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This paper obtains a higher-order asymptotic expansion of a class of
M-estimators of the one-sample location parameter when the errors form
a long-memory moving average. A suitably standardized difference be-
tween an M-estimator and the sample mean is shown to have a limiting
distribution. The nature of the limiting distribution depends on the range
of the dependence parameter 6. If, for example, 1/3 < 6§ < 1, then a
suitably standardized difference between the sample median and the
sample mean converges weakly to a normal distribution provided the
common error distribution is symmetric. If 0 < 6 < 1/3, then the corre-
sponding limiting distribution is nonnormal. This paper thus goes beyond
that of Beran who observed, in the case of long-memory Gaussian errors,
that M-estimators 7, of the one-sample location parameter are asymptot-
ically equivalent to the sample mean in the sense that Var(T,)/Var(X,)

- 1land 7, = X, + op(y/Var(X,) ).

1. Introduction. This paper discusses the higher-order asymptotic be-
havior of a class of M-estimators of the one-sample location parameter with
long-memory errors. Beran (1991) observed, in the case of long-memory
Gaussian errors, M-estimators 7, of the one-sample location parameter
are asymptotically equivalent to the sample mean in the sense that
Var(T,)/Var(X,) — 1 and

(1.1) T, =X, + oP( Var()?n)).

n

A similar fact was established in Koul (1992) and Koul and Mukherjee (1993)
for certain classes of M- and R-estimators of the slope parameter in multiple
linear regression models. Giraitis and Surgailis (1996) and Giraitis, Koul and
Surgailis (1996) extended these results to non-Gaussian moving average
errors, in particular, to fractional ARIMA processes.

The natural question arises: is there any difference between any of the
above-mentioned estimators asymptotically at any stage? In particular, is
there any difference between the asymptotics of the sample median and the
sample mean at any stage?
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The aim of the present paper is to answer these questions in the one-
sample location model where one observes {X,} obeying the relation

(1.2) X;=m+ g, 1<j=<n,

for some m € R. Here the errors ¢;, j € Z = {0, +1, +£2,...}, are assumed to
follow the moving average process

(1.3) g = ) bi_y k> bj=L(j)j’(“9)/2, Jj=1,
k<j

for some 0 € (0, 1), where L(-) is a positive, slowly varying function at « and
where the random variables {;, j € Z, are i.i.d., not necessarily Gaussian,
with mean 0 and variance 1. We assume that the fourth moment of the
“noise” ¢, is finite although higher moments may be needed, depending on
the value of 6. We also require a rather weak smoothness condition of the
distribution function G(x) = P{{, < x}, namely, there are constants C, § > 0
such that

(1.4) |Eexp(iuly)|<CA+u)™®, ueR.

Conditions (1.3) and (1.4) imply that the marginal distribution function
F(x) = P(&, < x) is infinitely differentiable; see Giraitis, Koul and Surgailis
(1994) and also Lemma 4.1 below.

Now, to define M-estimators, let ¢(x), x € R, be a real-valued function of
bounded variation such that AMx) = E¢(X, —x) is well defined, strictly
decreasing on R and

(1.5) A(m) = 0.

The corresponding M-estimator 7, of the unknown location parameter m
based on the observations from the long-memory process of (1.2) and (1.3) is
defined by

(1.6) T, = argmin{

é P(X; - x)

:xeR}.

We shall also assume that A is infinitely differentiable with its kth derivative
A" satisfying the relation

(L7 A = [y =) f Py =m)dy, k=01,

where g*) denotes the kth derivative of any function g from R to R with the
convention that g® = g. Note that

AB(x) = —j FO(y —m +x)dy(y), k=1,2,....
R
Often we shall write A, for A*(m). Note that

M= [N FO() dy = —[ FO(y)di(y),  k=1,2,....
R R
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To formulate our main result, we introduce Appell polynomials A,(n),

k=0,1,2,..., of a real random variable 7, by the formal power series
oo Zk ezn

Forany £ > 0, A,(n)isa pplynomlal in 17 whose coefficients are expressed in
terms of moments M= En J < k. In particular, Ay(n) =1, A{(n) = 1 — uy,
Ay(n) = n = 2um + 2} — py, Ayt = n® = 3um® + 3nQ2ut — py) +
6u; my — g — 6u3, and so on. Note that
EA,(n) =1, k=0, EA,(n)=0, k+0,
A,(m—x) =4,(n), k>1,x<R.

For more on these polynomials, see, for example, Giraitis and Surgailis (1986)
and Avram and Taqqu (1987).
The formal Appell expansion of a nonlinear function g(n) is given by

(1.9)

glm) = X A,
provided the coefficients ¢, = (Eg(n + y)*®|,_o, k. =0,1,... are well de-
fined; see Section 5 in Giraitis and Surgailis (1986) and Giraitis and Surgailis
(1994). In particular, for any x € R, one obtains the following (formal) Appell
series expansions:

o (Z1)'FO(x)

(L10) 1(X, - m=x) = ¥ T A(X; - m),
© O x
aa e -n-r S e
i=0
Put
Eo(—1)' A
Ri(¢y;k) =¢(X;, —m)— ) uAi( . —m), 1<j<n,

1
1.12 n
( ) S, . = nho/2-17, - k(n) Z k(X-—m), E=1,2,...,

k* = k*(0) = [1/6],
where [-] is the integer part. Observe that, with X, = n"! XX

S, ,=n"?""L" (n) ¥ (X;—m)= n"/QL_l(n)(Xn - m)
j=1

Introduce the kth-order Hermite process

k
Z,(2) =/Rk{fot._ﬂl (v —u) " dv W(duy) - W(dw,), 0s<t<l,
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Z, =Z,1), where v,=v VvV 0 and W(du) is the standard Gaussian white
noise with mean 0 and variance du. The random variables {Z,} are well
defined and orthogonal for 1 < 2 < 1/6. See Taqqu (1979) for more on these
processes and random variables.

We also need to define the following polynomials. Let z, =1, @, =0
®(z,) ==z, and for k > 2 define @, by the following iterative relation:

koA k!
Qu(zy,-.-,2,) = — A J22 ! rZO( ( )ﬁzr

(1.13)

k
— z,,

. E-1
XPI 2y, 2 j01) + (1) )
1

with
p
P,gp)(zl""’zk—wl):Z(jl,”,, )U 21,...,2J-S),

where the sum is taken over all integers ji,...,j, = 1 such that j; + - +
Jp=Fk, k=p=>1
Note that @,(z4,..., z,) is a polynomial in the variables z,,...,z, € R
with coefficients given by A, 1 < i < k. All polynomials P/~ on the right-
hand side of (1.13) are expressed in terms of @;, 1 <j < k — 1. Also, note that
PV =@, and PP =E!QF, V k> 1. We also give the first few product

polynom1als P{r for convenience:

P = 2Qf (2):6Q1Q2,
@ — g1 —_ 2 3) — 2
P 4 1'3' Q1Q3 Qz 3 P 4 1‘1‘2‘ QIQQ'
Using these, one obtains
Ay
@s(z1,25) = /\_(212 - 22),
1
Qs(2, 24, 25) = . (22’1 3z,2y + 23),
1
1.14
(114 3A5(20 05 — A3) 9
Qu( 21,25, 23,24) = e (21 - 22)
1
Ay 4 2
+ )\_{3Z1 — 6272y + 42,25 — 24}.
1

In the sequel, = stands for the convergence in distribution of random
variables and vectors. We are now ready to state our first result.

THEOREM 1.1. In addition to the above conditions on  and {,, assume
that

(1.15) E{fV MO <
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and 1/0 is not an integer. Then the following asymptotic expansion holds if
A # 0

_ 1
T,-m=X,—-m+ ) FLk(n)n*k"/sz(Sl,n,...,Sk,n)
2<k<k* :

+n VAW ().

(1.16)

Furthermore, V1 <k < k¥,

(1'17) Qk(sl,n""’sk,n) :Qk(zl’“"zk)’
while W () is asymptotically normal with mean 0 and variance
(1.18) o = Y, Cov(R,(y;k*), R(¢; k¥)).

JEZ

Observe that the coefficient of the first nonzero @, in (1.16) will dominate
the rest of the terms in the expansion. This leads us to the following
definitions.

The second-order Appell rank r,(2) = r,(2; (- — m)) of (- — m) is the
index of the first nonzero A; in the Appell expansion (1.11) of the function
Plx —m) + A (x) = y(x — m) + A(x — m). More precisely, if k* =1,
r,(2) == 2, and if k* > 1, then

1.19 oy | BT L if A= =X =0,
(1.19)  ra(2) = min{k > 2: A, # 0}, otherwise.

Theorem 1.2 below shows that the second-order Appell rank determines the
limiting distribution of the random variables

L (X, = m) + A(X, ),

which arise in the second-order approximation of 7.
We also define the second-order M-rank ry(2) =r,(2;¢) of an M-
estimator T, as follows. If £* = 1, r},(2) == 2, and if £* > 1, then

R* + 1, ifQy,= - =@,.=0,
(1.20)  ry(2) = . .
min{k > 2: @, # 0}, otherwise,
so that 2 < r),(2) < k* + 1 by definition. Using the recurrent formula (1.13)
for the polynomials @,, Lemma 2.2 below proves the remarkable equality:
The following corollary shows the importance of r),(2) in determining the
limiting distribution of T}, — X .
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COROLLARY 1.1. Under the conditions of Theorem 1.1,

_ 1
L—rM<2)(n)nerM(2>/z(Tn _ Xn) = m QrM(Z)(Zl""’ZrM(Z))?

2<ry(2) <k* k*>1,
M2 (T, — X)) =20, 02), r(2) = k* + 1.
1 n n ] M

Before discussing the following application, we need to mention the follow-
ing facts about the r.v.’s {Z,}. Let

ci(0) = EZ;
k!
T (1 - (%6/2))(1 — ko)

Using some of the results from Taqqu (1979), Surgailis (1982), Giraitis and
Surgailis (1986) and Avram and Taqqu (1987), it can be shown that for all
integers £ > 1 with k < 1/60, E{2" < o,

- k
(f (u+u?) % du| , k=1, ko<1
0

(1.21) (SymresSpn) = (Zas..r Zy)
and
2 .
j 0 ’ =1, .
(1.22) ES, .S, , — (0, J 1<j,l<k.
o 0, J#1,

An application. We shall now discuss a statistical application of Theorem
1.1 and . with a focus on the second-order asymptotic variance comparisons of
these estimators. To that effect, suppose, additionally, that f is symmetric
around 0, ¢ is skew symmetric, that is, ¥(—x) = —¢(x), and m = 0. Then
F®(y) = (=1D*f*(—y) and integration by parts shows that A, = [ y(y)1 —
(—D*1f*)(y) dy so that

0, k = positive even integer,

(1.23) A, = 2fx b(y) P (y)dy, k = positive odd integer.
0

Thus, A, = 0 and A; # 0. Now, £* = 1,2 or >3, dependingonifl/2 < 6 < 1,
1/3<6<1/2 0or 0 < 0<1/3, and the second-order M-rank of the corre-
sponding M-estimator 7, is
r.(2) =2, 1/2<6<1,
=3, 1/3<60<1/2,
> 3, 0<60<1/8.
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In particular, if A; # 0, then r,;,(2) = 3 for 0 < 6 < 1/3, and from Corollary
1.1 we obtain

— 54 A3
L= (n)n®*(T, - X,) = 5 N (221 =8Z,Z, 1 Z,),  0<6<1/3,
(1.24) ,
— 0,
n?(T, - X,,) :»///(0,()\—"’) ) 1/3<6<1,6+1/2.
1

For the remaining discussion here, write T, ,,
size the dependence on .

Now focus on the case 0 < 8 < 1/3. This case may be thought of as the
case of very long memory. Note that here the above asymptotic distribution of
T, , depends on ¢ only through C, == A; ,/A; . It is thus natural to define,
for any two score functions ¢, ¢, of the above type, the second-order
asymptotic relative efficiency (ARE) of T, ,, relative to T, , in the present
case as the ratio

Ay, and so forth, to empha-

ell’ly‘lfz = {C‘bl/Cl//z}Z'

The three interesting ¢ functions are ¢;(x) = (1/2)sign(x), ¢ (x) =
2F(x) — 1 and the Huber(%) score ¢,(x) == h sign(x)1(|x| > h) + x1(|x| < h),
h > 0. The estimator T, , is the sample median. In the i.i.d. error case, it is
well known that this estimator is asymptotically first-order optimal at the
double exponential errors, while T, , ~has the same property at the logistic
errors. All three scores yield robust estimators against heavy tail errors.

Now consider the case of Gaussian errors &;, j € Z, with mean 0 and
covariance r, = Eg,¢&,, r, = 72. Then F(x) = ®(x/7), where ® denotes the
d.f. of the standard normal random variable. With ¢ denoting its density, one
verifies that

_ =(h/)e(h/7)
" (@(h/7) - 9(0))”

Cu;, = -1/72, Cdjn = —-1/272, C

and hence
e¢1,¢11=4’
| (h/D)e(h/7) |
i =\ o(h/7) = @(0) )
_ [ e/
ot =\ (h/7) = @(0) |-

Thus, in terms of the second-order ARE, T, , ~is four times as efficient as the
sample median. Also note that e, , — 4 as 7— =, while ¢, , — 0 as
7 — 0. Thus, for an arbitrarily large error variance 72, T, ,, is preferable to
T, ,, for all h > 0. Moreover, using the fact that the function ®(x) — 1/2 —

2x¢(x), x € R, is positive for x > 1.4, one can say that the estimator T, ,, is
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preferable to 7, , for all those & for which A > 1.47, while the opposite is
true otherwise.

Observe that in all of the above three cases A; # 0. For a general ¢ and
the Gaussian errors, (1.11) becomes the Hermite expansion

(— )
1 (Ej) = Z H i(e )
i=0

where H/(x), i =0,1,..., are Hermite polynomials, and

A= (“1)'E(¢ (&) Hi(&))).
Observe that A; = 0 if and only if

f| (72—x2)€0(x/7)d¢(x)=f‘ (x* = ) e(x/7) dp(x).

x|<T x|>7

In particular, A; = 0 if the measure di is purely atomic with the only atoms
at +7.

Next, focus on the case 1/3 < 6 < 1. In this case, the asymptotic distribu-
tion of T, , at (1.24) depends on ¢ only through K, = (0,/A, ,)?, where now
%2 = Z (‘/’(‘90) + /\1,¢30)(¢( j) + /\1,1/;‘91‘)-

JjEZ
In general, it is hard to obtain a closed expression for this. However, some
simplification is possible in the case of the above type of Gaussian errors,
where we shall now take 7= 1, for convenience. Let p, ==X,z r . Because
r; o L2(|5) |j|79 |jl = =, p, converges for £ > 3 in the present case Now,
usmg (1.23) and the orthogonahty of Hermite polynomials: EH,(g,)H,(s;) =

L’r,L—L =0,1,...; = 0,1 #i; for all j, one obtains
o2 — Z 2k+1,¢/ 2k+1, K — Z( 2k+1,¢:) 2k+1 ‘
v k=1 (2k + 1)‘ v k=1 )\1’,1, (2k + 1)'

This expression for K, can be used to minimize it over a given class of
functions . For example, consider the class of M-estimators corresponding
to the class of functions {¢,, A > 0}. This class includes the median and the
sample mean as the two limiting cases - — 0 and A — «, respectively. In
this case, the Hermite coefficients A, = A, ;, can be explicitly found: A, , =
—2H, y(We(h), k=3,5,..., A, =1—2d0(h), resulting in

= H2k—1(h)€0(h) ? Por+1
o = kg( B(k) - B(0) ) 2k + 1)1

The function h — K, is continuous and strictly positive on (0, ),
lim, ., K, =0 and hm n-o Ky, = K,, is the corresponding constant for the
median. It follows that K, has a well-defined minimum on each compact
interval which depends on the covariance function {r,, ¢ € Z}. By assuming
some specific form of the latter, for example, taking it to be the covariance of
fractional Gaussian noise or fractional ARIMA errors, the corresponding
minimization problem for K, can be dealt with numerically.
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Finally, we state the following conjecture. First, note that because A, = 0,
(1.16) implies that

Ag Lg(n)

(Tn_m) = ()_(n_m) 3'_)\ W(zsin_:gsl,nsln—’—s&n)
M

(1.25) 1 _
+ Z ELk(n)n k6/2Qk(S1,n?"‘7Sk,n)
4<k<k* 'V

+n VAW,

Now, in the very long memory region, that is, when 0 < 6 < 1/3, the last
two terms in (1.25) are op(n~?%/2L%(n)). This together with (1.22), which
implies that ES, ,S; , — 0, leads us to the following conjecture even without
the assumption of Gaussianity:

E(T, - m)2 = E()_(n - m)2 + L4(n)n’26()\3/)\1)013(0)(1 +0(1)),
where
c15(0) = EZ\(2Z% — 3Z,Z, + Z,)/3 = 2(EZ2)" — EZ2Z,.

One way to prove this conjecture would be to show that EW?2(y) — qf,
where W (i) is as in Theorem 1.1.

Assuming the above approximation to be true, it can be used to compare
the mean square errors of T, and X, at the second-order level as follows.
First, using some of the results from Taqqu (1978) or directly from the
definition of Z,, one obtains

c15(0) = 4{I1(0) /(1 - 6)}°1(0),

where
16) = [ (w+u?) """ du,
0

1
(2-6)° 3-20

1(6) = fol(u — )" do.

The function [ is negative on [0,1] with the values ranging from 0 to
—0.004994776 so that ¢,5(0) <0,V 0 < 6 < 1.
Thus, if A3 ,/A; , > 0 (<0), then the mean square error of 7, , is smaller

(larger) than that of X'n in the second-order sense, that is, in the sense that
lim L~4(n)n{ B(T, — m)* = E(X, = m)'} <0 (>0).
For example, for the Gaussian X; ~.#(0, 1),

Mo (22— Dg(x) di(=)
Ay Je(x)di(x)
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if the support of dyy € (—», —1) U (1, +=), while A; ,/A; , < 0 if the support
of diy € (—1, +1). As an example, the estimator corresponding to
Y(x) =1 x<-2)+(x+D1(-2=<x< 1)
+(x—1I(1<x<2) +1(x>2)
would have smaller mean square error in the second-order sense than the
sample mean at the long-memory Gaussian errors!

The proof of Theorem 1.1 is based on the expansion of the empirical
functionals W¥,(m) given in Theorem 1.2 below, where

1 »
W, (x) = — _Zl ¥(X;-x), x€R.
=

Also, let F,(x) =n ' X7_, I(X; — m < x), x € R, denote the empirical distri-
bution function of the errors.

THEOREM 1.2. Under the conditions of Theorem 1.1, for any function i of
bounded variation,

—1)*
(126) w(m) = ¥

1 N LH(n)n 028, 4 nTVRH (),
1<k<1/6 :

where

(1.27) H () =n"1?2 21 R(y;k*) =4(0,0,).
j=

Moreover,

(1.28) sup |F,(x) = F(x)| = 0p(1X, — ml) = Op(L(n)n""/?).

REMARK 1.1. Recently, Ho and Hsing (1996) established the following
result. Assume E{; < « and the distribution function of ¢, is (k* + 3) times
differentiable. Let

n )
SPL =L ) N L by by Gy G, k=1,

J=1 s1,...,520

where the second sum is taken over all s; >0,...,s, > 0 except for the
diagonals s; = s;, i # j. Then Ho and Hsing proved that
~1)*F®(«
Fo- ¥ S piyesensy wnoems o,

|
0<k<1/6 k!

with sup, n7° |[H2(x)| - 0, almost surely, for every &> 0. They did not
address the question of the weak convergence of H'.

Using the “multinomial formula” for generalized powers [Avram and Taqqu
(1987)], one can write the difference S, , — S} , as a sum over the diagonals
of products of Appell polynomials of the noise variables. Here, both S, , and
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Sy, converge in distribution to the multiple integral Z,, while H,(x) — H,(x)
(= a linear combination of the “diagonal” sums S, , =S} ,, 2 <k <1/6)
can be shown to be asymptotically normal under the moment condition (1.15).

Moreover, note that F, corresponds to the empirical functional ¥,(m) with
¢ given by an indicator function. Theorem 1.2 thus gives an analogous
expansion for a class of ¢ functions of bounded variation with the difference
that the remainder is shown to converge in distribution. Our assumptions are
somewhat stronger than those of Ho and Hsing but the expansion result is
valid for a larger class of empirical functionals.

The proof of Theorem 1.2 uses some ideas of Ho and Hsing (1996) and
Giraitis, Koul and Surgailis (1996).

2. Proof of Theorem 1.1. The function ¥, has bounded variation (as ¢
does) and therefore has right and left limits at every point x € R. In order to
avoid ambiguity with the definition of the M-estimator, we define T, as the
upper limit of the set argmin{|¥,(x)_-: x € R} = {x € R: |V, (x)|- =
min g |V, (y)l-}, where |¥,|_(x) = min(|¥,(x + )|, [P, (x — ).

The following two lemmas are needed in the proof of Theorem 1.1. The first
one shows that the magnitude of T, is the same as that of X,.

LEMMA 2.1. Under the conditions of Theorem 1.1,

(2.1) T, —m = Op(X, — m)
and
(2:2) pn =V, (T,) = Op(n1).

PrOOF. Assume, without loss of generality, that m = 0. By the ergodic
theorem, for any x € R,
(2.3) Y. (x) = A(x), n — ©a.s.
As ¥, and A have bounded variation, the convergence (2.3) is uniform on
every compact interval [Feller (1971), Section 8.10, Problem 8]. Together with
the assumption of monotonicity of A, this implies, in particular, that T, is
strongly consistent: T, — 0, n — =, a.s.

As X, #X,, i #j, as., the jumps AF,(x) =F,(x) - F,(x—)<1/n and
therefore AV, (x) = O(1/n) a.s.; indeed,

(2.4) |2, (x)] < [ [AF,(y + )| [du ()| <lyl/n,

where || is the variation of . Hence and by the argument above, including
M0) = 0, the relation (2.2) and even the stronger one,

lp,| <l¥l/n ¥V n>ny(w),

easily follow. [By (2.4), for sufficiently large n, almost surely, the graph of ¥,
crosses the x-axis in a neighborhood of 0 at some point 7}, with ¥.(T', + ) < 0,
v (T,—) >0 and hence [V (T,+)—V(T,— )=V (T, +)l+ |V (T,- )l <
lyl/n]
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To prove (2.1), rewrite

po = [ #(x = T) dF,(x) = [ (x) dF(x)

(25) _ [ (= T) diF, () = F()} + [ [w(x = T,) = w(x)] dF ()

= p, + MT,) = A0).

According to Theorem 1.2, (1.28),

) =|[ (B, = F)(x+ T du)

< sup |(F, — F)(x)|ly] = Op(X,).

(2.6)

On the other hand, by the mean value theorem, A(T,) — A0) = T, AX(T}),
with |T,| < |T,| = 0p(1D) and (A7)~ = Op(1), due to lim, , ; AV(x) = A, #
0. Thus (2.1) follows from (2.2), (2.5) and (2.6), thereby completing the proof of
Lemma 2.1. O

From now on, for convenience, write 7= T, — m and S, =S, ,. Also, for
x € R, let

Rij(x;k) =1(X; —m <x)
(-1)'FO(x)

Al
0 1!

M= <

A(X; —m), 1<j<n, k>0,

i

@12 (x)=n 2 5 Ry(xs8)
Iy -1 iF(i) x)Li(n
=n1/2Fn(x)—Z( ALY ()n

i=0

7i9/2S~
il-

i!
The relations

R(wsk) = [w(x)dR)(x;k),  j k=0
(2.7b)
H,(v) = [ #(x) dH,(x).

are often used in the proofs of Theorems 1.1 and 1.2 below.

The W,(¢) in (1.16) involves the r.v. [ H,(x + T) d¢(x). In view of Lemma
1.1, the following lemma is useful in concluding that it is close to
[H,(x)d(x) in probability.
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LEMMA 2.2. Forany 0 < y<1,

2
} = 0(n""login).

E{ sup

lyl<n™?

L(H(z + ) = Hy(2)) dy(2)

Proor. Clearly, it suffices to prove the lemma with |y| < n~" replaced by
0 <y <n7” and ¢ nondecreasing. The proof uses a chaining argument and
Lemma 3.1, (3.8), below. Put y, = n~" and let

K = [log,(ny,)].
Consider the sequence of partitions
xi,k=yni2*k, 0<i<2f k=0,1,...,K,
of the interval [0, y,]. Fora y €[0,y,] anda £ =0, 1,..., K, define i} by
Xiy o Y < Xiyit -
Define a chain linking 0 to a given point y € [0, y,] by
0= Xiy o SHg1 S 0 SXpy g <Y <Xjpig g

Let T,(y) = [g H,(z + y) dy(2) and write g(x, y) = g(y) — g(x) for any real
function g on R. Note that

L(0,9) = [ {H.(2 +) — H,(2)}dy(2).
Now rewrite
L,(0,y) = Fn(xig,o, xi{,1) + Fn(xi{,p xig,2) o
+ L%y k-1 %ip, k) + D(xiy k5 9)s
so that

K-1
sup [2(0,y) <2| X sup |Fn(xig,kaxii+1,k+1)|
y€Elo, y,] k=0 y€<l0,y,]
+2 sup T2(xy g, ).
yelo, y,]

Hence, by the Cauchy—Schwarz inequality,

K-1
E sup T2(0,y)<2K ) E sup Uy ps X3 ke1)
y€l0, 5,1 k=0  y<l[0,y,]
+2E sup Fnz(xi;(,K,y).
y€l0,y,1
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We shall first estimate the last term. By the mononicity of F,, the
boundedness of ¥ and Lemma 4.1, (4.7), below,

|Fn(xi;y(,K’y)|

n'/?| [ F(z +xy 2 +y) dp(2)
R

D)Lk (n
e (D'

- n—ke/zskf F®(z + 2y g,z +y)diy(z)
0<k<1/6 ' R

IA

pl/2 fRFn(z +txy g2t x40 k) dP(2)

+ Cnl2y 27K N amR2Lk(n)|S,]
0<k<1/6

= |Fn(xi;2,K’ xily{+1,K)| + Clnl/zynziK Z Lk(n)n7k9/2 IS,
0<k<1l/6

where the constant C; is independent of y, n, K.
Next, observe thatV £ =0,1,..., K — 1,
sup |Fn(xig,k’ xi,{+1,k+1)|
y€l0,y,]

= max sup |Fn(xii’k,xig+l’kﬂ)|

okl
0<j=<2 L oyel o) et %01,041)

= max |Fn(xj,k+1’xj+1,k+1)|~
0<j<2kti-1

Hence, in view of (3.8) below, we obtain that, for any 0 < &k < K — 1,

2k+1_1
2 2
E sup Fn(xig,k’xi,{+l,k+1)g Y ETX (% he1s Xia1,041) < Oy,
yElo0, y,] i=0
and similarly,
2K—1
2 2
E sup rn(xiff,K’xi{{-#l,K)S > ET; (% g, %41,5) < Cy,.
yel0,y,] i=0

Consequently,

2
E sup T?0,y) <Cy,K*+ Clny32*2KE( ) ISkI) .
y€El0, y,] 0<k<1/6
Now, from the definition of K, we obtain 272X = O(n2!~7)) and
nyngzK — O(n172772+2y) — O(n—l)’

K%y, = O(n”(loanl’V)z) = O(n""log3n).
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Thus the proof is complete in view of the fact

B ¥ |sk|)2=0(1>,

0<k<1l/0
which follows from (1.22). O

REMARK 2.1. The above proof has roots in the paper of Dehling and Taqqu
(1989). The major difference is that we are taking the supremum over already
small intervals, while in their paper the supremum is being taken over R.
Our chain is thus different from the one used in their paper while some of the
arguments are similar.

ProOOF OoF THEOREM 1.1. Again, assume, without loss of generality, that
m = 0. The first term on the right-hand side of (2.5) can be rewritten as

0, = [ (F, = F)(x +T) dy(x)
R
_ (_1)k k —k6/2 k
- ¥ LF(n)n */28, [ F®(x + T) d(x)
1<k<k* k! R

+n V2 [ H(x+T)dy(x),
R
which together with (2.5) yields
(_1)k—1
MT) - N0)= Y —F—
(2'8) 1<k<k* k!

+n Y2V (),
where V. () = V () + n'/%,, with

(2.9) Vi) = [ H(x+T) di(x).

The idea of the rest of the proof is to use Taylor’s expansion of A(T') and
A®)(T), and then to use an iterative procedure to solve the resulting algebraic
equation in 7. Before proceeding further, consider the “normal” term V, (i);
that is, we claim that V, () =.#(0, g;°). In view of (2.2), this will follow if

LF(n)n=*9/28, \®)(T)

(2.10) V.(#) =4(0,07).

Indeed, by (1.27) of Theorem 1.2, (2.10) in turn will follow from
(2.11) b= [ (H,(x+ T) = H,(x)) d(x) = 0p(1).
As

P{lh,| > 8} < P{ sup f(Hn(x +y) —H,(x))dy(x)

lyl<n™?

> 3}
+ P{IT| > n""},
(2.11) follows from (2.1) and Lemma 2.2 upon taking 0 < y < 6/2.
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Next, applying Taylor’s formula to (2.8), we obtain
LD .
L ST+ 0p(T

j=1

_ kz (—) (L(m))

k*

)»

j=k (]_k)'
VY (),

AMT) — M0)

(2.12)

X S, T77% + Op(T* ++1)

Note that, with y = x, = L(n)n"?/2 (= X/8)),
(2.13) IT* T + | x*T* 2 = op(n~ V%),  k=1,..., k%
according to (2.1). Hence (2.12) can be rewritten as

B g (3]s

)\TJ

k*
(2.14) ;

+n V2V, () + op(n M),
From (2.14), we obtain the first iteration:

n VA (V) +op(1)), kT =1,

2.15 T=xS; +
( ) X 1 OP(XZ), k* > 1’

hence (1.16) for £* = 1. _
Let k* > 1. By (2.15), T? = x2S2 + Op(x?), T’ = Op( x?), j = 3. Substi-
tuting these relations into (2.14), we obtain

A
MT + SH(X°87 + 0p(X*)) + Op(X°)

A
= A xS; + 2_2!(2)(51( xSi + OP(XZ)) - X2SQ)

+ O0p(X?) + 0712V, () + 0p(n17?)

or

1
T=xS, + or X ’Qy(S;, S,)

(2.16) nANV(0) + op(1)), RF =2,

OP(XS)a k* >27

with @,(z,, z,) given by (1.14), thereby proving (1.16) for k* =
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To prove (1.16) for a general k* > 2, now assume

k-1 Xj
(2.17) T=Y = Q+0p(x"
J!

j=1
for some 2 < k < k*. We shall prove

nT VAN (VU(0) +op(), k=R,

k
X
218) T=Y 2@,
( ) g i J OP(Xk+1)> k< k*.

Assume k& < k*; the case £ = k* can be considered in a similar way. From
(2.17) one obtains

k r
I DR N P N P S
= r=j .
(2.19) Op(x**h), 7>k
_ R L
ot = Y X pum g o,(x),  1<p<j<k.
r=j-p

Substitute (2.19) into (2.14), that is, into the right-hand side of

Eoo) o
SR S B RS er s, < 0,0
- - p=1
to obtain
(T = xSy)
E o\ k r By, -1 k—p r+p _
R B NS P R s
e g ! o J! T p = r!
r J p r=j—p

Jj=2
k J-1 r+p
=Zﬁ (-1 ( )s I
Jj=2 J! p=0 r=j-p
koA
+ Y LS(-1) e + 0p(x*Y)
j=2 J!
k oJ-1 q
L 2T (I L ey
j=2 J!' p=o " (¢-p)!
k
L S, (-)T X7+ Op( X"
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kooya [ 4 A J—1 b1 q! o1
B 22? ZzJ_‘ 0(_) (q—p)'( SR+ 48, (~ 1)
q= Ve p=
+0p(x* )
k q
=AY Q +OP(Xk+1)
q=2

proving (2.18) and thereby also completing the proof of (1.16) with W, (¢) =
V. () + op(D).

The claim (1.17) follows from (1.21). This also completes the proof of
Theorem 1.1. O

REMARK 2.2. The recurrent formula for the polynomials @, given at (1.13)
is obtained from the above argument.

LEMMA 2.3.  7,,(2; ) = rs(2; ).

Proor. Obviously, Ay = -+ = A, = 0 implies @, = =, =0, hence
the inequality r,,(2) > r,(2). Conversely, let A, = - = A,_; =0, A, # 0, or
ra(2) = k; we need to prove @, # 0. Indeed, according to (1 13),

1 _ )\k
Qk(zl""’zk)_A_ Z( )—)Z P70 (2) + (-1)" 1A—Zk$0,
1 r=0 1

as the last sum does not contain the variable z,. Hence the lemma is
proved. O

3. Proof of Theorem 1.2. As in the proof of Theorem 1.1, we assume
m=0,sothat X; =¢; =X,_,;b,_.{, =X,.,b,{;_,. We start with the expan-

s<j“j—s

sion [cf. Ho and Hsing (1996)]

(3.1) v(X) = ¥ (Bw(X)1 7.} - B(w(X,) | F_,_.}),

s>0

where 7 = o{{,: s <j} is the o-algebra generated by the “noise” in the “past”
s <Jj so that X; is F-measurable. The summands on the right-hand side of
(3.1) are orthogonal in L?(Q)) and the series converges in this space. Put

Xj,s= E bigj—i? Xj,s= Z bigj—i'

1<i<s i>s

Let F(x) == P{X; , <}, f(x) = FP(x), x € R. Note that

(32) E{d/(XJ) | z—s—l} = leﬁ(X) ch(x _Xj,s) = <l//( . +Xj,s)7 F9>
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Next, by the multinomial formula for Appell polynomials, for any . > 1,

k

(3.3) Adx) = T () T era(g ) (X,),

r=1 s>0

AO(X'“) = 1. From (3.1)-(3.3) we obtain the following expansion of the
empirical functional:

k _ i
(B4 B0 = 9(%) ~ T S NAK) = T ULD),
i=1 : s>0
where
U3 k) = B (X)) 1 7.} = B{w(X) 1.5}
-1 i )
; ( ) A ;( ) biA(§-) A X;..)
(3.5) -t r=1

= (- .1>, ) (-4 %))
Lo £ (Heada A (%,)

Recall that A, ({;_,) and A, (X . ¢) are polynomials of respective degrees r
and i — r. Thus (1.9), (1.15), the boundedness of ¢ and the independence of
{i_s from X, for all j, s imply that

(36) EU; (y;k) =0, EUZ(¥;k) <,

forall s >0, j€Zand k < k*.
Now, according to (3.4) and (3.5),

H(lﬂ)—n_l/ZZR(lﬂk)—n_”QZ ZU (Y5 k7).

s=0 j=1
Put also
R, (¢;k)= X U (y:k), R (¢;k)= L U (4;k),
O<s<t s>t
so that
Hn((j/) =Hn,t(‘!’) +ﬁn,t(¢)’
where

H, (¢)=n""> Y R, (y;k%), H, (¢)=n""> YT R, (y;k*).
j=1

Jj=1
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The following lemma is the central technical lemma of the paper, with the

help of which we prove Theorem 1.2. It is useful to show that Var H,, () — 0
as t — o, uniformly in n. The proof of the lemma itself will be postponed
until Section 4. To state the lemma, recall (2.7b) and define, for y € R,

503k = R0 k) = [ (0(x ) — 0(x)) dBy(x3 ),
where A ¢(x) = ¢(x +y) — ().

LemMmA 3.1. () For any integers 1 <k <1/6, t > 0 and any 5, > 0, one
can find a 0 < 8 < 8, and a constant C(¢) — 0, t = «©, such that

‘COV(RJ-J((/’;k)>Rj’,t(l/j;k))‘

<C(t/(1j =V )@ VI =) ) e,
where

k6—8, ifk6<1,
(3.7) v(k) = v(k;0,8) = {1+5, if k6> 1.

(i) Moreover, for any |y| < 1,
|Cov(A, R, (w3 k), A R, (; k)| < Clyl(L v Ij =" Y,  jj €L,
where the constant C does not depend on vy, j, j'.

As a consequence of Lemma 3.1(i1), we obtain

B[ (H,x +3)  H(0)) du(o))

= B[ [ (w(x —y) — w(x)) dH ()
(3.8) ( t )
—nt Y E(ALR(¥;k*) AR, (§;k%))

Ji'=1
= 1-6
<Clyln™t X (1 VvIj=jh) "<Clyl
Ji'=1

as (B* + 1)6 > 1.
By Lemma 3.1(1), similarly as in (3.8),

Var(H, (1)) <n' ¥ Ct/AVI -V —i)

J,Jj' =1
< ¥ C(t/A Vi) (V) =),
Jj=0

where C(¢) does not depend on n and tends to 0 as ¢ — . Therefore, it
suffices to prove the asymptotic normality of the truncated sum H, ,(4), V t.
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Now, for convenience, write U, , for U; (4,%*). Then H, ,(¢) can be
rewritten as

n

t—1
H, (¢)=n"'2 Y 3 Uy, +N,

Jj+s,s n»
Jj=1 s=0
where
t—1 s n+s
— -1/2 _
Nn =n Z Z l]j,s Z l]j,s .
s=0\j=1 j=n+1

Observe that, for every fixed ¢ < », n’/2N, is a sum of a finite number of
stationary r.v.’s whose second moment is finite by (3.6). Thus, for every fixed
t < o,

N, = Op(n~1/2).
Furthermore, for any 0 < s <t < o,
Upros = E{w(X;0) | 7} = B{w(X;,.) 1 54}
G DAt

_,E‘l k! Ak rgl(r)bsrAr(gj)Akr(Xj+3,s),

and M(t)=X._{U,, , are square-integrable martingale difference se-
quences, satisfying
E{U,

Jt+s,s

| F ) = E{M(t)| _,} =0,

J

which follows from the fact that Ak,,()fj +s.s) is measurable with respect to
the o-algebra #,_, and that A,({;) has mean 0 and is independent of 7 _, for
each j. Moreover, the above martingale difference sequences are stationary
and ergodic, due to the ergodicity of the i.i.d. sequence ¢;, j € Z. Therefore,
the classical martingale central limit theorem applies [see, e.g., Billingsley
(1968)], according to which

n 2 Y M(t) =(0, 0(2)),
j=1
where, by stationarity,
o/ (t) = Var(M,(t))

t-1 t—1
= Z E(Us,sUs',s') = Z E(UO,SUS'—S,S’)
S :
=Y Y E(U,U.,) byorthogonality; see Lemma 4.4 below
JEZ s,s'=1
= 2 Cov(Ro (y; k%), R; (¥;k")).
JEZ

Hence it easily follows that o,(¢) — o, t = %, with the limit given by (1.20).
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Finally, the relation (1.28) follows from
(3.9) sug |Fn(x) - F(x) + f(x)(Xn - m)| = oP(vVar (X'n))
xe

and Lemma 4.1 below. The result (3.9) was proved under somewhat different
assumptions on the distribution function of ¢, in Giraitis and Surgailis
(1994) and Ho and Hsing (1996). Under the present setup, its proof is
obtained in a similar way, using Lemma 3.1 above. This also completes the
proof of Theorem 1.2. O

4. Some general results and proof of Lemma 3.1. This section con-
tains some general results, which may be of independent interest. Lemma 3.1
is a special case of Lemma 4.3 below. Accordingly, let {X} denote the class of
all moving averages

(4.1) X

Xj= Z bsétjfs’ jEZ,

s>0

whose coefficients b, s > 0, satisfy
b <L(s)(1Vs) "2 and b, ~L(s)s @*0/2 5w,
where 6 € (0,1) and the slowly varying function L is fixed. For any X € {X}
of (4.1), put
S = so(X) = min{s > 0; b, # 0}.

The quantities s,(X) and s,(X, k) appearing in Lemma 4.1 below are non-
random. They depend on the underlying process only through its distribution.

For later use, we note that, for any s > 0, the transformation X — X'.’ maps
elements of { X} into {X} and

S

(4.2) sO(X'_,s) > s.
We also need to define the r.v.’s
SXJ=XJ_bS§J—S= ' 02: blgj—l’ jEZ,SZO,
1>20,1#s

and the constants
(4.3) b?P =EX? = Y b?=0(L*s)s ’).
i>s

Let .F(x) = P{, X, < x} and ,f(x) = d(,F(x))/dx denote the marginal dis-
tribution function and density of the stationary process ;X The following
lemma gives the behavior of the derivatives of the distribution functions F,
F, and  F of X, X, , and X, respectively. It is an extension of Lemma 2.1
of Giraitis, Koul and Surgailis (1996).

LEMMA 4.1.  For any moving average X € {X} and any k > 0, one can find
s; = sy(X, k) > 0 such that for any s > s;, the distribution functions F(x),
F(x) and ,F(x) are k times continuously differentiable and

(44) [F® ()| +[FP ()| +]FP(x)] < C.
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Moreover,

(4.5) |[F®(x) = FP(x)] < b,

(4.6) |[F®(x) = F®(x)| < €2,

and, for any y € R,

(4.7) |A,F®(x)| +|A, F®(x)| +]A,((FP(x))| < Clyl,
(4.8) |A,(F®(x) — FP(x))| < Cb@ |yl
(4.9) |A,(F®(x) =, F®(x))| < Cb2 Iyl

The constant C in (4.4)—(4.9) does not depend on s, x, y.
The following lemma is an elementary result needed later.

LEMMA 4.2.

()= Y (Lvish “(Avii—sh®

s>t
g—2a+1 .

. , Ifl1/2<a<1,
<c/avimV e RS
ljme, if a>1,
where C(¢) - 0, t > <,

Proofs of both of the above lemmas appear at the end of this section.
We now turn to the proof of Lemma 3.1.

Proor or LEMMA 3.1. Our proof uses induction in k. Recall the decompo-
sition (3.4)—(3.5):
(4.10) Rj(‘//’XO;k)= Z (]j,s(lp7X0;k)'

s>0

(We shall now indicate the dependence on the sequence X, j € Z, or its
marginal X, too, as it will vary in the sequel.) Let

((-+a),F) = [ #(x+a)dF(z), acR,iz0,
R
and rewrite
(411) U, - UY + U,
where
ljj(,os) = <¢/( : +Xj,sfl)7stl>_ <‘7[I( +Xj,s)>Fs>
(4.12) i

Loo(-D .
_bsgj—s izzl m)\iAi—l( j,s) ’
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I3 _1 i+1 i . _
2( ) A, %(;)Ai,(xjys)b;A,(gjs)
k ( 1)(l+1) B
o - EuneoE O i)
k
= Z Uuan»
r=2

Note that U; () contains the summands that decrease to 0 fast as s — o, due
to the fact that b!, s > 0, are summable for r > 2.

s

Now let s; be as in Lemma 4.1 and rewrite

k+1
(14 U - T UL,
p=0
where
(415) l]J(OSO) - <l’b( s Xj,sfl)’ stl> - <l//( © 4+ ijs), FS>

+ b4, <¢( + X'j,s),Fs(P1>1(s > 51),
©,p) _ (_1)1)71
(416) 7 (p-1D!
XA, (X;,), p=1,....k,

J>

b4 (A — E(w(- +X,.,), FP)I(s > 5))

_ k ( 1)(1 1)
ULt = b4, <‘/’( +Xj,s)’Fs@ > X (i-1)!
(4.17) =t
XAifl(X' S)E<llf(' + Xj’s),Fs(i)1> 1(s > sy).

Js

We shall show below that the terms U}, p =0,1,...,k, similarly to
US%», r=2,...,k, are of the “summable” order Op(b}), while to the main
term, U B 1) a suitable inductive hypothesis can be applied.

Indeed for ﬁxed s > 0, consider the stationary sequence X ¢ J EZ. Let
b (x) = (Pp(- + x), FY,). Integration by parts shows that the coefficients
A, XO, ) in the formal Appell series

i

wZ.)= ¥

=0

Ai(lps’ XO,S)Ai(XO,s)
are given by

(4.18)  M(w, X)) = d'Ew(X, , — x)/dx'lico = E(w(- + X, ), F4Y);
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cf. (1.10) and (1.11). Therefore, (4.17) can be rewritten as
(4.19) USGHD = =b,i; Ri(4,, X ik — 1)1(s > sy).

We need to apply the inductive hypothesis to R (t,[f , X0 «; # — 1). However,
as ¢, and XO . are different from the original and X, the hypotheses and
statements of Lemma 3.1 have to be correspondingly strengthened. This is
done in the following lemma.

Next, let {4} be the class of all functions ¢ of bounded variation. The
transformation  — ¢, is well defined for s > s; and maps {¢} into itself,

which follows from Lersnma 4.1 and the inequality

(4.20) l,] < [l IFD].
LEMMA 4.3. For any processes X, X' € {X}, any functions ¢, ' € {},
any integers 0 <t,1 <k <1/6 and any 8, > 0, one can find 0 < § < §, and

constants C(t), C < «, independent of j,j € Z, |y| < 1, such that C(¢t) — 0,
t — =, and such that, for all j, j' € Z,

|Cov( B, (. X: k), By, (9, X5 1))

<C(t/(AVIi—7N))AVIj—jh 7D,
|COV(Aij(¢,X;k),Aij,(lp”Xf;k)H

(4.21)

(4.22) e
<Clyl(1VvI]j—jnH %",

v(k) = y(k; 0, 8) being given by (3.7). Moreover, for all |y| < 1,
(4.23) Var(R,(, X; k)) < Csg 7+,
(4.24) Var(A,R;(¥, X;k)) < Clylsg7*+D.

Lemma 4.3 easily follows from Lemma 4.5 below. Put

(4.25) VP S VD, X k)= UG X5 R),
w2 V= ¥ U
s>t
and
(4.27) V(z P = V(z P(A L X k) = y Ayl]j(’is,p)’
s>0

1=0,1,;=0,1,...,k+1, y € R, where, for p =0,1and p =k + 1, we put
U%» =A USSP = 0. Clearly,
1 k+1

(4.28) Ri(¢,X3k) = ¥ X V"P(y,X;k),

i=0 p=0

and similar relations hold for R ;. and A R, too.
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We shall also need the following orthogonality relation of random variables
Ujfls’ P)_ which is a consequence of them being martingale difference sequences.

LEMMA 4.4. For any ¥, ', X, X' of Lemma 4.1, any i,i’ = 0,1, p,p’' =
0,1,....,k+1andanyj,j',s,s' €Z, suchthatj —s' #j—s,

Cov(UP (¢, X3 k), UL P (9, X 5 k)) = 0.
LEMMA 4.5. Under the conditions and notation of Lemma 4.3,

|Cov(V&P (0, X3 k), VI, 20(y7, X5 1)) |

(4.29)

<C(t/(LVIJ =)@ VI =) 7",

Cov(A VP (4 X k), A VP’ X';

<Clyl(L VI —jh "
Moreover,
(4.31) Var(V& P (i, X3 k)) < Csy 7D,
(4.32) Var(A, VP (g, X3 k)) < Clylsg 70,

Proor. Note that the Appell coefficients (4.18) can be rewritten as

(4.33) E(y(- +X,,), Fi) = (g, FO) = 2,
Indeed,

Estl(x _Xj,s) :EP{SXJ =X | Z,S,l} :sF(x)

from which (4.33) easily follows.

The proof of (4.29)—(4.32) uses induction in k. First, we prove the case
k = 1. In this case, we need to check (4.29)-(4.32)for i =i' =0, p, p’' =0,1,2
only, as, by definition, V> ”(y, X;1) = 0. We have

U = <¢( +Xj,s_1),Fs_1> - <lﬂ( + Xj,s),Fs>
+ bsgj—s <¢’( +Xj,s)’ fs—1>1(3 > 51),
Uj,os’l) =b.{ (A — M1(s > 5y)),
U2 = 5,6 ((w(-+X) fi)— B+ X, ) F )1 > 5.
By Lemma 4.4, for any i, p,I’, p’ and any £ = 1,2, ...,

‘E(ijtt,p)ngft,p ))‘ =

L EUSIUL)

—j+s
s>t j —j+s=>t

(4.34)
< T () B

,J' —Jts
s>t
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and

(4.35) |E(Ayvj(i,p) Aijgi’,p’))| <Y El/z(Aij(,i(;p))zEl/Z(Aij(,f'le") )2‘

"—j+s
s>0

We shall shortly prove that, for p = 0,1, 2,

(4.36) E(USP) < C(b + b2b®),
(4.37) E(8,U0%P) < Clyl(bf + b2b2).
Hence, as b2 = o(b{?), by Lemma 4.2, we obtain
‘E(Vj,g,p)\%g?zp'))‘ <C Et |bs|(b§2))1/2 |bjf_j+s|(b}21j+s)l/2
s>
(4.38) <CcY (1v |S|)—1/2—9+5/2(1 VI —j+ S|)—1/2—e+a/2
s>t

<C(t/(1VIj —ji@a v =i,

y(©2) =20-8if0<0<1/2 6<20,and y(2)=1+8if1/2<0<1, 6<
(20 — 1)/3. This proves (4.29) for k= 1. The same argument implies
(4.30)—(4.32), for example,

E(Avj(o,p))2 <Clyl ¥ b2b@ < C Y 57172070 < C|y| 552070,

s>0 s>s

Next, we shall prove (4.36). Using the definition (4.15), similarly to Ho and
Hsing (1996), one obtains by Taylor’s formula and the mean value theorem

U0 = /R (Foo(-- %, —bu) - F, (- - X, - b,4,), 4)dG(u)
~ b, (- = X))

[ b4 = fial - = Xjs = b5, ), 9)dG(w)

+1 bef(gj_s —u)'(fO( - X, , - byz(w)), ¥)dG(u)

~ 0,5 (il - X))

b2 (fO(- - X, — b,2), 0)

+307 [ (G0 = w (f0( - = X0 = b2(w)), 4)dG(w),
where 2, z(1) are some (random) points. Therefore, according to (4.4),

(4.39) US| < C2(1+ ¢2,),
which proves (4.36) for p = 0.
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In the case p =1, as |f(x) —,f(x)] < Cb2, by (4.6) and because i has
bounded variation,
(4.40) E(USY) = 02(f ~.f,4)" < Cbt.

In the case p = 2, using (4.7) of Lemma 4.1, |f,_(x) — f,_(x — Xj,s)l <
C IX .| and therefore

[+ Ko fon) = B+ X))
<[+ %) = v e T E (- + ) — v fo))
<C(IX, |+ EIX, ).
Hence
BUS?) = b2E((6(- +X,) £ )~ B+ X,) £ )
< Cb2E(X?,)<Cb2b®.

Next, consider (4.37). Fix s; > 1 sufficiently large in order that the
statement of Lemma 4.1 applies, and consider the cases s > s; and s < s,
separately. In the first case, similarly to (4.39),

MUY = =022 (w( - + X, + by2), A, F)

j—s

(4.41)

+1p2 fR<¢(- + X+ bz(w), A FD )G — )’ dG(u),

where z € (=¢{;_ o and z(w) € ({_,—u,{_,+u) are random points.
Hence, again usmg (4 7) similar to (4. 39) we obtain A, UGS < Clyl b2(1 +
(2 ), or (4.36) for p =0, s >s,. Cases p=1,2, s > s1 can be considered
exactly in the same way as (4.40) and (4.41), with £, f._1,.f replaced by
Af A, fo—1, A f), respectively, and using (4.7)—(4.9) of Lemma 4.1.

Now consider the case of s < s;. By definition,

AUSY = B8, 9(X) 15} - B8, 0(X) 1 5,1}
and therefore
B(8,U%0) < 2(B(E{8,0(X) 1 7)) + B(E{8,0(X) 1 5, _)))
< 4E(A,¥(X;))".
Write ¢(x) = (x) — ¢y(x), where ,(x), i = 1,2, have bounded variation

and are increasing. Then E(A ¢(X))* < 2E{(A,¢(X))* + (A, (X)),
and, for y > 0,

E(3,0(X,))" = B(W(X, +5) = (X))’
<yl E(¢(X; +y) — 4:(X;))

=10l [ (F(2) = F(x —y)) dui(x) < Cy;
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the last inequality follows from (4.7). Next,
2 2
E(A,USY) = bX(Af,¢) E{2, < Clyl* < Clyl,
according to (4.7). This proves (4.37), and the first induction step k = 1.

Induction step k — 1 -> k. For (i,p) <0,k + 1), (', p") # (0, 2 + 1), the
inequalities (4.29)—(4.32) follow similarly to the case £ = 1. In fact, using
(4.34) and (4.35) it suffices to check the bounds

(4.42) E(US,7) < cb?,
(4.43) E(AyU}(f;’”)2 < Clyl b,

(i,p) #(0,k + 1).

For (i, p) =(0,0), (4.42) and (4.43) were proved above. For i =0, p =
1,..., &k, their proof is similar to the case &k = 1. Indeed, using the inde-
pendence of {;_, and X, ., from (4.16) we obtain

~ 2
E([]jgos,p>)2 =({(p - 1)!)’2b3E(A (XJ)) {y,FP _SF(p)>2 < CbY,

p—1

where we have used (4.6) and (4.33), similarly to (4.40). Next,

(_!l)i(i

i p

2

< Cb?,

E(Ujgs,m)z - bfPE(Ap(gj_s))zE )AiAi_p(Xj_s)

k
)
i=p

p=2,...,k, proving (4.42).
In the case (i, p) = (0, £ + 1), according to (4.19),
~ 2
(444) E(l]j(,os,kJrl))2 = nggjgsE(R](lps,XO,s;k - 1)) ’

2

(445)  E(AUSHV) = 2B E(A,R(v,, Xy sk — 1)) .

Here,
(4.46) E(Rj(dls7 Xo,s;k - 1))2 < Csho+d,
(4.47) E(Aij(¢s, X ik — 1))2 < Clyls * 02,

which follow from (4.2) and the inductive hypothesis [Lemma 4.3, (4.23) and
(4.24), for &k = k — 1]. Therefore, by Lemmas 4.2 and 4.3,

- - ho— o —(ko-5)/2
‘E(‘,}f(i,k+1)‘,}g?ék+1))‘ <C Y Ibyb, . s~ H-/2(1 v [ — j + s)) /
s>1

< C(t/(l v j’ —JD)(l Vj _jl)*v(k+1)‘

Using (4.34), (4.35) and (4.42)—(4.47), the proof of the rest of the relations
(4.30)—(4.32) is analogous, thereby completing the proof of Lemma 4.5. O
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Proor oF LEMMA 4.1. The claims (4.7)-(4.9) follow from (4.4)—(4.6), re-
spectively; for example,

A, (F¥(x) = F®(x))| =‘f“y(p<k+n(z) ~ F**(z2)) dz| < Cb® |yl.

Consider the characteristic functions

(4.48) f(u) = E exp(iuX,) = J_];[O o(ub)),

(4.49) f.(u) = Eexp(iuX, ,) = Og[_gs o(ub;),

(4.50) (f(u) = E exp(iu, X,) = ng#s b (ub;),

where ¢(u) = E exp(iu{,) satisfies (1.4). Clearly, (4.4) follows from
(4.51) [l + A ]+ A < e+,

s > s;. For any £ > 0, one can find an integer s, > 0 such that the number
|J|of elements in the set J = {j = 0, 1,..., s, :b; < 0} is larger than (k+1)/5,
thatis £ + 1 < § |J|. Then, by (4.48)-(4.50),

max(| f(w)],| £.(w)|. L A@)]) = € TT (1 + b)) ™.

For any b # 0, there is a constant C = C(b, 8) such that (1 + |bu|)? <
C(@1 + |u])~®. Therefore, by the argument above,

max(| A(w)], | fi(x)

proving (4.4).
Consider (4.5) and (4.6) for & > 1. Choose s, so that IT,_;_,l¢(ub)l <
C(1 + |u)~*~%, s > s;, where C is independent of u, s. Then

Jw)sc@+lu) M <o+ lu) Y

b

[F0(x) = P < @m) 7 [l TT [d(ub)||TT é(ub;) - 1|du
R 0<j<s j>s
(4.52) <C Y [lul" (1+lu) " ¢(uty) - 1|du

Jj>s

<C Y b2 leulk+2 (1+lu) " du=Cb®,

Jj>s

where we used the inequality |$(u) — 1| < 3 lu|®. In a similar way,
[F8() = f® ()| < Cf lul*|o(ub,) = 1 TT [ $(ub))| du
J*Ss

< CbZ [ ful*"* (1 +lul) """ du<Ch2.
R
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It remains to verify (4.5) and (4.6) for £ = 0. For this, it suffices to prove
the bounds

(4.53) | f®(x) — FP(x)| < CHS(1 + |xl) * 72,
(4.54) [F®P(x) = f B (x)| < CO2(L + |x) 77

for k£ = 1, as they imply (4.53) and (4.54) for 2 = 0 and then, similarly, (4.5)
and (4.6) for £ = 0. Proceeding as in Giraitis, Koul and Surgailis (1996),
Lemma 1(3ii), (4.53) and (4.54) follow from

(u(Few) - F(w)) "] < cb2(1 +1u) 2,
‘(u(fA(u) —sf(u)))(r)‘ < Ch2(1 + lul)~?

or
(4.55) | £O(w) = FO(u)] < CBP(1 + [ul)~?,
(456) | fOu) -, fO(u)| < Cb2(1 +ul)®,  r=0,1,2,3.

Consider (4.55) for r = 2, for example, as the remaining inequalities can be
similarly verified. By differentiating (4.48) and (4.49) with respect to u, one
obtains

o) = % P (ub;)b?d,(u)

0<j
+2 2 ¢D(uby) ¢V (uby,)b; b0 (u),
0<j1<J2
fPu) = L ¢®(ub)bi vy (u)
0<j<s
+ 2 Z ¢(1)(ubjl)d)(l)(ubjz)bhbqu)jlsjz;S(u)’
0<j1<js<s
where
®(u) =TT a(udy),
J'=0:j5"#j
Q. (u) = I1 o b(ub; ),
0<j'<s:j' #J
O (w) =TT ¢(uby),
J'20: 5" #j1,J2
q)jhjz;s: . 1_'[ P (;b(Ube)
0<j'<s:j #Jj1,J2
We have

|F®(u) = f®(u)| <3, + 3, + 23, + 23,
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where

21 = Z |¢(2)(ubj)| bjz |q)](u) - (I)j;s(u)|’
0<j<s

S, = X |6@(ub))| b2 |0(w)],
Jj>s

23 - Z |¢(1)(ubh)¢(1)(ubJ )bjlbjz | J1,J25 (u) - q)jl,jz(u)|7
0<j;<js<s

24 - Z |¢(1) ub )¢(1) ub || Ji» Jz u)|
0<j,,5<Jjo

We need to show
(4.57) S, <Cb@(1 +uh)?,  s>s,i=1,...,4.
Consider 3. As in (4.52),

[,0) = .(0)| =) || TT #(ub) 1

<C(+uh)® Y u?b? <C(1+ul) *b®,

J'>s

provided s > s; is large enough, proving (4.57) for i = 1. The case i =2
follows from the bound |®(w)] < C(1 + |u)~°.

To estimate 2, use [¢™(ub,)| < |ub;| and the bound
| J1,J2; (Djl Ja2 u)| <| J1J2; u)| ‘11:[3 d)(ubj') -1

<C(+luh)® Y u?b?,

Jj'>s
as in the case i = 1. Finally, in the case i = 4, one uses
1 2 2
L [o0(uby,) 16, < lul ¥ b} < lul b
Ja>s Jo>s

together with |<Dj1, jz(u)l < C(1 + |u)~® This completes the proof of
Lemma 4.1. O

ProOF OF LEMMA 4.2. It suffices to consider j > 1. Let a > 1. Let ¢ <.
Then

()< X = L + X

s€Z s<|jl/2 s>1jl/2

<21VvIjl/2)™ " X (1vish “<c@avii

seZ

Next,let ¢t > j, K=t/j > 1, a > 1. Then
S(t) <Cy(1Vvit) “=Cy(1Vvy) “(LVEK) “=C(t/(1Vvj))AVj
C(t)=Cit™* -0, t— o,
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Now consider the case 1/2 < a < 1, t < j. Then
S(t) < le s |j — sl “ds = Cj~.
R
Finally,let 1/2 < a <1, ¢ > j, K=t/j. Then
S(6) <€y [ (s =) 2" ds=Cyj > [ (u— 1) ¥ du=C(K)j >,
¢ K

C(K) = CQK‘Z“Jr1 -0,
as K —» . O
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