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ROBUST ESTIMATION OF PARAMETERS IN A MIXED
UNBALANCED MODEL1

By Tadeusz Bednarski and Stefan Zontek

Polish Academy of Sciences

This paper describes a method of robust estimation of shift and scale
parameters in a mixed unbalanced interlaboratory model. Estimators pre-
sented result from “easily computable” Fréchet differentiable functionals
which enjoy some optimal properties in a small neighborhood of the model.
A rigorous treatment of their asymptotic behaviour under departures from
the model assumptions and a simulation study are given.

1. Introduction. A method of robust analysis of random effects in mixed
models is introduced in the paper by Rocke (1991) [see also Iglewicz (1983)]
and a general treatment of robust estimators of variance components is pre-
sented by Fellner (1986). Rocke proposes estimators of variance components
applying robust scale estimators to residuals and laboratory effects. In the first
step he uses Huber’s method to robustly assess location parameters. A similar
point of view is taken by Lischer (1994), who improves breakdown properties
of the estimators. He also gives a comprehensive practical motivation for the
use of robust methods in interlaboratory experiments. The above-mentioned
estimation technique may lead to high-dimensional nonlinear equations and
it is “inconvenient” for assessing variability of estimators. A possible improve-
ment may be in the simultaneous estimation of fixed effects and components of
variation, where problems of a rigorous asymptotic treatment, smoothness of
estimators and their optimality become more feasible. In a preliminary study
by Bednarski, Zmyślony and Zontek (1992) it is shown that Fréchet differen-
tiability of statistical functionals easily leads to reasonable robust estimators
of variance components and treatment fixed effects in a simple interlabora-
tory model. The basic idea there is to construct a smooth Fisher consistent
functional T for the parameter θ = �µ1; : : : ; µa; σλ; σe�t at the model

Yi = µi + λ+ ei for i = 1; : : : ; a;

where the laboratory effect λ and errors ei are independent normal variables
with distributions N�0; σ2

λ� and N�0; σ2
e �, respectively. The estimator has the

form T�Fn�, where Fn is the empirical distribution of the sample Y1; : : : ;Yn

with each Yi having the distribution of �Y1; : : : ;Ya�t. When we let the above
model be unbalanced in the sense that the number of treatment replications
may depend on both laboratory and treatment, then a similar point of view is
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possible, though we deal with a number of subpopulations F1�·�θ�; : : : ;Fp�·�θ�
defined for different designs of treatment replications at various laboratories.
The application of von Mises methodology requires then some modifications.

The main objective here is to construct a family of smooth functionals with
“reasonable” robust and computational properties. The family of Fréchet dif-
ferentiable functionals is obtained via “robustification” of the maximum like-
lihood method for linearly transformed vectors of observations [see Harville
(1977) for the maximum likelihood approach to variance components estima-
tion]. The transformations reduce the estimation problem to models with inde-
pendent normal observations with parameters depending on the design, fixed
effects and the components of variation. These make the problem’s main in-
gredient the classical location-scale robust estimation. This reduction to the
location-scale problems for independent observations was used already by
Huggins (1993) in a robust analysis of variance components models related to
random carrier models of Maronna and Yohai (1981). Huggins derived asymp-
totic properties of his robustM-estimators based on Tukey’s bisquare function.
We focus our considerations on an optimal choice of the basic function used for
location-scale estimation and on smoothness and computability of the implicit
functionals. It is shown in particular that the basic function corresponding to
Huber’s scale proposal minimizes the asymptotic variance of the location esti-
mator under the condition of positive breakdown point for the scale estimator.
Motivations for the smoothness analysis can be found in Bednarski, Clarke
and Kołkiewicz (1991) and in Bednarski (1993, 1994), where it is shown that
important robustness properties are a consequence of Fréchet differentiability.
One of the very important statistical implications of the differentiability is a
uniform asymptotic consistency of the estimate’s variability assessment based
on the influence function.

In the following section general information about Fréchet differentiability
is presented along with some modifications specific to mixed models. Section
3 gives the construction of a class of Fréchet differentiable functionals and
some resulting asymptotic properties for the corresponding estimators. The
asymptotic distributions and approximation to the limiting covariance matrix
are given under both the model assumptions and small departures from the
model. Section 4 discusses the optimal choice for the basic objective function
and compares it with Huber’s approach and the approach based on the Tukey
bisquare function. The final section provides results of a simulation exper-
iment where behavior of the maximum likelihood and the robust estimator
are compared. A significant conclusion there is, apart from robustness proper-
ties, a remarkable stability of approximated variances of the estimates under
various model perturbations. The latter feature is attributed to the strong dif-
ferentiability condition enjoyed by the class of functionals. Also a comparison
with Rocke’s estimator is given.

2. General information on Fréchet differentiability. Denote by G
a set of distribution functions defined on Rr and let D be the convex cone
spanned by the differences F − G from G . Here the distance between the
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distributions F and G will always be defined by the supremum norm

�F−G� = sup
x∈Rr

�F�x� −G�x��:

A statistical functional T defined from G to Rk is said to be Fréchet differen-
tiable at F ∈ G when there exists a linear functional Tf on D such that

�T�G� −T�F� −Tf�G−F�� = o��F−G��;
where � · � is the Euclidean distance. The use of the supremum norm in the
context of robust statistics is justified in Bickel (1981). Other choices for the
norm are possible depending on what properties of the estimators we search
for [Dudley (1992)]. For detailed descriptions of other concepts of differentia-
bility, we refer in particular to Reeds (1976), Fernholz (1983), Gill (1989) and
to the classical work of von Mises (1947).

Clarke (1983, 1986) gives sets of conditions implying Fréchet differentia-
bility for M-functionals. In the model studied later in this paper we shall
consider differentiability of an M-functional, given by some function 9, at a
product distribution Fθ = F1�·�θ� × · · · × Fp�·�θ�. If 9 satisfies Clarke’s con-
ditions and

∫
9�·�θ�dFθ�·� = 0 (this can always be assumed without loss of

generality), then

Tf�G− Fθ� = −M�θ�−1
∫
9�x�θ�dG�x�;

where

M�θ� =
∫ ∂

∂θ
9�x�θ�dFθ�x�:

To obtain the asymptotic distribution of the estimator resulting from the
functionalT, we need to approximate Fθ on the basis of a random sample. This
can be done via Fn = F1

n1
× · · · ×Fp

np , where Fi
ni

is the empirical distribution
function resulting from the subpopulation given by Fi�·�θ� and n = ∑

ni.
Another feature to be used is a specific structure of 9, namely, we shall have
the representation

9�Y1; : : : ;Yp�θ� = 91�Y1�θ� + · · · +9p�Yp�θ�;
where Yi is observed in the population with the distribution given by
Fi�·�θ�. Then, under the assumption that n increases to infinity while
min�n1/n; : : : ; np/n� tends to a positive constant, we obtain

√
n�T�Fn� − θ� = −M�θ�−1

p∑
i=1

√
n
∫
9i�yi�θ�dFi

ni
�yi� + oGn

�1�

under Gn equal to the product of G⊗nini , where
√
n�Gni

�·� − Fi�·�θ�� stays
bounded. The asymptotic distribution is then normal with expectation zero
(at the model) and the covariance matrix

M�θ�−1
[ p∑
i=1

1
qi

∫
9i�yi�θ�9i�yi�θ�t dFi�yi�θ�

][
M�θ�−1]t;
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where qi = limn→∞�ni/n� for i = 1; : : : ; p, at the whole infinitesimal model
given by the supremum norm. We shall sometimes call the parameter cor-
responding to the center of the infinitesimal neighborhood the “true” pa-
rameter.

One of the essential implications of the Fréchet differentiability is that the
above covariance matrix can be approximated consistently over the infinites-
imal neighborhoods by

M̂�Fn�−1
[ p∑
i=1

1
qi

∫
9i�yi�T�Fn��9i�yi�T�Fn��t dFi

ni
�yi�

][
M̂�Fn�−1]t;(1)

where

M̂�Fn� =
p∑
i=1

∫ [ ∂
∂θ
9i�yi�θ��θ=T�Fn�

]
dFi

ni
�yi�:

In the following text we shall give a proposition for 9 designed for the mixed
unbalanced model.

3. The mixed unbalanced model. A single observation yijk for i =
1; : : : ; a, j = 1; : : : ; b and k = 1; : : : ; dij is given in the model by

yijk = µi + λj + eijk;(2)

where µi are treatment fixed effects, λj are N�0; σ2
λ� independent labora-

tory effects and eijk are independent (also of λj) random errors with N�0; σ2
e �

distribution.
To adopt the already described differentiability approach to this model,

we need to single out model distributions for subpopulations for which in-
dependent identically distributed observations are available. If �dij� denotes
the incidence matrix for the mixed model with i and j corresponding to the
treatment and laboratory effects, respectively, then the number p of differ-
ent subpopulations will correspond to the number of distinct columns of the
incidence matrix. Denote these columns further by N1; : : : ;Np and let N be
the matrix formed by the columns. If bs is the number of repetitions of the
experiment corresponding to Ns = �n1s; : : : ; nas�t ∈ Ra, then we have (after
possible permutation of columns in �dij�)

�dij� = �N11tb1
x · · · xNp1tbp� and b =

p∑
s=1

bs:

Referring to our earlier notation we can now write

Fs�·�θ� ∼N�Xsµ; σ
2
λ1n.s1

t
n.s + σ

2
e In.s�;

where n.s = Nt
s1a for i = 1; : : : ; p, θ = �µ′; σ ′λ; σe�, while µ = �µ1; : : : ; µa�t.

The matrix Xs = diag�1n1s
; : : : ;1nas� is a partitioned matrix with the column

vectors of ones 1n1s
; : : : ;1nas , on the main diagonal and with zeros elsewhere.
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To ensure the identifiability of the parameters in the model we further make
the following assumptions:

I1. Every row in N has a nonzero element.

I2. There is a column in N for which the sum of its elements exceeds 1.

If a row of the incidence matrix �dij� is zero, then a corresponding fixed
effect cannot be identified. If n.s > 1, then the matrices 1n.s1

t
n.s and In.s

are linearly independent yielding identifiability of components of variation. A
simple condition for estimability of θ is ensured when there are at least two
repetitions corresponding to the column in I2.

To validate the asymptotic argument, we shall need the assumption

lim
b→∞
�bs/b� = qs > 0(3)

for s = 1; : : : ; p.
For fixed s, let Ps be an n.s×n.s matrix with columns P1s; : : : ;Pn.ss ∈ Rn.s

normed and orthogonal and such that P1s=�1/
√
n.s�1n.s . Then the random

vector Ys corresponding to Fs�·�θ� is transformed into

PtsYs ∼ N�PtsXsµ; diag�n.sσ2
λ + σ2

e ; σ
2
e ; : : : ; σ

2
e ��:

The objective function for the subpopulation s, taken as a simple modification
of the loglikelihood function, can be written

8s�y�θ� =
n.s∑
i=1

[
ln�δis� +φ

(
1
cδis

Ptis�y−Xsµ�
)]

(4)

with a function φ properly chosen and δis the square roots of consecutive ele-
ments on the diagonal of the covariance matrix of PtsYs. The function 8s be-
comes proportional to the loglikelihood function when φ is taken as a quadratic
function and c = 1. For a given φ, we can frequently choose c to make the
functional Fisher consistent.

Definition 3.1 (The functionals). Define the functionalT∗�G� to be the pa-
rameter θ for which

∫
8�y1; : : : ; yp�θ�dG�y1; : : : ; yp�(5)

attains the minimum value, where

8�y1; : : : ; yp�θ� =
p∑
s=1

8s�ys�θ�(6)

is the objective function.
Define T�G� to be the solution of the equation

∫
9�y1; : : : ; yp�θ�dG�y1; : : : ; yp� = 0;(7)

where 9 is the vector of partial derivatives of 8 with respect to θ.
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Conditions leading to Fréchet differentiability are usually given in terms of
M-functionals. Since solutions to M-equations are frequently not unique, one
needs an additional criterion to define the functional well [see Clarke (1983)].
This should justify our distinction between T∗ and T. Such a definition is
sufficient for the future asymptotic considerations and it does not affect the
practical aspect of the paper.

Below are stated assumptions concerning φ which imply the Fisher consis-
tency of the functional T∗ (A1 and A2) and Fréchet differentiability of T (A3
and A4). The differentiability assumptions comply with Clarke’s (1983) con-
ditions. It is possible to weaken the conditions as follows from Clarke (1986).
However, since one of the objectives here is also a computational feasibility of
the method, we shall stay with the smoother case.

A1. The function φ defined on the real line is symmetric about 0 and has
nonnegative derivative for positive arguments.

A2. The function xφ′�x� has a nonnegative derivative for x ≥ 0 and there
exist xo > 0 such that xoφ′�xo� > 1:

A3. The functions φ′ and φ′′ are bounded.

A4. The functions xφ′�x� and x2φ′′�x� are bounded.

Theorem 3.1 (Fisher consistency). Let Fi�·�θ0� be the distribution of Yi

for i = 1; : : : ; p, where θ0 = �µ0
1; : : : ; µ

0
a; σ

0
λ ; σ

0
e �t and assume that the model is

identifiable (I1 and I2).

(i) If (A2) is satisfied, then there is a unique c > 0 defining 8 which satisfies
∫ {x

c
φ′
(
x

c

)
− 1

}
dF�x� = 0;(8)

where F is the distribution function of the standard normal distribution.
(ii) If φ satisfies (A1) and (A2), then

∫
8�y1; : : : ; yp�θ�d�F1�y1�θ0� × · · · ×Fp�yp�θ0��(9)

attains the global minimum if and only if θ = θ0.

Proof. To conclude the uniqueness of c, let us notice that by the first part
of (A2),

d

dγ
g�γ� = −1

γ

∫ 1
γ

[
x

γ
φ′′
(
x

γ

)
+φ′

(
x

γ

)]
dF�x� < 0;

where g�γ� =
∫
�x/γ�φ′�x/γ�dF�x�, γ > 0. The function g is thus strictly

decreasing. Moreover, g�γ� > 1 for sufficiently small γ by the second part of
(A2) and g�γ� < 1 for sufficiently large γ. This terminates the proof of (i).

For the second part consider first the minimization problem of a single
summand given in (4) and corresponding to a subpopulation s. The form of
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the objective function and the smoothness assumptions about φ imply that
we can further reduce the minimization problem to the one dimensional shift
and scale case. There, as one can easily see, the global minimum is attained
when

Pt1sXsµ = Pt1sXsµ
0 and n.sσ

2
λ + σ2

e = n.s�σ0
λ�2 + �σ0

e �2

or

PtisXsµ = PtisXsµ
0 and σe = σ0

e

for i = 2; : : : ; n.s, where µ0 = �µ0
1; : : : ; µ

0
a�t. Thus the minimum of the expected

value for the subpopulation s is attained only when µ = µ0 and �σλ; σe� =
�σ0

λ ; σ
0
e � under the identifiability assumption for the subpopulation. If, for in-

stance n1s = 0, then the first component of µ may vary arbitrarily in the set of
shifts realizing the minimum. Similar difficulties incurred by nonidentifiabil-
ity happen for scales when n.s = 1. Under the assumptions I1 and I2 we know,
however, that for a given parameter there is always a subpopulation where
it is identifiable. Therefore the expectation of the objective function over the
whole model distribution attains the global minimum at a single point which
is the true parameter value. 2

Remark 3.1. If the parameter in the submodel is identifiable, then (it fol-
lows from the proof of Theorem 3.1) the vector of partial derivatives of the
expected value of (6) is zero only at the true parameter value. The authors do
not know whether this kind of Fisher consistency holds for the whole model.
This explains why the consistency in statement (ii) of Theorem 3.1 is given
in terms of the objective function. From the computational point of view it is,
however, even more desirable to search for the global minimum of the integral
taken at the empirical distribution function. This issue will appear in detail
later in Theorem 3.3.

Below we give a technical lemma which implies a simple form of the asymp-
totic covariance matrix.

Define, for σ = �σλ; σe�t and s = 1; : : : ; p, the matrices

U
�1�
s �σ� = σ−2

e �diagNs − σ2
λδ
−2
1sNsN

t
s�

and

U
�2�
s �σ� = 2�δ−2

1s �n.sσλ; σe�t�n.sσλ; σe� + σ−2
e diag�0; n.s − 1��:

Let 9�1�s �·�θ� and 9
�2�
s �·�θ�, s = 1; : : : ; p; be partitions of the vector function

9s�·�θ� composed of partial derivatives of 8 with respect to shift and scale
parameters, respectively. Moreover, let

1s�·�θ� =
[
111
s �·�θ� 112

s �·�θ�
112
s �·�θ�t 122

s �·�θ�

]

be the corresponding partition of the matrix �∂/∂θ�9s�·�θ�.
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Lemma 3.1. Assume A1 and A2 are satisfied and let the constant c be given
by (8). Let X be a standard normal random variable. Then for s = 1; : : : ; p we
have:

�i�
∫
9
�1�
s �ys�θ��9

�1�
s �ys�θ��t dFs�ys�θ� = c−2E�φ′�X/c�2�U�1�s �σ�;

∫
111
s �ys�θ�dFs�ys�θ� = c−2E�φ′′�X/c��U�1�s �σ�;

�ii�
∫
9
�2�
s �ys�θ��9

�2�
s �ys�θ��t dFs�ys�θ� = �1/2�E���X/c�φ′�X/c�−1�2�U�2�s �σ�;

∫
122
s �ys�θ�dFs�ys�θ� = �1/2�E��X/c�2φ′′�X/c� + 1�U�2�s �σ�;

�iii�
∫
9
�1�
s �ys�θ��9

�2�
s �ys�θ��t dFs�ys�θ� =

∫
112
s �ys�θ�dFs�ys�θ� = 0:

Proof. Let us fix the index s and let θ = �µt; σ t�t be an arbitrary param-
eter. Define a random vector

Z = �Z1; : : : ;Zn.s�
t = diag−1�δ1s; : : : ; δn.ss� P

t
s�Y−Xsµ�;

where Y has the distribution Fs�·�θ�. Then Z has multivariate standard nor-
mal distribution.

(i) Note, that the random vector 9�1�s �Y�θ� can be represented as

9
�1�
s �Y�θ� = −

n.s∑
i=1

φ′�Zi/c�
cδis

Tis;

where Tis is the ith column of �PtsXs�t, i = 1; : : : ; n.s: Since

E�φ′�Zi/c�φ′�Zj/c�� =
{
E�φ′�X/c�2�; i = j;
0; i 6= j;

we have

E�9�1�s �Y�θ��9�1�s �Y�θ��t� =
E�φ′�X/c�2�

c2

n.s∑
i=1

1

δ2
is

TisT
t
is:

The first equation in part (i) of the lemma follows now by noting that T1sT
t
1s =

�1/n.s�1n.s1tn.s and
∑n.s
i=1TisT

t
is = Xt

sPsP
t
sXs = diagNs. The second equation

can be shown to hold in a similar way, by using the relation

111
s �Y�θ� =

n.s∑
i=1

φ′′�Zi/c�
c2δ2

is

TisT
t
is:
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(ii) The first and the second partial derivatives of 9s�Y�θ� with respect to
σλ and σe are given by

∂

∂σλ
8s�Y�θ� = n.sσλδ−2

1s

[
1−

(
Z1

c

)
φ′
(
Z1

c

)]
;

∂

∂σe
8s�Y�θ� = σe

n.s∑
i=1

δ−2
is

[
1−

(
Zi

c

)
φ′
(
Zi

c

)]
;

∂2

∂σ2
λ

8s�Y�θ� = n2.sσ
2
λδ
−4
1s

{(
Z1

c

)2

φ′′
(
Z1

c

)
+ 1

+ σ
2
e − 2n.sσ

2
λ

n.sσ
2
λ

[
1−

(
Z1

c

)
φ′
(
Z1

c

)]}
;

∂2

∂σλ∂σe
8s�Y�θ� = n.sσλσeδ−4

1s

{(
Z1

c

)2

φ′′
(
Z1

c

)
+ 1

− 3
[
1−

(
Z1

c

)
φ′
(
Z1

c

)]}

and

∂2

∂σ2
e

8s�Y�θ� =
n.s∑
i=1

σ2
e δ
−4
is

{(
Zi

c

)2

φ′′
(
Zi

c

)
+ 1

+ �δ2
is − 3σ2

e �
[
1−

(
Zi

c

)
φ′
(
Zi

c

)]}
:

Applying now the equation (8) defining the constant c, one can easily derive
the formulae (ii).

Part (iii) follows similarly. 2

It results from Clarke (1983) that under assumptions A3 and A4 the M-
functional T is Fréchet differentiable. We phrase it in the following theorem.

Theorem 3.2 (Fréchet differentiability). Under A3 and A4 we have

�T�G� −T�Fθ�� =
∫
IF�y1; : : : ; yp�θ�d�G− Fθ��y1; : : : ; yp� + o��G− Fθ��;

where

IF�y1; : : : ; ys�θ� =
[ p∑
s=1

∫
1s�ys�θ�dFs�ys�θ�

]−1

9�y1; : : : ; yp�θ�

and T�G� is the functional given in Definition 3.1.

The differentiability itself does not settle applicability of the estimation
procedure. It is necessary to show that in a neighborhood of the true model
distribution we can effectively find the functional’s value. In fact, if we add to



1502 T. BEDNARSKI AND S. ZONTEK

A1–A4 the assumption that the second derivative of φ is uniformly continuous,
then such a functional becomes effectively computable, at least in a small
neighborhood of the model.

Take 20 to be an open bounded subset of the parameter space such that
cl�20� ⊂ 2. Let Gb be a sequence of distributions so that �Gb −Fθ0

� < Co/
√
b

for a constantCo and assume the integral of the objective function with respect
to Gb is finite.

Theorem 3.3. Suppose A1–A4 hold and φ′′ is uniformly continuous. Then
there is a neighborhood of θ0 ∈ 20, U�θ0� and b0 such that, for all b > b0, the
integral

∫
8�·�θ�dGb is strictly convex on U�θ0� and it attains the minimum

in a single point there [the functional T�Gb� is uniquely defined in U�θ0�].

Proof. By Theorem 6.1 from Clarke (1983), it follows that

sup
θ∈20

[∣∣∣∣
∫
9�·�θ�d�Fθ0

−G�
∣∣∣∣+

∣∣∣∣
∫ p∑
s=1

1s�·�θ�d�Fθ0
−G�

∣∣∣∣
]
= O��Fθ0

−G��:

The uniform continuity of φ′′ implies that there is a neighborhood U∗�θ0� of
θ0 such that

∫ ∑
1s�·�θ�dFθ0

is positive definite for all θ ∈ U∗�θ0� ⊂ 2. Thus if
�Gb−Fθ0

� < ε (for some ε > 0), then
∫
8dGb is also strictly convex in a neigh-

borhood U�θ0� ⊂ U∗�θ0� of θ0 (if the integral exists). From the general proper-
ties of Fréchet differentiability [see Bednarski, Clarke and Kołkiewicz (1991)]
it follows in turn that in neighborhoods of θ0 of size �Gb−Fθ0

� there are solu-
tions to the M-equation. By strict convexity, which follows from Lemma 3.1,
only one such solution exists in U�θ0� if b is large. 2

Remark 3.2. When Fb are empirical distribution functions corresponding
to Gb, then the integrals of the objective function with respect to Fb exist and
since

√
b�Fb−Fθ0

� is bounded in probability Gb we can conclude that for large
b there is a unique solution T�Fb� in U�θ0� with probability approaching 1.
From the practical point of view it might be important to give an initial ap-
proximation to the intervalU�θ0�. This problem can be solved by a preliminary
robust estimator, which is asymptotically consistent under the infinitesimal
model. It is not difficult to show that such an estimator exists and it can be
constructed. We can define it as an argument for which the global minimum
of

∫
Kb

8�·�θ�dFb

in 2 is attained, where Kb is a sequence of compacts defined by Kb =
�−k log b; k log b�n:: , where k is a positive constant while n:: =

∑p
s=1 n.s. The

consistency follows because arg min�
∫
Kb
8�·�θ�dF � converges uniformly to θ0

while

sup
θ∈2

∣∣∣∣
∫
Kb

8�·�θ�dFθo
−
∫
Kb

8�·�θ�dFb

∣∣∣∣
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tends to zero in Gb when b→∞. The proximity of integral functions follows
whenever any fixed power of the side length of Kb is of order o�

√
b�.

Remark 3.3. The two theorems describe both computational aspects and
the asymptotic behavior of the functional (estimator) under general assump-
tions. Because of Fréchet differentiability we know that the linear expansion
of the estimator holds in a small vicinity of the model (formally in the infinites-
imal neighborhoods given by the supremum norm for distribution functions).
The inequality of Kiefer (1961) and the central limit theorem yield the asymp-
totic normality of the estimator in the infinitesimal supermodel. The influence
function obtained here can really be used to assess the variance of the obtained
estimates.

Condition (3) leads to the kind of asymptotics where we are to imagine
adding successive laboratories, where the design pattern for each laboratory
must be chosen from a finite set. This, from the practical point of view, is an
obvious inconvenience. It can be understood, however, as an indication for the
design ensuring high stability of estimates of interest. Asymptotic approxima-
tions (not uniform) hold under much weaker conditions as proved by Huggins
(1993) for the biweight function. His results can easily be transferred to cover
the family of objective functions considered here. The simulation results in
Section 5 show that the asymptotic approximation works very well even for
amazingly small number of repetitions per subpopulation. We suppose that the
differentiability approach combined with the Kiefer type inequality proved by
Le Cam (1982) should lead to uniform expansions under a much wider range
of practically important situations.

4. The choice of the objective function. Conditions A1 and A2 are
sufficient for the Fisher consistency of location and scale, while requirements
posed in A3 and A4 ensure the Fréchet differentiability. Since the function
xφ′�x� must have a nonnegative derivative for x ≥ 0 and it must be bounded
[A2 and A4], the conditions specify indeed a narrow range of φ functions. In
particular, they must descend in the tails at exactly x−1 rate. Below we argue
that the class in fact contains the “good” robust estimators for a much larger
family of “false likelihoods” given by (4) and (6).

Let us notice first that by (4) and (6) the estimation problem is reduced
to a number of simultaneous one-dimensional robust estimation problems of
location and scale under the normal model. In the one-dimensional case one
chooses µ and σ to minimize n ln�σ�+∑φ��xi−µ�/σ�. The defining equation
for scale is then

n/σ −
∑
�xi − µ�φ′��xi − µ�/σ�/σ = 0 :

Now if xφ′�x� is not bounded for �x� large, then the breakdown for σ must be
zero. This leads naturally to the following question: under �xφ′�x�� ≤ M for
some constant M, when is the minimum variance for the location estimator
achieved?
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Using results from Luenberger (1969) or those in Appendix B of Rieder
(1994) for the Lagrange multipliers and then arguing as in Huber [(1981),
page 288], we easily arrive at a family of functions φ′ of the form

φ′�x� =
{
x; �x� ≤ k;
k2/x; �x� < k;

which satisfies conditions complying with Clarke (1986).
Moreover, this same family of functions minimizes the variance of scale

estimators given a bound on their bias span under the infinitesimal contami-
nation of the normal law (bounding gross error sensitivity). In fact the same
center and tail behavior is obtained when we minimize the variance for the
location under a bound on gross error sensitivity for the scale. The false likeli-
hood method cannot lead here to optimal robust location estimation if we want
the scale estimator to have its breakdown greater than zero (the Fréchet dif-
ferentiability “automatically” enforces nonzero breakdown for the scale). One
should realize at this point that all this does not preclude construction of
robust functionals based on other principles. For example, Huber’s [(1981),
pages 176 and 177] location-scale proposition resulting from a minimization
problem leads also to Fréchet differentiable and Fisher consistent functionals
at the mixed model. The important merit of the method presented here is that
it also leads to an “easy” computational method in the case of interlaboratory
designs. It is intuitively clear that the method is a compromise between the
simultaneous location-scale solution given by Huber’s solution [Huber (1981),
page 137, Example 4.1] and the Huggins solution based on the bisquare func-
tion. It is less sensitive to large outliers than Huber’s function and at the same
time it does not lose as much efficiency as the biweight function with nearly
as good resistance to outliers.

The function φ (defined below by its derivative),

φ′�x� =





x; �x� ≤ t;
−x− 4t− 2t2

x
; −2t < x < −t;

−x+ 4t− 2t2

x
; t < x < 2t;

2t2

x
; �x� ≥ 2t;

(10)

satisfies the assumptions A3 and A4. It is in fact a smoothed version of Huber’s
proposition for scale estimation.

It follows from Lemma 3.1 that the covariance matrix for the Fréchet dif-
ferentiable estimator generated by (6) is of the form

[
w1V1�θ� 0

0 w2V2�θ�

]
;
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where V1�θ� and V2�θ� are respective asymptotic covariance matrices for the
shift and scale of the maximum likelihood estimator given by

Vi�θ� =
[ p∑
s=1

U
�i�
s �σ�

]−1[ p∑
s=1

1
qs
U
�i�
s �σ�

][ p∑
s=1

U
�i�
s �σ�

]−1

:

The positive constants w1 and w2 are given by the formulas

w1 =
c2E�φ′�X/c�2�
�Eφ′′�X/c��2 ;

w2 =
2E���X/c�φ′�X/c� − 1�2�
�E��X/c�2φ′′�X/c� + 1��2 :

For each t in (10) we choose c satisfying (8) so as to make the functional Fisher
consistent.

5. Simulation results. The robust estimator applied in the simulation
was given by (9) with constant t = 1:253 selected in such a way that the loss of
efficiency for the shift estimator was 10%. More exactly, it then gave w1 = 1:1
and w2 = 1:29 (c = 0:873). We considered the following three unbalanced
mixed models in our simulation study:

M1. The shift parameter is two dimensional and equal to �−4;4�t. The
scales are σλ = 2 and σe = 1 and subpopulation sample sizes are b1 = 5 and
b2 = 5, while

N =
[

2 1

1 2

]
:

M2. Except for b1 = 15 and b2 = 15, other quantities defining the model
remain the same as in M1.

M3. The shift parameter is a three-dimensional zero vector, σλ = 2, σe = 1,
b1 = 7, b2 = 5 and b3 = 3, while

N =




0 1 1

2 0 2

1 4 3


:

Models M1 and M2 differ in sample sizes only and they were considered
to see how the number of laboratories affects the precision of estimation of
the covariance matrix via the influence function both under the pure and con-
taminated model for the maximum likelihood estimator and robust estimator.
The third model has a “more complex” structure, with empty cells and rel-
atively small and different number of observations per subpopulation. It is
meant to give an overall impression of the value of the robust estimator. Con-
taminations of the data simulated from the model were taken to imitate (1)
exchange of samples in a laboratory, (2) wrong scaling of an instrument in
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a laboratory, (3) higher occasional variability in laboratory effects, (4) higher
occasional effects in error effects and (5) occasional interaction.

Only the first type of contamination may be identified with gross errors.
For the other types of discrepancies the “erroneous” data were mildly con-
taminated: one laboratory was randomly chosen to be “contaminated” for the
model M1 and exactly two laboratories were chosen in the case of M2. The
following modifications of the original model distribution were applied to the
randomly selected laboratories:

1. The mean was taken as �4;−4� instead of �−4;4�.
2. The mean was taken as �−3;5�.
3. σλ was taken equal to 4.
4. σe was taken equal to 2.
5. An interaction random effect between a laboratory and a sample was taken

to be N�0;2:25�.
In the tables herein typical results of simulations are given. In each case the

estimation was repeated 500 times. The initial values for the estimation were
randomly chosen (according to the uniform distribution) from the intervals of
length 1 and centered at the true parameter value. Table 1 lets us judge how

Table 1

Model M1 Model M2
estimates for parameters estimates for parameters

m1 m2 sl se m1 m2 sl se

m.l.e. −4.01 4.01 1.83 0.96 −3.99 4.00 1.93 0.99
(0.68) (0.69) (0.50) (0.16) (0.38) (0.40) (0.27) (0.09)
(0.65) (0.65) (0.39) (0.14) (0.39) (0.39) (0.26) (0.09)
(0.69) (0.69) (0.49) (0.16) (0.40) (0.40) (0.28) (0.09)

r.e. −4.02 4.00 1.85 0.97 −3.99 4.00 1.93 0.99
(0.70) (0.72) (0.57) (0.17) (0.40) (0.42) (0.31) (0.11)
(0.77) (0.78) (0.68) (0.19) (0.42) (0.42) (0.33) (0.10)
(0.72) (0.72) (0.55) (0.18) (0.42) (0.42) (0.32) (0.10)

m.l.e. −3.19 3.19 1.04 2.90 −3.47 3.48 1.55 2.51
(0.69) (0.71) (0.79) (0.21) (0.40) (0.40) (0.40) (0.13)

Case 1 (1.03) (1.02) (1.28) (1.04) (0.55) (0.55) (0.53) (0.68)
(0.69) (0.69) (0.49) (0.16) (0.40) (0.40) (0.28) (0.09)

r.e. −3.97 3.97 1.94 1.06 −3.98 4.01 2.05 1.05
(0.73) (0.74) (0.60) (0.20) (0.42) (0.42) (0.33) (0.12)

Case 1 (0.81) (0.82) (0.74) (0.23) (0.44) (0.44) (0.35) (0.12)
(0.72) (0.72) (0.55) (0.18) (0.42) (0.42) (0.32) (0.11)

m.l.e. −3.98 4.02 2.10 0.95 −3.98 4.02 2.13 0.99
(0.70) (0.71) (0.63) (0.15) (0.41) (0.41) (0.34) (0.09)

Case 3 (0.74) (0.74) (0.50) (0.14) (0.42) (0.42) (0.33) (0.09)
(0.69) (0.69) (0.49) (0.16) (0.40) (0.40) (0.28) (0.09)

r.e. −4.00 4.01 2.00 0.96 −3.98 4.02 2.05 0.99
(0.72) (0.72) (0.63) (0.17) (0.41) (0.41) (0.33) (0.10)

Case 3 (0.82) (0.82) (0.75) (0.18) (0.44) (0.44) (0.35) (0.10)
(0.72) (0.72) (0.55) (0.18) (0.42) (0.42) (0.32) (0.10)
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rapidly the number of “observations” improves the credibility of the variability
estimator obtained via the influence function (models M1 and M2). The tables
are set up in two-row blocks named by the model and, if necessary, also by
contamination type. The first row in each block is always for the maximum
likelihood estimator, while the second row is for the robust estimator. Each
model row consists of four subrows: the first one is for the average of the 500
estimates, the second one gives sample standard deviation for the estimates,
the third one shows the standard deviations for the estimates obtained via
the influence functions and the last subrow gives the “true” asymptotic value
for the standard deviation. Even though it is better to evaluate the variability
of the maximum likelihood estimate via the asymptotic covariance matrix
(under the model), we decided to use the “influence function approach” to
make the two methods comparable under departures from the hypothetical
normal model. We used

M̂�Fb� =
p∑
s=1

∫
1s�·�T�Fb��dFs

bs
:

Still another possibility of assessing the covariance matrix of the estimators
would be by the approximation of M�θ� via M�T�Fb��. It turned out, however,
to be less accurate when sample sizes were relatively small.

Under the model distribution the robust estimator has about 5% higher
standard deviation for the shift and about 10% for the scale estimators. The
robust estimator shows, however, much higher performance under small con-
taminations in both the accuracy of estimation in terms of unbiasedness and
in terms of the assessment of estimate’s variability via the influence func-
tion. In the case of modification 1 applied to M1 and M2 these effects are
especially visible. Apart from a clear bias superiority of the robust estimator
under the model violations, let us also notice higher accuracy of the variabil-
ity assessment based on influence functions. This is ensured by the Fréchet
differentiability of the functional generating the robust estimator.

Simulation results for models M1 and M2 in the cases of modifications 2, 4,
and 5 are similar to those of modification 3 and are not presented. Mixtures
of different contamination patterns do not much change the picture. In fact
comparable simulation effects were obtained for M3 in the sense that only
“gross error” of type 1 led to the breakdown of the maximum likelihood esti-
mator. To validate our simulations with a richer spectrum of contamination
patterns, we include results of Cauchy type contaminations for M3 (Table 2).
For example, the meaning of M3 1% is that each laboratory normal random
effect was substituted with probability 0.01 by Cauchy random effect (with
scales of the model random effect) and independently with the same proba-
bility the random error effect was replaced by the Cauchy random error. The
outcome again strongly favors the robust estimator under departures from nor-
mality.

Table 3 compares our results of simulations with two methods for estimation
of the laboratory variance component presented in Rocke (1991) in the case of
10 laboratories and 10 samples. We use Rocke’s notation: standard normal (N),



1508 T. BEDNARSKI AND S. ZONTEK

Table 2

Model M3
estimates for parameters

m1 m2 m3 sl se

m.l.e. −0.06 −0.02 −0.01 1.88 0.98
(0.66) (0.59) (0.58) (0.41) (0.11)
(0.64) (0.58) (0.56) (0.34) (0.10)
(0.67) (0.61) (0.58) (0.41) (0.11)

r.e. −0.06 −0.02 −0.00 1.89 0.98
(0.70) (0.64) (0.61) (0.48) (0.13)
(0.75) (0.67) (0.65) (0.51) (0.12)
(0.71) (0.64) (0.61) (0.47) (0.12)

m.l.e. −0.05 −0.09 −0.01 1.98 1.28
(0.88) (0.92) (1.10) (1.52) (3.08)

1% (0.81) (0.85) (1.06) (0.77) (1.40)
(0.67) (0.61) (0.58) (0.41) (0.11)

r.e. −0.00 −0.03 −0.01 1.88 0.98
(0.74) (0.68) (0.62) (0.50) (0.13)

1% (0.76) (0.66) (0.64) (0.53) (0.13)
(0.71) (0.64) (0.61) (0.47) (0.12)

m.l.e. 0.04 −0.09 0.01 2.70 2.22
(4.07) (2.25) (2.14) (6.43) (5.79)

5% (3.82) (2.11) (2.06) (3.18) (2.75)
(0.67) (0.61) (0.58) (0.41) (0.11)

r.e. 0.00 −0.02 −0.02 1.98 1.01
(0.73) (0.68) (0.63) (0.53) (0.15)

5% (0.76) (0.71) (0.66) (0.62) (0.15)
(0.71) (0.64) (0.61) (0.47) (0.12)

m.l.e. −0.35 −0.41 −0.91 4.02 4.86
(3.61) (3.41) (13.83) (12.08) (48.37)

10% (4.38) (4.28) (13.05) (5.70) (20.89)
(0.67) (0.61) (0.58) (0.41) (0.11)

r.e. −0.01 -0.04 −0.05 2.10 1.10
(0.76) (0.70) (0.66) (0.60) (0.19)

10% (0.82) (0.75) (0.72) (0.70) (0.20)
(0.71) (0.64) (0.61) (0.47) (0.12)

a mixture of 90% standard normal and 10% normal with a standard deviation
of 3 (LT) or a mixture in which 5% of observations have 10 times the standard
deviation (VLT). The comparison is given in terms of the averages (first row)
and standard deviations (second row) across the 500 replications. The indexes
H and B correspond to the application of Huber’s and biweight functions,
respectively. The simulations show a fairly uniform advantage of the method
presented here in the case of contaminated data.

Acknowledgment. The authors would like to thank the referees for valu-
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Table 3

Labs Error V̂
H

1 V̂
B

1 V̂
H

2 V̂
B

2 r.e.

N N 1.01 0.75 1.01 1.02 0.92
(0.55) (0.48) (0.52) (0.53) (0.53)

N VLT 1.01 0.76 1.22 1.18 1.12
(0.56) (0.49) (0.71) (0.66) (0.63)

LT N 1.62 1.10 1.72 1.66 1.17
(1.38) (0.99) (1.41) (1.31) (0.79)

LT LT 1.64 1.11 1.90 1.88 1.37
(1.43) (1.01) (1.56) (1.47) (1.18)

VLT N 2.16 1.21 2.32 1.64 1.21
(3.87) (2.69) (3.94) (2.79) (1.10)

VLT VLT 2.17 1.23 2.80 1.95 1.38
(3.91) (2.72) (4.65) (3.14) (1.28)
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