is called for since K then has unbounded support, to the
effect that the local model is only trusted when ¢ € x +£2.5 &, say. In this case,

g(x) above is directly related to the derivative ]?/ (x) of the ordinary kernel
estimator; indeed, g(x) = A2f'(x). [(In fact, g(x)/(0%h?) is quite generally an
estimator of f’, usually a different one from ( ]? ). For comparisons, see Jones
(1994).] This fact, combined with () = exp(%uz) and ¢'(uv) = Y(u)u, gives

b= f(x)/f(x) and
(1) f(x) = f(x)exp(-317b%) = f(x) exp[-§2*{f'(x)/F(x)}"]
This particular version of our general local likelihood method performs ac-
cordingly an explicit correction to the traditional estimator, attempting to get
the local slope right. Its bias in general is 2h2{f" — (f")/f} + O(h*), which
will be only O(h*) if the true model agrees with a exp(bt) on |t — x| < 2.5 h.
As mentioned in Section 4.3, b will be more variable than a, and might
require a larger window parameter for its estimation. The correction factor
g(x) f (x)/ f (x) in (5.1) could therefore either be computed separately, for
a somewhat larger 2 than that used for f or the values of b(x) could be
post-smoothed before being plugged into (5.1).

5.3. Local level, slope, and curvature. As a continuation of the previous
special case, as well as of the theory of Section 4.3 and of Loader (1996), one
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can try out f(¢) = a exp{b(¢ —x)+ %C(t— x)?} for ¢ in a neighborhood of x. This
local model is meant to be able to capture local level, slope and curvature of
the true density, in the neighborhood ¢ € x &+ k&, as above. For each given x
there are now three equations to solve:

" 1/a
n Y Ky(x; —x)| x—x
=t (x; — x)?
1/a
- /Kh(t )| t—x |aexp(b(t—x)+ Le(t — x)?)dt.
(t —x)?

The right-hand side gives three functions in (a, b, ¢) to equate to }? (x), 8(x)
(given above) and gy(x) = n 1 Y7 ;| K, (x; — x)(x; — x)2. In the end the local
likelihood estimator is ]?(x) = f(x,a, b, ) =a.

Finite-support kernels are perhaps advisable here, to secure finiteness of
the integrals on the right-hand side. The equations must, in general, be solved
numerically for each x; existence and uniqueness of a solution is guaranteed
by concavity in (log a, b, ¢) of the local likelihood. Let us give the fairly explicit
solution that is possible for the case of the standard normal ¢ being used for
K, interpreting the local model to be an approximation on ¢ € x+2.5A. In this
case, g = h%f’ and g, = h%f + h*f”, bringing in information about the first
and second derivative of the standard estimator. The three equations become

f(x) = (a/R) exp(1h%b?/R?),
f(x) = (ab/R?) exp(1h2b?/R?),
W2 f(x) + B f'(x) = (ah?/R®)(1 + h?b/ R?) exp(3h?b?/R?),

where R = (1 — ch?)'/2. There is a unique solution if the ¢ found in a minute

obeys 1 > ¢h?. Some manipulations show that R = (1 — ¢h2)Y/2 can be found
from

(1/R?) - 1= h[f"(x)/f(x) — {f(x)/f(x)}*] = h*D.
This gives ¢= D/(1+ h2D) and R = (1 + h2D)~V/2, and, in the end,
(5.2) f(x) = F(x)R exp[~ Lh2R2{f (x)/ f(x)}2].

Note that ]? can be computed quite explicitly in cases (5.1) and (5.2). This is
quite fortunate, of course, in view of the general complexity of our scheme.
Again, Loader (1996) has also, independently of the present authors, worked
with local likelihood estimation of densities that are log-linear in polynomials.
Formulae (5.1) and (5.2) are not in Loader (1996), but he comments further
on the general implementation issues involved. The manipulations that led to
(5.1) and (5.2) do not, unfortunately, extend so neatly to the log-cubic case.
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5.4. A running normal density estimate. Let us fit the normal density lo-
cally using 1 and # — x as weight functions in (1.4), that is,

n—liKh(xi —x)(x.1_x> =/Kh(t—x)<t_1x>(1r¢<t;“) de
i=1 i

are solved to get hold of the local i(x) and &(x). This should essentially take
care of the local level and slope. If K = ¢ is used, then these equations after
some calculations become

~ — 1
f(x)= ¢<(02x+ h,;l«)l/2) (o2 + h2)1/2’

= xX—p xX—p
f(x) = _( 2y h2)3/2¢<(02 + h2)1/2)’
essentially matching traditional estimates of f and f’ with quantities pre-
dicted by the model. It follows that g(x) = f (x)/f(x) —(x — p)/(c? + h?)
and, when inserted in the first equation, this gives a single equation to solve
for the local o = &(x):
1 1 1o o 2 2 } ry
———————expl—=q(x)* (o + h*)} = f(x).
= T b 5P ) = )
There is a unique solution provided only ¢(hg(x)) > h}? (x). Then the local
w = p(x) is found from @(x) = x + {7(x)? + h2}q(x).
One may alternatively use the local likelihood function (1.3), that is, mini-
mize

_ ( i )2 — 1
(54) n 1ZKh(x —x){loga+ 2 = B }+¢>((02x+ hg)l/z)(gz+h2)1/2

i=1

(5.3)

to produce (x) and &(x). This can be thrown to an optimizer or one could use,
say, Newton—Raphson to solve the two equations that use the score functions
o7 2(t—w) and o~ (t — n)?/0? — 1} as weight functions. These equations can
be worked out to be

1 X — 1 (x — p) X —
S Ko(x: — = —
n L:Zl h(xl x) o (0_2 + h2)3/2 0_2 + h2 )

n 2 2 2
Lo (s x)(< i~ 1) 1>: i 32¢>( x—p ><(x2 W )
n = (02 +h2)32 " \/o2 + h2)\ 02+ h
The running parameter estimates for both versions (5.3) and (5.4) would now
have to be computed over a grid of x values. A practical suggestion would be
to start optimizing or equation solving at a new x at the optimized values for
the previous x.

The local log-likelihood L,(x, ) is not necessarily concave, but it should be
so with high probability since the matrix of second derivatives goes to the —/},
matrix, defined in Section 3, and the «/; matrix is symmetric and positive def-
inite in this v = u case. We are hopeful that simplistic computational schemes
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should work well, a problem currently under investigation by J. Fosen, a stu-
dent of the first author.

5.5. Correcting a parametric start. An alternative approach to semipara-
metric estimation might be to start with a known, or globally estimated para-
metric, model f;,;(¢) and to multiply it with a local correction factor. Esti-
mation of the local correction factor can conveniently take place within our
local likelihood framework as follows. First, let (¢, 6) = f,;:(¢)0. We think of
6 = 6(x) as the local correction factor for ¢ near x. The local log-likelihood is

f(x) log 6 — 0 [ Kj(t — x)fni(¢) d¢. The resulting estimator is

flx) = Finit (%)
Enr )@ &y s f) @)

where * denotes convolution. Note the simplicity and explicitness of this solu-
tion. The two expressions are meant to make clear two useful viewpoints: the
estimator is a (typically parametric) start estimator times a nonparametric
correction, and also the nonparametric kernel estimator times a parametric
update.

We could also try f(¢) = fin:(t) @ exp(b(¢ — x)) for ¢ near x. The local log-
likelihood becomes

loga ]?(x) +bg(x)—a / K(2)finit(x + hz)exp(bhz)dz,

(5.5) F(x) = fimit(x)

where g is as before. Note that the log-likelihood is concave in (log a, b). Max-
imizing the local likelihood gives two equations which will not be solvable
explicitly in general. However, for the normal case and with a normal kernel
we find

(5.6)  f(x)=f(x)(L+h%/0®) 2 exp[-Lh2(1+ K2/ o) {f (x)/f(x)}?].

This is a (simpler) close relation of (5.2). In a way, however, the normal case is
misleading in its potential: formulas like (5.2) and (5.6) are utilizing special
properties of the normal to approximate the obvious bias correction f(x) —
%hzf’//(x), where }?7’ is an appropriate estimator of f”.

Asymptotic bias properties of the above cases are interesting. Both have
b(x) of the form (f — f)"(x), since when the local correction is a constant,
uq is a constant also. In the local constant correction case, b can be written
" — ffii/finit; in the local exponential-of-linear correction case, some further
analysis shows that the b function can be written f” —(f")/f +f(fini )2/ f o —
ffivit/ Finit- Each is zero if f;;; = f. Another appealing b function which can be
reached within this correction factor framework is b = £, (f/fimt)”> Which is
the bias factor function for Hjort and Glad’s (1995) estimator. These authors’
nonparametric correction to a parametric start arises if the kernel K(z) is
replaced by the modified (local) kernel K(2)f;ni.(%)/finit(x + h2) in the local
constant correction described above. See Hjort (1996a) for further analysis and

comparisons.
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An interesting feature of semiparametric estimators of the form f times
a parametric correction, as the second expression in (5.5), is that if taking a
likelihood approach, one need not localize the likelihood, but may use a global
likelihood to estimate the parameters in the parametric part, the localization
already being attended to by f. Efron and Tibshirani (1996) develop such an
approach; in this connection, see also Hjort (1996a). Finally we point out that
these local nonparametric multiplicative correction methods also work well
when the initial estimator is itself nonparametric. When f;;; is the kernel
method, for example, (5.5) gives /? %{ / }? x+k> where the subscripts indicate the
kernel functions used. Such estimators have bias of order A* and performance
generally similar to that of an estimator investigated in Jones, Linton and
Nielsen (1995); see Hjort (1996b).

5.6. Local Ly-fitting. Consider the local distance measure

[Eat—x){f(0) - £z, 0)) dt,

an alternative to the local Kullback—Leibler distance (2.1). Multiplying out and
disregarding the one term which does not depend on the parameter, we arrive
at the following natural proposal: minimize, for each local x, the criterion
function

Q,(x,0)= /Kh(t —x)f (¢, 6)2 d¢ —2n1 i Ky(x; — x)f(x;, 0),

i=1

and use the accompanying version of f(x, a(x)) This would constitute a third
possible avenue for computing a running normal estimate, for example. Taking
the derivative it is seen that this local L,-method is a special case of the gen-
eral (1.4) method, with weight function v(¢, 8) = f (¢, 0)u(t, 6). Thus the theory
developed applies to this case and suggests, in particular, that the behavior
would be quite comparable to that of the other methods for small bandwidths.
We would prefer the local likelihood to the local integrated quadratic for large
and moderate A, that is, in situations where the parametric model used is
not entirely inadequate, since the likelihood method is more efficient then. In
the normal case, if A is large, the variance of the u estimator is about 1.54
times higher with the L, method and the variance of the o estimator about
1.85 times higher. However, the corresponding parameter estimates are more
robust than the maximum likelihood ones. Further results and discussion are
in Hjort (1994).

5.7. Uniform kernel. Let K be uniform on [—%, %] In this case the local
log-likelihood function is L,(x, ) = n=1 Y log f(x;, 0)—{F(x+%h, 0)—F(x—
%h, 0)}, where the sum is over the window where x; € x + %h Maximizing
this essentially aims to match empirical facts from the local window x + %h to
behavior predicted by the parametric f(-, ) on this window. If v,(x,¢,0) =1
is one of the weights used in (1.4), then that equation simply matches the
empirical and theoretical probabilities of falling inside this window.
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5.8. Relationship with moment estimation. Note that as & becomes large,
the (1.4) recipe ends up choosing as estimate the parameter value that solves
n~1y"  v(x;, 0) = Equ(X;, 0), which is ordinary moment estimation with the
v;(X;, 0) functions. This also indicates that having v,(¢, #) = 1 as first weight
function, which we partly used in special cases above, does not work well with
large hs. We would expect the two methods of obtaining a running normal
density estimate, based on (5.3) and (5.4), respectively, to perform similarly for
small As, but the second method would perhaps be the best one for moderate

and large hs.

6. Estimating the density at a boundary. Throughout the theoretical
exposition so far, we have assumed that f has as its support the whole real
line. In this section, we consider the presence of known boundaries to f’s
support. It will be general enough to consider positive data, and hence one
boundary at zero. Consider estimation points x at and near the boundary in
the sense that x = ph for 0 < p < 1 and suppose K has support [—1, 1].
(This setup can easily be extended to infinite support kernels. However, finite
support is a standard assumption, delineating boundary and interior regions.
Results proved earlier continue to hold for x in the interior.) Define q;(p) =
[P u'K(u)du and b(p) = [*, K*(u)du. [Note that for p > 1, ag(p) = 1,
a1(p) = 0, ay(p) = o and b(p) = R(K).]

6.1. The one-parameter case. For x near the boundary, formula (3.4)
changes to

(6.1) / K (t—x)g(t)dt = ag(p)g(x) —ay(p)hg'(x)+ zas(p)h*g"(x)+ O(R?).
From this, it immediately follows that

Ef(x) = f(x) — {a1(p)/ao( P)YR(f — fo) (x).

With a single locally fit parameter, therefore, boundary bias is of the undesir-
able O(h) type unless one has been fortunate enough to choose one’s paramet-
ric class equal to the true f near the boundary. The boundary variance can be
found using the arguments of Section 4.2, with V;(2) = 1:

(6.2) Jp=ao(p)fo(x) + O(h) and M; = by(p)f(x)+ O(h).

These give a variance of

(6.3) Var f(x) = (nh)"{b(p)/a3(p)}f ().

Bias and variance in (6.1) and (6.3) exactly match those of a standard kernel
estimator divided by ay(p) save the replacement of ' by f' — f| [e.g., Jones
(1993b)]. That is, the one parameter local likelihood estimator behaves much
like a renormalized kernel estimator with respect to boundaries. In Section 5.1
we noted that if the single parameter were a constant, such a renormalization
explicitly and exactly takes place; however, the current asymptotic observa-
tions apply more generally to any one-parameter fitting.
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6.2. The two-parameter case. dJust as the local linear regression fit has an
appealing O(h?) boundary bias (Fan and Gijbels, 1992), so too does the two-
parameter locally parametric density estimator, as we shall now demonstrate.

Write v, ; for the derivative of v with respect to 0, j = 1, 2, evaluated at
0y. To obtain the bias, we need to study the expansions of

[ Kn(t=0w0 1O (1)~ F(t)} dt =0 = [~ Kyt = 2)v0 (04 (1) ~ F(to)} d.

Expanding each to order A% and writing (f — f,) ~ AhZ, (f — f,) =~ Bh
and (f — f)” ~ C, we find that the O(h?) term in either side of the above
expression involves A — {a(p)/ay(p)}B+ %{a2(p)/a0(p)}C and that the dif-
ference between left- and right-hand sides yields an O(A?) term involving
—a1(p)A +ay(p)B — %ag,(p)C. Setting these two quantities to zero and solv-
ing for A yields

(6.4) Ef(x) = f(x) + 1 Q(p)R*{f"(x) — f4(x)},

where

_a3(p) —ay(p)as(p)
AP = o (P)ao(p) - a2(p)

For the variance in the two-parameter case, simply use V;,(2) = (1, hz)’ in
formula (4.4). We get

[{as(p) — a1(p)z}*K(2)* dz
{ao(p)as(p) — ai(p)?}?

The kernel-dependent asymptotic bias and variance terms are precisely those
of the popular boundary kernel

(6.5) Var f(x) = (nh) ' f(x) +0(n Y.

ay(p) —ai(p)z
ao(P)as(p) — ar(p)p D)

[see, e.g., Jones (1993b)]. That is, with two parameters we achieve O(h?)
boundary bias (regardless of choice of local model) in an appealing way, and
there is also the potential of further decrease in bias due to a good choice of
model.

Three parameters can be expected to achieve O(h?) boundary bias, four
parameters O(h*), but this is not pursued here.

7. Multidimensional data. The local likelihood method based on
(1.3) generalizes easily to the case of d-dimensional data vectors, using
d-dimensional kernel functions. The general weight function version of the
method, through solving (1.4) for as many equations as there are parameters
in the model used, is also operable in the vector case. A bivariate example
could be to smooth the product-normal model, where the final estimator is of
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the form

~ o~ A~ ~—1 4 ~-1 ~ ~—1 4 ~-1 ~
f(x’ yap“l,/*"Q’O-l,a-Z):O-l ¢(0-1 (x_l*Ll))o-Z ¢(0-2 (x_/‘LQ))

This would smooth toward normal marginals, but also smooth somewhat to-
ward independence.

Defining such estimators is, therefore, easy in principle, although computa-
tional matters become more complicated with the increasing number of run-
ning parameters to solve for. The local minimum Kullback-Leibler distance
result of Section 2.1 is also seen to hold, giving support to the idea. Another
question is to what extent the theory of the previous sections can be gen-
eralized, to establish properties of the resulting density estimators. We shall
briefly go through the two-dimensional case to illustrate that the theory indeed
goes through with appropriate extensions of previous techniques. Again it will
be seen that the new method has scope for reduction of bias in a large neigh-
borhood of densities around the parametric model employed. Our machinery
could perhaps turn out to be of particular value in the multidimensional case,
where there is much to lose and appalling convergence rates to meet by not
imposing any structure at all.

Let K(z;,29) = K,(21)K,(25) be a product kernel. A good version of the
traditional estimator is

flxy,x9)=n"'Y Kj p(xi1— %1, %, 9— %) =n""Y K, 5 (X, —X),
i=1 i=1
where K; , (t) = hi'K (hi't))hy  Ko(hy't,) and where we write x =
(%1, x9) and so on; see Wand and Jones (1993). It has

2
bias ~ Y 10(K;)?h?f/(x) and
(7.1) =t
R(K)R(Ky)f(x)  f(x)?
nh1h2 n ’
where o(K;)? = [22K;(z)dz and R(K;) = [ K,;(z)?®dz. We also use f7;(x) for
#?f(x)/dx? and so on.

The new locally parametric estimator is defined as f(x) = f(x, g(x)), where
the local parameter estimate solves

variance >~

P K (%5~ X0, 0) — [ Ko (£~ 00t 0)F (8, 6)dt = O
i=1

around each given x point. Four independent equations are needed to handle

the product-normal model above, for example. The expected value of ﬂx) is
f(x, 0y) + O((nh)~1), where 6, is locally least false and solves

Vi(x, 6) :/Khl,hz(t—x)vj(t, 0){f(t) — f(t,0)}dt=0 for j=1,...,p.
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Using

2
[ B (6= 0)g(t)dt = g(x) + 3 Jo(K,)?h7 g} (x) + O((h} + 13)?),

i=1

which is proved by Taylor expansions and properly generalizes (3.4), one finds
that

U/j, 0, (%)

21
bias ~ Y ~o(K; 2h§[ 1(x) — [ (%) +2
lez (K0 () = fo.alx) vj 0(X)

{710~ 4003
where [, and v, indicate the f(t, ) and v(t, ) functions with 6, = 0,(x)
inserted. If there is more than one v; function in direction x;, then f’(x) —
fo.:(x) is necessarily o(1) and

2
(7.2) bias = Y- 30 (K)*RH{ (%) - f§ (%)}

i=1
Further, even f7;(x) — f{ ;;(x) is o(1) in directions involving three or more v ;
functions and bias order can then be reduced, and so on. Turning next to the
variance, one needs to consider

M = hqhy Varf{Khl,hz(Xi —x)vo(X;)}

and
J = _/Khl,hz(t —x)[vg(t)uo(t) fo(t) + v5(t){fo(t) — f(t)}]dt.

Using the same type of method as that used in Sections 4.2 and 4.3 in this more
laborious situation, one ends up with exactly the same variance as in (7.1), to
the order of approximation used, provided there are no more than two local
parameters in each direction. [Extensions to higher numbers of parameters
can be carried out, as with the case that led to (4.4).]

An interesting special case of the general method is that of a local model
f(t1, t) = aexp(bi(t; —x1)+by(ts — x,)), for t around x, modelling local level
and local slopes. The score function is (1/a, ¢; — x1, {5 — x9) and gives three
equations to solve for the three parameters. If the product normal kernel is
used, calculations generalizing those of Section 5.2 yield

o~ ~ 2 ~ ~
(7.3) =) = F(x) exp[—; S h?{f;(x>/f<x)}2]
i=1

A more involved version can be given where the local curvatures exp{%ci(ti -
x;)?} and/or the local covariance factor exp{d(t; — x1)(fy — x5)} are taken into
account, thus generalizing the one-dimensional (5.2). Yet another estimator of
interest evolves by modelling f(t) as a global f;.;.(t) times a local log-linear
correction factor, in the spirit of Section 5.5. Explicit estimators can be written
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out, similar to formula (5.6), for the case of a binormal start and Gaussian
kernels.

8. Supplementing results and remarks.

8.1. MSE and MISE analysis. The approximate mean squared error
(AMSE) for the new estimator is

AMSE{f(x)} = }oich*b(x)? + R(K)(nh) ' f(x),

with b(x) = f”(x)—f§(x) in the typical case, and ignoring terms of order n=!+
h8+4h/n or smaller. For estimation consistency we need A — 0 (forcing the bias
to zero) while nh — oo (forcing variance to zero). The theoretically best choice
of h at x is therefore of the form {R(K)/o% }/{f(x)/b(x)?}*®> n=1/5, and the
theoretically best AMSE is 2{R(K)og}*/° f(x)*°b(x)?/° n=%5. Choosing the
best h for every x is generally too ambitious, and it is convenient to stilldy
the approximate or asymptotic mean integrated squared error AMISE(f) =
10%h R (f) + R(K)(nh)™1, where R ., (f) = [b(x)?dx. The theoretically
best global A-value is

(8.1) ho = {R(K)/g}'? Roey ()7 n7 1%,

leading to the theoretically best AMISE 2{R(K)ox}* 5 R (f)n~%/5. We note
that the Yepanechnikov kernel Ky(z) = %(1 — 42z%), (and scaled versions

thereof) is optimal in that it manages to minimize R(K)og; see, for exam-
ple, Wand and Jones [(1995), Section 2.7].

8.2. Comparison with the traditional method. The calculations above are
quite analogous to well known ones for the ordinary kernel method (which,
in any case, are a special case). This also makes it easy to compare the two
methods. Using the global (approximate) MISE criterion, we see that the new
method is better provided R, ..,(f) < Ria.q(f), where the latter roughness
quantity is [(f )2 dx. This statement refers to the situation where both meth-
ods use the same kernel and the same bandwidth. If R, really is smaller,

then }? can be made even better by selecting a better 4. This also defines a rel-
atively broad nonparametric neighborhood of densities around the parametric
model at which the new method is better. That R, really offers a significant
improvement on R4 in many practical situations, for some of the new es-
timators displayed in Section 5, will be substantiated and reported in future
work.

At a pointwise level, several points made by Hjort (1997) in the analogous lo-
cally parametric hazard estimation case are worth repeating, in modified form,
here. First, it is easy to show that the locally parametric estimator is (asymp-
totically) better than the classical estimator whenever 0 < f(x)/f"(x) < 2.
As long as f{j and f” have the same sign, |f;(x)| can afford to range over
[0, 2|f"(x)|]. Note that this observation holds for small A, that is, at “the
nonparametric end” of our semiparametric estimator. We should also note,



1642 N. L. HJORT AND M. C. JONES

however, that differences in the constant involved in the bias may not be all
that important, since the squared bias makes up only 1/5 of optimized mean
squared error, the remainder being due to variance.

The locally parametric estimator is also designed to have special advantages
over the kernel estimator when f is, in fact, close to f,. Regardless of this,
the kernel estimator has mean squared error of order A* + (nh)~! which is
minimized by taking 2~ ~ n~1/5 and hence optimal mean squared error of
O(n=*/5). On the other hand, one might quantify closeness of f, and f by
setting (fo — f)’ ~ n~¢ for some 0 < € < % The mean squared error of
the locally parametric estimator is thus A*n=2¢ 4 (nh)~! which is optimized
by taking A ~ n~(1-29/5_ The optimized mean squared error is then of order
n~(4+29)/5_ For instance, if fj and f” are O(n~'/*) apart, the mean squared
error is improved to O(n~%1?), and as the difference tends to n='/2, the mean

squared error tends to n~!.

8.3. Choosing the bandwidth. Methods for automatic bandwidth selection
for the traditional kernel density estimator are reviewed by Jones, Marron
and Sheather (1995). They might be utilized unaltered for locally parametric
estimates, at least as a first attempt. However, if we are using an estimator
that does indeed improve on the basic one, we will be oversmoothing relative
to the new optimal choice. An argument in Section 8.2 suggests that the degree
of oversmoothing may not often be very great, however.

The best of the bandwidth selectors in the ordinary case are founded on good
estimates of unknown quantities in MISE expressions. The key is usually in
the estimation of R,q = R(f”), and this transfers to the need to estimate
R..w = R((f — o)) (one might think of adapting traditional selectors by
multiplying them by an estimate of (R,q/Rpew)”?). The estimation of R,
is not straightforward since it involves the second derivatives of both the true
[ and its best possible approximant of the form f(x, 6(x)). One possibility
might be to estimate f” by }7” using a different bandwidth g which is optimal
for estimation of R(f”) [this is what happens in a good bandwidth selector for
the traditional estimator; see e.g., Sheather and Jones (1991)] and f{ by f”
using the same A as for estimation of f. This type of difficulty extends to rule-
of-thumb approaches too. We should also mention that it could be worthwhile
to employ more than one bandwidth when forming an estimator based on
several equations, as for the methods of Sections 5.2 and 5.3. This is because
local slope equations typically would benefit from larger bandwidths than for
local level equations.

Least squares cross-validation, which for the traditional estimator is less
reliable than the best methods [Jones, Marron and Sheather (1996)], has
the advantage that it does not involve f, explicitly. One can just follow the

usual idea of estimating E{ [ f(x)?dx — 2 [ f(x)f(x)dx} by [ f(x, 8(x))? dx —
2n7 " fxy, @Ii)(xi)), where numerical integration is used for the first term
and b\(i)(x) is the leave-one-out version of 6(x).
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Alternative methods are also worth considering, particularly since one
sometimes would be interested in using moderate or large hs, namely, in
situations where the data fit the local model well. A changing and adaptively
defined A could be advantageous in some cases. Hjort (1997) considers a local
goodness-of-fit approach in the hazard case: increase the bandwidth until
the local model fails to pass a goodness-of-fit criterion. Extension of this
methodology to the density case is an interesting topic for further research,
one possibility being to exploit results of Section 8.5.

8.4. Large-sample normality. The basic bias and variance results for our
estimator f(x, /6\(x)) were derived in Sections 3 and 4. Our arguments were
based on claims (3.2) and (3.3) about limiting normality for 5(x), and in fact
also on variants of these that work in the framework where the smoothing
parameter A is not fixed but goes to zero with n. Here we outline proofs of
precise versions of these claims.

The b\(x) we consider is the solution to (1.4). For convenience we partly
suppress the fixed x in the notation now. Taylor expansion analysis for Vn(g) =
0 gives

(8.2) (nh)2(0 — 65) = Vi (6,) "1 (nh) V2V ,(6y),

where V' is the px p matrix of partial derivatives of the V', ;(6) functions, and
this leads to a J gle/l/p{O, M} limit by well known arguments. A more formal
proof starts out by observing that 6 can be seen as the functional T(F,), where
T(F) is the solution to w(F, 6) = [ K, (t—x)v(t, 0){dF(¢)—f(¢, 6)dt} = 0; see
(3.1). Under regularity assumptions this is a second-order smooth functional
in the sense of Shao (1991), with influence function

1.6 = T Kyte = 0ot 00) — [ Kyte = 0yt 00)f (. 0) e,

in which 6, = T'(F). This is seen from a Taylor expansion of v((1—¢)F+&£86,, 0)
around 6, where §, is unit point mass at ¢. This is sufficient for consistency
and a normal {0, J;'M,(J})"!} limit for (nh)Y2(0 — 6,); see Shao (1991).
These arguments, in conjunction with the theory and tools developed in Sec-
tions 4.2 and 4.3, can also be used to prove

(8-3) (nh)2{f (x, 0(x)) = f(x) = by (x)} =4 #{0, T(K)*f(x)}

when & — 0 and nh — oo. Here b, (x) is the bias of f(x, 8(x)) and is of the
form 10%h?b(x) + o(h?) for appropriate b(x) functions in the case of one- and
two-parameter local families and of the form c¢(K)h*b(x) + o(h*) for certain
other b(x) functions in the case of three- and four-parameter local families;
see equations (3.7), (4.1), (4.2) or (4.3). Also, 7(K)? is the general variance
factor appearing in formula (4.4).

Another useful version of such a precise result, valid in the general log-
linear case (cf. the special cases treated in Sections 4.2, 4.3, 5.2 and 5.3) is as
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follows. Let the model be of the form f (¢, ) = exp{0'w(t)}, where w(?) is a
vector of p functionally independent and twice differentiable weight functions.

We assume that 0'w(t) spans the full real line as 6 varies. The local log-
likelihood

L,(x,0)=n"1 Xn: K (x; — x)0w(x;) — th(t —x)exp{0w(¢)}dt
i=1

is concave in 6. Let 6, ; be the unique maximizer of the limit function or,
equivalently, the unique solution to [ K (¢t —x)w(¢)[f(¢) —exp{6'w(¢)}]dt = 0.
Next study the function

An(s) = nh{Ln(x’ BO,h + 3/(nh)1/2) - Ln(x’ 00,]1)}'

It is concave in s and inspection shows that it can be expressed as s'U,, —
%S’Jns + O(||s|I3/(nh)'/?). Here

U, =2 3 WYV2K (2 — 2)w() — &4}

=1

with &, = [[K,(t — x)w(¢)f(t)d¢, and J, = [ K, (t — x)fo(t)w(t)w(¢) dt. The
point is now that the maximizer of A, (s), which is (nh)l/z(a— 6y, ), must be
close to the maximizer of the quadratic approximation s'U,, — %S’J »S, Which is
J,1U,. Precise general concavity-based arguments are in Hjort and Pollard
(1996). Now J,1U, has a covariance matrix which stabilizes as n grows, and
using the Lindeberg theorem it is not difficult to show that it is asymptotically
normal. The delta method, combined with the arguments that led to (3.6) and
(4.4), then gives the appropriate version of (8.3) again.

8.5. Parameter inspection. Plotting the estimated running parameter 5( x)
against x is a natural idea. This could be used for model exploration purposes
and for goodness-of-fit testing. Monitoring 5(x) based on a pilot value of A
can also be used for choosing the final bandwidth or for post-smoothing before
being used in the final f(x, 6(x)).

From the discussion of Section 3.1, it is clear that a(x) aims at the locally
least false parameter value 6,(x), which is a constant value 6, independent
of x if and only if the parametric model used is perfect. The approximate
precision of 4/9\(x) can be worked out from J; M (J})! of (3.2) using methods
developed in connection with (3.6) and (4.4). To a first order approximation
the variances for the components of /0\(x) are inversely proportional to nhf(x)
and hence their plots cannot normally be trusted in regions of small density.
We note that both weight functions v(¢, 6) as well as characteristics of the
model used show up in explicit calculations for the variance matrix for g(x), in

contrast with the analogous calculation for the variance of f(x, /0\(x)), ending
with (3.8) and (4.4).
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9. Conclusions. We believe we have been studying the most attractive
way of doing semiparametric density estimation. The estimators run the
gamut from a fully parametric fit to almost fully nonparametric (except with
some small change in performance which may well be beneficial) with only a
single smoothing parameter to be chosen. The number of parameters in the
“local model” crucially affects performance: one and two fitted parameters
are most readily comparable with ordinary kernel density estimation, three
and four fitted parameters with fourth-order kernel estimation and more
parameters with higher order estimates. Even numbers of fitted parameters
have advantages in terms of simplicity and interpretability of bias. These
comments parallel the fitting of local polynomials in regression, but we note
that they are driven by numbers of parameters only (which are effectively au-
tomatically reparametrized into intercept, slope, curvature, etc., parameters)
and not by the specific functional form. Together with and in generalization
of Loader (1996), we believe we have laid firm theoretical foundations for
locally parametric nonparametric density estimation. Much still remains to
be done in terms of exploring practical issues and applications.
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