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NONPARAMETRIC MODEL CHECKS FOR REGRESSION1

By Winfried Stute

Justus-Liebig-University of Giessen

In this paper we study a marked empirical process based on residuals.
Results on its large-sample behavior may be used to provide nonparametric
full-model checks for regression. Their decomposition into principal compo-
nents gives new insight into the question: which kind of departure from a
hypothetical model may be well detected by residual-based goodness-of-fit
methods? The work also contains a small simulation study on straight-line
regression.

1. Introduction and main results. The purpose of the present paper
is to study a general method for testing the goodness of fit of a paramet-
ric regression model. More precisely, let �X;Y� denote a random vector in
d + 1-dimensional Euclidean space. Assume that Y is integrable so that the
associated regression function

m�x� = ��Y�X = x�; x ∈ �d;

is well defined (up to a null set). Much of the existing literature is concerned
with parametric modeling in that m is assumed to belong to a given family

M = �m�·; θ�x θ ∈ 2�
of functions, where 2 ⊂ �p is a proper parameter set. In other words, it is as-
sumed that m�x� =m�x; θ0� for some “true parameter” θ0. Many efforts have
been devoted to the problem of how to estimate or to test for hypotheses about
θ0. The best known case is the linear model in which m�x; θ� = gT�x�θ, g is
a known vector-valued function and T denotes the transpose. For a thorough
discussion of nonlinear regression, see Seber and Wild (1989).

Model diagnostics have been addressed, in the context of a given model,
in most textbooks on regression. The proposed procedures are based on the
observed residuals and are used mainly to detect and discuss the influence
of selected data points. See Atkinson (1985), Cook and Weisberg (1982) and
Davison and Tsai (1992) for details.

Starting with Nadaraya (1964) and Watson (1964), there has been much
activity on how to estimate m in a completely nonparametric framework. This
approach requires smoothing of the data rather than estimation of the finite-
dimensional parameters and leads to less precise fits. Furthermore, paramet-
ric models are still attractive among practitioners because the parameter θ
together with the functional form of m�·; θ� describes, in a concise way, the
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614 W. STUTE

impact of X on the output Y. Since there may be several competing models,
in order to prevent wrong conclusions, every statistical inference that is based
on a model M should be accompanied by a proper model check, that is, by a
test for

H0x m ∈M versus H1x m /∈M:(1.1)

Interestingly enough, a systematic study of (1.1) only started in the late 1980s.
See, for example, Barry and Hartigan (1990), Buckley (1991), Cox, Koh, Wahba
and Yandell (1988), Eubank and Hart (1992, 1993), Eubank and LaRiccia
(1992), Eubank and Spiegelman (1990), Firth, Glosup and Hinkley (1991),
Härdle and Mammen (1993), Joglekar, Schuenemeyer and LaRiccia (1989),
Müller (1992), Staniswalis and Severini (1991), Stute and González Manteiga
(1995) and Su and Wei (1991). See also Randles (1984), Shillington (1979),
Neill and Johnson (1985) and Utts (1982) for some earlier references.

In most of these papers the X-variable was fixed rather than random, and
sometimes further very restrictive distributional assumptions on the error
distribution (like normality) and the design (equally distributed in a given
compact set) had to be added. Most of these assumptions cannot be justified
in a random design setup.

Eubank and Hart (1993) nicely pointed out that a common feature in most
of the above work is as follows: assuming (for simplicity) that M is a finite-
dimensional subspace of some L2 (the space of square-integrable functions),
we may find an orthonormal expansion of the true m into some m�·; θ0� from
M and a Fourier series in terms of orthonormal functions �ui� forming a base
of the orthogonal complement of M, say

m =m�·; θ0� + f ≡m�·; θ0� +
∑
i

aiui:

Testing for H0 then becomes tantamount to testing for f ≡ 0. Denoting by f̂ a
suitable estimate of f and letting 0 be a quadratic functional such that 0 = 0
at f ≡ 0, then H0 is rejected if 0�f̂� exceeds a critical value. Of course, the
performance of this test heavily depends on 0 and the choice of f̂. As long as
f̂ includes some smoothing parameters, the local asymptotic power of the test
is bigger than its size only if the alternatives approach the hypothesis at a
rate � n−1/2. There are two notable exceptions, however. Buckley (1991) and
Eubank and Hart (1992) discussed two (related) tests (for constant regression)
which are based on an integrated version of f̂ and which allow for alternatives
tending to the hypothesis at the rate n−1/2. Though the main results of Eubank
and Hart (1992) are formulated for more general test problems, the regularity
assumptions required for the orthonormal system �ui� seem to eliminate many
other examples of interest.

In the present paper we discuss in detail an approach which avoids smooth-
ing of the data and leads to tests which are consistent on the whole ofH1. They
are based on certain marked empirical processes based on residuals which are
introduced below and which are shown to converge in distribution to a certain
Gaussian process. The eigenvalues and eigenvectors of its covariance kernel
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are analyzed in detail in Section 2. Decompositions of the underlying pro-
cesses into their principal components are obtained which give new insight
into the question of what kind of departure from a hypothetical model may be
detected by residual-based goodness-of-fit procedures. In Section 3, we shall
derive, among other things, optimal tests forH0 versus alternatives approach-
ing M from a specified direction (at the rate n−1/2). Section 4 contains some
simulation results and numerical computations for straight-line regression.
Proofs of the major results are deferred to Section 5. To simplify the notation,
we shall only consider real-valued X’s. Most of our results have immediate
extensions to the multivariate case. See the remarks in Section 6.

Now, let F denote the unknown distribution function (d.f.) of X. Put

I�x� =
∫ x
−∞

mdF; x ∈ �;

the integrated regression function. By a measure-theoretic argument, for a
given F, the function I uniquely determines m. Hence it is tempting to draw
any conclusion about m from an analysis of I. Note that, by the definition of
m, we have

I�x� = �
{
1�X≤x�Y

}
:(1.2)

Hence, if �Xi;Yi�, 1 ≤ i ≤ n, is an independent sample with the same distri-
bution as �X;Y�, the empirical analog of I becomes

In�x� = n−1
n∑
i=1

1�Xi≤x�Yi:

Actually, In�x� is an unbiased estimator of I�x� for each x and every n ≥ 1:

��In�x�� = I�x�:(1.3)

Moreover, In is a random step function which is constant between consecutive
X-order statistics X1: n ≤ · · · ≤Xn: n and has jumps Y�1: n�; : : : ;Y�n: n� there.
Here Y�i: n� is the Y-value associated with Xi: n (the concomitant). In other
words, In is a random element in the Skorokhod space D�−∞;∞�. Further-
more, for a fixed x, the SLLN applies to yield

lim
n→∞

In�x� = I�x� with probability 1:

A typical uniformity argument even gives Glivenko–Cantelli convergence:

lim
n→∞

sup
x∈�
�In�x� − I�x�� = 0 with probability 1:

To obtain nondegenerate limit results, we need to consider the standardized
process

Rn�x� = n−1/2
n∑
i=1

1�Xi≤x��Yi −m�Xi��; x ∈ �;
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where Rn�x� is a sum of independent identically distributed (i.i.d.) random
variables conditionally centered at Xi, 1 ≤ i ≤ n, with variance

T�x� =
∫ x
−∞

Var�Y�X = u�F�du�:(1.4)

By the CLT,

Rn�x� → N �0;T�x�� in distribution:(1.5)

Theorem 1.1 provides the extension of (1.5) to a functional invariance princi-
ple, namely that Rn converges in distribution to a suitable Gaussian process
as n→∞. Such a result is useful if one wants to test the simple hypothesis
m =m0. Just replacem bym0 in the definition ofRn and reject the hypothesis
if a proper discrepancy in Rn exceeds a critical value. For full-model checks
the process Rn requires some modification. Assume, for the moment, that H0
holds, and let θn be any reasonable estimator of θ0, such as the LSE. Put

R1
n�x� = n−1/2

n∑
i=1

1�Xi≤x��Yi −m�Xi; θn��;

a marked empirical process, where the marks in brackets are given by the
classical residuals.

HereR1
n is uniquely determined by theX’s and the residuals and vice versa.

Though residuals have been proposed for model diagnostics for a long time,
the process R1

n has not been investigated much before. Nor are we aware of
any nonparametric principal component analysis in regression.

As already mentioned, the process Rn takes its value in the Skorokhod
space D�−∞;∞�. Refer to Pollard (1984) for a thorough discussion of D�0;∞�.
Informally speaking, convergence in D�−∞;∞� is equivalent to distributional
convergence on compacta. This excludes the possibility of handling goodness-
of-fit statistics such as supx�Rn�x��, where the sup extends over the whole real
line. To also deal with such statistics, we continuously extend Rn to ±∞ by
putting

Rn�−∞� = 0 and Rn�∞� = n−1/2
n∑
i=1

�Yi −m�Xi��:

Then Rn becomes a process in D�−∞;∞� which, modulo a continuous trans-
formation, is the same as the more familiar D�0;1�. Actually, by incorporating
a classical quantile transformation, we may write

Rn�x� = R̄n�F�x��; x ∈ �−∞;∞�;(1.6)

where R̄n is the empirical residual-based process for an X-sample from the
uniform distribution on �0;1�. For our first result no condition other than the
square integrability of Y will be required.

Theorem 1.1. Assume �Y2 <∞. Then

Rn→ R∞ in distribution in the space D�−∞;∞�:
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The limit process is a centered Gaussian process with covariance function
[see (1.4)]

K�s; t� = T�s ∧ t�:(1.7)

Remark. Since T is nondecreasing and nonnegative, R∞ admits a repre-
sentation

R∞�x� = B�T�x��;(1.8)

where B is a standard Brownian motion on the positive real line. Hence R∞
is continuous whenever T is. This in turn holds true if F is continuous.

The representation (1.8) in connection with Theorem 1.1 and the continuous
mapping theorem also yields (for continuous T)

sup
x∈�
�Rn�x�� → sup

0≤t≤T�∞�
�B�t�� in distribution:

From this (asymptotic) critical values for the Kolmogorov–Smirnov test based
on Rn are readily available. Just estimate (under m = m0) T�∞� = Var�Y −
m�X�� by the sample variance Tn of Yi −m0�Xi�, 1 ≤ i ≤ n, and compute
the boundary crossing probabilities for a Brownian motion on �0;Tn� upon
observing that, due to the scaling property of B,

sup
0≤t≤T

�B�t�� =
√
T sup

0≤t≤1
�B�t�� in law:

The distribution of the right-hand side is, however, tabulated.
A process related to our Rn has also been studied (in a two-sample setup)

by Delgado (1993). Apart from various continuity assumptions on F and the
involved regression function(s), he also assumed independence of X and Y−
m�X�. Naturally, Theorem 1.1, also covers the special model studied by Diebolt
(1995), who was able to derive a Hungarian-type strong approximation result
for Rn. As was shown by Theorem 1.1, the invariance principle for Rn holds
true without any distributional restrictions.

For full-model checks things unfortunately become more complicated. This
is due to the fact that the limit covariance even under H0 may depend on M
and the true but unknown θ0. In most cases no simple transformation to a
Brownian motion comparable to (1.8) is available.

For the large-sample behavior ofR1
n, some regularity assumptions on θn will

be needed. They are summarized under Assumption 1. Assumption 2 requires
some smoothness of the model M. Note that these assumptions are not only
of a technical nature but the involved quantities become an intrinsic part of
the covariance functions.

Assumption 1. Under H0, that is, m =m�·; θ0� for some unknown θ0 ∈ 2,
θn admits an expansion

n1/2�θn − θ0� = n−1/2
n∑
i=1

l�Xi;Yi; θ0� + o��1�
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for some vector-valued function l such that:
(i) ��l�X;Y; θ0�� = 0;

(ii) L�θ0� x= ��l�X;Y; θ0�lT�X;Y; θ0�� exists.

Assumption 2. (i) m�x; θ� is continuously differentiable at each θ in the
interior set 20 of 2. Set

g�x; θ� = ∂m�x; θ�
∂θ

≡ �g1�x; θ�; : : : ; gp�x; θ��T:

(ii) There exists an F-integrable function M�x� such that

�gi�x; θ�� ≤M�x� for all θ ∈ 2 and 1 ≤ i ≤ p:

Remark. Assumption 2 implies that the function

G�x; θ� = �G1�x; θ�; : : : ;Gp�x; θ��T;
with

Gi�x; θ� =
∫ x
−∞

gi�u; θ�F�du�; 1 ≤ i ≤ p;

is well defined and continuous at θ for each θ ∈ 20. Assumption 2(ii) will also
be needed for the uniform convergence of empirical integrals; cf. Theorem 2
in Jennrich (1969). Also continuity of G guarantees continuity of the limit
process of R1

n.

Theorem 1.2. Assume �Y2 <∞ and let Assumptions 1 and 2 be satisfied.
Then, under m =m�·; θ0�; we have, uniformly in x;

R1
n�x� = Rn�x� − n−1/2

n∑
i=1

GT�x; θ0�l�Xi;Yi; θ0� + o��1�:

The proofs of Theorems 1.1 and 1.2 will be deferred to Section 5.
For a generalized linear model, the process R1

n has also been studied by Su
and Wei (1991), even for multivariate X’s. Their proof relies on a decomposi-
tion of X into a subvector, which is purely discrete, and another one, which is
continuous. Clearly, such a decomposition need not exist, and even if it exists
the independence argument for the V’s introduced on page 426 of their paper
is simply not true. Moreover, their simulation results seem to be based on a
fixed design while the theoretical results are formulated for random X’s.

Corollary 1.3. Under the assumptions of Theorem 1:2;

R1
n→ R1

∞ in distribution in the space D�−∞;∞�;
where R1

∞ is a zero-mean Gaussian process with covariance function

K1�s; t� =K�s; t� +GT�s; θ0�L�θ0�G�t; θ0�
−GT�s; θ0��

{
1�X≤t��Y−m�X;θ0��l�X;Y; θ0�

}

−GT�t; θ0��
{
1�X≤s��Y−m�X;θ0��l�X;Y; θ0�

}
:
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We already mentioned that the complicated structure of K1 does not allow
for a simple representation of R1

∞ in terms of a process for which bound-
ary crossing probabilities are readily available. The situation is similar to
full-model checks for the underlying distribution of the X’s, rather than re-
gression. A general nonparametric approach to such problems has been first
proposed in a landmark paper by Durbin (1973). Durbin, Knott and Taylor
(1975) derived the principal components of the involved empirical processes.
Their decompositions highlight the types of departure from a hypothetical
model, which are satisfactorily detected, for example, by a Cramér–von Mises
test.

It is the goal of Section 2 to derive the corresponding components, in a re-
gression setup, for our processes R1

n and R1
∞, respectively, when M is a linear

model. Here θn will be the least-squares estimator (LSE). Section 3 contains
some power considerations, while in Section 4 several numerical computa-
tions will be provided. As a result we shall obtain a fairly good impression
of what residual-based goodness-of-fit procedures may achieve in polynomial
regression.

We close this section by adding some further notation. For a given para-
metric family M = �m�·; θ�x θ ∈ 2� of (potential) regression functions, we put

D2�θ� x= �
{
�Y−m�X;θ��2

}
; θ ∈ 2:

By the definition of m, irrespective of whether H0x m ∈ M holds true or not,
we have

D2�θ� = ���Y−m�X��2� +
∫
�m�x� −m�x; θ��2F�dx�:

The function D2 is minimized at θ̃0 if and only if θ̃0 is a minimizer of

D̃2�θ�x =
∫
�m�x� −m�x; θ��2F�dx�:

The quantity D̃2�θ̃0� is a means to measure the distance between the true
m and the hypothetical model M. The parameter θ̃0 is called the minimum-
distance parameter for m. Clearly, if m = m�·; θ0� ∈ M, then θ0 = θ̃0. For
identifiability reasons uniqueness of the minimizer will be postulated without
further discussion. Given a sample �Xi;Yi�; 1 ≤ i ≤ n, θ̃0 will be estimated
by the minimizer (LSE) θn of

D2
n�θ� x= n−1

n∑
i=1

�Yi −m�Xi; θ��2:

Strong consistency and asymptotic normality of θn were first obtained, un-
derH0, by Jennrich (1969). In the next section we analyze the eigenvalues and
eigenfunctions of K1 in the case when θn is the LSE. From that we shall be
able to derive decompositions of R1

n and R1
∞ into their principal components.

For simplicity, we shall restrict ourselves to linear models, that is,

m�x; θ� = gT�x�θ = g1�x�θ1 + · · · + gp�x�θp;
where g = �g1; : : : ; gp�T is a known vector-valued function.
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2. Nonparametric principal component analysis of linear models.
In this section we derive decompositions of Rn, R1

n and their limits into their
principal components. In Section 3 this will enable us to study the power
functions of various goodness-of-fit tests based on components. To simplify the
analysis, we will restrict ourselves to the linear model. Hence the elements of
M may be specified in the following way:

m�x; θ� = g1�x�θ1 + · · · + gp�x�θp;(2.1)

where g1; : : : ; gp are known real-valued functions. When gi�x� = xi−1 for
1 ≤ i ≤ p, M consists of all polynomials of degree less than or equal to p− 1.
Under (2.1), Assumption 2 is clearly satisfied with

g�x; θ� ≡ g�x� = �g1�x�; : : : ; gp�x��T

and

Gi�x; θ� =
∫ x
−∞

gi�u�F�du�

not depending on θ, provided that each of the gi’s is (square-) F-integrable.
As to Assumption 1, the LSE θn equals

θn =
(
XT�n�X�n�

)−1
XT�n�Y�n�:

Here

X�n� =




g1�X1� · · · gp�X1�
:::

:::

g1�Xn� · · · gp�Xn�




is the associated (random) design matrix and

Y�n� = �Y1; : : : ;Yn�T

is the output vector. Recall θ̃0, the minimum-distance parameter for m. We
may conclude that

n1/2�θn − θ̃0� = A−1
n n

−1/2
n∑
i=1

g�Xi��1�Xi� + εi�:(2.2)

Here

An = n−1XT�n�X�n� =
{
n−1

n∑
i=1

gl�Xi�gm�Xi�
}

1≤l;m≤p
;

εi = Yi −m�Xi�; 1 ≤ i ≤ n;
denote the true errors and

1�Xi� x=m�Xi� −m�Xi; θ̃0�; 1 ≤ i ≤ n;
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measure the observed deviations from the model. Under H0, θ̃0 = θ0 and
1�Xi� = 0. Setting

A x=
{∫

gl�x�gm�x�F�dx�
}

1≤l;m≤p
;

the SLLN yields An → A with probability 1 as n → ∞. Assuming that A is
regular, we obtain from (2.2), under H0,

n1/2�θn − θ0� = n−1/2
n∑
i=1

A−1g�Xi�εi + o��1�:

Hence Assumption 1 holds with

l�x;y; θ0� = A−1g�x��y−m�x; θ0��
and

L�θ0� = A−1
∫
g�x�σ2�x�gT�x�F�dx�A−1:(2.3)

The covariance kernel K1 becomes

K1�s; t� =
∫ s∧t
−∞

σ2�x�F�dx� +GT�s�A−1
∫
g�x�σ2�x�gT�x�F�dx�A−1G�t�

−GT�s�A−1
∫ t
−∞

σ2�x�g�x�F�dx�(2.4)

−GT�t�A−1
∫ s
−∞

σ2�x�g�x�F�dx�:

Further simplification occurs if the noise variable ε is independent of X. In
this case σ2�x� = Var ε ≡ σ2 does not depend on x so that (2.4) reduces to

K1�s; t� = σ2 {F�s ∧ t� −GT�t�A−1G�s�
}
:(2.5)

Also K1 does not depend on the unknown parameter θ0. When testing for
“no effect,” p = 1 and g1 ≡ 1. In this case K1 is the covariance of a scaled
Brownian bridge with respect to time F. When p > 1 and �g1; : : : ; gp� con-
tains the function ≡1, then VarR1

∞�∞� =K1�∞;∞� = 0, that is, R1
∞�∞� ≡ 0.

In other words, the paths of R1
∞ are also of bridge type in this case. This fol-

lows also from the fact that R1
n�∞� = 0 for each n, which means nothing else

but the well-known fact that the residual sum equals 0.
For theoretical investigations, since R1

n also admits a representation R1
n =

R̄1
n(F in terms of a uniform X-sample, it will suffice to consider this case.

Also σ2 = 1 w.l.o.g. R̄∞ then constitutes a standard Brownian motion on
[0, 1]. It is well known that the eigenfunctions and eigenvalues of its kernel
Kx �s; t� → s ∧ t are given by

lj�t� =
√

2 sin
[(
j− 1

2

)
πt
]

and

λj = 1
/(
j− 1

2

)2
π2;
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respectively. Note that �lj�j≥1 is a complete orthonormal base for L2�0;1�.
Denote by

ξnj x= λ−1/2
j

∫ 1

0
R̄n�t�lj�t�dt;

ξj x= λ−1/2
j

∫ 1

0
R̄∞�t�lj�t�dt;

ηnj x= λ−1/2
j

∫ 1

0
R̄1
n�t�lj�t�dt

and

ηj x= λ−1/2
j

∫ 1

0
R̄1
∞�t�lj�t�dt

the associated (standardized) Fourier coefficients. Put

hj�t� =
√

2 cos
[(
j− 1

2

)
πt
]
; j ≥ 1:

Integrate ξnj and ηnj by parts to obtain

ξnj = n−1/2
n∑
i=1

εihj�Xi�

and

ηnj = n−1/2
n∑
i=1

�Yi − θTng�Xi��hj�Xi�:

From Theorems 1.1 and 1.2 and the continuous mapping theorem, finitely
many of the ξnj’s converge in distribution to the corresponding ξj’s; similarly
for the η’s. Furthermore, we have in L2�0;1� and hence in distribution

R̄n =
∞∑
j=1

λ
1/2
j ξnjlj

and

R̄∞ =
∞∑
j=1

λ
1/2
j ξjlj:

Since the lj’s and λj’s are the eigenfunctions and eigenvalues of K, that is,
∫ 1

0
K�s; t�lj�t�dt = λjlj�s�;

ξ1, ξ2; : : : are independent N �0;1�, while, for a finite n ≥ 1, the variables
ξn1, ξn2; : : : have variance 1 and are at least uncorrelated. Of course, we also
have, for example,

R̄1
∞ =

∞∑
j=1

λ
1/2
j ηjlj:(2.6)
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Note, however, that, in general, K1 has eigenfunctions and eigenvalues differ-
ent from lj and λj, so that the η’s are no longer independent. In other words,
(2.6) does not constitute the desired expansion of R̄1

∞ into its principal com-
ponents. Since the determination of the eigenfunctions of K1 is not obvious at
all, our first goal will be to find a representation of R̄1

∞ of the following form:

R̄1
∞ =

∞∑
j=1

ξjDj(2.7)

for a suitable set of functions �Dj�j≥1. Hence the right-hand side of (2.7) is a
series with independent summands, but the (deterministic) Dj’s need not be
orthonormal in L2�0;1�. To define the Dj’s, recall

hj�t� =
√

2 cos
[(
j− 1

2

)
πt
]

and put

�gk; hj� x=
∫ 1

0
gk�x�hj�x�dx; j ≥ 1:

Write

δTj x= ��g1; hj�; : : : ; �gp; hj��
and put, for 0 ≤ t ≤ 1,

Dj�t� x= λ1/2
j lj�t� −GT�t�A−1δj:(2.8)

Theorem 2.1 gives the desired expansion of R̄1
∞. It may be used to generate

sample paths of R̄1
∞ via Monte Carlo and thus to approximate, for example,

some selected boundary crossing probabilities for R̄1
∞. It will also serve to

characterize the Fourier coefficients η1; η2; : : : (Theorem 2.2).

Theorem 2.1. Let Dj be defined as in �2:8�. Then, in distribution, we have

R̄1
∞ =

∞∑
j=1

ξjDj = R̄∞ −
[
A−1

∞∑
j=1

ξjδj

]T
G:

Next note that along with the lj’s the hj’s also form a complete orthonormal
base of L2�0; 1�. Hence

gk =
∞∑
j=1

�gk; hj�hj:(2.9)

Put

1 =




δT1

δT2

:::


 =




�g1; h1� · · · �gp; h1�
�g1; h2� · · · �gp; h2�

:::
:::


 :
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From Parseval’s identity (cf. Hewitt and Stromberg (1965), page 246) we im-
mediately obtain

A = 1T1 =
∞∑
j=1

δjδ
T
j :(2.10)

The functions lj and hj are related via the trivial identities

l′j = λ
−1/2
j hj; h′j = −λ

−1/2
j lj:(2.11)

Integrate
∫
gkhj by parts and apply (2.11) to obtain

�gk; hj� = λ−1/2
j

∫ 1

0
Gk�x�lj�x�dx:(2.12)

Introduce the infinite-dimensional vectors

ξn = �ξnj�j≥1; ξ = �ξj�j≥1;

ηn = �ηnj�j≥1; η = �ηj�j≥1;

and put

l�t� = �lj�t��j≥1; 0 ≤ t ≤ 1:

The distributions of ξn and so on are uniquely determined by their finite-
dimensional distributions. Hence, to verify that two vectors have the same
distribution, it would suffice to compare finitely many of their components.
Moreover, all vectors have components which are absolutely summable. Denote
by I the infinite-dimensional identity matrix and, for each real r > 0, let

λr x=




λr1 0

λr2

0
: : :


 :

A crucial role will be played by the matrix

M x= I− 1�1T1�−11T = I− 1A−11T:

In Theorem 2.2 we show that, in distribution, η =Mξ. Conclude that 1Tη =
0. The situation is similar to (4.14) in Durbin, Knott and Taylor (1975), who
observed that, in a different setup, estimation of the nuisance parameters
results in a projection of the Fourier coefficients on the orthogonal complement
of the columns of 1.

Theorem 2.2. The matrix M is symmetric and idempotent. Furthermore,

η =Mξ ∼ N∞�0;M� in distribution:

In Theorem 2.3 we give a useful characterization of the eigenvalues and
eigenfunctions of K1 in terms of M and λ1/2. This result parallels the discus-
sion (in a different context) on page 223 of Durbin, Knott and Taylor (1975).
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Theorem 2.3. There exists an orthonormal matrixN and a diagonal matrix

µ =




µ1 0

µ2

0
: : :




such that:

(i) λ1/2Mλ1/2 =NµNT;
(ii) µ1 > µ2 > · · · > 0 are the eigenvalues of K1;

(iii) NTl�t� is the vector of eigenfunctions of K1.

Conclude from Theorem 2.3 that the eigenfunctions of K1 are certain linear
combinations of the lj’s. Similarly, the corresponding Fourier coefficients are
linear combinations of the η’s. Actually, write N = �nij�i; j for a moment. From
(iii) the jth eigenfunction of K1 is given as

mj�t� =
∞∑
i=1

nijli�t�;

while
∫ 1

0
R̄1
∞�t�mj�t�dt =

∞∑
i=1

nijλ
1/2
i ηi:(2.13)

Finally,
∫ 1

0

[
R̄1
∞�t�

]2
dt =

∞∑
j=1

[ ∞∑
i=1

nijλ
1/2
i ηi

]2

constitutes the decomposition of the corresponding Cramér–von Mises func-
tional into its principal components. Similarly, for R̄1

n,
∫
R̄1
n�t�mj�t�dt =

∞∑
i=1

nijλ
1/2
i ηni

= n−1/2
n∑
k=1

[
Yk − θTng�Xk�

]{ ∞∑
i=1

nijλ
1/2
i hi�Xk�

}
:

So far we have assumed that the X’s come from the uniform distribution on
[0, 1]. For the theoretical investigations this may be justified by the feasibility
of representing a generalR1

n in terms of R̄1
n properly transformed in time. Now,

in order to apply the Cramér–von Mises test to a given set of data �Xi;Yi�,
1 ≤ i ≤ n, for example, we have to proceed as follows:

1. Estimate the noise variance by the residual sum of squares

σ2
n = n−1

n∑
i=1

�Yi − θTng�Xi��2

or any other consistent (model independent) estimate of σ2; see, for exam-
ple, Rice (1984).
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2. Let

Fn�x� = n−1
n∑
i=1

1�Xi≤x�

denote the empirical distribution function of X1; : : : ;Xn, and put

W2
n = σ−2

n

∫ ∞
−∞
�R1

n�x��2Fn�dx�:

For a continuous F, Corollary 1.3 and the continuous mapping theorem
immediately yield, under H0,

W2
n→W2

∞ ≡
∫ 1

0
�R̄1
∞�t��2 dt in distribution;

where, as before, R̄1
∞ denotes a centered Gaussian process with covariance

kernel (2.5), σ2 = 1 and F is the uniform distribution on 0 ≤ t ≤ 1.
3. For computational purposes, let X1xn ≤ · · · ≤ Xnxn denote the ordered X-

sample, and let Y�ixn� be the Y-value associated with Xixn. Finally, write

e�ixn� = Y�ixn� − θTng�Xixn�
for the ith residual concomitant of Xixn. Obviously,

W2
n = σ−2

n n−2
n∑
k=1

{ k∑
i=1

e�ixn�

}2

:(2.14)

Its jth component may be approximated by

ρnj ≡ σ−1
n

∫ ∞
−∞

R1
n�x�mj�Fn�x��Fn�dx�

= σ−1
n n−1

n∑
k=1

R1
n�Xk�mj�RankXk/n�(2.15)

= σ−1
n n−1

n∑
k=1

mj�k/n�
{ k∑
i=1

e�ixn�

}
:

The terms in brackets constitute the cusums of the residual concomitants.
Equation (2.14) also appears on page 258 of Buckley (1991) as a statistic
designed for testing for constant regression (i.e., p = 1 and g1 ≡ 1), assuming
that the errors are normal. That paper also contains an interesting historical
review of the earlier literature on residual cusums and their applications in
model diagnostics.

As we will see in the next section, the components ρnj and their asymptotic
counterparts

ρj =
∫ 1

0
R̄1
∞�u�mj�u�du

not only play an important role in the representation and analysis of the
Cramér–von Mises statistic, but also constitute an intrinsic tool for construct-
ing new smooth and directional tests for H0 versus specific alternatives.
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Finally, we briefly discuss the problem of how to actually compute the com-
ponents of R̄1

∞. From Theorem 2.3 we need to diagonalize the infinite matrix
λ1/2Mλ1/2. In practice, this will be possible only in exceptional cases. Rather,
following a suggestion of Durbin, Knott and Taylor (1975), we propose to ap-
proximate the first q components by first computing the eigenvectors and
eigenvalues of ε1/2

q Mqε
1/2
q , where Mq is the q× q matrix

Mq = Iq − 1q�1Tq1q�−11Tq

and

1q =




δT1

:::

δTq


 ; ε1/2

q =




λ
1/2
1 0

: : :

0 λ
1/2
q


 :

Put

M̃ =
(
Mq 0

0 I

)

and observe that

λ1/2M̃λ1/2 =
(
ε

1/2
q Mqε

1/2
q 0

0 λ∞−q

)
;

with

λ1/2
∞−q =




λ
1/2
q+1 0

λ
1/2
q+2

0
: : :



:

Suppose that ε1/2
q Mqε

1/2
q has eigenvalues µ̃1; : : : ; µ̃q and eigenvectors ñi =

�n1i; : : : ; nqi�T, 1 ≤ i ≤ q. Then λ1/2M̃λ1/2 has eigenvalues µ̃1; : : : ; µ̃q, λq+1,
λq+2; : : : and eigenvectors

ni0 = �ñi;0;0; : : :�T for 1 ≤ i ≤ q
and

ni0 = ei—the ith unit vector—for q < i:

In Section 4 we will use these values to approximate the true eigenvalues and
eigenvectors of λ1/2Mλ1/2. The distribution of

W2
∞ =

∞∑
j=1

µjZ
2
j =

∞∑
j=1

ρ2
j(2.16)
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will be approximated by that of

W2
∞q x=

q∑
i=1

µ̃jZ
2
j + λχ2

k;

where the Zj’s are independent standard normal, χ2
k is a suitable χ2-variable

with k degrees of freedom and λ is such that W2
∞q has the same mean and

variance as W2
∞. The distribution of W2

∞q will then be computed by Imhof ’s
(1961) method.

3. Cramér–von Mises, smooth and directional tests. In this section
we shall employ principal component analysis in order to investigate the power
of various tests based on R1

n. To this end, suppose that, for some function r
and some θ0 ∈ 2,

m�x� ≡mn�x� =m�x; θ0� + n−1/2r�x�:(3.1)

Up to square integrability no further assumptions on r will be needed. Recall
θ̃0 from Section 1, the minimum-distance parameter form. Under the sequence
of alternatives (3.1), θ̃0 = θ̃0n, of course, depends on n. Check that θ0 and θ̃0n
satisfy the equation

n1/2�θ0 − θ̃0n� = −A−1




∫
rg1 dF

:::
∫
rgp dF


 :(3.2)

It is easy to see from (3.2) that

R1
n�x� = Rn�x� − n−1/2

n∑
i=1

GT�x�l�Xi;Yi; θ0�

+
∫ x
−∞

r�u�F�du� −GT�x�A−1
∫ ∞
−∞

g�u�r�u�F�du� + o��1�;
(3.3)

where the right-hand side of (3.3) is computed under θ0. In other words, a
change from H0 to (3.1) results in a nonrandom shift function. In particular,
R1
n has the same limit covariance function as before. Therefore the eigenfunc-

tions and eigenvalues remain the same, while the components of R1
∞ become

noncentered normal random functions. First, it will be worthwhile studying
the underlying structure in greater detail from a geometric point of view. For
this, introduce the operator

5x s→ s−GTA−1




∫
g1
ds

dF
dF

:::
∫
gp

ds

dF
dF




acting on all functions s admitting a square-integrable F-density. Needless to
say that when s =

∫ •
rdF;5�s� results in the shift function appearing in (3.3).
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Lemma 3.1. The operator 5 constitutes the projection onto the orthogonal
complement of the functions

∫ •
gi dF;1 ≤ i ≤ p.

Actually, check that 52 = 5 and that each of the above p functions is
mapped into 0. Now, write

s0 =
∫ •
rdF and put π0 = 5s0:

If r is orthogonal to g1; : : : ; gp, then 5s0 = s0. In the general case, π0 is
closer to the subspace spanned by the components of GT than s0. This is
nicely reflected by the Fourier representation of π0. For the sake of simplicity,
assume that F is the uniform distribution on the unit interval. In terms of
the set of eigenfunctions �mj�j≥1, one has

�π0;mj� =
∫ 1

0
π0�t�mj�t�dt =

∞∑
i=1

nij

∫ 1

0
π0�t�li�t�dt

=
∞∑
i=1

nijλ
1/2
i

∫ 1

0
hi�t�π ′0�t�dt;

where the last equality followed from integration by parts. Hence

�π0;mj� =
∞∑
i=1

nijλ
1/2
i

∫ 1

0
hi�t�


r�t� − g

T�t�A−1




�g1; r�
:::

�gp; r�





 dt

=
∞∑
i=1

nijλ
1/2
i βi:

(3.4)

In summary, under the sequence of alternatives (3.1), the limit process R̄1
∞

has the representation

R̄1
∞ =

∞∑
j=1

mj

∞∑
i=1

nijλ
1/2
i �ηi + βi�;(3.5)

where the η’s are the same as in (2.13). Parallel to Lemma 3.1, the function
�: : :� in the integral (3.4) may also be viewed as a projection, namely as that
of r onto the orthogonal complement of the subspace spanned by g1; : : : ; gp.
Under orthogonality, we again obtain r. Note, however, that in the general
case �, � is computed w.r.t. the unknown F, so that, for given g1; : : : ; gp and
r, orthogonality will be the exception rather than the rule.

The decomposition (3.5) implies that the local asymptotic power of the
Cramér–von Mises test, for example, exceeds the size of the test if at least
one of the β’s does not vanish. It will be bounded away from the size uni-
formly in r, if the r’s under consideration are such that their projections stay
away from span�g1; : : : ; gp� uniformly in r. Finally, for p = 1, �: : :� in (3.4)
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equals the function which comes up in the first step of the Gram–Schmidt
orthogonalization algorithm.

We now want to discuss the local asymptotic power of the Cramér–von
Mises test in a more quantitative fashion. For this recall from (3.5) that R̄1

∞
has, under the sequence (3.1), the representation

∞∑
j=1

mj�R̄1
∞ + π0;mj�;(3.6)

where the R̄1
∞ in (3.6) is computed under H0. In other words, the distribution

of R̄1
∞ under (3.1) equals that of R̄1

∞ under H0 shifted by the function
∞∑
j=1

mj�π0;mj� = π0:

Denote by ν0 and ν1 the distribution of R̄1
∞ under H0 and (3.1), respectively. A

fundamental result by Grenander (1952) yields that (in our notation), under
the mild technical assumption

∞∑
j=1

µ−1
j �π0;mj�2 <∞;

ν1 is absolutely continuous w.r.t. ν0. From a statistical point of view, this is
the more interesting case since, informally speaking, the convergence entails
that H0 and H1 are very close. Actually, if the series diverges, ν0 and ν1 are
orthogonal so that the asymptotic power is 1.

Now, the Radon-Nikodym derivative equals

g→ exp
{
−
∫ 1

0
A�t�

[
g�t� − π0�t�

2

]
dt

}
;(3.7)

where the function A is defined as

A�t� = −
∞∑
j=1

�π0;mj�µ−1
j mj�t�:

Moreover, replacing g by R̄1
∞, the exponent �: : :� has a normal distribution

with

�0�: : :� = 1
2

∫ 1

0
A�t�π0�t�dt = −1

2

∞∑
j=1

µ−1
j �π0;mj�2(3.8)

and

Var0�: : :� =
∞∑
j=1

µ−1
j �π0;mj�2:(3.9)

The situation here is similar to the one considered by Neuhaus (1976) in his
Lemma 2.5, where he investigated the local asymptotic power of the classical
Cramér–von Mises test. More precisely, fix the direction r, as in (3.1), but let
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the distance to M tend to 0, that is, consider ar rather than r, with a → 0.
Assume σ2 = 1 first. Write � · � for the L2-norm and introduce

β�c; r; a� x= �ar��R̄1
∞�2 > c�;

where the probability on the right-hand side is computed under the shift ar.
Here β�c; r; a� is the local asymptotic power of the Cramér–von Mises test with
critical value c, as we approach M from the direction n−1/2ar. Let π0 = πr0 be
as before. Trivially,

πar0 = aπr0
and, similarly, in an obvious notation,

Aar = aAr = aA:
Conclude from (3.7) that

β�c; r; a� =
∫
��R̄1∞�2>c�

exp
{
−aN+ a

2

2
�A;π0�

}
d�0;

where N = �A; R̄1
∞� is a zero-mean normal variable with variance (3.9). Dif-

ferentiate the right-hand side w.r.t. a and use a symmetry argument to show
that the first derivative vanishes at zero to finally get

β�c; r; a� = β�c; r;0� + a
2

2

[
�A;π0�β�c; r;0� +

∫
��R̄1∞�2>c�

N2 d�0

]
+ o�a2�

= β�c; r;0� + a
2

2

[
−�A;π0��1− β�c; r;0�� −

∫
��R̄1∞�2≤c�

N2 d�0

]

+ o�a2�:
The term in brackets constitutes the curvature of the asymptotic power func-
tion. Let c = cα be chosen such that

β�c; r;0� = α;
the size of the test. Expand N into its Fourier series,

N = �A; R̄1
∞� = −

∞∑
j=1

�π0;mj�µ−1/2
j Zj;(3.10)

where, as in (2.16), Z1, Z2; : : : are i.i.d. standard normal. Use a symmetry ar-
gument to show that if (3.10) is plugged into

∫
� �N

2, the integrals
∫
� �ZiZj

vanish for i 6= j. Consequently, from (3.8) and (3.10), the power function ad-
mits an expansion

β�cα; r; a� = α+
a2

2

∞∑
j=1

µ−1
j �π0;mj�2

[
1− α−

∫
��R̄1∞�2≤cα�

Z2
j d�0

]
+ o�a2�:

Since in the case of an arbitrary (unknown) σ2 the test is based on R1
n/σn

rather than R1
n, the shift ar needs to be replaced by ar/σ in the general case.
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In the above expansion of β;a2 thus becomes a2/σ2 which nicely features the
loss of power if the noise variance increases. TheZj-integral may be calculated
numerically upon utilizing techniques elaborated, for example, in Johnson and
Kotz (1970), Chapter 6, Sections 5 and 6.

To continue, similar to the ordinary Cramér–von Mises test, our W2
n also

leads to a test which is consistent against all alternatives, but, on the other
hand, is not able to detect specific alternatives one might have in mind. In
particular, tests for higher-frequency alternatives to H0 will only have a mod-
erate if not low power. This is immediately seen from the Fourier expansions
of W2

∞ and W2
n, since possible high-frequency deviations from H0 are heav-

ily downweighted by µj already for j ≥ 3. In such a situation a reweighting
of the components ρnj in (2.15) leads to tests which, in spirit, are similar to
Neyman’s (1937) smooth test for densities. In our case we may fix some m ≥ 1
and put

W2
nm x=

m∑
j=1

µ−1
j ρ

2
nj:

Then, in distribution,

W2
nm→ χ2

m�0� under H0

and

W2
nm→ χ2

m

( m∑
j=1

�π0;mj�2
σ2

)
under �3:1�:

The local asymptotic power of these tests may be studied along the same lines
as in Milbrodt and Strasser (1990), page 7. One further possibility would be
to let m → ∞ as n → ∞, as was done, in a different setup, by Eubank and
LaRiccia (1992). Hence, as the sample size increases, deviations with high
frequencies will be discovered eventually.

As Eubank and LaRiccia (1992), page 2072, nicely pointed out, smooth tests
represent a compromise between directional and omnibus tests. To derive such
a directional test in the context of regression, with a composite H0 and F, σ2

unspecified, of course, recall (3.1) again. To motivate the procedure, again
Grenander’s (1952) formula (3.7) will be of great importance. Now, the repre-
sentation (3.3) suggests that each test of H0 versus (3.1), which is based on
R1
n/σn, asymptotically becomes one of testing the simple hypothesis H̃0: No

shift versus H̃1: Shift = π0 in the exponential model defined by (3.7). By the
Neyman–Pearson lemma, the optimal test rejects H̃0 in favor of H̄1 if and
only if

−
∫ 1

0
A�t�

[
R̄1
∞�t� −

π0�t�
2

]
dt ≥ c1

or, equivalently,
∞∑
j=1

�π0;mj��R̄1
∞;mj�

µj
≥ c2:(3.11)
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Under H0, the last series constitutes a zero-mean normal random variable
with variance

γ2 ≡
∞∑
j=1

�π0;mj�2
µj

:

For finite sample size the approximate Neyman–Pearson test for H0 versus
(3.1) is thus given by the critical region

m∑
j=1

�π0;mj�∗ρnj
µj

≥ c;(3.12)

where ρnj is defined in (2.15), m is a proper truncation point and

�π0;mj�∗ =
∫
π∗0�x�mj�Fn�x��Fn�dx�

in which π∗0 results from π0 by replacing the unknown F by Fn. Again some
asymptotic theory may be elaborated for situations, in which m → ∞ as
n → ∞. In the ordinary setup, that is, when one is interested in the dis-
tribution of the X’s rather than regression, tests similar to (3.11) and (3.12)
have been investigated by Schoenfeld (1977, 1980). The notable fact about
our approach is that the optimality as stated, for example, in Theorem 4 of
Schoenfeld (1977), may be derived in a very elegant way from the “functional”
Neyman–Pearson lemma, upon utilizing (3.7).

4. A numerical example. In this section we let M = �m�x; θ�x θ ∈ 2�
with m�x; θ� = θx denoting the one-parameter linear model on the straight
line. Here F will be the uniform distribution on the unit interval. So, A = 1/3
and G�x� = x2/2. The function r in (3.1) will be r�x� = x2 (or a multiple of it).
The shift function in (3.3) then becomes

π0�x� x=
x3

3
− 3

8
x2; 0 ≤ x ≤ 1:

Note that π0 is always less than or equal to 0. Under the sequence of al-
ternatives (3.1), the limit Cramér–von Mises statistic has the orthonormal
decomposition

W2
∞ =

∫ 1

0

[
R̄1
∞�x�

]2
dx =

∞∑
j=1

µjZ
2
j

(in distribution), where the Zj are independent N �αj;1� random variables
with

αj =
∫ 1

0
π0�x�mj�x�dx:
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To compute the null distribution of W2
∞, observe that for δj we obtain

δj = �g;hj� =
√

2
∫ 1

0
x cos

[(
j− 1

2

)
πx

]
dx

=
√

2
�j− 1/2�π

[
�−1�j+1 − 1

�j− 1/2�π

]
:

The matrix Mq is given as

mij =
{−3δiδj; for 1 ≤ i 6= j ≤ q;

1− 3δ2
i ; for 1 ≤ i = j ≤ q:

For W2
∞q, we have to solve the equations

�W2
∞q = �W2

∞(4.1)

and

VarW2
∞q = VarW2

∞:(4.2)

Since

K1�s; t� = min�s; t� − 3
4s

2t2

and

�W2
∞ =

∫ 1

0
K1�t; t�dt = 7

20 ;

VarW2
∞ =

∫ 1

0

∫ 1

0
�K1�s; t��2 dsdt = 5

42 + 9
200 ;

(4.1) and (4.2) become

7
20 =

q∑
j=1

µ̃j + λk

and

1
2

[ 5
42 + 9

200

]
=

q∑
j=1

µ̃2
j + λ2k:

From this

λ =
�1/2��5/42+ 9/200� −∑q

j=1 µ̃
2
j

7/20−∑q
j=1 µ̃j

and

k =
�7/20−∑q

j=1 µ̃j�2

�1/2��5/42+ 9/200� −∑q
j=1 µ̃

2
j

:
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Table 1

x P�W2
∞50 > x� P�W2

∞100 > x�

0.1 0.7318 0.7350
0.2 0.4975 0.4992
0.4 0.2791 0.2798
0.6 0.1708 0.1712
0.8 0.1083 0.1085
1.0 0.0701 0.0702
1.2 0.0460 0.0461
1.4 0.0304 0.0305
1.6 0.0203 0.0203
1.8 0.0136 0.0136
2.0 0.0092 0.0092
2.2 0.0062 0.0062
2.4 0.0042 0.0042

Table 1 presents, for q=50 and q=100, some selected values of ��W2
∞q>x�:

Recall that the null distributions of W2
∞ and W2

∞q do not depend on F for
a continuous F.

Table 2 contains, for α = 0:05 and α = 0:01, the fractiles zα of ��W2
∞q > x�.

In the following we report on a small simulation study, in which indepen-
dent data �Xi;Yi� were generated as follows:

Yi = 5Xi + aX2
i + εi; 1 ≤ i ≤ n:(4.3)

The variable Xi is uniformly distributed on the unit interval and εi is
N �0; σ2� and independent of Xi. For a = 0 the regression function belongs
to the set M of all linear functions on �0;1� (through the origin). The statistic
W2

n has been computed, for sample size n = 400, to test the hypothesis
H0x m ∈ M. The significance levels were 1 − α = 0:95 and 0.99, and H0 was
rejected whenever W2

n ≥ zα with zα from Table 2, with q = 100. This was
repeated 1000 times, for each of the sample situations mentioned in Table 3.
Then the actual percentage of times H0 was rejected was computed and
compared with the nominal level.

We see that, under H0 (i.e., a = 0), the actual percentage of times H0
has been rejected is pretty close to the nominal level. Alternatively, there
is a rapid increase in power as a increases, that is, as the true m deviates
from the hypothetical M. This effect becomes less obvious for large σ2. From

Table 2

P�W2
∞ q > za�= a za�q = 50� za�q = 100�

α = 0:05 1.159915 1.160904
α = 0:01 1.954048 1.955040
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Table 3
Percentage of times H0 was rejected

s2 a a = 0:05 a = 0:01

1 0 5.1% 1.2%
1 1 40.8% 17.4%
1 5 100.0% 100.0%

2 0 4.5% 1.0%
2 1 22.8% 4.4%
2 5 100.0% 97.8%

3 0 5.5% 0.9%
3 1 16.7% 2.2%
3 5 89.3% 67.1%

a statistical point of view this is not unexpected since in this case it is more
difficult to decide whether irregularities in the data are caused either by noise
or by a deviation from M. See also the discussion of the power function β in
the last section.

Similar effects occur if, rather than (4.3), the true m is not linear but,
for example, convex and hence “supported” by a line. Also note that in our
simulation study the X’s were uniformly distributed on the unit interval.
Here the deviation between θx and θx + ax2 is not that obvious for small or
moderately large a’s. If, on the other hand, the distribution of X is supported
by the whole real line and has at least medium tails, the difference between
m and M becomes more obvious resulting in a larger power of the test.

A more extensive simulation study together with a detailed analysis of a
bootstrap approximation will appear elsewhere.

5. Proofs. Our first lemma will be useful for proving the tightness of
�Rn�n≥1.

Lemma 5.1. Let �αi; βi�; 1 ≤ i ≤ n; be i.i.d. square-integrable bivariate
random vectors such that

�αi = 0 = �βi:

Then

�

{[ n∑
i=1

αi

]2[ n∑
j=1

βj

]2}

= n��α2
1β

2
1� + n�n− 1���α2

1���β2
1� + 2n�n− 1��2�α1β1�

≤ n��α2
1β

2
1� + 3n�n− 1���α2

1���β2
1�:

Proof. The equality is hidden in the proof of Theorem 13.1 in Billingsley
(1968), but stated there only for centered zero–one variables. Its extension
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to the general case is straightforward. The inequality follows from Cauchy–
Schwarz. 2

Remark. To make the statement of Lemma 5.1 meaningful, ��α2
1β

2
1� needs

to be finite. By Cauchy–Schwarz this is guaranteed if both α1 and β1 have
finite fourth moments. In tightness proofs, however, it happens quite often
that the above expectation exists under only the assumption that α1 and β1
are square-integrable.

Proof of Theorem 1.1. Recalling

Rn�x� = n−1/2
n∑
i=1

1�Xi≤x��Yi −m�Xi��;

we immediately see that Rn�x� has independent zero-mean summands such
that

Cov�Rn�x1�;Rn�x2�� =
∫ x1∧x2

−∞
σ2�v�F�dv� =K�x1; x2�;

where, as in Section 1,

σ2�v� = Var�Y�X = v�
denotes the conditional variance of Y given X.

Apply the multivariate CLT to show that the finite dimensional distribu-
tions of Rn converge to those of R∞. For tightness, and also for the represen-
tation (1.6), introduce the standard quantile representation

Xi = F−1�Ui�; 1 ≤ i ≤ n;
of Xi in terms of a uniform random variable Ui. Then we have

Rn�x� = R̄n�F�x��;
where

R̄n�u� = n−1/2
n∑
i=1

1�Ui≤u��Yi −m(F−1�Ui��:

Observe that

��Yi�U = u� =m(F−1�u�:
In other words, we may and do assume in the following that F is the uniform
distribution on [0, 1]. For arbitrary 0 ≤ u1 ≤ u ≤ u2 ≤ 1, set

αi = 1�u1<Ui≤u��Yi −m�Ui��
and

βi = 1�u<Ui≤u2��Yi −m�Ui��:
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As to our previous remark, note that αiβi ≡ 0. From Lemma 5.1 we therefore
obtain

�
{
�R̄n�u2� − R̄n�u��2�R̄n�u� − R̄n�u1��2

}
≤ 3

∫ u
u1

σ2�v�dv
∫ u2

u
σ2�v�dv

≤ 3�H�u2� −H�u1��2;
where

H�u� x=
∫ u

0
σ2�v�dv

is a continuous nondecreasing function. According to Theorem 15.7 in Billings-
ley (1968), the proof of Theorem 1.1 is complete. 2

Next we will give the proof for the representation and convergence of R1
n.

Proofs of Theorem 1.2 and Corollary 1.3. Write

R1
n�x� = R̄n�F�x�� − n−1/2

n∑
i=1

1�Xi≤x��m�Xi; θn� −m�Xi; θ0��

= I− II:

The second sum admits the representation

II = n1/2�θn − θ0�Tn−1
n∑
i=1

1�Xi≤x��g�Xi; θni� − g�Xi; θ0��

+ n1/2�θn − θ0�Tn−1
n∑
i=1

[
1�Xi≤x�g�Xi; θ0� −G�x; θ0�

]

+ n1/2�θn − θ0�TG�x; θ0�;
where θni denote proper points between θn and θ0. Apply Assumption 2 and
the SLLN to show that the first two terms are o��1�. From Assumption 1, the
last process is asymptotically equivalent to

n−1/2
n∑
i=1

l�Xi;Yi; θ0�TG�x; θ0�:(5.1)

Convergence of the fidis and computation of the limit covariance are now
straightforward. For a continuous F, since (5.1) is asymptotically C-tight, as
is I by Theorem 1.1, R1

n is also asymptotically C-tight. Apply a quantile trans-
formation to deal with the general case. 2

Proof of Theorem 2.1. The second equality in Theorem 2.1 is trivial in
view of (2.8) and R∞ =

∑∞
j=1 λ

1/2
j ξjlj. For the first, note that both sides are

zero-mean Gaussian processes. Hence it suffices to show that the covariance
function of the series equals (2.5) (with σ2 = 1 andF = uniform distribution on
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[0, 1]). Since ξ1; ξ2; : : : are independent and standard normal, the covariance
of
∑∞
j=1 ξjDj becomes

∞∑
j=1

Dj�s�Dj�t� =
∞∑
j=1

λjlj�s�lj�t� −
∞∑
j=1

λ
1/2
j lj�t�GT�s�A−1δj

−
∞∑
j=1

λ
1/2
j lj�s�GT�t�A−1δj +

∞∑
j=1

GT�t�A−1δjG
T�s�A−1δj:

By Mercer’s theorem, the first series becomes K�s; t�. The second equals
GT�t�A−1G�s�, by (2.12). Similarly for the third. In view of (2.10), the fourth
also equals GT�t�A−1G�s�. The proof is complete. 2

Proof of Theorem 2.2. It is readily checked that M is symmetric and
idempotent. Since ξ consists of independent standard normal coordinates, Mξ
is a zero-mean normal vector with covariance function MMT = M2 = M.
Finally, the equation η =Mξ (in distribution) follows from Theorem 2.1, (2.12)
and the very definition of ξ, η and M. 2

Proof of Theorem 2.3. Assertion (i) follows from Theorem 4.2 on
page 355 and Problem 1 on page 307 of Taylor and Lay (1980). Verifica-
tion of the assumptions for that problem is simple but tedious and will
therefore be omitted. For (ii) and (iii) recall from (2.12) that

G = 1Tλ1/2l:

From this, (2.12) and (i) we obtain (in matrix form)
∫ 1

0
NTl�s�K1�s; t�ds

=NT
∫ 1

0
l�s��s ∧ t�ds−NT

∫ 1

0
l�s�GT�s�ds�1T1�−11Tλ1/2l�t�

=NTλl�t� −NTλ1/21�1T1�−11Tλ1/2l�t�

=NTλ1/2Mλ1/2l�t� =NTNµNTl�t� = µNTl�t�:
This proves that NTl is a set of eigenfunctions with eigenvalues µi, i = 1,
2; : : : . It is easily seen that there are no other eigenvalues. 2

6. Concluding remarks. We would like to end this paper by adding some
comments on possible extensions to a multivariate design. As to the measure-
theoretic motivation, the class of intervals in the definition of I needs to be
replaced by any measure-determining family of sets in the multivariate case.
Theorem 1.1 can be immediately extended to quadrants by verifying the dis-
tributional convergence criteria for multiparameter processes due to Neuhaus
(1971) and Straf (1971). Under the assumption that (in our terms) the design
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variable is independent of the errors, Gaenssler (1994) proved distributional
convergence of Rn when parametrized by a Vapnik–Chervonenkis class. The
primary purpose of the present paper, however, has been not only to provide
invariance principles for Rn and R1

n, but also to find their principal compo-
nents. As we have seen, these components play a crucial role for both creating
new tests and discussing their power properties. For multivariateX’s we could
find corresponding decompositions if we parametrize R1

n by a linearly ordered
class of sets. For example, take all balls with a fixed center. Of course, such a
class would not be measure determining. On the other hand, if we parametrize
by all quadrants respectively points in the sample space of X, with possible
dependences among its components, no explicit decomposition is available so
far. In this context, we are also not aware of any explicit (i.e., not only theoret-
ical) decomposition of the process studied by Durbin, Knott and Taylor (1975)
in the multivariate case.
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