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OPTIMAL TESTS FOR MULTIVARIATE LOCATION BASED
ON INTERDIRECTIONS AND PSEUDO-MAHALANOBIS RANKS

BY MARC HALLIN1 AND DAVY PAINDAVEINE

Université Libre de Bruxelles

We propose a family of tests, based on Randles’ (1989) concept of inter-
directions and the ranks of pseudo-Mahalanobis distances computed with re-
spect to a multivariateM-estimator of scatter due to Tyler (1987), for the mul-
tivariate one-sample problem under elliptical symmetry. These tests, which
generalize the univariate signed-rank tests, are affine-invariant. Depending on
the score function considered (van der Waerden, Laplace, . . .), they allow for
locally asymptotically maximin tests at selected densities (multivariate nor-
mal, multivariate double-exponential, . . .). Local powers and asymptotic rela-
tive efficiencies are derived—with respect to Hotelling’s test, Randles’ (1989)
multivariate sign test, Peters and Randles’ (1990) Wilcoxon-type test, and
with respect to the Oja median tests. We, moreover, extend to the multivariate
setting two famous univariate results: the traditional Chernoff–Savage (1958)
property, showing that Hotelling’s traditional procedure is uniformly dom-
inated, in the Pitman sense, by the van der Waerden version of our tests,
and the celebrated Hodges–Lehmann (1956) “.864 result,” providing, for any
fixed space dimension k, the lower bound for the asymptotic relative effi-
ciency of Wilcoxon-type tests with respect to Hotelling’s.

These asymptotic results are confirmed by a Monte Carlo investigation,
and application to a real data set.

1. Introduction and main assumptions. Denote by (X(n)1 ,X
(n)
2 , . . . ,X

(n)
n )

a sequence of k-dimensional i.i.d. observations with elliptically symmetric density
centered at θ . Our objective is to test the null hypothesis H (n)

0 under which θ is
equal to some given θ0, the elliptically symmetric density remaining otherwise
unspecified.

The classical procedure for this problem is the Hotelling test, which is optimal
under Gaussian densities, and rejects the null hypothesis whenever

n− k
k(n− 1)

T 2(n) := n(n− k)
k(n− 1)

(X̄(n) − θ0)
′(S(n))−1(X̄(n)− θ0),

where X̄(n) := 1
n

∑n
i=1 X(n)i and S(n) := 1

n−1
∑n
i=1(X

(n)
i − X̄(n))(X(n)i − X̄(n))′,

exceeds the (1 − α)-quantile Fk,n−k;1−α of a Fisher distribution with k and n− k
degrees of freedom.
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Many nonparametric methods have been developed, as a reaction to the
Gaussian approach of Hotelling’s test, with the objective of extending to the
multivariate context the classical univariate rank and signed-rank techniques.
Essentially, these methods belong to three main groups. The first of these groups
relies on componentwise rankings [see, e.g., the monograph by Puri and Sen
(1971)], but suffers from a severe lack of invariance with respect to affine
transformations, which has been the main motivation for the other two approaches.
The second group [Möttönen et al. (1995, 1997, 1998); Hettmansperger et al.
(1994, 1997); see Oja (1999) for a recent review] is closely related with the
spatial signs and ranks, and with the so-called Oja median, the third one [Randles
(1989); Peters and Randles (1990); Jan and Randles (1994)] with the concept of
interdirections.

The present paper belongs to this third group. However, in addition to the
robustness and invariance issues discussed in the work by Randles and his
coauthors, we put more emphasis on optimality arguments a la Le Cam–Hájek.
Mainly, we show that locally asymptotically optimal tests can be based on
interdirections complemented by the ranks of pseudo-Mahalanobis distances;
pseudo is used here to emphasize the fact that distances are taken with respect
to an estimated scatter matrix—not necessarily the empirical covariance matrix,
as in classical Mahalanobis distances. The Le Cam theory, in addition, allows for
computing local powers and asymptotic relative efficiencies.

Hotelling’s statistic, as a quadratic form in the observed mean, can be expressed
as a sum of scalar products (i.e., moduli and cosines) between couples of
observations. Our test statistic (5) is also a quadratic form, but involving ranks
of moduli, and invariant evaluation of cosines based on Randles’ interdirections.
While sharing Hotelling’s strict affine invariance property, our procedure offers
a number of advantages:

(i) broader validity (even in the absence of second order moments),
(ii) better robustness features,

(iii) increased power (see the Chernoff–Savage property in Proposition 6).

As in Peters and Randles (1990) and Jan and Randles (1994), we throughout
assume that the common density f of the observations satisfies the following
assumption.

ASSUMPTION (A1). (Elliptical symmetry.) There exist θ ∈ R
k , a sym-

metric positive definite matrix � and a function f : R+
0 → R

+
0 such that∫ ∞

0 rk−1f (r) dr <∞ and

f (x; θ,�, f ) := ck,f 1

(det�)1/2
f (‖x‖θ ,�), x ∈ R

k,(1)

where ‖x‖θ ,� := ((x − θ)′�−1(x − θ))1/2 denotes the distance between x and θ
in the metric associated with �. The constant ck,f is the normalization factor
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(ωk µk−1;f )−1, where ωk stands for the (k − 1)-dimensional Lebesgue measure
of the unit sphere Sk−1 ⊂ R

k and µ�;f := ∫ ∞
0 r�f (r) dr .

Note that � need not be the covariance matrix of the observations; moreover,
� and f are only identified up to an arbitrary scale factor. This will not be
a problem since we just need the multivariate scatter matrix c� (for some arbitrary
c > 0), not � itself [see Assumption (A4) below].

Whenever we consider Hotelling’s test, or more generally, whenever we need
finite second-order moments, Assumption (A1) has to be strengthened into the
following one:

ASSUMPTION (A1′). Same as Assumption (A1), but we further assume that
µk+1;f <∞.

The function f appearing in (1) will be called “radial density,” though
it does not necessarily integrate to one. This terminology is justified by the
fact that if a random vector X has density f (·; θ,�, f ), then ‖�−1/2(X −
θ)‖, where �1/2 denotes an arbitrary square root of �, has density f̃k(r) :=
(µk−1;f )−1rk−1f (r)I[r>0]. It should be stressed that �1/2 is defined up to
an orthogonal transformation, so that we always may assume, without loss of
generality, that �−1/2(X(n)1 − θ)/‖�−1/2(X(n)1 − θ)‖ is of the form (1,0, . . . ,0)′.
In the sequel, F̃k stands for the distribution function associated with f̃k .

The hypothesis under which the observations have joint density
∏n
i=1 f (X

(n)
i ; θ,

�, f ) will be denoted as H (n)(θ,�, f ). We also denote by H (n)(θ ,�, ·),
H (n)(θ , ·, f ) and H (n)(θ , ·, ·) the hypotheses

⋃
f H (n)(θ ,�, f ),

⋃
� H (n)(θ ,

�, f ) and
⋃

�

⋃
f H (n)(θ ,�, f ), respectively, where unions are taken over the

largest sets that are compatible with the assumptions. Under this notation, the
testing problem we are interested in is

H (n)
0 = H (n)(θ0, ·, ·),

H (n)
1 = ⋃

θ �=θ0

H (n)(θ , ·, ·).(2)

Our approach is based on the local asymptotic normality (LAN) structure, for
fixed � and f , of the family of densities of the form (1). LAN of course requires
some further regularity assumptions on the radial density f , a neat statement of
which calls for some clarification of the concept of quadratic mean differentiability
in a multivariate context.

Consider the measure space (�,Bk�,λ), where λ is some measure on the
open subset � ⊂ R

k equipped with its Borel σ -field B
k
�. Denote by L2(�,λ)

the space of measurable functions h :�→ R satisfying
∫
�[h(x)]2 dλ(x) <∞.
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In particular, consider the space L2(R+
0 ,µ�) of square-integrable functions w.r.t.

the Lebesgue measure with weight r� on R
+
0 , that is, the space of measurable

functions h : R+
0 → R satisfying

∫ ∞
0 [h(r)]2r� dr <∞. Recall that g ∈ L2(�,λ)

admits a weak partial derivative Ti w.r.t. to the ith variable iff∫
�
g(x) ∂iϕ(x) dx = −

∫
�
Ti(x) ϕ(x) dx,

for all functions ϕ ∈ C∞
0 (�), that is, for all infinitely differentiable (in the

classical sense) compactly supported function over �. If Ti exists for all i, the
gradient T := (T1, . . . , Tk) is also called the derivative of g in the sense of
distributions in L2(�,λ). If, moreover, T itself is in L2(�,λ), then g belongs
toW 1,2(�,λ), the Sobolev space of order 1 on L2(�,λ). Equipped with the norm
‖g‖W 1,2(�,λ) := (‖g‖2

L2(�,λ)
+ ∑k

i=1 ‖Ti‖2
L2(�,λ)

)1/2, W 1,2(�,λ) is a Banach
space [see Adams (1975), Chapter 3, page 44 for details]. For the sake of
simplicity, we will write L2(�) and W 1,2(�), when λ is the Lebesgue measure
on �.

The minimal assumption we are making on the radial density f is:

ASSUMPTION (A2). The square root f 1/2 of the radial density f is in
W 1,2(R+

0 ,µk−1); denote by (f 1/2)′ its weak derivative in L2(R+
0 ,µk−1).

The following result, which elucidates some aspects of quadratic mean
differentiablity in this multivariate context, shows that Assumption (A2) is strictly
equivalent to the quadratic mean differentiability of x �→ f 1/2(‖x‖). Its advantage
over the latter, (involving f 1/2 as a function over R

k) is that it treats f 1/2 as a
function defined over R

+
0 .

PROPOSITION 1. The function g : x �→ h(‖x‖) is differentiable in quadratic
mean over R

k if and only if h ∈W 1,2(R+
0 ,µk−1). In that case, the quadratic mean

gradient Dg(x) can be taken as h′(‖x‖)x/‖x‖ in L2(Rk), where h′ stands for the
weak derivative of h in L2(R+

0 ,µk−1).

The proof of this proposition, which is of independent interest, is given in
Appendix A.

Letting ϕf := −2 (f
1/2)′
f 1/2 , Assumption (A2) ensures the finiteness of the radial

Fisher information Ik,f := ∫ 1
0 ϕ

2
f (F̃

−1
k (u)) du. Under this form, (A2) will be

sufficient for LAN. Whenever ranks come into the picture and ϕf is to be used
as a score-generating function, we will consider the following, slightly stronger
version of Assumption (A2):

ASSUMPTION (A3). Same as (A2) but, in addition, ϕf (u) satisfies∫ 1
0 |ϕf (F̃−1

k (u))|2+δ du <∞ for some δ > 0, is continuous, and can be expressed
as the difference of two monotone increasing functions.
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Assumption (A2) unfortunately is not easy to check; the following sufficient
condition brings it back to more familiar univariate concepts, while covering most
cases of practical interest.

ASSUMPTION (A2′). The radial density f is absolutely continuous, with a.e.
derivative f ′, and (f 1/2)′ := f ′

2f 1/2 is in L2(R+
0 ,µk−1).

Finally, the matrix � in practice is not known, and has to be estimated from the

observations. We assume that a sequence of statistics �̂
(n)

is available, with the
following properties.

ASSUMPTION (A4). The sequence �̂
(n)

is invariant under permutations and

reflections with respect to the origin in R
k of the observations;

√
n(�̂

(n) − c�)
is OP(1) under H (n)(0,�, f ) for some c > 0. The corresponding pseudo-

Mahalanobis distances (X(n)
′

i (�̂
(n)
)−1X(n)i )

1/2 are quasi-affine-invariant in the

sense that, if Y(n)i = MX(n)i for all i, where M is an arbitrary nonsingular k × k
matrix,

(
Y(n)

′
i (�̂

(n)

y )
−1Y(n)i

)1/2 = d × (
X(n)

′
i (�̂

(n)

x )
−1X(n)i

)1/2
,

for some positive scalar d that may depend on M and the sample (X(n)1 , . . . ,X
(n)
n ),

but not on index i.

Note that quasi-affine-invariance of pseudo-Mahalanobis distances implies
strict affine-invariance of their ranks.

If �̂
(n)

is computed from the residuals X(n)1 − θ0, . . . ,X
(n)
n − θ0, Assump-

tion (A4) also yields a sequence of estimators for c� that is
√
n-consistent un-

der H (n)(θ0,�, f ), invariant under the permutations and reflections (with respect
to θ0) of the observations, and defining pseudo-Mahalanobis distances between
X(n)i and θ0 that are quasi-invariant under linear transformations acting on the
residuals. For the sake of simplicity, let θ0 = 0 in the rest of this section.

Under Assumption (A1′), f has finite second moments, and we may use

for �̂
(n)

the empirical covariance matrix n−1 ∑n
i=1 X(n)i (X

(n)
i )

′, which is consistent
for Cov[X] = µk+1;f

kµk−1;f �. Pseudo-Mahalanobis distances then coincide with the
classical ones, which are of course strictly affine-invariant.

If [as in Assumption (A1)] no assumption is made about the moments of the
radial density, the empirical covariance matrix may not be root-n consistent. Other
affine-equivariant estimators of scatter then are to be considered, such as the
following one, which was proposed by Tyler (1987). For the k-dimensional sample
(X(n)1 ,X

(n)
2 , . . . ,X

(n)
n ), define the k×k matrix A(n) as the [unique for n > k(k−1);
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see Tyler (1987)] upper triangular matrix with positive diagonal elements and a “1”
in the upper left corner that satisfies

1

n

n∑
i=1

(
A(n)X(n)i

‖A(n)X(n)i ‖

)(
A(n)X(n)i

‖A(n)X(n)i ‖

)′
= 1

k
Ik.(3)

This matrix A(n) is such that the covariance structure of the n-tuple(
A(n)X(n)1

‖A(n)X(n)1 ‖ , . . . ,
A(n)X(n)n

‖A(n)X(n)n ‖

)

is that of a sample that is uniformly distributed on the unit sphere Sk−1. Randles
showed that, for any nonsingular k × k matrix M, letting Y(n)i = MX(n)i for all i,

M′(A(n)y )
′A(n)y M = d(A(n)x )

′A(n)x

for some positive scalar d that may depend on M and on the sample (X(n)1 , . . . ,

X(n)n ) [see Randles (2000)]. This shows that, if we take �̂
(n)

Tyl := [(A(n))′A(n)]−1,
the resulting pseudo-Mahalanobis distances are quasi-affine-invariant in the sense
of Assumption (A4). See Tyler (1987) or Randles (2000) for the consistency

properties of �̂
(n)

Tyl, and for a performant iterative computation scheme.

2. Local asymptotic normality, parametric optimality and group invari-
ance.

2.1. Local asymptotic normality (LAN). Local asymptotic normality, for
given � and f , takes the following form.

PROPOSITION 2. Assume that Assumptions (A1) and (A2) hold. Let
d
(n)
i (θ ,�) := ‖X(n)i ‖θ ,� and U(n)i (θ,�) := �−1/2(X(n)i − θ)/d

(n)
i (θ,�) for all

i = 1, . . . , n. Denote by (τ (n)), τ (n) ∈ R
k, an arbitrary sequence such that

supn(τ
(n))′τ (n) <∞. Then, the logarithm of the likelihood ratio associated with

the sequence of local alternatives H (n)(θ + n−1/2τ (n),�, f ) with respect to
H (n)(θ ,�, f ) is such that

L
(n)

θ+n−1/2τ (n)/θ;�,f (X
(n))= (τ (n))′�(n)�,f (θ)− 1

2 (τ
(n))′��,f τ (n)+ oP(1),

as n→ ∞, under H (n)(θ,�, f ), with the central sequence

�
(n)
�,f (θ) := n−1/2

n∑
i=1

ϕf
(
d
(n)
i (θ ,�)

)
�−1/2U(n)i (θ ,�),

and ��,f := 1
k
Ik,f�−1. Moreover, �

(n)
�,f (θ), still under H (n)(θ,�, f ), is

asymptotically Nk(0,��,f ).
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PROOF. The proof consists in checking that the assumptions of Swensen
[(1985), Lemma 1] are satisfied under Assumptions (A1) and (A2). Most of
them however follow quite routinely from classical arguments once it is shown
that x �→ f 1/2(‖x‖) is differentiable in quadratic mean. This is an immediate
consequence of Proposition 1, which we prove in Appendix A. �

2.2. Parametric optimality. The form of locally and asymptotically optimal
testing procedures for testing θ = θ0 under specified � and f readily follows
from LAN [see Le Cam (1986), Section 11.9]. The test rejecting H (n)(θ0,�, f )

whenever the quadratic statistic

Q
(n)
�,f (θ0) := �

(n)′
�,f (θ0)�

−1
�,f�

(n)
�,f (θ0)

= k

nIk,f

n∑
i,j=1

ϕf
(
d
(n)
i (θ0,�)

)
ϕf

(
d
(n)
j (θ0,�)

)

× (
U(n)i (θ0,�)

)′U(n)j (θ0,�)

exceeds the (1 − α)-quantile χ2
k,1−α of a chi-square distribution with k de-

grees of freedom is locally asymptotically maximin at asymptotic level α, for
H (n)(θ0,�, f ) under fixed � and f .

2.3. Group invariance, interdirections and pseudo-Mahalanobis ranks. In this
section, we briefly review the invariance properties of the problem under study,
and introduce the invariant statistics—interdirections and (pseudo-)Mahalanobis
ranks—to be used in the sequel. Denote by Z(n)i (θ,�) (i = 1, . . . , n) the residuals

�−1/2(X(n)i − θ). Note that, under H (n)(θ,�, ·), the vectors U(n)i (θ ,�) =
Z(n)i (θ,�)/‖Z(n)i (θ ,�)‖ are independent and uniformly distributed over the unit

sphere Sk−1. The notation Ẑ(n)i (θ) will be used for the residuals Z(n)i (θ , �̂)
associated with the estimator �̂ considered in (A4).

The interdirection c(n)ij (θ) associated with the pair of residuals (Ẑ(n)i (θ), Ẑ
(n)
j (θ))

in the n-tuple of residuals Ẑ(n)1 (θ), . . . , Ẑ
(n)
n (θ) has been defined [Randles (1989)]

as the number of hyperplanes in R
k passing through the origin and k − 1 out

of the n − 2 points Ẑ(n)1 (θ), . . . , Ẑ
(n)
i−1(θ), Ẑ(n)i+1(θ), . . . , Ẑ

(n)
j−1(θ), Ẑ

(n)
j+1(θ), . . . ,

Ẑ(n)n (θ), that are separating Ẑ(n)i (θ) and Ẑ(n)j (θ): obviously, 0 ≤ c(n)ij (θ) ≤
(n−2
k−1

)
.

Interdirections are invariant under linear transformations, so that they can be
computed from the residuals Ẑ(n)i just as easily as from the residuals Z(n)i , or from

the centered observations X(n)i − θ themselves.
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For the same reasons as in Randles (1989), we rather consider the normalized
interdirections

p
(n)
ij (θ) :=



c
(n)
ij (θ)+ d(n)k( n

k−1

) , if i �= j ,

0, if i = j ,

where d(n)k := 1
2 [( n
k−1

)−(n−2
k−1

)]. Interdirections provide affine-invariant estimations

of the Euclidean angles between residuals Z(n)j (θ ,�), that is, they estimate the
quantities

π−1 arccos
[(

U(n)i (θ ,�)
)′U(n)j (θ,�)].

The following consistency result is stated in Randles (1989), Peters and Randles
(1990) and Jan and Randles (1994). We restate it here, with a proof based on
a U -statistic representation.

LEMMA 1. Let (X1,X2, . . .) be an i.i.d. process of k-variate random vectors
with spherically symmetric density. For any fixed v and w in R

k , denote by
α(v,w) := arccos(v′w/(‖v‖‖w‖)) the angle between v and w, and by c(n)(v,w)
the interdirection associated with v and w in the sample X1,X2, . . . ,Xn. Then,
c(n)(v,w)/

( n
k−1

)
converges in quadratic mean to π−1α(v,w) as n→ ∞.

PROOF. The lemma is trivial for k = 1, and readily follows from the law
of large numbers for k = 2. For k > 2, define Q := {q = (i1, i2, . . . , ik−1) | 1 ≤
i1 < i2 < · · · < ik−1 ≤ n} and, as in Oja (1999), let eq be the k-vector whose
components are the cofactors of x in the (k × k)-array (Xi1Xi2 · · ·Xik−1 x). Note
that eq is orthogonal to the hyperplane that goes through Xi1,Xi2, . . . ,Xik−1 and
the origin in R

k . With this notation,(
n

k− 1

)−1

c(n)(v,w)=
(
n

k − 1

)−1 ∑
q∈Q

g(Xi1, . . . ,Xik−1),

where g(Xi1, . . . ,Xik−1) := (1 − sgn(eq
′v)sgn(eq

′w))/2 is symmetric in its ar-
guments [sgn(z) := I [z > 0] − I [z < 0] stands for the sign function]. Thus,
c(n)(v,w)/

( n
k−1

)
is the U -statistic with kernel g and expectation E[g(Xi1 , . . . ,

Xik−1)]. Since E[g2(Xi1, . . . ,Xik−1)] is finite, this implies that c(n)(v,w)/
( n
k−1

)
converges in quadratic mean to E[g(Xi1 , . . . ,Xik−1)] as n→ +∞.

In order to complete the proof, we now show that E[g(Xi1, . . . ,Xik−1)] =
π−1α(v,w). Consider the canonical basis {e1, e2, . . . , ek} in R

k . Without loss
of generality, we may suppose that v = e1 and that w = λe1 + µe2 for
some λ,µ ∈ R. Note that E[g(Xi1, . . . ,Xik−1)] = P[sgn(eq

′v) = −sgn(eq
′w)] =

P[((eq)1, (eq)2) ∈A], where A is the hatched region of R
2 ⊂ R

k in Figure 1.
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FIG. 1. Proof of Lemma 1.

Consider some invertible k × k matrix M and denote by eq
-(M) the vec-

tor eq computed from the transformed observations MXi1, . . . ,MXik−1 . Then, for
all k-dimensional vectors x, we have eq

-(M)′x = det(MXi1, . . . ,MXik−1,x)=
(det M)eq

′M−1x, so that eq
-(M) = (det M)(M−1)′eq (incidently, note that this

proves that interdirections are affine-invariant). This entails that ((eq)1, (eq)2) is
spherically symmetric in R

2. Indeed, letting O denote an arbitrary orthogonal 2×2
matrix with det O = 1, define

Õ :=
(

O 0
0 Ik−2

)
,

where Ik−2 denotes the (k − 2)-dimensional identity matrix. Then, from the
spherical symmetry of the Xi’s, it is clear that eq =d eq

-(Õ) = Õeq, so that
((eq)1, (eq)2) =d O((eq)1, (eq)2) (where =d stands for equality in distribution).
This proves that ((eq)1, (eq)2) is indeed spherically symmetric, which implies that
P[((eq)1, (eq)2) ∈A] = π−1α(v,w). �

The ranks of pseudo-Mahalanobis distances between the observations and their
center θ are the other main tool used in this paper. Let R(n)i (θ,�) denote the

rank of d(n)i (θ ,�) among the distances d(n)1 (θ,�), . . . , d
(n)
n (θ,�); write R̂(n)i (θ)

and d̂ (n)i (θ) for R(n)i (θ , �̂) and d(n)i (θ , �̂), respectively, where �̂ is the estimator

considered in (A4). It will be convenient to refer to R̂(n)i (θ) as the pseudo-

Mahalanobis rank of X(n)i − θ . The following result is proven in Peters and
Randles (1990).

LEMMA 2 [Peters and Randles (1990)]. For all i ∈ N, (R̂(n)i (θ)−R(n)i (θ ,�))/
(n+ 1) is oP(1) as n→ ∞, under H (n)(θ,�, ·).
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For each � and n, consider the group of transformations G(n)� = {G(n)g }, acting

on (Rk)n, such that G
(n)
g (X

(n)
1 , . . . ,X

(n)
n ) := (θ +g(d(n)1 (θ,�))�

1/2U(n)1 (θ,�), . . . ,

θ + g(d(n)n (θ ,�))�1/2U(n)n (θ,�)), where g : R+ → R
+ is continuous, monotone

increasing and such that g(0)= 0 and limr→∞ g(r)= ∞. The group G(n)� is a gen-
erating group for the submodel H (n)(θ,�, ·). Interdirections clearly are invariant
under the action of G(n)� , and so are the ranks R(n)i (θ,�). Lemma 2 thus entails

asymptotic invariance of the pseudo-Mahalanobis ranks R̂(n)i (θ)/(n+ 1).
Another group of interest is the group of affine transformations acting on

(Rk)n, more precisely, the group G(n) = {G(n)M }, where |M|> 0, and G
(n)
M (X

(n)
1 , . . . ,

X(n)n ) := (θ + M(X(n)1 − θ), . . . , θ + M(X(n)n − θ)). This group of affine trans-
formations is a generating group for the submodel H (n)(θ, ·, f ); interdirections
and pseudo-Mahalanobis ranks clearly are invariant for this group [see Assump-
tion (A4)].

3. Test statistics and their asymptotic distributions. The testing prob-
lem (2) under study inherits from the groups G(n)� and G(n) a strong invariance
structure. Classical invariance arguments in such situations suggest considering
invariant testing procedures, based on test statistics which are measurable with
respect to maximal invariants. A maximal invariant for G(n)� is(

U(n)1 (θ ,�), . . . ,U
(n)
n (θ,�),R

(n)
1 (θ,�), . . . ,R

(n)
n (θ,�)

)
or equivalently,(

U(n)1 (θ,�),
(
U(n)i (θ ,�)

)′U(n)j (θ ,�),R(n)1 (θ ,�), . . . ,R
(n)
n (θ,�)

)
(1 ≤ i < j ≤ n),

where, however, U(n)1 (θ,�) can be dropped due to the fact [see the comment
after Assumption (A1′)] that �1/2 is only defined up to an arbitrary orthogonal
transformation. Now, in practice,((

U(n)i (θ,�)
)′U(n)j (θ,�),R(n)1 (θ,�), . . . ,R

(n)
n (θ,�)

)
(1 ≤ i < j ≤ n)(4)

is not a statistic, since � is not specified under H (n)(θ , ·, ·), and we propose:

(i) replacing (U(n)i (θ,�))
′U(n)j (θ,�) with an estimate based on Randles’

interdirections, which are both G(n)- and G(n)� -invariant (irrespective of the actual
value of �);

(ii) replacing the ranks R(n)i (θ ,�) with the estimated ranks R̂(n)i (θ). These

pseudo-Mahalanobis ranks are strictly affine-invariant, and “almost” G(n)� -invariant
in the sense that they are asymptotically equivalent to the genuinely invariant ones
in (4).
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3.1. A class of test statistics based on interdirections and pseudo-Mahalanobis
ranks. Throughout, let f- : R+

0 → R
+
0 satisfy Assumption (A3). The test statistics

we are considering are of the form

Q
(n)
f-
(θ0)

:= k

nE[J 2
k,f-
(U)]

n∑
i,j=1

Jk,f-

(
R̂
(n)
i (θ0)

n+ 1

)
Jk,f-

( R̂(n)j (θ0)

n+ 1

)
cos

(
πp
(n)
ij (θ0)

)
,

(5)

where U is uniform over ]0,1[ and Jk,f- := ϕf- ◦F̃−1
-k . Such statistics can be

considered as multivariate extensions of the traditional linear signed rank statistics;
the function f- determining the scores will be called the target radial density.
Since Q(n)f- (θ0) is measurable with respect to interdirections and the pseudo-

Mahalanobis ranks, it is invariant under the group of affine transformations of R
k ,

hence distribution-free under H (n)(θ0, ·, f ). Moreover, we shall see thatQ(n)f- (θ0)

is asymptotically equivalent to a statistic which is strictly invariant under G(n)� , so

that Q(n)f- (θ0) is asymptotically distribution-free under H (n)(θ0, ·, ·).
Let us give a few examples. Letting f-(r) := exp(−r) (double-exponential

target density), we obtain Randles’ multivariate sign statistic

k

n

n∑
i,j=1

cos
(
πp
(n)
ij (θ0)

)
,

which, for k = 1, reduces to the traditional sign test statistic and, for k = 2, to the
bivariate Blumen test statistic [Blumen (1958)]; see Randles (1989).

The score functions Jk,f-(u) = au, u ∈]0,1[, a > 0, yield the Wilcoxon type
statistic

3k

n(n+ 1)2

n∑
i,j=1

R̂
(n)
i (θ0)R̂

(n)
j (θ0) cos

(
πp
(n)
ij (θ0)

)
,(6)

which is asymptotically equivalent to the statistic considered by Peters and
Randles (1990). The latter reduces, for k = 1, to Wilcoxon’s traditional signed
rank statistic.

Finally, f-(r) = exp(−r2/2) characterizes a statistic of the van der Waerden
type,

1

n

n∑
i,j=1

√√√√
1−1
k

(
R̂
(n)
i (θ0)

n+ 1

)√√√√
1−1
k

(R̂(n)j (θ0)

n+ 1

)
cos

(
πp
(n)
ij (θ0)

)
,(7)

where1k stands for the chi-square distribution function with k degrees of freedom.
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3.2. Asymptotic behavior of statistics based on interdirections and pseudo-
Mahalanobis ranks. We now turn to the asymptotic behavior of Q(n)f- (θ0)

under the null hypotheses considered and contiguous alternatives. The following
asymptotic representation is the key to all subsequent results.

LEMMA 3. Assume that (A1) through (A4) hold. Then, under H (n)(θ0,�, f ),

Q
(n)
f-
(θ0)= Q̃(n)f-;f (θ0)+ oP(1),

where

Q̃
(n)
f-;f (θ0) := k

nE[J 2
k,f-
(U)]

n∑
i,j=1

Jk,f-
(
F̃k

(
d
(n)
i (θ0,�)

))
Jk,f-

(
F̃k

(
d
(n)
j (θ0,�)

))

× (
U(n)i (θ0,�)

)′U(n)j (θ0,�).

Since Q̃(n)f-;f (θ0), contrary to Q(n)f- (θ0), is a quadratic form involving sums
of independent summands, its asymptotic distribution is easily obtained. Let
Ck(f1, f2) := ∫ 1

0 Jk,f1(u) Jk,f2(u) du, where Jk,fl := ϕfl ◦F̃
−1
lk (l = 1,2); for

simplicity, we also write Ck(f ) instead of Ck(f,f ). We then have the following
results.

PROPOSITION 3. Assume that (A1) through (A4) hold. Then,Q(n)f- (θ0) is as-

ymptotically chi-square with k degrees of freedom under H (n)(θ0, ·, ·), and asymp-
totically noncentral chi-square, still with k degrees of freedom but with noncentral-
ity parameter τ ′�−1τC2

k (f-, f )/kCk(f-), under H (n)(θ0 + n−1/2τ ,�, f ).

PROPOSITION 4. The sequence of tests φ(n)f- (θ0) rejecting the null hypothe-

sis (2) whenever Q(n)f- (θ0) exceeds the (1 − α)-quantile χ2
k,1−α of a chi-square

distribution with k degrees of freedom:

(i) has asymptotic level α, and
(ii) is locally asymptotically maximin, at asymptotic level α, for H (n)(θ0, ·, ·)

against alternatives of the form
⋃

θ �=θ0
H (n)(θ, ·, f-).

All proofs are given in Appendix B. In view of the asymptotic representation
result of Lemma 3, note that it is sufficient to show thatQ(n)f- (θ0) is asymptotically

equivalent, under H (n)(θ0,�, f-), to the parametrically locally asymptotically
maximin test statistic

Q
(n)
�,f-
(θ0) := �

(n)′
�,f-
(θ0)�

−1
�,f-

�
(n)
�,f-
(θ0).
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3.3. Asymptotic relative efficiencies. We now turn to asymptotic relative
efficiencies of the tests φ(n)f- with respect to Hotelling’s traditional T 2 test.

PROPOSITION 5. Assume that Assumptions (A1′) through (A4) hold, and let
Dk(f ) := E[(F̃−1

k (U))
2]. Then, the asymptotic relative efficiency of φ(n)f- with

respect to Hotelling’s test, under radial density f , is

AREk,f (φ
(n)
f-
/T 2)= Dk(f )

k2

C2
k (f-, f )

Ck(f-)
.

These ARE values directly follow as the ratios of the corresponding noncentral-
ity parameters in the asymptotic distributions of φ(n)f- and T 2 under local alterna-
tives. See Appendix B for a detailed proof.

Like in the univariate case [see Chernoff and Savage (1958)], the van der Waer-
den procedure is uniformly more efficient than the parametric Gaussian one—here,
the Hotelling test. More precisely, we establish the following generalization of
Chernoff and Savage’s classical result.

PROPOSITION 6. Denote by φ(n)vdW the van der Waerden test, based on the test
statistic (7). For any f satisfying Assumptions (A1′) and (A2),

AREk,f (φ
(n)
vdW/T

2)≥ 1,

where equality holds if and only if f is Gaussian.

The proof relies on an extension of the variational argument used in Chernoff
and Savage (1958); see Appendix C.

Proposition 5 also allows for extension of the famous Hodges–Lehmann “.864
result” [Hodges and Lehmann (1956)] by computing, for any dimension k, the
lower bound for the asymptotic relative efficiency of the Wilcoxon procedure
[namely, the test based on (6)] with respect to Hotelling’s test. More precisely,
we prove the following in Appendix C.

PROPOSITION 7. Denote by φ(n)W the Wilcoxon rank-based procedure based
on the test statistic (6). Then, if the infimum is taken over all radial densities f
satisfying Assumptions (A1′) and (A2),

inf
f

AREk,f (φ
(n)
W /T

2)= 81

500

(
√

2k− 1 + 1)5

k2(
√

2k− 1 + 5)
.(8)

The sequence of lower bounds (8) is monotonically decreasing for k ≥ 2; as
the dimension k tends to infinity, it tends to 81/125 = 0.648. Some numerical
values are presented in Table 1. The reader is referred to the proof of Proposition 7
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FIG. 2. Plot of the values of the lower bound (8) for the asymptotic relative efficiency of
the Wilcoxon rank-based procedure with respect to Hotelling’s T 2 test, for space dimension
k = 1,2, . . . ,30. The horizontal line corresponds to the asymptotic value 0.648 of this lower bound
as k→ ∞.

in Appendix C for an explicit form of the densities at which this infimum is
reached.

In order to evaluate the asymptotic performance of the proposed tests, we now
consider the particular case of a multivariate Student density with ν- degrees of
freedom. Recall that a k-dimensional random vector X is multivariate Student with
ν degrees of freedom if and only if there exist a vector θ ∈ R

k and a symmetric
k × k positive definite matrix � such that the density of X can be written as

8((k+ ν)/2)
(πν)k/28(ν/2)

(det�)−1/2fν(‖x‖θ ,�),

with fν(r) := (1 + r2/ν)−(k+ν)/2. Fix ν- > 2, and consider the test φ(n)fν- associated

with the radial density fν- . Since ϕfν- (r) = (k + ν-)r/(ν- + r2), and since the
distribution of ‖X‖2/k under H (n)(0, Ik, fν-) is Fisher–Snedecor with k and ν-

TABLE 1
Some numerical values of the lower bound (8) for the asymptotic relative efficiency of

the Wilcoxon rank-based procedure with respect to Hotelling’s T 2 test, for various
values of the space dimension k

k 1 2 3 4 6 10 +∞
inffAREk,f (φ

(n)
W /T

2) 0.864 0.916 0.883 0.853 0.811 0.765 0.648
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TABLE 2
AREs of some φ(n)f- tests with respect to Hotelling, under various k-dimensional

Student (3, 4, 6, 8, 10, 15 and 20 degrees of freedom) and normal densities,
for various values of k

Degrees of freedom of the underlying t density

k f- 3 4 6 8 10 15 20 ∞
1 t3 2.000 1.417 1.124 1.025 0.975 0.916 0.890 0.820

t6 1.926 1.414 1.167 1.087 1.049 1.005 0.985 0.936
t15 1.786 1.345 1.143 1.083 1.055 1.026 1.014 0.987
N 1.639 1.257 1.093 1.048 1.030 1.013 1.007 1.000

2 t3 2.143 1.488 1.157 1.045 0.987 0.920 0.889 0.807
t6 2.067 1.484 1.200 1.107 1.062 1.009 0.986 0.927
t15 1.910 1.407 1.173 1.102 1.068 1.032 1.018 0.984
N 1.729 1.301 1.112 1.059 1.037 1.016 1.009 1.000

3 t3 2.250 1.544 1.186 1.063 1.000 0.926 0.892 0.799
t6 2.174 1.540 1.227 1.124 1.073 1.014 0.988 0.919
t15 2.006 1.458 1.198 1.118 1.080 1.038 1.021 0.981
N 1.798 1.336 1.128 1.069 1.043 1.019 1.011 1.000

4 t3 2.333 1.589 1.210 1.079 1.012 0.932 0.896 0.794
t6 2.258 1.584 1.250 1.139 1.083 1.019 0.990 0.913
t15 2.084 1.499 1.220 1.132 1.090 1.044 1.025 0.979
N 1.853 1.364 1.142 1.077 1.049 1.022 1.012 1.000

6 t3 2.455 1.657 1.248 1.106 1.033 0.945 0.904 0.788
t6 2.382 1.652 1.286 1.163 1.101 1.028 0.995 0.905
t15 2.202 1.564 1.254 1.155 1.107 1.054 1.031 0.975
N 1.935 1.408 1.164 1.092 1.059 1.027 1.016 1.000

10 t3 2.600 1.741 1.299 1.145 1.065 0.968 0.922 0.785
t6 2.534 1.736 1.333 1.196 1.126 1.043 1.005 0.896
t15 2.355 1.649 1.302 1.188 1.132 1.068 1.040 0.969
N 2.041 1.467 1.195 1.112 1.074 1.035 1.021 1.000

degrees of freedom, the test statistic Q(n)fν- (θ0) is

(k + ν-)(k + ν-+ 2)

n

n∑
i,j=1

T
(n)
i (θ0)

ν- + (T (n)i (θ0))2

T
(n)
j (θ0)

ν- + (T (n)j (θ0))2
cos

(
πp
(n)
ij (θ0)

)
,

where, denoting by Gk,ν the Fisher–Snedecor distribution function (k and ν
degrees of freedom),

T
(n)
i (θ0) :=

√√√√
kG−1

k,ν-

(
R̂
(n)
i (θ0)

n+ 1

)
.

Table 2 reports the AREs of the tests φ(n)f3
, φ(n)f6

, φ(n)f15
, as well as those of the

van der Waerden tests φ(n)vdW . All AREs are taken with respect to Hotelling,
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FIG. 3. Plot of the values of the limiting AREs, as the dimension k of the observation space tends

to infinity, of φ(n)fν-
with respect to Hotelling under the corresponding k-dimensional Student, for

2< ν- ≤ 18; see (9).

under k-variate Student densities with various degrees of freedom ν, including
the Gaussian density obtained for ν = ∞. This allows for an investigation of the
relative performances of the tests under study as a function of the tails of radial
densities.

Inspection of Table 2 shows that, as expected, φ(n)fν- (respectively, φ(n)vdW )
performs best when the underlying density is Student with ν- degrees of
freedom (respectively, normal). All tests however exhibit rather good performance,
particularly under heavy tailed densities. Note that the van der Waerden test
indeed performs uniformly better than Hotelling, which provides an empirical
confirmation of Proposition 6.

Since Dk(fν-)= kν-/(ν- − 2), we easily obtain that

AREk,fν- [φ(n)fν- /T 2] = (k+ ν-)ν-
(k + ν- + 2)(ν-− 2)

,(9)

a quantity that increases with k, and tends to ν-/(ν-−2) as k→ ∞. The advantage
of φ(n)fν- over Hotelling thus increases with the dimension k of the observations.
Table 3 presents some of these limiting ARE values.

TABLE 3
Limiting AREs, as the dimension k of the observation space tends to infinity, of some φ(n)fν-

tests with

respect to Hotelling, under the corresponding k-dimensional Student and normal densities; see (9)

Degrees of freedom of the underlying t density

3 4 5 6 7 8 10 12 15 20 50 ∞
3.000 2.000 1.667 1.500 1.400 1.333 1.250 1.200 1.154 1.111 1.042 1.000

Limiting ARE values
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TABLE 4
AREs with respect to Hotelling of (S) Randles’ multivariate sign test, Oja’s

spatial sign test and Oja’s affine-invariant sign test, (W) of Peters and Randles’
Wilcoxon type multivariate signed rank test, (SR) of Oja’s spatial signed rank

test, and (OR) Oja’s affine-invariant signed rank test, under various k-variate t
and normal densities, k = 1,2,3,4,6,10

Degrees of freedom of the underlying t density

k test 3 4 6 8 10 15 20 ∞
1 S 1.621 1.125 0.879 0.798 0.757 0.710 0.690 0.637

W 1.900 1.401 1.164 1.089 1.054 1.014 0.997 0.955
SR 1.900 1.401 1.164 1.089 1.054 1.014 0.997 0.955
OR 1.900 1.401 1.164 1.089 1.054 1.014 0.997 0.955

2 S 2.000 1.388 1.084 0.984 0.934 0.877 0.851 0.785
W 1.748 1.317 1.123 1.066 1.041 1.015 1.005 0.985
SR 1.953 1.435 1.187 1.108 1.071 1.029 1.011 0.967
OR 2.026 1.469 1.196 1.107 1.064 1.014 0.992 0.937

3 S 2.162 1.500 1.172 1.063 1.009 0.947 0.920 0.849
W 1.621 1.233 1.064 1.019 1.000 0.983 0.978 0.975
SR 1.994 1.453 1.200 1.119 1.081 1.038 1.019 0.973
OR 2.112 1.515 1.221 1.124 1.076 1.021 0.997 0.934

4 S 2.250 1.561 1.220 1.107 1.051 0.986 0.958 0.884
W 1.533 1.171 1.018 0.979 0.964 0.954 0.952 0.961
SR 2.018 1.467 1.208 1.127 1.087 1.044 1.025 0.978
OR 2.173 1.550 1.241 1.139 1.088 1.030 1.004 0.937

6 S 2.344 1.626 1.271 1.153 1.094 1.027 0.997 0.920
W 1.422 1.090 0.953 0.921 0.911 0.908 0.911 0.938
SR 2.050 1.484 1.219 1.136 1.095 1.051 1.031 0.984
OR 2.256 1.598 1.270 1.162 1.108 1.045 1.018 0.947

10 S 2.422 1.681 1.313 1.192 1.131 1.062 1.031 0.951
W 1.315 1.007 0.882 0.855 0.848 0.851 0.857 0.907
SR 2.093 1.503 1.229 1.144 1.103 1.058 1.038 0.989
OR 2.346 1.650 1.304 1.189 1.132 1.066 1.037 0.961

Table 4 provides the asymptotic relative efficiencies, still with respect to
Hotelling, and under the same densities as in Tables 2 and 3, of some of the tests
proposed in the literature. These ARE figures allow for comparing our tests with
their competitors. The following tests have been considered:

(a) Randles’ (1989) multivariate sign test (S1),
(b) Peters and Randles’ (1990) generalized Wilcoxon test (W),
(c) the spatial sign test [Möttönen and Oja (1995)] (S2),
(d) the spatial signed rank test [Möttönen and Oja (1995)] (SR),
(e) the affine-invariant sign test [Hettmansperger et al. (1994)] (S3) and
(f) the affine-invariant signed rank test [Hettmansperger et al. (1997)] (OR), both

based on the so-called Oja median.
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ARE values for (S1) and (W) are computed from the result in Proposition 5; for
(S1), the following closed-form expression is obtained:

AREk,fν [S1/T 2] = 4

k(ν − 2)

[
8((k+ 1)/2)

8(k/2)

8((ν + 1)/2)

8(ν/2)

]2

.(10)

Since (S2) and (S3) are asymptotically equivalent, under spherical symmetry,
with Randles’ multivariate sign test (S1), their AREs coincide with (10); note that
this entails that Oja’s sign tests are locally asymptotically optimal under spherical
symmetry and double-exponential radial density. The same optimality property
still holds for (S3)—but not for (S2), which is only rotationally invariant—under
elliptical symmetry (still, with double-exponential radial density). The reader is
referred to Möttönen et al. (1997, 1998) for the derivation of ARE values for (SR)
and (OR).

4. Finite sample performance.

4.1. Simulations. The following Monte Carlo experiment was conducted in
order to investigate the finite-sample behavior of the tests proposed in Section 3 for
k = 2 and (without loss of generality) θ0 = (0,0):N = 2,500 independent samples
(X1, . . . ,X200) of size n = 200 have been generated from bivariate standard
Student densities with 3, 6 and 15 degrees of freedom, and from the bivariate
standard normal distribution. The simulation of bivariate Student variables Xi
was based on the fact that (for ν degrees of freedom) Xi =d Zi/

√
Yi/ν , where

Zi ∼ N2(0, I2) and Yi ∼ χ2
ν are independent. For each replication, the following

seven tests were performed at nominal probability level α = 5%: the Hotelling test,
φ
(n)
f3

, φ(n)f6
, φ(n)f15

, φ(n)vdW , Randles’ sign test (S), and the signed rank test of Peters and
Randles (W). Tyler’s estimator of scatter was used whenever pseudo-Mahalanobis
ranks had to be computed. The estimator was obtained via the iterative scheme
described in Randles (2000). Iterations were stopped as soon as the Frobenius
distance between the left- and right-hand sides of (3) fell below 10−6.

Rejection frequencies, estimating the corresponding size and powers, were
recorded at four values of θ , of the form m�, with � = (0.06,0.06) and
m= 0,1,2,3; they are reported in Table 5. Note that the standard errors for such
estimates are (for 2,500 replications) 0.0044, 0.0080 and 0.0100 for estimated
probabilities (size or power) of the order of p = 0.05 (equivalently, 0.95), p = 0.20
(equivalently, 0.80), and p = 0.50, respectively.

All tests apparently satisfy the 5% probability level constraint (a confidence
interval with confidence level 95% has approximate half-length 0.01); some of
them (such as Hotelling’s) seem to be significantly biased. Power rankings are
essentially consistent with the ARE rankings given in Tables 2 and 4. For instance,
under Gaussian densities, the powers of the φfν- tests are increasing with ν-, as

expected, whereas the asymptotic optimality of φ(n)fν- under the Student distribution
with ν- degrees of freedom is confirmed.
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TABLE 5
Estimated sizes and powers of the Hotelling test, the φ(n)f3

, φ(n)f6
, φ(n)f15

and φ(n)vdW tests, Randles’ sign
test (S), and the signed rank test of Peters and Randles (W), under various values of the shift and

various densities; simulations are based on 2,500 replications

Shift Shift

Test Density 0 � 2� 3� Density 0 � 2� 3�

T 2 N 0.0572 0.1844 0.5868 0.9108 t6 0.0628 0.1452 0.4288 0.7680
φvdW 0.0544 0.1788 0.5872 0.9076 0.0572 0.1484 0.4668 0.7984
φf15 0.0548 0.1808 0.5816 0.9020 0.0568 0.1588 0.4976 0.8252
φf6 0.0576 0.1740 0.5608 0.8888 0.0536 0.1576 0.5016 0.8328
φf3 0.0552 0.1588 0.5084 0.8404 0.0512 0.1568 0.4868 0.8140
S 0.0504 0.1476 0.4916 0.8228 0.0504 0.1456 0.4568 0.7872
W 0.0588 0.1816 0.5852 0.9032 0.0592 0.1520 0.4744 0.8040
T 2 t15 0.0544 0.1644 0.5212 0.8612 t3 0.0456 0.0976 0.2656 0.5252
φvdW 0.0524 0.1628 0.5284 0.8624 0.0524 0.1264 0.3712 0.6876
φf15 0.0560 0.1724 0.5456 0.8704 0.0540 0.1340 0.4096 0.7316
φf6 0.0552 0.1688 0.5420 0.8668 0.0512 0.1436 0.4408 0.7628
φf3 0.0528 0.1584 0.5056 0.8364 0.0500 0.1488 0.4568 0.7788
S 0.0504 0.1476 0.4780 0.8108 0.0504 0.1384 0.4176 0.7564
W 0.0588 0.1688 0.5332 0.8656 0.0552 0.1316 0.3776 0.6896

4.2. A numerical example. We are treating an example of Brown et al. (1992),
also considered by Möttönen and Oja (1995) and by Oja (1999). The data consist
of a sample of differences of refraction measures for the left (first component)
and right (second component) eyes, respectively, between n= 10 fathers and their
sons. The null hypothesis of interest is the absence of a difference between fathers
and sons, yielding the testing problem (2) with θ0 = (0,0).

The Hotelling statistic for these data takes value 4.751, with p-value 0.183
(corresponding to a Fisher–Snedecor distribution with 2 and 8 degrees of freedom).
If the empirical variance-covariance matrix is used, the test statistics Q(n)f3

, Q(n)f6
,

Q
(n)
f15

and Q(n)vdW take values 3.718, 3.627, 3.282 and 2.883, with (asymptotic
approximations) p-values 0.156, 0.163, 0.194 and 0.237, respectively. If Tyler’s
estimator of multivariate scatter is used, the resulting test statistics take values
3.389, 3.018, 2.599 and 2.216, with (asymptotic) p-values 0.184, 0.221, 0.273
and 0.330, respectively.

TABLE 6
Differences of refraction measures between 10 fathers and their sons

for left and right eyes, respectively

Left eyes 1.12 −1.75 −2.50 1.50 0.25 −3.00 −1.50 1.50 −1.62 −1.00
Right eyes 1.75 −2.37 −2.75 1.25 −0.13 −3.25 −2.25 −0.50 −0.62 −1.75
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These p-values are to be compared with those achieved by the statistics (S1) of
Randles (1989) (2.894; p-value 0.235), (W) of Peters and Randles (1990) (3.411
and 2.362, with p-values 0.182 and 0.307, for the empirical variance-covariance
estimator and the Tyler estimator of scatter, respectively), and by Oja’s (S2), (SR),
(S3) and (OR) test statistics (3.405, 3.587, 3.241 and 3.849; p-values 0.182, 0.166,
0.198 and 0.146, respectively).

5. Final comments. While enjoying the same attractive invariance prop-
erties (with respect to affine transformations and the group of radial order-
preserving transformations) as the multivariate nonparametric methods developed
by Hettmansperger, Oja, Randles and their coauthors, the tests we are proposing
also exhibit local asymptotic optimality a la Le Cam. We show that, in their van
der Waerden version, they are uniformly better than Hotelling’s classical test. Un-
der the simpler Wilcoxon form, we prove that their asymptotic relative efficiency,
irrespective of the dimension of the underlying observation space, never falls be-
low 0.648.

All tests have been described under asymptotic form, with critical values
derived from asymptotic distributions. It is worth mentioning that, in practice,
the same tests can be based on permutational critical values. Such values can be
obtained from sampling the 2n possible values s1(X

(n)
1 − θ0), . . . , sn(X

(n)
n − θ0)

(s ∈ {−1,1}n), which are equally probable under the null. A pleasant feature
of this approach is that the (at most) 2n corresponding possible values of the
test statistics can be based on a unique evaluation of the interdirections and
the (pseudo-)Mahalanobis ranks. Indeed, denoting by p(n)ij (s) the interdirection

associated with the pair (si(X
(n)
i − θ0), sj (X

(n)
j − θ0)) in the residual n-tuple

s1(X
(n)
1 − θ0), . . . , sn(X

(n)
n − θ0), it can be checked [see Randles (1989)] that

cos(π p(n)ij (s))= sisj cos(πp(n)ij ). It follows that the test statisticQ(n)f- (s) computed

from s1(X
(n)
1 − θ0), . . . , sn(X

(n)
n − θ0) is

k

nE[J 2
k,f-
(U)]

n∑
i,j=1

siJk,f-

(
R̂
(n)
i (θ0)

n+ 1

)
sjJk,f-

( R̂(n)j (θ0)

n+ 1

)
cos

(
πp
(n)
ij (θ0)

)
.

The situation is much less comfortable with the permutational versions of
Hotelling’s test, or Oja’s (S2), (S3), (SR) and (OR) procedures.

On the other hand, the methods we are proposing are limited to elliptically
symmetric models, whereas the Oja methods remain valid under weaker central
symmetry assumptions (Xi − θ)=d −(Xi − θ), i = 1, . . . , n. The behavior under
nonelliptical conditions of interdirections remains a largely open problem.

APPENDIX A

Quadratic mean differentiability of x �→ f 1/2(‖x‖). In this section, we
essentially prove Proposition 1. Note that h belongs to L2(R+

0 ,µk−1) if and only
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if x �→ g(x) := h(‖x‖) belongs to L2(Rk). The proof of Proposition 1 relies on
the following lemma, which establishes that a function x �→ g(x) is differentiable
in quadratic mean over R

k if and only if it admits a derivative in the sense of
distributions, provided that the gradient in the sense of distributions ∂g be square-
summable over R

k .
Denote by ∇g, ∂g and Dg the gradients of g in the classical sense, in the sense

of distributions, and in quadratic mean, respectively. The following lemma is then
a particular case of a result in Schwartz (1973), pages 186–188.

LEMMA 4. Let g : Rk → R. Then, g is differentiable in quadratic mean
over R

k if and only if g ∈W 1,2(Rk). Moreover, ∂g = Dg in L2(Rk).

This result enables us to prove Proposition 1.

PROOF OF PROPOSITION 1. (i) We first show that h ∈ W 1,2(R+
0 ,µk−1) is

a necessary condition for g : x �→ h(‖x‖) being quadratic mean differentiable.
We already pointed out that h had to be in L2(R+

0 ,µk−1). On the other hand,
because of symmetry, the derivative of g in the sense of distributions is clearly
of the form ∂g(x)= s(‖x‖)x/‖x‖ (this could be made precise via a regularization
argument). Since this derivative is assumed to be square-integrable (see Lemma 4),
s ∈ L2(R+

0 ,µk−1). We still have to show that s is the weak derivative of h in
L2(R+

0 ,µk−1). To do so, associate with any function ψ ∈C∞
0 (R

+
0 ) the function ψ̄

defined on R
k by ψ̄(x) :=ψ(‖x‖)m(x/‖x‖), wherem is some real-valued function

defined on the unit sphere Sk−1 that satisfies cm := ∫
Sk−1m(u) dσ (u) �= 0, where

σ stands for the uniform measure over the sphere Sk−1, equipped with its Borel
sigma-field. We then have∫ (

k∑
i=1

(∂ig)(x)
xi

‖x‖
)
ψ̄(x) dx = cm

(∫ ∞
0
s(r)ψ(r)rk−1 dr

)

and ∫ (
k∑
i=1

(∂ig)(x)
xi

‖x‖
)
ψ̄(x) dx

= −
k∑
i=1

∫
g(x)∂i

(
xi

‖x‖ψ̄(x)
)
dx

= −
∫
g(x)

[
k − 1

‖x‖ ψ̄(x)+ψ
′(‖x‖)m(x/‖x‖)

]
dx

= −cm
(∫ ∞

0
h(r)

[
k − 1

r
ψ(r)+ψ ′(r)

]
rk−1 dr

)

= −cm
(∫ ∞

0
h(r)[rk−1ψ(r)]′ dr

)
.
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Since this holds for any function ψ ∈ C∞
0 (R

+
0 ), s is indeed the weak derivative of

h in L2(R+
0 ,µk−1).

(ii) The proof that h ∈W 1,2(R+
0 ,µk−1) is also sufficient for g : x �→ h(‖x‖) to

be quadratic mean differentiable follows from a regularization argument. Define
hn := h ∗ ρn (n ∈ N0), where ∗ denotes convolution, ρn(x) := nρ(nx), ρ ∈ C∞

0
is even and integrates up to one. Then, hn → h in L2(R+

0 ,µk−1). Moreover,
h′
n = (ρn ∗ h)′ = ρn ∗ h′ → h′ in L2(R+

0 ,µk−1). Put gn(·) := hn(‖ · ‖). Since hn
belongs to L2(R+

0 ,µk−1), gn also belongs to L2(Rk). Furthermore,

‖gn − g‖L2(Rk) = ‖hn − h‖L2(R+
0 ,µk−1)

= o(1),
as n → ∞. On the other hand, gn is almost everywhere differentiable in
the classical sense, with a.e. gradient ∇gn(x) = h′

n(‖x‖)x/‖x‖. Since h′
n ∈

L2(R+
0 ,µk−1), ∇gn belongs to L2(Rk). It follows that gn is differentiable in the

sense of distributions, with gradient ∂gn(x) = h′
n(‖x‖)x/‖x‖. Finally, defining

T ∈ L2(Rk) as T(x) := h′(‖x‖)x/‖x‖ (h′ here denotes the weak derivative of h),

‖∂gn − T‖L2(Rk) = ‖h′
n − h′‖L2(R+

0 ,µk−1)
= o(1),

as n → ∞. From this we may conclude that (gn) is a Cauchy sequence in
W 1,2(Rk), hence that gn → g in W 1,2(Rk), and ∂g = T. As a consequence, g is
differentiable in the sense of distributions, with square summable gradient, which,
in view of Lemma 4, implies that g is differentiable in quadratic mean. In addition,
Dg can be chosen to be ∂g = T, which completes the proof. �

APPENDIX B

Proofs of Section 3. The main task here consists in proving Lemma 3.

PROOF OF LEMMA 3. Without loss of generality, we may assume that � = Ik.
DecomposeQ(n)f- (θ0)− Q̃(n)f-;f (θ0) into k

E[J 2
k,f-
(U)] (T

(n)
1 + T (n)2 ), where

T
(n)
1 := 1

n

n∑
i,j=1

Jk,f-
(
R̂
(n)
i (θ0)/(n+ 1)

)
Jk,f-

(
R̂
(n)
j (θ0)/(n+ 1)

)

× (
cos

(
πp
(n)
ij (θ0)

) − (
U(n)i (θ0, Ik)

)′U(n)j (θ0, Ik)
)

and

T
(n)

2 := 1

n

n∑
i,j=1

(
Jk,f-

(
R̂
(n)
i (θ0, Ik)/(n+ 1)

)
Jk,f-

(
R̂
(n)
j (θ0, Ik)/(n+ 1)

)

− Jk,f-
(
F̃k

(
d
(n)
i (θ0, Ik)

))
Jk,f-

(
F̃k

(
d
(n)
j (θ0, Ik)

)))

× (
U(n)i (θ0, Ik)

)′U(n)j (θ0, Ik).
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Let us show that, under H (n)(θ0, Ik, f ) [throughout this proof, all convergences
and mathematical expectations are taken under H (n)(θ0, Ik, f )], there exists s > 0

such that T (n)1 , T
(n)

2
Ls→0 as n→ ∞. Slutzky’s classical argument then concludes

the proof.
Let us start with T (n)2 . Defining

T(n)f-;f (θ0) := n−1/2
n∑
i=1

Jk,f-
(
F̃k

(
d
(n)
i (θ0, Ik)

))
U(n)i (θ0, Ik),(11)

S(n)f- (θ0) := n−1/2
n∑
i=1

Jk,f-
(
R
(n)
i (θ0, Ik)/(n+ 1)

)
U(n)i (θ0, Ik)

and

Ŝ(n)f- (θ0) := n−1/2
n∑
i=1

Jk,f-
(
R̂
(n)
i (θ0)/(n+ 1)

)
U(n)i (θ0, Ik),

note that∥∥T(n)f-;f (θ0)− S(n)f- (θ0)
∥∥2
L2

=
n∑
i=1

(c
(n)
i )

2E
[(
Jk,f-

(
R
(n)
i (θ0, Ik)/(n+ 1)

) − Jk,f-
(
F̃k(d

(n)
i (θ0, Ik))

))2
]
,

where c(n)i = n−1/2 for all i = 1, . . . , n. Hájek’s classical projection result thus
implies that ∥∥T(n)f-;f (θ0)− S(n)f- (θ0)

∥∥2
L2 = o(1)

as n→ ∞. Incidentally, the same result also implies that, for all i = 1, . . . , n,

E
[(
Jk,f-

(
R
(n)
i (θ0, Ik)/(n+ 1)

) − Jk,f-
(
F̃k(d

(n)
i (θ0, Ik))

))2
]
= o(1)(12)

as n→ ∞.
Noting that E[G(X(n)1 − θ0, . . . ,X

(n)
n − θ0)(U

(n)
i (θ0, Ik))′U(n)j (θ0, Ik)] = 0

for i �= j , for any function G that is even in all its arguments (and for which the
expectation exists), we obtain similarly∥∥S(n)f- (θ0)− Ŝ(n)f- (θ0)

∥∥2
L2

= 1

n

n∑
i=1

E
[(
Jk,f-

(
R
(n)
i (θ0, Ik)/(n+ 1)

) − Jk,f-
(
R̂
(n)
i (θ0)/(n+ 1)

))2
]
,

which is o(1), if

Jk,f-
(
R̂
(n)
1 (θ0)/(n+ 1)

) − Jk,f-
(
R
(n)
1 (θ0, Ik)/(n+ 1)

) L2→0(13)
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as n→ ∞. Lemma 2 establishes the same convergence as in (13), but in proba-
bility. We have seen above that Jk,f-(R

(n)
1 (θ0, Ik)/(n+ 1))− Jk,f-(F̃k(d(n)1 (θ0)))

tends to zero in quadratic mean, so that E[(Jk,f-(R(n)1 (θ0, Ik)/(n+ 1)))2] is uni-
formly integrable. In view of Assumption (A4), the same conclusion holds for
E[(Jk,f-(R̂(n)1 (θ0, Ik)/(n+1)))2]; (13) follows. Consequently, S(n)f- (θ0)− Ŝ(n)f- (θ0),

and therefore T(n)f-;f (θ0)− Ŝ(n)f- (θ0), vanish in quadratic mean as n→ ∞. On the

other hand, the sequence ‖T(n)f-;f (θ0)‖L2 is clearly bounded, so that ‖Ŝ(n)f- (θ0)‖L2

also is. Finally, in view of Cauchy–Schwarz,

‖T (n)2 ‖L1 = ∥∥(
Ŝ(n)f- (θ0)

)′Ŝ(n)f- (θ0)− (
T(n)f-;f (θ0)

)′T(n)f-;f (θ0)
∥∥
L1

≤ ∥∥Ŝ(n)f- (θ0)+ T(n)f-;f (θ0)
∥∥
L2

∥∥Ŝ(n)f- (θ0)− T(n)f-;f (θ0)
∥∥
L2

= o(1) as n→ ∞.
It remains to show that ‖T (n)1 ‖L2 → 0 as n→ ∞. Letting

B
(n)
i := Jk,f-

(
R̂
(n)
i (θ0)

n+ 1

)

and
C
(n)
ij := cos

(
πp
(n)
ij (θ0)

) − (
U(n)i (θ0, Ik)

)′U(n)j (θ0, Ik),

and taking into account the symmetry properties of interdirections, we easily
obtain that

‖T (n)1 ‖2
L2 = 1

n2 E

[(
n∑

i,j=1

B
(n)
i B

(n)
j C

(n)
ij

)2]
= 2(n− 1)

n
E

[
(B
(n)
1 B

(n)
2 C

(n)
12 )

2]

≤ 2(n− 1)

n

(
E

[|B(n)1 B
(n)
2 |2+δ])2/(2+δ)(E[|C(n)12 |2(2+δ)/δ])δ/(2+δ)

,

where δ > 0 is as in Assumption (A3) (the last inequality above results from
Hölder’s inequality). Now, Lemma 1 and the boundedness of C(n)12 yield that

E[|C(n)12 |2(2+δ)/δ] = o(1) as n→ ∞. On the other hand, since the R̂(n)i (θ0)’s are
the ranks of an exchangeable vector [see Assumption (A4)], we obtain that

n(n− 1)

(n+ 1)2
E

[|B(n)1 B
(n)
2 |2+δ] = 1

(n+ 1)2

n∑
i,j=1
i �=j

∣∣∣∣Jk,f-
(
i

n+ 1

)
Jk,f-

(
j

n+ 1

)∣∣∣∣
2+δ

≤
(

1

n+ 1

n+1∑
i=1

∣∣∣∣Jk,f-
(
i

n+ 1

)∣∣∣∣
2+δ)2

;

this last sum is a Riemann sum for
∫ 1

0 |Jk,f-(u)|2+δ du, which is finite [Assump-

tion (A3)]. Consequently, E[|B(n)1 B
(n)
2 |2+δ] =O(1) as n→ ∞, and the result fol-

lows. �
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PROOF OF PROPOSITION 3. From Lemma 3, we have, under H (n)(θ0, Ik, f ),

Q
(n)
f-
(θ0)= (

T(n)f-;f (θ0)
)′
(�Ik,f-)

−1T(n)f-;f (θ0)+ o(n)P (1)

= Q̃(n)f-;f (θ0)+ o(n)P (1),

with T(n)f-;f (θ0) given in (11). The proof of the first part of Proposition 3 follows,

since T(n)f-;f (θ0) under H (n)(θ0, Ik, f ) is asymptotically Nk(0,�Ik,f-), and since

Q
(n)
f-
(θ0) is affine-invariant.

Still from Lemma 3,Q(n)f- (θ0) is also asymptotically equivalent, under H (n)(θ0,

�, f ), to Q̃(n)f-;(�,f )(θ0) := (T(n)f-;(�,f )(θ0))
′�−1

�,f-
T(n)f-;(�,f )(θ0), where

T(n)f-;(�,f )(θ0) := n−1/2
n∑
i=1

Jk,f-
(
F̃k

(
d
(n)
i (θ0,�)

))
�−1/2U(n)i (θ,�).

On the other hand, it is easy to see that, still under H (n)(θ0,�, f ), T(n)f-;(�,f )(θ0)

and the local log-likelihood L(n)
θ0+n−1/2τ/θ0;�,f are jointly multinormal, with

asymptotic covariance 1
k
Ck(f-, f )�

−1τ ; Le Cam’s third Lemma thus implies that

T(n)f-;(�,f )(θ0) under H (n)(θ0 + n−1/2τ ,�, f ) is asymptotically Nk(
1
k
Ck(f-, f )

×�−1τ ,��,f-). This establishes the second part of Proposition 3. �

PROOF OF PROPOSITION 5. Since the tests φ(n)f- and T 2 are both affine-
invariant, we may assume that the underlying distribution is spherical. Un-
der H (n)(θ0, Ik, f ), the Hotelling test statistic is asymptotically equivalent to
(T(n)(θ0))

′�−1
Ik T(n)(θ0), where

T(n)(θ0) := n−1/2
n∑
i=1

d
(n)
i (θ0, Ik)U

(n)
i (θ0, Ik)= n−1/2

n∑
i=1

(X(n)i − θ0)

and �Ik := 1
k
Dk(f )Ik , so that the same reasoning as in the proof of the second

part of Proposition 3 implies that the Hotelling test statistic, under the local
alternatives considered there, is asymptotically noncentral chi-square, with k
degrees of freedom and noncentrality parameter

1

k

E2
k (f )

Dk(f )
τ ′τ with Ek(f ) := E

[
F̃−1
k (U)Jk,f (U)

]
.

This completes the proof, since the desired ARE values are obtained as the ratios
of the corresponding noncentrality parameters. �
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APPENDIX C

The Chernoff–Savage and Hodges–Lehmann properties.

PROOF OF PROPOSITION 6. The asymptotic relative efficiency of the van der
Waerden test, with respect to Hotelling, under radial density f , is

AREk,f (φ
(n)
vdW/T

2)= 1

k3Dk(f )E
2[
D̃−1
k (U)Jk,f (U)

]
,(14)

where, letting φ(r) := exp(−r2/2), D̃k stands for the distribution function asso-
ciated with φ̃k(r) := (µk−1;φ)−1rk−1φ(r) I[r>0]. Without loss of generality, we
restrict ourselves to the radial densities f satisfying Dk(f )= E[(F̃−1

k (U))
2] = k.

Indeed, writing fa(r) := f (ar), a > 0, we have µk;fa = a−(k+1)µk;f , Dk(fa) =
µk+1;fa/µk−1;fa = a−2Dk(f ) and AREk,fa (φ

(n)
vdW/T

2)= AREk,f (φ
(n)
vdW/T

2).
Thus, we only have to show that, for any k ∈ N0 and any f such thatDk(f )= k,

Hk(f ) := E
[
D̃−1
k (U)Jk,f (U)

] ≥ k,
with equality at f = φ only. This variational problem takes a simpler form after
the following change of notation. First rewrite the functional H as

Hk(f )=
∫ ∞

0
D̃−1
k

(
F̃k(r)

)
ϕf (r)f̃k(r) dr

= 1

µk−1;f

∫ ∞
0
D̃−1
k

(
F̃k(r)

)(−f ′(r)
)
rk−1 dr

=
∫ ∞

0

[
1

φ̃k(D̃
−1
k (F̃k(r)))

f̃k(r)+ k − 1

r
D̃−1
k

(
F̃k(r)

)]
f̃k(r) dr.

For any strictly positive (over R
+
0 ) density f , the function R : z �→ F̃−1

k ◦D̃k(z) and
its inverse R−1 : r �→ D̃−1

k ◦F̃k(r) are continuous monotone increasing transforma-
tions, mapping R

+
0 onto itself, and satisfying limz↓0R(z) = limr↓0R

−1(r) = 0
and limz→∞R(z) = limr→∞R−1(r) = ∞. Similarly, any continuous monotone
increasing transformation R of R

+
0 such that

lim
z↓0
R(z)= 0 and lim

z→∞R(z)= ∞(15)

characterizes a nonvanishing density f over R
+
0 via the relation R = F̃−1

k ◦D̃k. The
variational problem just described thus consists of minimizing

Hk(R)=
∫ ∞

0

[
1

φ̃k(z)

φ̃k(z)

R′(z)
+ k − 1

R(z)
z

]
φ̃k(z) dz(16)

=
∫ ∞

0

[
1

R′(z)
+ k − 1

R(z)
z

]
φ̃k(z) dz,
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with respect to R : R+
0 → R

+
0 continuous and monotone increasing, under the

constraints (15), since f̃k(r)= d
dr
F̃k(r)= φ̃k(z)/( ddzR), and f̃k(r) dr = dF̃k(r)=

φ̃k(z) dz. The constraintDk(f )= k now takes the form

Dk(R)=
∫ ∞

0
R2(z)φ̃k(z) dz= k.

While complicating the form of Hk(R) for k > 1, the second term in (16) does
not affect its convexity, and this is the reason why the classical Chernoff–Savage
argument extends to the multivariate context. Note that if Ra := aR for a > 0,
then Hk(Ra)= a−1Hk(R) and Dk(Ra) = a2Dk(R). Using the same argument as
in Lemma 1 of Chernoff and Savage (1958), this and the convexity of Hk(R)
imply that the solution R1 of the minimization problem, if it exists, is unique.
As in Chernoff and Savage (1958), the following lemma is a consequence of the
convexity of Hk(R).

LEMMA 5. Let R1 belong to the class R of monotone increasing and
continuous functions R : R+

0 → R
+
0 such that (15) holds and Dk(R) = k. Then

R1 is a solution of the minimization problem under consideration if and only if, for
any R2 ∈ R, there exists a ξ ≥ 0 such that H ′

k(0)+ ξD′
k(0)≥ 0, where

H ′
k(0) :=

d

dw

(
Hk

(
(1 −w)R1 +wR2

))∣∣∣
w=0

and

D′
k(0) :=

d

dw

(
Dk

(
(1 −w)R1 +wR2

))∣∣∣
w=0
.

Now, it is easy to check that

H ′
k(0)=

∫ ∞
0

[
−R

′
2(z)−R′

1(z)

(R′
1(z))

2
− (k − 1)z(R2(z)−R1(z))

(R1(z))2

]
φ̃k(z) dz

=
∫ ∞

0

(
R2(z)−R1(z)

)[ φ̃′
k(z)

(R′
1(z))

2 − 2φ̃k(z)R′′
1 (z)

(R′
1(z))

3 − (k − 1)zφ̃k(z)

(R1(z))
2

]
dz

and that

D′
k(0)= 2

∫ ∞
0
R1(z)

(
R2(z)−R1(z)

)
φ̃k(z) dz,

so that, if R1(z) := z for all z > 0,

H ′
k(0)+ ξD′

k(0)=
∫ ∞

0

(
R2(z)− z)

[
φ̃′
k(z)−

(k − 1)φ̃k(z)

z
+ 2ξzφ̃k(z)

]
dz

= 1

µk−1;φ

∫ ∞
0

(
R2(z)− z)[zk−1φ′(z)+ 2ξzkφ(z)

]
dz
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which equals zero for ξ = 1/2. Lemma 5 thus implies that f = φ is the unique
solution of the variational problem considered. �

We now turn to the proof of the multivariate extension of the Hodges–Lehmann
theorem.

PROOF OF PROPOSITION 7. First note that, from Proposition 5,

AREk,f (φ
(n)
W /T

2)= 3

k2 Dk(f )E
2[UJk,f (U)].

As in the proof of Proposition 6, it is clear (by considering fa(r) := f (ar),
a > 0) that we may assume that Dk(f ) = 1. Therefore, the problem reduces to
the variational problem

inf
f∈C

E[UJk,f (U)], with C := {f |Dk(f )= 1}.(17)

Integrating by parts, we obtain

E[UJk,f (U)] =
∫ ∞

0
F̃k(r)ϕf (r) f̃k(r) dr

=
∫ ∞

0

[(
f̃k(r)

)2 + k − 1

r
F̃k(r)f̃k(r)

]
dr,

so that (17) in turn is equivalent to

inf
f̃∈C̃

∫ ∞
0

[(
f̃k(r)

)2 + k − 1

r
F̃k(r)f̃k(r)

]
dr,(18)

where C̃ is the set of all f̃ defined on R
+
0 such that∫ ∞

0
f̃k(r) dr =

∫ ∞
0
r2f̃k(r) dr = 1.(19)

Substituting y, ẏ and t for F̃k, f̃k and r , respectively, the Euler–Lagrange
equation associated with the variational problem (18), (19) takes the form

t2ÿ − k − 1

2
y = −λ2t

3,(20)

where λ2 stands for the Lagrange multiplier associated with the second constraint
in (19). Letting y = t1/2u, equation (20) reduces to the Euler equation

t2ü+ t u̇− 2k − 1

4
u= −λ2t

5/2.

Finally, we obtain that the general solution of (20) is given by

y(t)= 2λ2

k − 13
t3 + αt(1+√

2k−1)/2 + βt(1−√
2k−1)/2
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for k �= 13, and

y(t)= λ2

25
(1 − 5 ln t)t3 + αt3 + βt−2

for k = 13. Since y(0+)= 0, it is clear that β = 0, irrespective of the dimension k.
On the other hand, ẏ(t) ≥ 0 for small t implies that α ≥ 0 for k < 13, and λ2 ≥ 0
for k ≥ 13. So that

∫
ẏ = 1 yields λ2 > 0 for k < 13 and α < 0 for k > 13.

Therefore ẏ ≥ 0 implies that ẏ is compactly supported in R
+
0 , with support [0, a],

say.
It follows from the constraints (19) and the continuity of ẏ that the extremals of

the variational problem under study are the solutions of (20) that satisfy

y(a)= 1, ẏ(a)= 0 and
∫ a

0
t2ẏ(t) dt = 1.(21)

It is then a simple exercise to check that conditions (21) yield, for k �= 13,

λ2 = 3
√

3

10
√

5
(k − 13)

(
√

2k − 1 + 1)5/2

(
√

2k − 1 − 5)(
√

2k − 1 + 5)3/2
,

a =
(

5

3

√
2k− 1 + 5√
2k− 1 + 1

)1/2

,

α = −6√
2k− 1 − 5

(
3

5

√
2k− 1 + 1√
2k− 1 + 5

)(√2k−1+1)/4

,

and for k = 13,

λ2 = 81/25, a = 5/3, α = 405 ln(5/3)+ 54

625
.

To conclude, note that, integrating by parts and using (20),

min
f

E[UJk,f (U)]

=
∫ ∞

0

[
(ẏ(t))2 + k − 1

t
y(t)ẏ(t)

]
dt

=
∫ ∞

0

[
−2t ẏ(t)ÿ(t)+ k − 1

t
y(t)ẏ(t)

]
dt

=
∫ ∞

0
2λ2t

2ẏ(t) dt = 2λ2,

so that minf AREk,f (φ
(n)
W /T

2) = 12
k2 (λ2)

2. This completes the proof of Proposi-
tion 7. �
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REMARK. As an immediate corollary, we also obtain that the infimum in
Proposition 7 is reached (for fixed k) at the collection of radial densities f for
which f̃k is in {f̃k,σ (r) := σ−1f̃k,1(σ

−1r)}, where

f̃k,1(r)=
(

9
√

3

5
√

5

(
√

2k − 1 + 1)5/2

(
√

2k − 1 − 5)(
√

2k − 1 + 5)3/2
r2

− 3

√
2k − 1 + 1√
2k − 1 − 5

(
3

5

√
2k− 1 + 1√
2k− 1 + 5

)(√2k−1+1)/4

r(
√

2k−1−1)/2

)

× I
[

0< r <
(

5

3

√
2k− 1 + 5√
2k− 1 + 1

)1/2]
,

for k �= 13, and

f̃13,1(r)= 243

125

(
ln

5

3
− ln r

)
r2I

[
0< r <

5

3

]
.

See Figure 4 for the graphs of the densities f̃k,1 for some values of the space
dimension k.

FIG. 4. Graphs of the densities f̃k,1 at which the infimum of the AREs of Wilcoxon-type tests with
respect to Hotelling’s is reached, for dimensions k = 1, 2, 4, 13, 50, 500 and 1010, respectively, of
the observations.
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