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ON METHODS OF SIEVES AND PENALIZATION1

By Xiaotong Shen

Ohio State University

We develop a general theory which provides a unified treatment for
the asymptotic normality and efficiency of the maximum likelihood esti-
mates (MLE’s) in parametric, semiparametric and nonparametric models.
We find that the asymptotic behavior of substitution estimates for esti-
mating smooth functionals are essentially governed by two indices: the
degree of smoothness of the functional and the local size of the underly-
ing parameter space. We show that when the local size of the parameter
space is not very large, the substitution standard (nonsieve), substitution
sieve and substitution penalized MLE’s are asymptotically efficient in the
Fisher sense, under certain stochastic equicontinuity conditions of the log-
likelihood. Moreover, when the convergence rate of the estimate is slow,
the degree of smoothness of the functional needs to compensate for the
slowness of the rate in order to achieve efficiency. When the size of the
parameter space is very large, the standard and penalized maximum like-
lihood procedures may be inefficient, whereas the method of sieves may
be able to overcome this difficulty. This phenomenon is particularly man-
ifested when the functional of interest is very smooth, especially in the
semiparametric case.

1. Introduction. Let Y1; : : : ;Yn be independently and identically dis-
tributed according to density p0�y� = p�θ0; y�, where θ0 is the true parameter
value in 2, the space of all possible parameters θ. We estimate a real func-
tional of θ, denoted as f�θ�. Such functionals characterize many interesting
problems. In semiparametric models in which the interest is in estimation
of the parametric component, f�θ� takes the form β, which is the parametric
component, where the parameter θ = �β;η� and η is a nonparametric nuisance
parameter. In a nonparametric model in which the interest is in estimation
of the Shannon information entropy, f�θ� can take the form of −2

∫
θ2 log θ,

where θ is the square root of the density.
In this paper, we are interested in efficient estimation of functionals f�θ�.

The asymptotic normality and the efficiency of the variants of maximum likeli-
hood estimates (MLE’s) is established in general parameter spaces that permit
treatment of nonparametric and semiparametric situations.

To estimate f�θ�, first consider standard maximum likelihood type of esti-
mation. Let the empirical criterion Ln�θ� be n−1∑n

i=1 l�θ;Yi�, where l�θ; y� is
the criterion based on a single observation. Here l�θ; y� may be chosen as a
log-likelihood (ML estimation) or some criterion other than the log-likelihood,

Received June 1993; revised March 1997.
1Supported by a seed grant of the research foundation at Ohio State University.
AMS 1991 subject classifications. Primary 62G05; secondary 62A10.
Key words and phrases. Asymptotic normality, efficiency, maximum likelihood estimation,

methods of sieves and penalization, constraints, substitution, nonparametric and semiparametric
models.

2555



2556 X. SHEN

such as −�y− θ�2 in the least-squares regression. A maximizer of Ln�θ� over
θ ∈ 2, denoted by θ̂n, is called a MLE type of estimate. With θ̂n as defined,
f�θ� is estimated by a substitution estimate f�θ̂n�.

In parametric models, it is well known [e.g., Bahadur (1967)] that under
general conditions n1/2�f�θ̂n�−f�θ0�� converges to a normal distribution with
mean zero and variance �f′�θ0��TI�θ0�−1f′�θ0� and the MLE f�θ̂n� is asymp-
totically efficient in the Fisher sense, where f′�θ0� is the usual derivative at θ0
and I�θ0� is the Fisher information matrix. Cramér (1946) and Pollard (1984)
gave fairly general results for asymptotic normality based, respectively, on
score equations and log-likelihood ratios. In the infinite-dimensional case, es-
tablishing such a theory, however, is difficult [see Wong and Severini (1991)].
Little is known about the properties of the MLE and related estimates even
though various generalizations of the information lower bounds evaluating
the performance of estimates are available. The issues that govern the finite-
dimensional case do not readily extend to the infinite-dimensional case. The
difficulties are that, unlike the parametric case, (1) the corresponding score
equation evaluated at the maximizer θ̂n may not even be close to zero, es-
pecially in sieve estimation problems, (2) θ̂n is often on the boundary of the
parameter space and (3) θ0 is constrained, such as in density estimation prob-
lems. Furthermore, the remainders in local expansions depend on the conver-
gence rate of the estimate, which may be much slower than n−1/2 when the
parameter space is large.

Estimating functionals in general parameter spaces clearly is important. In
the semiparametric setting, the efficient score method leads to an efficient esti-
mate for the parametric component [see Bickel (1982), Ritov and Bickel (1990)
and the monograph by Bickel, Klassen, Ritov and Wellner (1994) for a compre-
hensive survey]. This method requires constructing a n−1/2-consistent estimate
and estimating the efficient score function. In the nonparametric setting, von
Mises (1947) considered the problem of estimating a functional based on a
class of distribution functions. For smooth functionals, Pfanzagl (1982) and
Ibragimov and Has’minskii (1981, 1991) constructed n−1/2-optimal estimates
in the minimax sense for specific models. Unfortunately, a general theory is
lacking. There is also an enormous amount of literature on the related topics
of convergence rates for general functions [see, e.g., Bickel and Ritov (1988)
for more details]. Wong and Severini (1991) showed that the standard MLE
is asymptotically efficient in a compact space where the size of the parame-
ter space is not large. Severini and Wong (1992) studied the efficiency of the
profile MLE in semiparametric models. In many situations, especially when
the parameter space 2 is large, variants of the MLE type of estimates such as
sieve and penalized estimates are often used to overcome the difficulty of opti-
mization and certain undesirable properties of the standard MLE; see Sections
2 and 3 for detailed discussions. Unfortunately, a general theory of asymptotic
normality for the sieve and penalized estimates has not been available.

The fundamental questions are, of course, in general parameter spaces
(1) whether there exists any estimate which can achieve the Fisher infor-
mation lower bound typically used to evaluate the asymptotic performance of
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estimates and (2) whether the variants of MLE’s such as the standard, sieve
and penalized MLE’s can achieve the information lower bound in general,
especially when the parameter space is very large and if so, to what extent.

In this paper, we introduce a general theory for establishing the asymptotic
normality and efficiency for f�θ̂n�. We (1) explore the relationship between the
size of the parameter space and the performance of the substitution estimates,
(2) try to understand the extent to which the variants of MLE’s are efficient in
the Fisher sense, (3) give a unified framework to the asymptotic normality for
the finite- and the infinite-dimensional problems and (4) provide some insight
into the structure of estimation problems.

We will show for the sieve, the standard (nonsieve) and the penalized esti-
mates that n1/2�f�θ̂n� − f�θ0�� has an asymptotic normal distribution under
general conditions: (1) the degree of smoothness of f can compensate for the
slowness of the convergence rate of the estimate; (2) the empirical criterion
satisfies certain stochastic equicontinuity conditions. See Section 4 for formal
definitions. On this basis, we show that the standard (nonsieve), sieve and pe-
nalized MLE’s are asymptotically efficient in the Fisher sense. Furthermore,
there indeed is a cutoff point at a certain stage corresponding to the local
metric entropy index (used to measure the size of the parameter space, as
defined in Section 4) being equal to 2. When the local metric entropy index of
the parameter space is less than 2, the above results are expected to hold for
the standard, sieve and penalized MLE’s. However, as shown in Example 3,
when the local metric entropy index of the parameter space is at least 2, the
above results may not hold for the standard and penalized MLE’s. In contrast,
the sieve with an orthogonality property to be specified in Section 4 may not
have this difficulty when the functional of interest is very smooth [ω in (4.1) or
(4.4) is large]. This phenomenon is illustrated in Examples 2 and 3. Moreover,
as illustrated in Example 3, if f is not smooth enough, then the above result
does not hold. This is because the behavior of f�θ̂n� − f�θ0� is determined by
that of �θ̂n − θ0�. This aspect of the theory offers additional insights into the
structure of the problem.

The theory developed here is general, allowing for a general criterion func-
tion (with a penalty) with constrained optimization over a general sieve. The
present theory encompasses, for instance, the existing results for the standard
MLE in a compact space when the size of parameter space is not large, and
the classical results on the asymptotic normality and efficiency of the standard
MLE in the finite-dimensional case. Thus, it provides a unified treatment for
most problems of estimation of a smooth functional using the ML method with
independent observations. Moreover, the theory can also apply to the situa-
tion in which the functional of interest is multivariate; see Example 4 for an
illustration.

The present theory is formulated based on stochastic equicontinuity related
to log-likelihood ratios and convergence rates. Here the convergence rate of
the estimate plays an important role. In conjunction with the convergence rate
results on the sieve estimates [e.g., Shen and Wong (1994), Wong and Shen
(1995) and Birgé and Massart (1994)] and on the penalized estimates [e.g.,
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Shen (1997)], we make the verification of regularity conditions easier. In the
semiparametric case, the present theory provides an alternative approach for
constructing efficient estimates using the variants of MLE’s. In this way, one
bypasses the requirements of the efficient score method, that is, constructing
an n−1/2-consistent estimate and obtaining a suitable estimate for the score
function are not necessary. The theory also provides some insight into the
phenomenon that, in semiparametric models, the parametric component can
be estimated efficiently in the Fisher sense at exactly the rate of n−1/2, even
if the estimated nonparametric nuisance component converges to the true
parameter at a rate much slower than n−1/2.

The organization of the paper is as follows. In Sections 2.1 and 2.2, we dis-
cuss the methods of sieves and penalization. In Section 3, we provide some
examples and illustrative conclusions from the general theory. In Section 4,
we develop the general theory on the asymptotic normality for the correspond-
ing substitution sieve and penalized estimates. In Section 5, we address the
issue of asymptotic efficiency in the Fisher sense. In Section 6, we obtain some
results on constrained estimation. In Section 7, we illustrate the main results
by several examples, including nonparametric regression, semiparametric re-
gression, the proportional odds model and the density estimation problem. As
particular applications of the general theory, we obtain the asymptotic nor-
mality and efficiency of the variants of MLE’s in estimating moments of the
regression function, the parametric component in a semiparametric model and
the Shannon information entropy. In Section 8, we compare various estima-
tion procedures and discuss implications of the present theory. In Section 9,
we provide the technical proofs.

2. Estimation methods.

2.1. The method of sieves. Often, optimization over a large parameter
space leads to undesirable properties of the estimates, such as inconsistency
and roughness. Moreover, such an optimization procedure is difficult to im-
plement and certain approximations need to be made in order to carry out
computation in practice. For the above reasons, the optimization is usually
carried out within a subset which is dense in the original parameter space,
and the size of the subset grows as the sample size increases. More specifically,
let 2n be a sequence of approximating spaces to the parameter space 2 (not
necessarily a subset of 2), denoted as a sieve, in the sense that for any θ ∈ 2
there exists πnθ ∈ 2n such that �πnθ − θ� → 0 as n → ∞. An approximate
sieve estimate, denoted by θ̂n, is defined as an approximate maximizer of
Ln�θ� over 2n, that is,

�2:1� Ln�θ̂n� ≥ sup
θ∈2n

Ln�θ� −O�ε2
n�;

where εn → 0 as n → ∞. For the exact estimate, εn = 0. The substitution
sieve estimate for f�θ�, by definition, is f�θ̂n�. The above procedure is called
the method of sieves [Grenander (1981)], which may be regarded as a gener-
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alization of the standard ML estimation based on optimization over the whole
parameter space 2 since 2n can be taken to be 2 for all n.

2.2. The method of penalization. In some cases, to overcome the difficul-
ties in optimization and the undesirable properties associated with estimates
based on a large parameter space, a penalty assessing the physical plausibility
of each parameter value is attached to the empirical criterion to be optimized.
To be more specific, let l̃�θ; y� be l�θ; y�−λnJ�θ� and L̃n�θ� = Ln�θ�−λnJ�θ�,
where J�θ� is a nonnegative penalty function and λn is the penalization co-
efficient. An approximate penalized estimate is defined as an approximate
maximizer θ̂n of L̃n�θ� over 2, that is,

�2:2� L̃n�θ̂n� ≥ sup
θ∈2

L̃n�θ� −O�ε2
n�;

where εn → 0 as n → ∞. The approximate substitution penalized estimate
then is f�θ̂n�. This procedure is called the method of penalization.

The use of penalty has a long history, which may trace back to Whittaker
(1923) and Tikhonov (1963); see Wahba (1990) for a review. In a regression
context, the penalty J�·� is often chosen to penalize the undesired properties
such as “roughness.” In this situation, the method of penalization leads to
splines. Actually, the penalty plays a role of forcing the optimization in (2.2)
to be carried out within compact sets depending on the sample size. Indeed,
the optimization is done within a finite-dimensional space. Essentially, the
penalty J�θ� which controls the global properties of the estimates plays no role
in the local approximation of the criterion difference within a neighborhood
of θ0. However, to control the local behavior of the linear approximation of
the criterion function with penalty, certain assumptions on J�θ� and λn are
required.

3. Some examples and illustrative conclusions. In this section, we
provide some examples and illustrative conclusions. See Section 5 for a formal
discussion of asymptotic efficiency.

Example 1 (Nonparametric regression). Suppose

�3:1� Yi = θ�Xi� + ei; i = 1; : : : ; n;

where Xi and ei are independent, and �ei�ni=1 are independently and iden-
tically distributed with Ee2

i = σ2. Assume that �Xi�ni=1 are random and
the distribution of Xi does not depend on θ. The functional of interest is
f�θ� = Eθk =

∫
θk dP0 for some integer k ≥ 1, where θ is the regression

function and P0 is the distribution of Xi.
In this example, we examine three estimation procedures in terms of the

efficiency in the Fisher sense and illustrate the phenomena mentioned in
the Introduction. Here the criterion is l�θ; y; x� = −�1/�2σ2���y− θ�x��2. The
empirical criterion to be maximized then is −�1/�2σ2n��∑n

i=1�Yi − θ�Xi��2.
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In the following certain moment conditions on ei are imposed depending on
the case. For simplicity, assume that σ2 is fixed.

(a) Estimation without sieve. Let

2 =
{
θ ∈ Cm�a; b�x �θ�j��sup ≤ Lj;

�θ�m��x1� − θ�m��x2��
�x1 − x2�γ

< Lm+1;

j = 0; : : : ;m+ 1
}
;

where p = m+ γ > 1/2, �Lj�m+1
j=0 , and a and b are known constants. Assume

that E�el1� < ∞ for any real l > 2. In the present case, the maximization is
done over the whole parameter space 2, which is compact.

(b) Sieve estimation. Let2 = �θ ∈ Cm�a; b�x �θ�m��x1�−θ�m��x2��/�x1−x2�γ <
Lm+1�θ��, where p =m+γ > 1/2. Here the parameter space 2 is not compact
since Lm+1�θ� is unknown. For simplicity, assume that E exp �t0�e1�� <∞, for
some t0 > 0. Also see Shen and Wong (1994) for the required condition based
on moments.

(1) Finite-dimensional sieve. Consider the following truncated series ex-
pansion. Let

2n =
{
θ ∈ 2x θ�x� = α0 +

rn∑
j=1

�αj cos�2πjx� + βj sin�2πjx��;

α2
0 +

rn∑
j=1

j2p′�α2
j + β2

j� ≤ l2n
}
;

where p′ is a constant arbitrarily close to p, ln ≤ n�2p−1�/�2p′�2p+1�� and rn = nτ
with 1/�4p� < τ < 1/2. A natural choice of τ is 1/�2p+ 1�. The resulting rate
is Op�n−p/�2p+1��, which is the optimal convergence rate of the estimate under
� · �.

The above sieve is based on the trigonometric basis functions. Other bases
could be used in the same context. Now consider a sieve based on a local basis.
Let

2n =
{
θ =

rn+�p�+1∑
i=1

aiφi ∈ 2; max
i=1;:::;rn+�p�+1

�ai� ≤ ln
}
;

where �φ1; : : : ; φrn+��p�+1�� are B-splines of order �p�+1 on �a; b� with φi sup-
ported on �xi; xi+�p�+1�, and �a = x1; : : : ; xrn+�p�+1 = b� is the uniform partition
of �a; b� that supports the basis.

(2) Infinite-dimensional sieve. Let 2 be the same as in (1) above. Let
J�θ�= �

∫ b
a �θ�p��x��q dx�1/q for some real number p > 1/2 and q ≥ 1. The de-

rivative with a fractional power is defined in terms of Fourier series, that is,

θα�x� =
∞∑
k=1

kα
[(
ak cos

π

2
α+ bk sin

π

2
α

)
coskx

+
(
bk cos

π

2
α− ak sin

π

2
α

)
sinkx

]
;
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for θ�x� = ∑∞
k=1�ak coskx + bk sinkx� and any 0 < α ≤ p. In the penaliza-

tion estimation, the empirical criterion with penalty often leads to various
splines for different integer values of q. The popular choices of q are 2 in the
non-parametric regression, and 1 or ∞ in the conditional quantile regression
[Koenker and Bassett (1978)].

Let the sieve 2n be �θ ∈ 2x J�θ� ≤ bn� with bn → ∞ as n → ∞ arbi-
trarily slowly. The sieve estimate is obtained by maximizing the log-likelihood
over 2n. The relationship between the sieve defined here and the penalized
estimation in part (c) can be found in Schoenberg (1964).

(c) Penalization. Let

2 =
{
θ ∈ Cm�a; b�x θ�a� = θ�b� = 0;

�θ�m��x1� − θ�m��x2��
�x1 − x2�γ

< Lm+1�θ�
}
;

where p = m + γ > 1/2, Lm+1�θ� is unknown and the design points �Xi�ni=1
are deterministic and equally spaced. In the case of p ≥ 1, J�θ� = �θ�m��q +
�
∫ ∫
��θ�m��x� − θ�m��y��/�x − y�γ�q dxdy�1/q, where � · �q is the usual Lq-norm

and q ≥ 2. In the case of p < 1, J�θ� = supx;y �θ�x� − θ�y��/�x− y�γ. Assume
that E exp�t0�e1�� <∞, for some t0 > 0.

Proposition 1. Under the assumptions of Example 1, the approximate sub-
stitution sieve and penalized estimates are asymptotically normal with vari-
ance k2σ2E0�θk−1

0 �2,

n1/2�f�θ̂n� − f�θ0�� →pθ0
N�0; k2σ2E0�θk−1

0 �2�;

where θ̂n is either the sieve or penalized estimates in Example 1(a)–(c). In
addition, if the error ei is distributed as N�0; σ2�, then the above estimates are
asymptotically efficient in the Fisher sense.

As already seen, the standard ML method, and the methods of sieves and
penalization lead to efficient estimates for the case of p > 1/2. Note that dif-
ferent bases may yield different efficient estimates. Here the results for the
case of p ≤ 1/2 are not expected since f is not smooth enough (the degree of
smoothness ω is 2 in this case). When f is smooth enough, as illustrated in
Examples 2 and 3, the method of sieves leads to efficient estimates, whereas
in the same setting the standard and penalized MLE’s are inefficient. It is
also interesting to note that the requirement on the size of the approximating
spaces (1/�4p� < log rn/ log n < 1

2 ) is not stringent. Therefore, it is possi-
ble to choose rn = n1/�2p+1� so that the sieve estimate θ̂n achieves the effi-
ciency for f�θ� and the optimal convergence rate ��θ̂n − θ0� = Op�n−p/�2p+1���
[Stone (1982)], which corresponds to the best trade-off phenomenon between
the approximation error and the estimation error, as discussed in Shen and
Wong (1994). As to be seen from Examples 2 and 3, this cannot be done when
p < 1/2, that is, the optimal choice of the size rn which leads to the best
convergence rate for the sieve MLE under � · � may not yield an efficient esti-
mate for f�θ�. A similar phenomenon also occurs in penalized estimation; that
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is, if the penalization coefficient λn is chosen to be of order of n−2p/�2p+1� for
p > 1/2, the penalized estimate θ̂n achieves the same optimal rate as above
[see Shen (1997a)].

Example 2 (Semiparametric model). Instead of modeling the regression
function completely nonparametrically in (3.1), we specify θ as βZ + η�X�,
where β is the parameter of interest, η is the infinite dimensional nuisance
parameter, and Z is the covariate of interest. Let 2 = A×B, where A ⊂ R1

is a bounded open set, and let B be the same as the parameter space in Ex-
ample 1(b). Assume that EZ�X is smooth enough in X, for example, �X;Z�
are normally distributed (not necessarily independent). Next we consider the
methods of sieves and penalization.

(a) Sieve estimation. First consider the case of p = m+ γ > 1/2. Let 2n =
A×Bn, where

Bn =
{
θ ∈ Bx θ�x� = α0 +

rn∑
j=1

�αj cos�2πjx� + βj sin�2πjx��;

α2
0 +

rn∑
j=1

j2p′�α2
j + β2

j� ≤ l2n
}
:

Here rn = nτ, with 1/4p < τ < 1/2. A natural choice of τ is 1/�2p+ 1�. And,
p′ and ln are the same as in Example 1. In this case, the empirical criterion
to be maximized is −�1/�2σ2n��∑n

i=1�Yi − �βZi + η�Xi���2.
Next consider the case of p = m+ γ ≤ 1/2. Let �φi�∞i=1 be an orthonormal

basis (Gram–Schmidt orthogonalization based on the trigonometric basis) with
respect to �·; ·�. Let

Bn =
{
θ ∈ Bx θ�x� =

rn∑
j=1

αjφj�x�;
rn∑
j=1

α2
j ≤ l2n

}
;

where rn = nτ. Here 0 < τ ≤ 1− d for some d > 1/2.
(b) Penalization. Let J�·� be the same as defined in Example 1(c). Consider

the penalized estimation with penalty J�η� for p =m+γ > 1/2. The penalized
empirical criterion to be maximized is

− 1
2σ2n

n∑
i=1

�Yi − �βZi + η�Xi���2 + λnJ�η�:

Proposition 2. Under the assumptions of Example 2, the approximate sieve
and penalized estimates are asymptotically efficient with variance σ2/E�Z −
EZ�X�2,

n1/2�β̂n − β0� →pθ0
N�0; �v∗�2�;

where �v∗�2 = σ2/E�Z−EZ�X�2, and θ̂n is either the sieve estimate in Exam-
ple 2(a) or the penalized estimate in Example 2(b).
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It is interesting to note that the convergence rate of the sieve estimate in
the first case of Example 2(a) is Op�n−p/�2p+1�� (optimal), whereas that in the
second case of Example 2(a) is Op�n−τp�, which is close to n−p/2 when τ is
close to 1/2. This suboptimal rate is actually the rate of the standard MLE
based on the parameter space 2 in Example 1(a) for p < 1/2 [see Shen and
Wong (1994), part (b) of Example 3, for discussions of this suboptimality].

Compared with the results in Example 2(a) and (b), we found that the sieve
estimate is asymptotically efficient when p =m+γ > 0, whereas as illustrated
in Example 3, the same result is only expected for the standard and penalized
MLE’s when p = m + γ > 1/2. Note that the case of p = m + γ > 1/2
corresponds to the local metric entropy index being less than 2.

Example 3 (Inefficiency, the degree of smoothness and the size of the pa-
rameter space). The purpose of this example is to show that (1) the standard
and penalized ML procedures may not yield efficient estimates even for a
very smooth functional f�θ� when the parameter space is very large, which
corresponds to the case where the local metric entropy index is larger than 2
�m + γ < 1/2 in Example 2), and (2) the substitution estimates may not be
efficient when the functional f�θ� is not smooth enough.

To illustrate (1), consider a semiparametric model in which f�θ� is linear
(very smooth). Let �Yi;Xi;Zi� and λ = βZ+η�X� be the same as in Example
2. Let Xi ∈ �0;1/2� and Zi ∈ �0;1� be uniformly distributed, and let ei be as
in (3.1). In addition, Xi and Zi are independent. First consider the standard
ML estimation with 2 = A×Bα, where

Bα =
{
ηx �η�x1� − η�x2�� ≤

1
2α
�x1 − x2�α

}

for 0 < α < 1/2, and A = �−1;1�.
Next we provide a concrete Bα. To define the elements in Bα, consider the

following basic functions. For 0 < α < 1/2 and any 0 ≤ h ≤ 1/2, let

Bh�x� =
{
hα��1/2�α − �x/h− 1/2�α�; on �0; h�;
0; otherwise,

and

Gh�x� =





��Ee1 sgn�e1��/2α+2�1/2hα/2x; on �0; h/4�;
��Ee1 sgn�e1��/2α+2�1/2hα/2�h/2− x�; on �h/4; h/2�;
0; otherwise.

Let �cj�mj=1 ⊂ �0;1� satisfy the property that ��cj − h; cj + h��mj=1 are disjoint
and are contained in �1/8;3/8�. Now Bα = �η0 +

∑m
j=1 sjBh�cj − x� +Gh�cj −

x�x 0 ≤ h ≤ 1/8� is a class of functions indexed by hwith Hölderian exponent α,
where sj = ±1. Here Bh�·� satisfies (1)

∫
�Bh�x�+Gh�x��i dx = dihi�α/2�+1�1+

o�hα/2��, (di > 0), i = 1;2, and (2) Bh�cj − x� are asymmetric and disjoint.
Now consider penalized estimation. Let Bα be the same as above except

that h ∈ �0;∞� and the design points �Xi�ni=1 are deterministic and equally
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spaced. Let J�η� = �
∫ ∫
��η�x� − η�y��/�x − y�α�p dxdy�1/p. The penalty J�η�

is natural in this case since it penalizes nonsmoothness of η. The penalized
likelihood l̃�θ; y� is l�θ; y� − λnJ�η�. Without loss of generality, assume that
J�η0� > 0. The conclusion for the standard MLE continues to hold for the
penalized MLE in this case.

Proposition 3. For the standard and penalized MLE’s θ̂n = �β̂n; η̂n�
(based on Bα) in this example, we have, with a nonzero probability,

�E0�η̂n − η0�� ≥ c1n
−α/2;

for (c1 > 0). Additionally, with a nonzero probability,

�f�θ̂n� − f�θ0�� = �β̂n − β0� ≥ cn−α/2:

See Section 9 for the proof.
The conclusion that �E0�η̂n − η0�� ≥ c1n

−α/2 in Proposition 3 is important
because the standard MLE is efficient if E0�η̂n−η0� = op�n−1/2�, which means
that the nonparametric and the parametric components are not closely related
even if the convergence rate �E0�η̂n − η0�2�1/2 = Op�n−α/2� is slow.

To illustrate (2), consider f�θ� = E0θ
2 =

∫
θ2 dP0 as in Example 1 with 2 =

Bα. Note that f�θ̂n�−f�θ0� = f′θ0
�θ̂n−θ0�+�θ̂n−θ0�2. Hence, f�θ̂n�−f�θ0� does

not converge at the rate n−1/2 when p =m+γ < 1/2 since �θ̂n−θ0�2 ∼ Op�n−α�
is slower than n−1/2, which is dominating.

Example 4 [The proportional odds model (right censoring)]. The propor-
tional odds model is

�3:2� log�F�t�x�/�1−F�t�x��� = −βTx+ log 0�t�;

where F�t�x� = P�T ≤ t�x� is the conditional failure time distribution
given covariate values x and 0�t� is a baseline function. Based on the sample
��Yi; δi;Xi��ni=1, we estimate the regression parameter β = �β1; : : : ; βp�while
0�t� is a nuisance parameter. Here Yi = min�Ti;Ci� and δi = I�Ti ≤ Ci�,
where I�·� is an indicator and X = �X1; : : : ;Xp�T is p × 1. The following
assumptions are made.

(i) Given covariates X, the censoring times �Ci� taking values in �0;U�,
0 < U < ∞, are independent of the failure times �Ti�. In addition, given co-
variates X, the conditional density of the censoring time pC�u�x� is differen-
tiable in u with

∫
�p′C�u�x��2 du ≤M<∞. In order for the Fisher information

to exist, we need to assume that the covariates X are not functions of Y, and
the covariance matrix of X is nondegenerate. In addition, X are bounded.

(ii) Let θ = �β;0�t�� ∈ 2 = E ×H, where E ⊂ Rp is a bounded open set
and H = �log 0′�t� ∈ Bsp; q�C��0;U�x 0�0� = 0; 0′�t� > d1�, where d1 > 0 is a
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constant. Here the Besov ball is defined as

Bsp; q�C��0;U� =
{
η ∈ Lp�0;U�x �η�Bsp; q = �η�p +

∥∥∥∥�t
−sωr�η; t�p�

1
t

∥∥∥∥
q

< C

}
;

where C > 0 is unknown, 2 ≤ p;q ≤ ∞, s > 1/2, � · �q is the usual Lq-norm
and the modulus of smoothness of order r of η at t, ωr�η; t�p, is defined as
sup�h�≤t �1rh�η; ·��p, with 1rh being the rth-order difference with step h. See
Triebel (1983) for more about Besov spaces.

We now construct a sieve based on splines. Let I = �0 < x1 < · · · < xk < U�
be the uniformly spaced knots, and let s�x� = ∑k

i=1
∑r
j=0 ηjix

jI�xi < x ≤
xi+1� be the spline with a boundary constraint Gη = 0 for the coefficients
η = �ηji� such that, on each boundary of subinterval �xi; xi+1�, the spline has
r − 1 derivatives. Let the sieve 2n = B ×Hn, where Hn = �0̃ ∈ Hx 0̃�t� =∫ t

0 exp�s�x��dx� be a collection of monotone splines, where the number of knots
rn is chosen to be of order of n1/�2s+1�. See also Parzen and Harrington (1993)
and Shen (1997b) for related sieve constructions in this model.

From (3.2),

F�t�x� = exp�−βTx�0�t�
1+ exp�−βTx�0�t� ;

and the hazard rate

λ�t� = −∂ log�1−F�t�x��
∂t

= exp�−βTx�0′�t�
1+ exp�−βTx�0�t� :

The log-likelihood l�θ; δ; y; x� is

δ log λ�θ�y�; x� −
∫ y

0
λ�θ�u�; x�du+ logpX�x�

= δ�log 0′�y� − βTx� − �1+ δ� log�1+ exp�−βTx�0�y�� + logpX�x�;

where pX�x� is the density of X which is independent of θ. The log-likelihood
to be maximized is

n−1
n∑
i=1

�δi�log 0′�Yi� − βTXi� − �1+ δi� log�1+ exp�−βTXi�0�Yi���:

To define the Fisher information for β, let

Ãj = −X�j�
[
−δ+ �1+ δ� 00�Y� exp�−βTX�

1+ 00�Y� exp�−βTX�

]
; j = 1; : : : ; p;

B̃ = δ

0′0�Y�
; C̃ = −�1+ δ� exp�−βT0X�

�1+ 00�Y� exp�−βT0X��
:
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Let �ψj�∞j=1 be an orthonormal basis in L2, for example, the trigonometric
basis. Let In be I11−I12�sn�I−1

22 �sn�IT12�sn�, where I11 is the p×pmatrix whose
ijth element is E0ÃiÃj, I12�sn� is the p × sn matrix whose ijth element is
E0Ãi�B̃ψ′j�Y�+ C̃ψj�Y�� and I22�sn� is the sn×sn matrix whose ijth element

is E0�B̃ψ′i�Y� + C̃ψi�Y���B̃ψ′j�Y� + C̃ψj�Y��.

Proposition 4. Under the assumptions of Example 4, the sieve estimate β̂n
defined here is asymptotically efficient for estimating β with covariance matrix
I−1, where I is the Fisher information defined as I = limn→∞ In. The existence
of limn→∞ In is shown in Section 8.

Example 5 (Density estimation). Let Y1; : : : ;Yn be a random sample in-
dependently and identically distributed according to a density g�y� on �a; b�.
Let θ = g1/2 be the parameter of interest. We estimate the information entropy
of the density f�θ� = −2

∫
θ2 log θ. In this case, the log-likelihood l�θ; y� is

log θ2�y�. The standard MLE θ̂n is obtained by maximizing n−1∑n
i=1 2 log θ�Yi�

over 2. For simplicity, assume that θ0 ≥ c0 for some constant c0 > 0.
The classical theory on ML estimation cannot directly handle the con-

strained case in the infinite-dimensional case because E0l
′
θ0
�θ−θ0;Y� 6= 0. See

Remark 4 after Corollary 1. Here the nonlinear constraints are
∫
θ2�x�dx = 1

and θ ≥ 0. We will examine two cases related to the standard ML estima-
tion. Note that the corresponding results for the sieve and penalized MLE’s
can also be obtained by arguments similar to those presented here and in
Example 1.

(a) Functions with finite amount of smoothness. Let 2 = �θ ∈ Cm�a; b�x θ ≥
0; θ�a� = θ�b� = 0;

∫ b
a θ

2�x�dx = 1; �θ�j��x��sup<Lj; �θ�m��x1�−θ�m��x2��sup<

Lm+1�x1 − x2�γ; j = 0;1; : : : ;m�, where p = m + γ > 1/2, and �Lj�m+1
i=1 are

known constants.
(b) Functions with infinite amount of smoothness. Among infinite-

dimensional sets of least massiveness, the class of totally bounded ana-
lytic functions is important in the sense that the behavior of the MLE based
on such a parameter space is similar to that in the finite-dimensional case.

We now introduce some notation. Let z = �z1; : : : ; zs� ∈ Cs (Cs is a complex
domain), k = �k1; : : : ; ks�, ck = ck1···ks , K = ��k1; : : : ; ks��, 5i = �zix � Im zi� <
h� (0 < h <∞) and f�z� =∑k∈K ckφk, where φk, k ∈K, are some basis func-
tions such as the trigonometric basis, that is, φk = ei�k; z� [�k; z� = ∑s

i=1 kizi].
Let Ah = �f�z�x �f�z�� ≤ L; z ∈ 51 × · · · × 5s� for some constant L > 0.
Indeed, Ah is a class of analytic functions. Take 2 as �θ�z� = f�z� ∈ Ahx z ∈
�0;2π�s; θ ≥ 0;

∫
θ2 = 1; �θ0� < L� for some L > 0.

Proposition 5. The standard MLE f�θ̂n� in either Example 5(a) or (b) is
asymptotically efficient for estimating f�θ� with variance 4 Var0�log θ0�, that is,

n1/2�f�θ̂n� − f�θ0�� →pθ0
N�0;4 Var0�log θ0��:
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Actually, the approximate substitution standard MLE in Example 5(b) is
asymptotically efficient for any smooth functional with ω > 1 since the con-
vergence rate of θ̂n under � · � is fast. This aspect is the same as that in the
finite-dimensional case.

4. General theory on asymptotic normality.

4.1. The method of sieves. To study the asymptotic distribution of the sub-
stitution estimates, we discuss linear approximations of the criterion differ-
ence by the corresponding derivatives, and the degree of smoothness of f. In
the following, all probability calculations are under p�θ0; y�.

Suppose, for all θ ∈ 2 and all y, there exists l′θ0
�θ − θ0; y� such that the

remainder in the linear approximation can be written as

�4:1� r�θ− θ0; y� = l�θ; y� − l�θ0; y� − l′θ0
�θ− θ0; y�;

where l′θ0
�θ−θ0; y� is defined as limt→0�l�θ�θ0; t�; y�−l�θ0; y�/t�, and θ�θ0; t� ∈

2 is a path in t connecting θ0 and θ such that θ�θ0;0� = θ0 and θ�θ0;1� =
θ. Usually, θ�θ0; t� is chosen as θ + t�θ − θ0�, which is linear in t. In this
case, l′θ0

�θ − θ0; y� becomes the directional derivative of l at θ0. Sometimes,
θ�θ0; t� is nonlinear, which is useful in the constrained problems. Assume that
l′θ0
�θ − θ0; y� − E0l

′
θ0
�θ − θ0; y� is required to be linear in θ − θ0. Note that

l′θ0
�θ − θ0; y� may not be linear in θ − θ0 as in the constrained problems. See

Example 5 for density estimation.
Suppose the functional f has the following smoothness property: for any

θ ∈ 2n,

�4:2� �f�θ� − f�θ0� − f′θ0
�θ− θ0�� ≤ un�θ− θ0�ω as �θ− θ0� → 0;

where f′θ0
�θ − θ0� is defined as limt→0�f�θ�θ0; t�; y� − f�θ0; y��/t. Here ω > 0

is the degree of smoothness of f at θ0, f′θ0
�θ− θ0� is linear in �θ− θ0� and

�f′θ0
� = sup

�θ∈2x �θ−θ0�>0�

�f′θ0
�θ− θ0��
�θ− θ0�

<∞:

Let V be the space spanned by 2 − θ0. Assume that � · � induces an inner
product �·; ·� on the completion ofV, denoted as V̄. By the Riesz representation
theorem, there exists v∗ ∈ V̄ such that, for any θ ∈ 2, f′θ0

�θ−θ0� = �θ−θ0; v
∗�.

Let K�θ0; θ� = n−1∑n
i=1 E0�l�θ0;Yi� − l�θ;Yi��, which is the Kullback-

Leibler information number based on n observations when the criterion is
a log-likelihood. Let νn�g� = n−1/2∑n

i=1�g�Yi� − E0g�Yi�� be the empirical
process induced by g. Let the convergence rate of the sieve estimate under
� · � be op�δn� and let εn = o�n−1/2�.

For θ ∈ �θ ∈ 2nx �θ−θ0� ≤ δn�, consider a local alternative value θ∗�θ; εn� =
�1−εn�θ+εn�u∗+θ0�. Denote Pn�θ� by a projection of θ to 2n, where u∗ = ±v∗.
(The projection does not have to be linear.) Then Pn�θ� can be chosen as πn�θ�
when θ ∈ 2. Some regularity conditions will be formulated under which the
asymptotic distribution of f�θ̂n� can be derived.
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Condition A (Stochastic equicontinuity). For r�·; ·� defined in (4.1),

sup
�θ∈2nx �θ−θ0�≤δn�

n−1/2νn�r�θ− θ0;Y� − r�Pn�θ∗�θ; εn�� − θ0;Y�� = Op�ε2
n�:

Condition B (Expectation of criterion difference). We have

sup
�θ∈2nx0<�θ−θ0�≤δn�

[
K�θ0;Pnθ

∗�θ; εn�� −K�θ0; θ�
]

− 1
2

[
�θ∗�θ; εn� − θ0�2 − �θ− θ0�2

]
= O�ε2

n�:

Condition C (Approximation error). We have

sup
�θ∈2nx0<�θ−θ0�≤δn�

�θ∗�θ; εn� −Pn�θ∗�θ; εn��� = O�δ−1
n ε

2
n�:

In addition,

sup
�θ∈2nx �θ−θ0�≤δn�

n−1/2νn�l′θ0
�θ∗�θ; εn� −Pn�θ∗�θ; εn��;Y�� = Op�ε2

n�:

Condition D (Gradient). We have

sup
�θ∈2nx �θ−θ0�≤δn�

n−1/2νn�l′θ0
�θ− θ0;Y�� = Op�εn�:

Conditions A, B and D can be verified by calculating the corresponding
metric entropy [Shen and Wong (1994), Lemma 4], which makes verifications
easier. Here the L2-metric with bracketing HB�u;G� is defined as the log-
arithm of the minimal cardinality of the u-covering of the space G in the
L2-metric with bracketing [see, e.g., Pollard (1984) and Example 1 for more
details].

Condition A, formulated on stochastic approximations of n−1∑n
i=1 l

′
θ0
�θ −

θ0;Yi� to Ln�θ� − Ln�θ0�, is a condition related to stochastic equicontinuity.
Basically, this condition specifies linear approximations of the empirical crite-
rion by its derivative within a small neighborhood of θ0. Condition B says that
K�·; ·� is locally equivalent to � · �2, which characterizes the local quadratic
behavior of the criterion difference. It is worth noticing that in the infinite-
dimensional case, θ̂n is often on the boundary of 2. For instance, in the den-
sity estimation without restriction on the underlying densities, the MLE may
wildly oscillate depending on the data points. In the worst case, the MLE
will not even be consistent. If certain smoothness such as the derivatives
of the density is assumed, the local oscillation then depends on the bounds
of the derivatives. See Example 1 for such a phenomenon in the context of
nonparametric regression. This implies that the corresponding score function
specified by the directional derivative evaluated at θ̂n may not even be close
to zero when the parameter space is very large. In addition, interior points
of 2 with respect to � · � may not exist (see Example 1). Conditions C and D,
which can be viewed as a natural generalization of the usual assumption that
θ0 is an interior point of 2 in the finite-dimensional case, are used to deal with
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such issues. Condition C, which is always satisfied in the standard ML esti-
mation with 2n = 2, mainly controls the approximation error of Pn�θ∗�θ; εn��
to θ∗�θ; εn�. Condition D controls the gradient of the criterion function in some
sense.

Theorem 1 (Normality). In addition to Conditions A–D, let f satisfy (4.2)
with unδ

ω
n = O�n−1/2� and Var0�l′θ0

�v∗;Y�� < ∞. Then, for the approximate

substitution sieve estimate f�θ̂n� defined in (2.1),

n1/2�f�θ̂n� − f�θ0�� →pθ0
N�0;Var0�l′θ0

�v∗;Y���:

Corollary 1. If Conditions A–D hold, then for the approximate sieve esti-
mate defined in (2.1),

n1/2�θ̂n − θ0; s� →pθ0
N�0;Var0�l′θ0

�s;Y���;

where s ∈ 2− θ0.

Typically, Var0�l′θ0
�s;Y��� = �f′θ0

�2.

Remark 1. The stochastic approximation specified in Condition A follows
from the often used condition that f�θ; y� is differentiable in quadratic mean.
The knowledge of δn may not be necessary in the verification of Condition A.
Typically, Condition A holds even with δn = O�1� in the finite-dimensional
case. When the size of 2 is not large, Condition A is implied by a stronger but
simpler one:

sup
��θ−θ0�≤δn�

n−1/2νn�r�θ− θ0;Yi�� = op�n−1�:

Similarly, Condition B is implied by the following condition:

sup
�θ∈2nx0<�θ−θ0�≤δn�

K�θ0; θ� = 1
2�θ0 − θ�2 + o�n−1�:

Remark 2. In the finite-dimensional case, Conditions A and B are implied
by the condition on moments of the second derivative of the criterion function
since the convergence rate of the supremum of the empirical processes is often
n−1/2. Condition C is always satisfied if θ0 is an interior point of 2. Hence,
Theorem 1 recovers the classical results in the finite-dimensional case.

Remark 3. The symbol �·; ·� can be any inner product as long as it satisfies
the stated regularity conditions, for example, the Fisher inner and the L2-
inner product (see Examples 1, 2 and 5).

Remark 4. The constraints on the approximating spaces as in Example 1
and the true parameter θ0 as in Example 5 are allowed in the above formu-
lations. Consequently, Theorem 1 applies directly to the case with constraints
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such as density estimation. We emphasize that the classical theory of the ML
estimation cannot handle the constraints directly because E0l

′
θ0
�θ−θ0;Y� 6= 0

(see Example 5).

Remark 5. Theorems 1 and 2 continue to hold for independent but non-
identically distributed observations if the corresponding quantities are re-
placed by the average quantities on each observation, and these average quan-
tities are stable in probability law.

The phenomenon of compensation between the degree of smoothness of the
functional and the convergence rate of the estimate, as mentioned in the Intro-
duction, can be seen directly from Theorem 1, that is, δωn = O�n−1/2�. Here the
trade-off phenomenon between the approximation errors specified in Condition
C and the size of the sieve which determines the stochastic approximations
in Conditions A, C and D occurs. The result in Theorem 1 may not hold when
the approximation errors related to the sieve approximation are not small
due to the size of the space. However, if the related approximation errors are
substantially smaller when the special structures such as orthogonality are
exploited, then the above result continues to hold even for a larger parameter
space. Consequently, the result in Theorem 1 can be sharpened. Some modi-
fied regularity conditions are formulated below. A more detailed discussion is
deferred to Section 7.

We now focus on the case in which Pn = πn is linear, Pn�θ∗�θ; εn�� =
�1− εn�θ+ εn�πnu∗ + πnθ0� for θ ∈ �θ ∈ 2nx �θ− θ0� ≤ δn�, although the cor-
responding results for the nonlinear case can be established in the same way
as the constrained case in Section 6. Suppose the sieve 2n has the following
orthogonality property:

�4:3� �v1; v2� = 0 for any v1 ∈ 2n − πnθ0; v2 ∈ 2 \2n − πnθ0:

Condition B′ (Expectation of criterion difference). For some positive se-
quence �hn� → 0 as n→∞,

sup
�θ∈2nx0<�θ−θ0�≤δn�

K�θ0; θ� = 1
2�θ− θ0�2�1+ o�hn��:

Condition C′ (Approximation error). We have �πnv∗−v∗� = O�δ−1
n εn� and

�o�hn���πnθ0 − θ0�2 = O�εn�.

Corollary 2. Under (4.3), Theorem 1 continues to hold if Conditions B
and C are replaced by Conditions B′ and C′, respectively.

Remark 6. Condition C′ can be easily satisfied since the approximation
error of v∗ is often smaller than that of θ0. See Example 2 for an illustration.
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4.2. The method of penalization. We now formulate the modified regular-
ity conditions. Let u∗ be the same as defined in Section 4.1, and the con-
vergence rate of the penalized estimate under � · � and � · �s be op�δn� and
op�δsn�, respectively, where � · � ≤ d� · �s (� · �s is often chosen as the Sobolev
norm when the parameter space 2 is related to a Sobolev space). Further-
more, let εn = o�n−1/2� and θ∗∗�θ; εn� = �1 − εn�θ + εn�u∗ + θ0� ∈ 2 for any
θ ∈ �θ ∈ 2x �θ− θ0�s ≤ δsn�.

Suppose f has the following smoothness property: for all θ ∈ �θ ∈ 2x �θ −
θ0�s ≤ δsn�,

�4:4� �f�θ� − f�θ0� − f′θ0
�θ− θ0�� ≤ O��θ− θ0�ω� as �θ− θ0� → 0;

where ω > 0 is the degree of smoothness of f at θ0, and f′θ0
�θ − θ0� is linear

in �θ− θ0� and �f′θ0
� <∞.

Condition A′′ (Stochastic equicontinuity). For r�·; ·� defined in (4.1), the
following hold:

(i) sup
�θ∈2x �θ−θ0�s≤δsn�

n−1/2νn�r�θ− θ0;Y� − r�θ∗∗�θ; εn� − θ0;Y�� = Op�ε2
n�,

(ii) sup
�θ∈2x �θ−θ0�s≤δsn�

n−1/2νn�r�θ− θ0;Y�� = Op�εn�:

Condition B′′ (Expectation of criterion difference). We have

sup
�θ∈2x0<�θ−θ0�s≤δsn�

[
K�θ0; θ

∗∗�θ; εn�� −K�θ0; θ�
]

− 1
2

[
�θ∗∗�θ; εn� − θ0�2 − �θ− θ0�2

]
= O�ε2

n�:

Condition C′′ (Penalty). For some constant c > 0 and any θi ∈ �θ ∈ 2x �θ−
θ0�s ≤ δsn�, i = 1;2,

J�θ1 + θ2� ≤ c�J�θ1� +J�θ2��:

In addition, λn = O�εn� and J�v∗� <∞.

Condition D′′ (Gradient). We have

sup
�θ∈2x �θ−θ0�s≤δsn�

n−1/2νn�l′θ0
�θ− θ0;Y�� = Op�εn�:

Theorem 2 (Normality). In addition to Conditions A′′–D′′, let f satisfy
(4.4) with δωn = O�n−1/2� and Var0�l′θ0

�v∗;Y�� <∞. Then, for the approximate

substitution penalized estimate f�θ̂n� defined in (2.2),

n1/2�f�θ̂n� − f�θ0�� →pθ0
N�0;Var0�l′θ0

�v∗;Y���:
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Corollary 3. If Conditions A′′–D′′ hold, then for the approximate penal-
ized estimate defined in (2.2),

n1/2�θ̂n − θ0; s� →pθ0
N�0;Var0�l′θ0

�s;Y���;
where s ∈ 2− θ0.

Remark 7. Conditions A′′, B′′ and D′′ are similar to Conditions A, B and
D. Often, when the size of the parameter space, measured by the metric en-
tropy, is not large, the supremum of r�θ− θ0;Y� over a δn-neighborhood of θ0
is of order Op�ε2

n�, then the verification of Condition A′′(i) is not necessary.
Condition C′′ and Condition A′′(ii) are used to control the behavior of J�θ̂n�.

5. Efficiency.

5.1. Lower bound and LAN. In this section, we restrict our attention to the
ML estimation in which the criterion is a log-likelihood. It can be seen from
the finite-dimensional case that the notion of locally asymptotic normality
(LAN) plays an important role in establishing the lower bounds for evaluating
asymptotic performance of estimates.

We begin with a discussion on the LAN. We say a family �Pθ; θ ∈ 2� is
locally asymptotically normal at θ0 if there exists a normalized factor An such
that (1) An → 0 as n → ∞, (2) for any h ∈ V, θ0 + tAnh ∈ 2 if t is small
and (3)

dPθ0+Anh

dPθ0

�Y1; : : : ;Yn� = exp
(
6n�h� −

1
2
�h�2 +Rn�θ0; h�

)
;

where 6n�h� is linear in h, 6n�h� →pθ0
N�0; �h�2� and Rn�θ0; h� →pθ0

0. The
above LAN is a version of “locally asymptotic normality” in general parameter
spaces, which is an extension of the LAN in the parametric case [see Le Cam
(1960) and Ibragimov and Has’minskii (1991)].

To avoid the “superefficiency” phenomenon, certain conditions on estimates
are required. The Fisher information lower bound can then be established
for a class of “regular estimates” in which the superefficiency phenomenon
does not occur. In the finite-dimensional case, Bahadur (1964) established the
Fisher information lower bound for the class of “regular estimates” consist-
ing of “asymptotic median unbiased” estimates. Hájek (1970) developed the
convolution result for the class of estimates with asymptotic distribution rep-
resentations. In estimating a smooth functional in the infinite-dimensional
case, Wong (1992) established the Fisher information lower bound in terms
of probability concentration. Ibragimov and Has’minskii (1991) also obtained
Hájek’s representation theorem. Related works can be found in Levit (1974,
1978), Begun, Hall, Huang and Wellner (1983) and Ibragimov and Has’minskii
(1981).

We now define the class of pathwise regular estimates in the sense of Ba-
hadur (1964) and Wong (1992). Intuitively, the class of pathwise regular es-
timates should be as large as possible so that an attainment of the Fisher
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lower bound becomes a strong property. We say an estimate Tn�Y1; : : : ;Yn�
is a pathwise regular estimate of f at θ0 if for any real number ρ > 0 and any
h ∈ V we have

lim sup
n→∞

Pθn; ρ�Tn < f�θn; ρ�� ≤ lim inf
n→∞

Pθn;−ρ�Tn < f�θn;−ρ��;

where θn; ρ = θ0 +Anρh. This is an extension of the notion of asymptotic me-
dian unbiasedness. The following optimality result is a variant of Proposition
4 in Wong (1992) under the above LAN condition which is slightly weaker
than Condition L′ used in Proposition 4 of that paper.

Theorem 3 (Lower bound). In addition to the LAN, suppose f is Frechet-
differentiable at θ0 with 0 < �f′θ0

� < ∞. Then, for any pathwise regular esti-
mate of f at θ0 Tn, and any real number ρ > 0,

�5:1� lim sup
n→∞

P0�A−1
n �Tn − f�θ0�� ≤ ρ� ≤ P0��N�0; �f′θ0

�2�� ≤ ρ�;

where N�0; �f′θ0
�2� is a normal distribution with variance �f′θ0

�2.

Remark 8. The requirement on the degree of smoothness of the functional
for this lower bound is weaker than that used for establishing asymptotic
normality. In fact, the Frechet-differentiability corresponds to the case ofω > 1
in (4.2) and (4.4). Typically, An = n−1/2.

5.2. Asymptotic efficiency of maximum likelihood estimation. The follow-
ing result is a trivial consequence of Theorems 1 and 2. It says that (1) the
MLE belongs to the class of the pathwise regular estimates and (2) the MLE
attains the lower bound in (5.1).

Theorem 4 (Efficiency). In addition to the conditions in Theorem 1 (The-
orem 2), if the LAN holds, then for the approximate substitution sieve and
penalized estimates of f�θ�, any real number ρ > 0 and any h ∈ V,

n1/2�f�θ̂n� − f�θn�� →pθn
N�0;Var0�l′θ0

�v∗;Y���;

where θn = θ0 + n−1/2ρh.

6. Constrained estimation. In this section, we discuss the estimation in
the constrained case in which the true parameter θ0 is under some restrictions
and such restrictions may not be linear. For instance,

∫
θ0 = 1 if θ0 is a density.

The situation is slightly complicated since E0l
′
θ0
�θ−θ0;Y�may not be zero (see

Example 5). Note that E0l
′
θ0
�θ − θ0;Y� = 0 is a requirement for establishing

asymptotic normality for the MLE in the finite-dimensional case. The previous
results for the information lower bound are expected to hold if the restrictions
are linear only infinitesimally. We now modify the LAN condition in Section
5.1 to take care of the restrictions.
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We say a family �Pθ; θ ∈ 2� is locally asymptotically normal at θ0 if there
exists a normalized factor An such that (1) An→ 0 as n→∞ and (2)

dPm�θ0+Anh�
dPθ0

�Y1; : : : ;Yn� = exp
(
6n�h� −

1
2
�h�2 +Rn�θ0; h�

)
;

where m�θ0 + Anh� is the closest point in 2 to θ0 + Anh, 6n�h� is linear in
h ∈ V, 6n�h� →pθ0

N�0; �h�2� and Rn�θ0; h� →pθ0
0.

We say an estimate Tn�Y1; : : : ;Yn� is a pathwise regular estimate of f at
θ0 if, for any real number ρ > 0 and any h ∈ V, we have

lim sup
n→∞

Pm�θn; ρ��Tn < f�m�θn; ρ��� ≤ lim inf
n→∞

Pm�θn;−ρ��Tn < f�m�θn;−ρ���;

where θn;ρ = θ0 +Anρh.

Theorem 5 (Lower bound). In addition to the LAN in the constrained case,
f is Frechet-differentiable at θ0 with

0 < �f′θ0
�m = lim sup

n→∞
sup
h6=0

�f′θ0
�m�θn;ρ� − θ0��
�θn;ρ − θ0�

<∞:

Then, for any pathwise regular estimate of f at θ0 Tn, and any real number
ρ > 0,

lim sup
n→∞

P0�A−1
n �Tn − f�θ0�� ≤ ρ� ≤ P0��N�0; �f′θ0

�2m�� ≤ ρ�:

Theorem 6 (Efficiency). In addition to the conditions in Theorem 1, if the
LAN specified here holds, then for the approximate substitution constrained
MLE, any real number ρ > 0 and any h ∈ V,

n1/2�f�θ̂n� − f�θn�� →pθn
N�0;Var0�l′θ0

�v∗;Y���;

where θn = θ0 + n−1/2ρh.

Often, �f′θ0
�2m = Var0�l′θ0

�v∗;Y�� in application.

7. Discussion. In estimating a functional, two aspects are essential: (1)
the errors in local approximations and (2) the degree of smoothness of the
functional. Let G1 = �θ ∈ 2nx �θ−θ0� ≤ δn� and G2 = �θ ∈ 2x �θ−θ0�s ≤ δsn�,
as specified in Section 4. The stochastic approximations specified in Conditions
A, C and D (A′′, C′′ and D′′) are expected to hold when the local size of the
underlying space r∗i = log�1/HB�u;Gi��, i = 1;2 (for any small u > 0) is
less than 2. This is because supg∈Gi

νn�g� → 0 when
∫ δ

0 H
B�u;Gi�du < ∞

[Ossiander (1987)]. Consequently, Theorems 1 and 2 hold in such cases. On
the other hand, as known in empirical process theory, the empirical processes
specified in the corresponding conditions may converge to zero very slowly
when the size of the underlying space is very large. As a result, as illustrated
in Example 3, the asymptotic normality result does not hold.
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As discussed in Section 4.1, when the parameter space is very large, certain
orthogonality properties are useful in reducing the approximation errors. This
suggests the following construction scheme using the method of sieves. Let
2n = �θ =

∑rn
i=1 aiφi ∈ 2� (possibly with some restrictions on the sieve), where

�φi�∞i=1 is an orthonormal basis with respect to �·; ·�. The existence of such
an orthonormal basis is guaranteed by the Gram–Schmidt orthogonalization
procedure. However, a certain initial estimate of �·; ·� is required when �·; ·�
depends on unknown θ. Let ��·; ·�� be an estimate of �·; ·� such that ��v1; v2�−
��v1; v2��� = Op�n−1/2� for any v1 ∈ 2n − πnθ0 and any v2 ∈ 2 \2n − πnθ0. As
illustrated in Example 2, such an estimate for �·; ·� is not necessary when �·; ·�
does not depend on θ. In this setting, the size of this constructed sieve rn needs
to be chosen so that the required conditions for the stochastic approximations
are satisfied. Note that when the approximation error of the sieve is reduced by
orthogonality, the trade-off phenomenon as discussed in the paragraph before
(4.3) no longer exists. The constructed substitution sieve estimate is therefore
efficient in the Fisher sense. In contrast, as illustrated in Examples 2 and 3,
the standard ML and penalized procedures do not have this flexibility. This
phenomenon is particularly manifested when ω is large, such as in linear
functional and semiparametric estimations.

We need to point out that the phenomenon that the sieve MLE is asymp-
totically optimal and the standard and penalized MLE’s may not be, as shown
in Examples 2 and 3, also occurs in the context of convergence rate. See Birgé
and Massart (1993) and Shen and Wong (1994) for the suboptimality of the
standard MLE’s and the construction of the optimal sieve which achieves the
best convergence rate. As shown in Shen and Wong (1994), the size of the sieve
should be balanced in order to achieve the best convergence rate. In the effi-
ciency context, the optimal size of the sieve for the convergence rate �θ̂n− θ0�
also leads to an efficient estimate f�θ̂n� when the index r∗1 is less than 2,
whereas there may not exist such a choice when r∗1 is at least 2; that is, the
best possible choice of the size of sieve for f�θ̂n� may only yield a rate which is
close to the suboptimal rate of the corresponding MLE. A similar phenomenon
also occurs in penalized estimation, as shown in Examples 2 and 3.

8. Applications. We now apply the general theory to obtain the results
(Propositions 1–5) presented in Section 2.

Example 1 (Nonparametric regression, continued).
(a) Estimation without sieve. The convergence rate of this regression es-

timate �θ̂n − θ0� is Op�n−p/�2p+1�� when E�el1� < ∞ for l > 2, which can be
found in part (b) of Example 3 of Shen and Wong (1994). It can be verified by
a Taylor expansion that

∣∣∣∣f�θ� − f�θ0� − k
∫
θk−1

0 �x��θ− θ0��x�dP0�x�
∣∣∣∣ = O��θ− θ0�2�:

Then (4.2) follows with ω = 2 and the representer v∗ = kσ2θk−1
0 ∈ V.
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We now verify Conditions A–D. Note that P�θ∗�θ; εn�� = θ∗�θ; εn� for u∗ ∈
V, where P is the projection specified in Condition A. In addition,

r�θ− θ0; y� = l�θ; y� − l�θ0; y� − l′θ0
�θ− θ0; y� = −�θ− θ0�2

and

r�θ− θ0; y� − r�θ∗�θ; εn� − θ0; y�
= −εn�2− εn���θ− θ0�2 + 2�θ− θ0�u∗� + ε2

n�u∗�2:
For Condition A, it is sufficient to calculate the convergence rates of supre-
mums of the empirical processes

�8:1� sup
�θ∈2x �θ−θ0�≤δn�

n−1/2νn��θ− θ0�u∗�

and

�8:2� sup
�θ∈2x �θ−θ0�≤δn�

n−1/2νn��θ− θ0�2�:

Let Sn = ��θ−θ0�u∗x �θ−θ0� ≤ δn; θ ∈ 2�. It follows from Kolmogorov and Ti-
homirov (1959) that HB

2 �u;Sn� ≤H�u;2; � · �sup� ≤ cu−1/p for some constant
c > 0, where H�·; ·; � · �sup� is the metric entropy under the supremum norm,
defined as the logarithm of the minimal cardinality of the u-covering of Sn in
the L∞-metric [see, e.g., Ossiander (1987)]. Therefore, by Lemma 4 of Shen
and Wong (1994), the convergence rate of the empirical process in (8.1) is of or-
derOp�n−2p/�2p+1��. Similarly, the empirical process in (8.2) is also bounded by
Op�n−2p/�2p+1��. Hence Condition A holds for 2p/�2p+ 1� ≥ d > 1/2. We need
to point out that the rate n−2p/�2p+1� for the empirical processes in (8.1) and
(8.2) cannot be improved in general, even if the knowledge of δn is available.
Moreover, Condition B is fulfilled because K�θ0; θ� = 1

2�θ − θ0�2. Condition
C is satisfied with P�θ∗�θ; εn�� = θ∗�θ; εn�. Condition D follows from the fact
that sup�θ∈2x �θ−θ0�≤δn� n

−1/2νn�l′θ0
�θ − θ0;Y�� = Op�n−2p/�2p+1�� = Op�εn�. By

Theorem 1, we conclude that the approximate substitution regression esti-
mate f�θ̂n� is asymptotically normal with variance Var0�l′θ0

�v∗;Y�� = �v∗�2 =
k2σ2E0�θk−1

0 �2 for p =m+ γ > 1/2.
To discuss the efficiency issue, we need to specify the distribution of the

error term ei. Under the assumption that ei is distributed as N�0; σ2�, we
have

dPθ0+Anh

dPθ0

��Y1;X1�; : : : ; �Yn;Xn��

= exp
(

1
σ2

n∑
i=1

�Yi − θ0�Xi��Anh�Xi� −
1

2σ2

n∑
i=1

Anh
2�Xi�

)
:

The LAN holds with An = n−1/2, 6�h� = n−1/2∑n
i=1�Yi − θ0�Xi��h�Xi�, and

Rn�θ0; h� = n−1∑n
i=1�h2�Xi� − E0h

2�Xi��. By Theorem 4, the standard MLE
f�θ̂n� is asymptotically efficient for f�θ�.
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(b) Sieve estimation.
(1) Finite-dimensional sieve. In the following, only the case when p >

�2+
√

5�/4 will be discussed. The result for the case when 1/2 < p <

�2+
√

5�/4 is exactly the same except for the rate calculation [see Shen and
Wong (1994), Example 3]. The detailed calculations will not be repeated here.
The approximation error of this sieve is well known [see, e.g., Lorentz (1966)].
For any θ ∈ 2, there exists πnθ ∈ 2n such that

�πnθ− θ� ≤ sup
x
�πnθ�x� − θ�x�� ≤ c�θ�r−pn ;

for c�θ� > 0 depending on θ. The convergence rate of the sieve estimate is

�8:3� Op

(
max

(
n−�1−τ�/2; n−τp

))
;

as given in part (a) of Example 3 of Shen and Wong (1994). The best possible
convergence rate for the sieve estimate under � · � can be obtained from (8.3).
Note that Pn�θ∗�θ; εn�� = �1− εn�θ+ εn�πnu∗ + πnθ0� for u∗ ∈ 2, and

r�θ− θ0; y� − r�Pn�θ∗�θ; εn�� − θ0; y�
= −�2− εn�εn�θ− θ0�2 + 2�1− εn�εn�θ− θ0��πnu∗ + πnθ0 − θ0�
+ ε2

n�πnu∗ + πnθ0 − θ0�2y
it is then sufficient to calculate

�8:4� sup
�θ∈2x �θ−θ0�≤δn�

n−1/2νn��θ− πnθ0��πnu∗ + πnθ0 − θ0��

and

�8:5� sup
�θ∈2x �θ−θ0�≤δn�

n−1/2νn��θ− θ0�2�

in the verification of Condition A. Let Sn = ��θ− θ0��πnu∗ + �πnθ0 − θ0��x θ ∈
2n; �θ − θ0� ≤ δn�. Applying an argument similar to that in part (a) of Ex-
ample 3 of Shen and Wong (1994), we obtain after some calculations that
HB

2 �u;Sn� ≤ H�u;2n; � · �sup� ≤ crn log�δn/u� for some constant c > 0.
By Lemma 4 of Shen and Wong (1994), the empirical process in (8.4) is
bounded byOp�n−�1−τ��. Similarly, the empirical process in (8.5) is also of order
Op�n−�1−τ��. Thus Condition A is fulfilled if �1−τ� ≥ d > 1/2. Conditions B and
D can be verified easily. It remains to verify Condition C. The second condition
in Condition C can be checked easily. Note that �Pn�θ∗�θ; εn�� − θ∗�θ; εn�� =
εn�πn�u∗ + θ0� − �u∗ + θ0��. Thus Condition C holds if

�8:6� n−pτ = εnδ−1
n :

Then τ can be determined by (8.3) and (8.6). The solution is 1/�4p� < τ < 1/2.
A natural choice of τ is 1/�2p+ 1� when p > 1/2.

By Theorems 3 and 4, the approximate substitution sieve estimate is asymp-
totically efficient for p > 1/2 (τ = 1/�2p+ 1� and ln ≤ n�2p−1�/�2p′�2p+1��).

(2) Infinite-dimensional sieve. We now calculate the convergence rate of
this sieve estimate. By the Sobolev embedding theorem [Zeidler (1990)] and a
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result from Kolmogorov and Tihomirov (1959), H�u;2n; � · �sup� ≤ c�bn/u�1/p
for any small ε > 0 and some constant c > 0. It now follows from Theorem 2
of Shen and Wong (1994) with r0 = �log b1/p

n �/2 and E�e1�l <∞, l > 2, that the
convergence rate of the sieve estimate under � · � is Op�n−p/�2p+1�b

1/�2p+1�
n � for

p > 1/2.
Note that Pθ∗�θ; εn� = θ∗�θ; εn� for any large n. Conditions A–D can be

verified easily by arguments similar to those in parts (a) and (b). Therefore, by
Theorems 2 and 3, the approximate substitution sieve MLE is asymptotically
efficient.

(c) Penalization. Under the assumption that E exp�t0�e1�� < ∞ for some
t0 > 0, the convergence rate of the penalized estimate under � · � and � · �s are
Op�n−p/�2p+1�� and Op�n−�p−s�/�2p+1��, respectively, with penalization coeffi-
cient λn = n−2p/�2p+1� [see, e.g., Shen (1997a), Example 3]. Clearly, Conditions
A′′, B′′ and D′′ can be verified as in part (b). Furthermore, Condition C′′ follows
from Minkowski’s inequality and (4.4) is implied by a Taylor expansion and
the Sobolev embedding theorem [Zeidler (1990)]. Therefore, the approximate
substitution penalized MLE is asymptotically efficient for p > 1/2.

Example 2 (Semiparametric model, continued).
(a) Sieve estimation. Let θ = �β;η� and θ0 = �β0; η0�. Let �θ − θ0�2 =

E0�λ − λ0�2/σ2 = E0��β − β0�Z + �η�X� − η0�X���2/σ2. To determine the
representer v∗, note that f�θ� = β is linear. It is easy to see that (4.2) is
satisfied with ω = ∞ and f′θ0

�θ−θ0� = β−β0 since f�θ� is linear. By definition,

�v∗�2 = sup
�θ−θ0x �θ−θ0�>0�

�β− β0�2
�θ− θ0�2

= sup
�hx �Z+h�>0�

1
�Z+ h�2 :

It suffices to find the minimizer h∗ of �Z+h�2 = E�Z+h�X��2/σ2 (h∗ is often
called the least favorable direction). By a conditional argument, we obtain
h∗ = −EZ�X. Thus, �v∗�−2 = E �Z− EZ�X�2/σ2 and v∗ = �v∗�2�1;−EZ�X�,
which agrees with the usual definition of the minimal Fisher information for
β [see Lindsay (1980)]. Here v∗ ∈ V because the conditional density of Z�X is
smooth enough.

Consider the first case when p =m+ γ > 1/2. Note that

HB
2 �u;2n� ≤HB

2 �u;A� +HB
2 �u;Bn� ≤ log

(
1
u

)
+ crn log

(
δn
u

)
;

then Conditions A–D and the LAN can be verified as in Example 1 with re-
placement of θ in Example 1 by λ here. By Theorems 3 and 4, the approximate
sieve MLE β̂n is asymptotically efficient.

Now consider the case when p = m + γ ≤ 1/2. Conditions A, B′, C′ and
D and (4.3) are satisfied with d ≥ �1 − τ� > 1/2. In the above verification,
�πnv∗ − v∗� is required to be O�n−d�. This is so because EZ�X is smooth
enough. By Corollary 2, the sieve MLE β̂n is asymptotically efficient.

It is interesting to note that the convergence rate of the sieve estimate under
�·� is Op�n−τp�, which is close to n−p/2 when τ is close to 1/2. This suboptimal
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rate is actually the rate of the standard MLE based on the parameter space
2 in Example 1(a) for p < 1/2 [see part (b) of Example 3 of Shen and Wong
(1994) for discussions of this suboptimality].

(b) Penalization. Conditions A′′–D′′, (4.4) and the LAN can be verified. In
addition, J�v∗� < ∞ because v∗ ∈ 2. By Theorems 3 and 4, we conclude that
the approximate penalized MLE β̂n is asymptotically efficient.

Example 4 [The proportional odds model (right censoring), continued]. Let
θ0 be �β0; 00� = ��β0

1; : : : ; β
0
p�; 00�, X = �X�1�; : : : ;X�p��. After some calcula-

tions, we obtain that l′θ0
�θ − θ0; δ;Y;X� =

∑p
j=1 Ãj�βj − β0

j� + B̃�0′�Y� −
0′0�Y�� + C̃�0�Y� − 00�Y��, where Ãj, B̃ and C̃ are given in Section 3. Define

�θ− θ0�2 = E0

[ p∑
j=1

Ãj�βi − β0
i � + B̃�0′�Y� − 0′0�Y�� + C̃�0�Y� − 00�Y��

]2

:

By Theorem 8.2 of Devore and Lorentz (1991),

�πnθ0 − θ0�2 ≤ O��0̃− 00�2 + �0̃′ − 0′0�2�

≤ O
(∥∥∥∥
∫ t

0
�exp�log 0′0�x�� − exp�s�x���dx

∥∥∥∥
2

)

≤ O�� log 0′0�x� − s�x��2�
≤ O

(
r−sn � log 0′0�Bs�s+1/q�−1;�s+1/p�−1

)

≤ O�r−sn C�:

Similarly, by Theorem 8.2 of Devore and Lorentz (1991) (the case of p = ∞
follows by passing the limit p→∞ and by the fact that log 0′0 is continuous),
we have

�πnθ0 − θ0�sup ≤ O
(
r−sn � log 0′0�Bs

s−1;s−1

)

≤ O�r−sn C�:

Furthermore, for θi = �β�i�; 0i�, i = 1;2,

�l�θ1; δ; y; z� − l�θ2; δ; y; z�� ≤ c� log 0′1�y� − log 0′2�y��

+
p∑
j=1

�β�1� − β�2�� + �01�y� − 02�y��:

By Theorem 2 of Shen and Wong (1994), the convergence rate of this sieve
estimate under � · � is Op�δn� with δn = max�n−1/2r

1/2
n ; r−sn � = n−s/�2s+1� with

rn = n1/�2s+1�. For more details about this type of rate calculation, see part (c)
of Example 3 of Shen and Wong (1994).

By the assumptions, we know that �01−02�2+�0′1−0′2�2 ≤ c1�θ1−θ2� and
�β�1�−β�2��E ≤ c2�θ1−θ2�, where �·�2 is the usualL2-norm and �β�1�−β�2��E =
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�∑p
i=1�β

�1�
i − β

�2�
i �2�1/2 is the usual Euclidean norm. These facts will be used

in rate calculations and verifications of Conditions A–D.
Let f�θ� = βTt, where tT = �t1; : : : ; tk� is an arbitrary vector. Then (4.2)

is satisfied with ω = ∞. We now calculate v∗ and the corresponding Fisher
information for f�θ�. By definition,

�v∗�2 = sup
�θ−θ0x �θ−θ0�>0�

��β− β0�Tt�2
�θ− θ0�2

= sup
��τ1;:::;τp;h��

�sTt�2
�∑p

i=1 τi�ei;0� + �0; : : : ;0; h��2
;

where s = �τ1; : : : ; τp� and ei is the p-dimensional vector with a one in the
ith location and zero elsewhere. Here the minimizer v∗ exists with �v∗� <∞
because there does not exist a h�Y� which is independent of X such that
�∑p

i=1 τi�ei;0� + �0; : : : ;0; h�� = 0 for a nonzero s = �τ1; : : : ; τp� ∈ Rp. It
follows from the relationship between the L2-norm and the �·� that �h∗�2 <∞
and ��h∗�′�2 <∞. Unfortunately, the above infinite-dimensional optimization
problem does not appear to have an explicit solution even for p = 1. When
p = 1, the above optimization problem is equivalent to infh ��1;0�+�0; h��2 =
infh E0�Ã1 + B̃h′�Y� + C̃h�Y��2.

To characterize v∗, we use finite-dimensional approximations. Let µ =∫
�p�y�/0′0�y��dy, where p�y� is the density of Y. Let h = ∑∞

j=1wjψj�x�,
where �ψj� is an orthonormal basis (Gram–Schmidt orthogonalization based
on the trigonometric basis in L2�0;U�) with respect to the L2-norm induced
by µ, denoted by � · �2; µ. Let hn =

∑sn
j=1wjψj�x�. Consider the following

finite-dimensional approximations:

�v∗n�2 = sup
��s;w�∈Rp×Rsn�

�sTt�2

�∑p
i=1 τie

�1�
i +

∑sn
i=1wie

�2�
i �2

= sup
��s;w�∈Rp×Rsn�

�sTt�2
sTI11s+ 2sTI12�sn�h+wTI22�sn�w

= sup
��s;w��

(
�sTt�2

[
sT�I11 − I12�sn�I−1

22 �sn�IT12�sn��s

+ �w+ I−1
22 �sn�IT12�sn�s�TI22�sn��w+ I−1

22 �sn�IT12�sn�s�
]−1)

= tT�I11 − I12�sn�I−1
22 �sn�IT12�sn��−1t;

where e�1�i and e�2�j are the �p+ sn�-dimensional vectors with a one in the ith
location and zero elsewhere and with ψj�Y� in the �p + j�th location and
zero elsewhere, respectively. Here w = �w1; : : : ;wsn�, I11, I12�sn� = I21�sn�,
I22�sn� and In = I11 − I12�sn�I−1

22 �sn�IT12�sn� are defined in Section 3. The op-
timizer ṽ∗n = �I−1

n t; h
∗
n�, where h∗n =

∑sn
j=1w

∗
jψj with w∗�sn� = �w∗1; : : : ;w∗sn� =

−I−1
22 �sn�IT12�sn��I−1

n t�.
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Under the assumption on the censoring distribution, we know that gi1�y� =
E0�Ãiδ�Y = y� and gi2�y� = E0�ÃiC̃�Y = y� have the same amount of
smoothness as 00�y� with

∫
g2
ij�y�dy < ∞ for i = 1; : : : ; p and j = 1;2. This

implies that, for any k, �I12�k��2M ≤ C�∑p
i=1

∑k
j=1�

∫
gi1�y�ψ′j�y�dµ�y��2 +

�
∫
gi2�y�ψj�y�dµ�y��2� is bounded by

∑p
i=1��g′i1�22;µ + �gi2�22;µ� < ∞, where

� · � is the corresponding matrix (vector) norm. Note here that

inf
��s�=1�

uTI22�k�u
uTu

= λ;

where uT = �u1; : : : ; uk� is an arbitrary vector and λ is the smallest eigen-
value of I22�k�. Hence, for any integer k, λ ≥ inf ��u�=1� u

TI22�k�u ≥
inf ��h�2; µ=1�E�B̃h′�Y� + C̃h�Y��2, which is bounded from below by an ar-
gument similar to that for the existence of �v∗�. This implies that, for any
integer k, �I−1

22 �k�� ≤ 1/λ is bounded. To show that h∗n converges in L2, note
that

�w∗k�2M ≤ �I−1
22 �k��2M�IT12�k��2M�I−1

n t�2M:

The convergence of h∗n in L2 then follows from the fact that �In�M is bounded.
Note that �v∗n�2 → �v∗�2. This implies that limn→∞ In exists. Let h̃∗ =∑∞
j=1w

∗
jψj and ṽ∗ = �I−1t; h̃∗�, where I = limn→∞ In. Applying a similar

argument to that above, we know that h̃∗ has the same amount of smoothness
as 00. This implies that h̃∗ belongs to the completion of the space spanned by
0−00. Write v∗ as �s∗; h∗�, where h∗ =∑∞j=1 ajψj. Define v∗n = �s∗; h∗n�, where
h∗n =

∑sn
j=1 ajψj. By definition, for any sn, �v∗n�2 ≥ �ṽ∗n�2, which implies that

�v∗�2 = �ṽ∗�2. By the uniqueness of the Riesz representer, v∗ = ṽ∗. The above
construction of v∗ is based on �ψj�. Because �·�2; µ is equivalent to �·�2, the h∗n
based on the trigonometric basis also leads to an approximated information
�v∗n�2 that converges to �v∗�2.

For any θ ∈ 2n, let Pnθ = �β;Pn0�, where

Pnθ
∗�θ; εn� = �β+ εnτ∗;Pn0�θ; εn��;

Pn0�θ; εn��t� =
∫ t

0
exp�s�x� + εnπn�exp�−s�x���h∗�x��′��dx

and 0�t� =
∫ t

0 exp�s�x��dx. Applying Theorem 8.2 of Devore and Lorentz
(1991), after some calculations, we have

sup
�θ∈2nx �θ−θ0�≤δn�

�Pnθ∗�θ; εn� − θ∗�θ; εn�� = O�εnr−sn � +O�ε2
n� = Op�δ−1

n ε
2
n�:

Thus (i) of Condition C is satisfied for any s > 1/2.
Applying a Taylor expansion up to order 5 and Lemma 4 of Shen and Wong

(1994), the rate of convergence of the empirical process in Condition A is
Op��ε2

n + εnr−sn + εn�n−1rn� +Op�δ4
n� = Op�ε2

n�. Thus Condition A is satisfied
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for any s > 1/2. Applying the same argument, we have
∣∣∣
[
K�θ0; θ� −K�θ0;Pnθ

∗�θ; εn��
]
− 1

2

[
�θ− θ0�2 − �Pnθ∗�θ; εn� − θ0�2

]∣∣∣

= O
(
�ε2
n + εnr−sn + εn���δ2

n + δ8/3
n �

)
+O�δ4

n� = O�ε2
n�:

Condition B is satisfied for any s > 1/2. For (ii) of Condition C, applying
Lemma 4 of Shen and Wong (1994) as in the verification of Condition A and
using the relationship between �·� and the L2-norm, we know that the rate of
convergence of the empirical process there is Op��ε2

n + εnr−sn �n−1rn� = O�ε2
n�.

Therefore, (ii) of Condition C is fulfilled for any s > 1/2. Condition D can be
verified using the same argument. Finally, the LAN is satisfied with An =
n−1/2 and 6�h� = n−1/2∑n

i=1 l
′
θ0
�h; δi;Yi;Xi�.

By Theorems 3 and 4, β̂Tn t is asymptotically efficient for estimating βTt
with variance tTI−1t. Therefore, the sieve MLE β̂n is asymptotically efficient
for β with covariance matrix I−1.

Example 5 (Density estimation, continued). As mentioned in Section 4,
the Fisher norm cannot be directly used. We therefore consider the Hellinger
distance instead. Let

�θ− θ0� = 2
(∫ 1

0
�θ�x� − θ0�x��2 dx

)1/2

and εn = n−d;

where d will be specified later.
(a) Functions with finite amount of smoothness. The convergence rate of

the standard MLE under � · � is Op�n−p/�2p+1�� for p > 1/2 [see Wong and
Shen (1995), Example 1]. It is easy to see that (4.2) is satisfied with ω = 2
and v∗ = −θ0�log θ0 −

∫
θ2

0 log θ0� following from a Taylor expansion and the
facts that

∫
θ0�θ− θ0� = 0, and

∣∣∣∣f�θ� − f�θ0� −
∫

4�θ− θ0�θ0�log θ0 −
∫
θ2

0 log θ0�
∣∣∣∣ ≤ O��θ− θ0�2�:

We now proceed to verify Conditions A–D. Consider the path θ�θ0; t� = �θ0+
t�θ− θ0��/�1+�t2− t��θ− θ0�2�1/2 ∈ 2 for 0 ≤ t ≤ 1 and θ ∈ �θ ∈ 2x �θ− θ0� ≤
δn�. Then P�θ∗�θ; εn�� = θ∗�θ; εn�/�

∫
θ∗�θ; εn�2�1/2 = θ∗�θ; εn�/�1+2εn

∫
u∗�θ−

θ0� + ε2
n�u∗�2�1/2 for u∗ ∈ V, where P is the projection specified in Condition

A. Note that l′θ0
�θ − θ0� = 2�θ − θ0�/θ0 + �θ − θ0�2 and νn�r�θ − θ0; y�� =

2νn��log�1+�θ−θ0�/θ0�−�θ−θ0�/θ0��. Applying a Taylor expansion, we obtain,
for θ ∈ �θ ∈ 2x �θ− θ0� ≤ δn�,

r�θ− θ0; y� − r�Pθ∗�θ; εn� − θ0; y�
= ��Pθ∗�θ; εn� − θ�/θ0���θ− θ0�/θ� + r�1��y�
≤ εn�θ− θ0�/θ0 + u∗�θ− θ0�/θ0θ+ r�1��y�;
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where r�1� is the remainder in the expansion. To bound r�1�, note that
∫
θ0u

∗ =
0. It follows that

sup
�θ∈2x �θ−θ0�≤δn�

�r�1�� = O
(

sup
�θ∈2x �θ−θ0�≤δn�

�Pθ∗�θ; εn� − θ�3
)
= O�ε2

n�:

By Proposition 6, �θ− θ0�sup ≤ O�δ
2p/�2p+1�
n � implies that the likelihood ratios

θ/θ0 are uniformly bounded above and below for θ within a δn-neighborhood
of θ0. Condition A then follows from the fact that

sup
�θ∈2x �θ−θ0�≤δn�

n−1/2 max
(
νn��θ−θ0�/θ0�; νn�u∗�θ−θ0�/�θ0θ��

)
= Op�n−2p/�2p+1��

with 2p/�2p+ 1� ≥ d > 1/2. To verify Condition B, note that

K�θ0; θ� = −2 E0 log�1+ �θ− θ0�/θ0�

= −2
∫
�θ− θ0��x�θ0�x�dx+ �θ− θ0�2 + r�2��θ− θ0�

= 1
2�θ− θ0�2 + r�2��θ− θ0�;

where r�2��θ−θ0� = E0�
∑6
j=1�−1�j��θ−θ0�/θ0�j/j+r�3��θ−θ0�� is the remainder

in the above expansion. Condition B then follows from the fact that, for any
θi ∈ �θ ∈ 2x �θ− θ0� ≤ δn� and some constant c > 0,

�r�2��θ∗�θ; εn� − θ0� − r�2��θ− θ0��

≤ c
[
δn sup
�θ∈2x �θ−θ0�≤δn�

�Pθ∗�θ; εn� − θ� + sup
�θ∈2x �θ−θ0�≤δn�

2�r�3��θ− θ0��
]

≤ cεnδ2
n + cδ

2+10p/�2p+1�
n

= O�ε2
n�:

In the above calculations, Proposition 6 has been used for bounding r�3�. For
Condition C, note that, for any θ ∈ �θ ∈ 2nx �θ − θ0� ≤ δn�, �P�θ∗�θ; εn�� −
θ∗�θ; εn�� = O�εnδn� = O�δ−1

n ε
2
n�. The first statement in Condition C is sat-

isfied. Using the expression for P�θ∗�θ; εn�� and Chebyshev’s inequality, we
have

sup
�θ∈2nx �θ−θ0�≤δn�

n−1/2νn�l′θ0
�θ∗�θ; εn� −P�θ∗�θ; εn��;Y��

≤ Cεnδn sup
�θ∈2nx �θ−θ0�≤δn�

n−1/2νn�θ∗�θ; εn��

= Op�ε2
n�:

Condition C is therefore fulfilled. Condition D can be verified similarly.
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As for the LAN specified in Section 5, we have

dPm�θ0+Anh�
dPθ0

�Y1; : : : ;Yn� = exp
( n∑
i=1

2 log
[
1+ h�Xi�

2n1/2θ0�Xi�
+O

(�h�2
n

)])

= exp
(
6�h� − 1

2
�h�2 +Rn�θ0; h�

)
:

Then the LAN holds with 6�h� = n−1/2∑n
i=1 h�Xi�/θ0�Xi�, An = �2n1/2�−1

and Rn�θ0; h� →pθ0
0.

We conclude by Theorems 5 and 6 that f�θ̂n� is asymptotically efficient for
estimating f�θ� with variance Var0�l′θ0

�θ−θ0;Y�� = 4 Var0�log θ0� for p > 1/2.
(b) Functions with infinite amount of smoothness. We now calculate the

convergence rate of the MLE. It follows from Section 7 of Kolmogorov and
Tihomirov (1959) that

H�u;2; � · �sup� ≤
2s+1

�s+ 1�!�log e�shs
(

log
1
u

)s+1

+O
((

log
1
u

)s+1

log log
1
u

)

for all u > 0. Applying Theorem 2 of Wong and Shen (1995), we obtain that
the convergence rate of the standard MLE is Op�n−1/2�log n��s+1�/2�. The extra
log n factor may be eliminated or the power of the log n term may be reduced
if the local metric entropy is calculated [Wong and Shen (1995), Theorem 2],
but the above rate is enough for the application in this case. Conditions A-D
and the LAN can be verified by applying arguments similar to those above
and by the Sobolev interpolation inequality [Zeidler (1990), Example 21.66].
By Theorems 5 and 6, we conclude that f�θ̂n� is asymptotically efficient for
estimating f�θ� with variance 4 Var0�log θ0�.

9. Technical proofs.

Proof of Theorem 1. The key idea is to use a linear approximation of
n−1∑n

i=1 l
′
θ0
�θ − θ0� to approximate Ln�θ� − Ln�θ0� characterized by stochas-

tic equicontinuity. Such an approximation is crucial since a poor approxima-
tion in a large parameter space cannot yield an asymptotic distribution with
the rate of n−1/2. Here f�θ̂n� − f�θ0� is approximated by �θ̂n − θ0; v

∗�, which
builds a bridge between f�θ̂n� and L′n�·�. After careful comparisons between
Ln�θ̂n� and Ln�θ∗�θ̂n; εn��, we obtain that �θ̂n − θ0; v

∗� is approximated by
n−1∑n

i=1 l
′
θ0
�v∗;Yi� with the desired precision.

The following local linear approximation of the empirical criterion can be
established from (4.1). For any Pnθn ∈ �Pnθn ∈ 2nx �Pnθn − θ0� ≤ δn�,

�9:1�
Ln�Pnθn� = Ln�θ0� −K�θ0;Pnθn� + n−1/2νn�l′θ0

�Pnθn − θ0;Y��
+ n−1/2νn�r�Pnθn − θ0;Y��:
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Substituting Pnθn by θ̂n in (9.1), we obtain that

�9:2�
Ln�θ̂n� = Ln�θ0� −K�θ0; θ̂n� + n−1/2νn�l′θ0

�θ̂n − θ0;Y��
+ n−1/2νn�r�θ̂n − θ0;Y��:

Note that �θ∗�θ̂n; εn� − θ0� = ��1− εn��θ̂n − θ0� + εnu∗� ≤ δn with probability
tending to 1. Subtracting (9.2) from (9.1) and substituting θn by θ∗�θ̂n; εn� in
(9.2), we have, by Conditions A and B,

Ln�θ̂n� = Ln�Pnθ∗�θ̂n; εn�� − �K�θ0; θ̂n� −K�θ0;Pnθ
∗�θ̂n; εn���

+ n−1/2νn�l′θ0
�θ̂n −Pnθ∗�θ̂n; εn�;Y��

+ n−1/2νn�r�θ̂n −Pnθ∗�θ̂n; εn�;Y��
= Ln�Pnθ∗�θ̂n; εn�� − 1

2 ��θ̂n − θ0�2 − �Pnθ∗�θ̂n; εn� − θ0�2�
+ n−1/2νn�l′θ0

�θ̂n −Pnθ∗�θ̂n; εn�;Y��
+Op�ε2

n�:

By Condition C and (2.1), we get

�9:3�
−O�ε2

n� ≤ − 1
2 ��θ̂n − θ0�2 − �Pnθ∗�θ̂n; εn� − θ0�2�
+ n−1/2νn�l′θ0

�θ̂n − θ∗�θ̂n; εn�;Y�� +Op�ε2
n�:

By (9.3) and Conditions C and D, we have

−O�ε2
n� ≤ − 1

2 �1− �1− εn�2��θ̂n − θ0�2

+ �1− εn��θ̂n − θ0��Pnθ∗�θ̂n; εn� − θ∗�θ̂n; εn��
+ �1− εn��θ̂n − θ0; εnu

∗� − n−1/2νn�l′θ0
�εn�u∗ − �θ̂n − θ0��;Y��

+Op�ε2
n�

≤ −εn�θ̂n − θ0�2 + �θ̂n − θ0��Pnθ∗�θ̂n; εn� − θ∗�θ̂n; εn��
+ �1− εn��θ̂n − θ0; εnu

∗� − n−1/2νn�l′θ0
�εnu∗;Y�� +Op�ε2

n�
≤ �1− εn��θ̂n − θ0; εnu

∗� − n−1/2νn�l′θ0
�εnu∗;Y�� +Op�ε2

n�:

Hence,

�9:4� −�1−εn��θ̂n−θ0; u
∗�+n−1/2νn�l′θ0

�u∗;Y�� = O�εn�+Op�εn� = op�n−1/2�:

This gives, together with the inequality in (9.4) with u∗ being replaced by −u∗,

��θ̂n − θ0; u
∗� − n−1/2νn�l′θ0

�u∗;Y��� = op�n−1/2�;
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whence �θ̂n − θ0; v
∗� = n−1/2νn�l′θ0

�v∗;Y�� + op�n−1/2�. Hence, by (4.2),

f�θ̂n� − f�θ0� = f′θ0
�θ̂n − θ0� + op�un�θ̂n − θ0�ω�

= �θ̂n − θ0; v
∗� + op�n−1/2�

= n−1
n∑
i=1

l′θ0
�v∗;Yi� + op�n−1/2�:

The result then follows from the classical central limit theorem. 2

Proof of Corollary 1. The result follows from the same argument as in
the proof of Theorem 1 with v∗ being replaced by s. 2

Proof of Corollary 2. The main body of the proof is as shown in Theo-
rem 1. Due to the possible poor approximations by the sieve, we need to bound
the related error terms precisely. Note that

Pnθ
∗�θ̂n; εn� − θ∗�θ̂n; εn� = εn�πn�u∗ + θ0� − �u∗ + θ0��:

By (4.3), Conditions B′ and C′ and the Cauchy–Schwarz inequality, we have,
after some calculations, that

− 1
2�θ̂n − θ0�2�1− �o�hn��� + 1

2

∥∥∥�Pnθ∗�θ̂n; εn� − θ∗�θ̂n; εn��

+ �θ∗�θ̂n; εn� − θ0�
∥∥∥

2
�1+ �o�hn���

≤ −εn�1− �o�hn����θ̂n − θ0�2

+ εn�1+ �o�hn����θ̂n − θ0; πn�u∗ + θ0� − �u∗ + θ0��
+ �1− εn��1+ �o�hn����εnu∗; θ̂n − θ0� +Op�ε2

n� +O�ε2
n�

≤ −εn�1− �o�hn�����θ̂n − πnθ0�2 + �πnθ0 − θ0�2�
+ εn��πnθ0 − θ0�2 + �θ̂n − θ0; πnu

∗ − u∗��
+ �1− εn��1+ �o�hn����εnu∗; θ̂n − θ0� +Op�ε2

n�
≤ 2εn�op�hn���πnθ0 − θ0�2 + εn�1+ �op�hn����θ̂n − θ0��πnu∗ − u∗�
+ �1− εn��1+ �o�hn����εnu∗; θ̂n − θ0� +Op�ε2

n�
≤ �1− εn��1+ �o�hn����εnu∗; θ̂n − θ0� +Op�ε2

n�:

The result then follows from the same arguments as in (9.3) and (9.4). 2

Proof of Theorem 2. The basic idea is the same as that presented in
Theorem 1. However, we need to control the penalty J�θ̂n�. Similarly, by (2.2),
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Condition D′′ and (ii) of Condition A′′, we obtain

−O�ε2
n� ≤ L̃n�θ̂n� − L̃n�θ0�
≤ − 1

2�θ̂n − θ0�2 + n−1/2νn�l′θ0
�θ̂n − θ0;Y�� + n−1/2νn�r�θ̂n − θ0;Y��

− λn�J�θ̂n� −J�θ0�� +Op�εn�
≤ −λn�J�θ̂n� −J�θ0�� +Op�εn�:

Thus, λn�J�θ̂n�−J�θ0�� ≤ Op�εn�. By Condition C′′ and the fact that J�u∗� <
∞, we have

λn�J�θ∗∗�θ̂n; εn�� −J�θ̂n�� ≤ cλnJ�εn�−θ̂n + θ0 + u∗��
≤ cλnεn�J�θ̂n − θ0� +J�u∗��
= Op�ε2

n�;

for some constant c > 0. Comparing Ln�θ̂n� with Ln�θ∗∗�θ̂n; εn�� as in (9.3)–
(9.4), we obtain the desired result. 2

Proof of Corollary 3. Use the same arguments as in Corollary 1. 2

Proof of Theorem 3. Applying testing arguments similar to those in Ba-
hadur (1964) and Wong (1992) on H0x Pθn; ρ versus HAx Pθ0

, we obtain the
desired result. See the proof of Proposition 4 in Wong (1992). 2

Proof of Theorem 4. Note that

�f�θ̂n� − f�θn�� = �f�θ̂n� − f�θ0�� − �f�θn� − f�θ0��
= �θ̂n − θ0; v

∗� − �n−1/2ρh; v∗� + op�n−1/2�

= n−1
n∑
i=1

l′θ0
�v∗;Y� − �n−1/2ρh; v∗� + op�1�:

The desired result follows from the LAN condition and Le Cam’s third
lemma. 2

Proof of Theorem 5. The proof is straightforward and thus omitted. 2

Proof of Proposition 3. First consider the standard MLE. By Lemma 4
of Shen and Wong (1994), we have supη∈Bα n

−1/2νn�η − η0� = Op�n−α�. We
then obtain after some calculations that max��β̂n − β0�; �E0�η̂n − η0�2�1/2� ≤
O��2/σ��θ̂n − θ0�� = Op�n−α/2�. Hence, we restrict our attention to an n−α/2-
neighborhood of θ0 that includes the standard MLE.

Let S = �Xj1
; : : : ;XjNn

� be the maximal subset of �X1; : : : ;Xn� such that

S satisfies (1) ��Xji
− 0:2/�n + 1�;Xji

+ 0:2/�n + 1���Nn

i=1 are disjoint and
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contained in �1/8;3/8� and (2) for anyXi ∈ S andXj /∈ S, �Xi−Xj� ≥ 0:2/�n+
1�. Let η̃�x� = η0+

∑Nn

i=1�sgn�eji�Bh�Xji
+h/2−x�+Gh�Xji

+h/2−x�� and θ̃ =
�β̃; η̃�, where sgn�·� is the sign function, β̃ = β0−�E0Z1/E0Z

2
1�1/2 E0�η̃−η0��2.

By Lemma 2 of Birgé and Massart (1993), Nn ≥ n/16 with probability 1.
Using the property of S, we obtain that Bh�Xji

+ h/2 −Xj� = 0 for j 6= ji
and Bh�h/2� = �1/2α�hα. Note that 0 ≤ G�x� ≤ ��E e1 sgn�e1��/2α+2�1/2hα/2.
For any 0:2/�n+ 1� ≤ h ≤ c̃/�n+ 1�, 0:2 ≤ c̃ ≤ 1,

Ln�θ̃� −Ln�θ0� =
1

2σ2n

n∑
j=1

�2ej�η̃− η0��Xj� − �η̃− η0�2�Xj��

+ �E0Z1�2�E0�η̃− η0��2 + op�n−α�

≥ 1
σ2n

n∑
j=1

ej

[ Nn∑
i=1

sgn�eji�Bh
(
Xji
+ h

2
−Xj

)

− 2
( Nn∑
i=1

Gh

(
Xji
+ h

2
−Xj

))2]
+ op�n−α�

≥ 1
σ2n

∑
j∈S

ej

[
sgn�ej�

1
2α
hα − �Ee1 sgn�e1��

2α+1
hα
]
+ op�n−α�

≥ �Ee1 sgn�e1��
2α+1σ2

hα = c2�n+ 1�−α;

with a nonzero probability, where c2 > 0 is a constant. On the other hand,
using an empirical process inequality [see, e.g., Shen and Wong (1994), Lemma
4], we have, for any θ ∈ 2,

Ln�θ� −Ln�θ0� ≤ c3h
α + op�n−α�;

which implies that an approximate maximizer ĥn = c4n
−1 for some constant

c4 > 0, where c3 > c2 is a constant. Thus, E0�η̂n − η0� = ĥα/2n �1+ o�1�� with a
nonzero probability.

For any θ in the neighborhood,

Ln�θ� −Ln�θ0� =
1

2σ2n

n∑
j=1

[
2ej�λ�Zj;Xj� − λ0�Zj;Xj��

− �λ�Zj;Xj� − λ0�Zj;Xj��2
]

= 1
2σ2n

n∑
j=1

[
2ej�η− η0��Xj� − �η− η0�2�Xj�

]

+ �E0Z1�2�E0�η− η0��2

− E0Z
2
1

[
�β− β0� +

(
E0Z1

E0Z
2
1

)1/2

E0�η− η0�
]2

+ op�n−α�
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= − 1
2σ2n

n∑
j=1

�ej − �η− η0��Xj��2 + �E0Z1�2�E0�η− η0��2

− �E0Z
2
1�
[
�β− β0� +

(
E0Z1

E0Z
2
1

)1/2

E0�η− η0�
]2

+ op�n−α�:

In order to maximize Ln�θ� − Ln�θ0� in the above expression, it is necessary
to minimize the second negative term. Hence,

��β̂n − β0� + �E0Z1/E0Z
2
1�1/2 E0�η̂n − η0�� = op�n−α/2�:

The result in Proposition 3 then follows.
Now consider the penalized MLE. The convergence rate for the penalized

MLE is Op�n−α/2� when λn is chosen to be of order n−α [Shen (1997a), The-
orem 3]. Furthermore, by Theorem 4 of Shen (1997a), we know that, for any
small δ > 0, J�η̂n� ≤ �1+ δ�J�η0� with probability tending to 1. We therefore
restrict our attention to the set �η ∈ Bαx J�η� ≤ �1+ δ�J�η0��. Note that

L̃n�θ� − L̃n�θ0� = Ln�θ� −Ln�θ0� − λn�J�η� −J�η0��:

The conclusion for the standard MLE continues to hold for the penalized MLE
since the contribution of λn�J�η� −J�η0�� [−J�η0�n−α ≤ λn�J�η� −J�η0�� ≤
δJ�η0�λn = δJ�η0�n−α] is negligible. 2

Proposition 6. Let f ∈ Cm+γ�a; b� = �f ∈ Cm�a; b�x f�a� = f�b� =
0; �f�j��x��sup ≤ Lj; �f�m��H ≤ Lm+1� for j = 0; : : : ;m, where the Hölder
norm is defined as

�f�m��H = sup
x∈�a; b�

�f�m��x� − f�m��y��
�x− y�γ :

Then

�f�sup ≤ �f�a2L1−a;

where a = 2�m+ γ�/�2�m+ γ� + 1� and L is a positive constant independent
of f.

Proof. The above result can be obtained by applying an argument similar
to that in Theorem 1 of Gabushin (1967). The detailed proof for the case of
m = 0 is given in Lemma 7 of Shen and Wong (1994). 2
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