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The problem of optimal adaptive estimation of a function at a given
point from noisy data is considered. Two procedures are proved to be
asymptotically optimal for different settings.

First we study the problem of bandwidth selection for nonparametric
pointwise kernel estimation with a given kernel. We propose a bandwidth
selection procedure and prove its optimality in the asymptotic sense. More-
over, this optimality is stated not only among kernel estimators with a vari-
able bandwidth. The resulting estimator is asymptotically optimal among
all feasible estimators. The important feature of this procedure is that it
is fully adaptive and it “works” for a very wide class of functions obeying
a mild regularity restriction. With it the attainable accuracy of estima-
tion depends on the function itself and is expressed in terms of the “ideal
adaptive bandwidth” corresponding to this function and a given kernel.

The second procedure can be considered as a specialization of the first
one under the qualitative assumption that the function to be estimated
belongs to some Hölder class 6�β;L� with unknown parameters β;L. This
assumption allows us to choose a family of kernels in an optimal way and
the resulting procedure appears to be asymptotically optimal in the adap-
tive sense in any range of adaptation with β ≤ 2.

1. Introduction. The present paper is devoted to studying the problem
of adaptive estimation of a function at a given point. In the context of function
estimation, this problem can be treated as the problem of “local” or pointwise
data-driven selection of smoothing parameters.

The inspection of the existing literature in this direction shows two differ-
ent possible asymptotic approaches. First we mention the results with fixed-
parameter asymptotics when an estimated function is kept fixed and the num-
ber of observations goes to infinity. In this setup the corresponding smoothing
parameter (typically bandwidth) can be chosen root-n consistently; see Härdle
and Marron (1985), Müller and Stadtmüller (1987), Staniswalis (1989), Jones,
Marron and Park (1991), Vieu (1991), Hall and Johnstone (1992) and Brock-
mann, Gasser and Herrmann (1993) among others.

We also discuss another approach, usually called minimax, which is based
on the assumption that the function to be estimated from noisy data belongs
to some function (smoothness) class, for example, Hölder, Sobolev, Besov, and
so on [see Ibragimov and Khasminskii (1980, 1981), Bretagnolle and Huber
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(1979), Stone (1982), Nemirovskii (1985), Donoho and Johnstone (1992) and
Kerkyacharian and Picard (1993)]. Such an assumption is very important be-
cause the rate (accuracy) of estimation and the corresponding optimal estima-
tion rule depend on the structure and parameters of this function class. But, at
the same time, this creates a serious problem for application of the nonpara-
metric approach because typically we do not have a priori any information
about the smoothness properties of the estimated function. To bypass this
trouble, one or another kind of adaptive procedure is applied. It is assumed
again that the function belongs to some function class but with unknown pa-
rameter values. After that the corresponding smoothness parameters (e.g., a
bandwidth) of the estimation procedure are chosen automatically by data. We
refer to Marron (1988) and Donoho and Johnstone (1995) for an overview on
this topic. Note only that typical results on adaptive estimation deal with the
problem of estimation of a function.

In the following discussion we shall focus on the problem of estimation of a
function at a given point. Study of the problem of pointwise adaptive estima-
tion in the minimax framework was initiated by Lepski (1990, 1992). In those
papers a significant difference was shown between the problem of estimation
of the whole function and of a value of a function at one point. More pre-
cisely, for the problem of pointwise estimation we encounter the phenomenon
of lack of adaptability: if we knew that a function to be estimated belongs
to a given Hölder class 6�β;L�, then we would estimate this function at a
given point with the accuracy ϕ�ε� = ε2β/�2β+1�, ε being the noise level. But
if the parameter β is unknown, then this accuracy is impossible to attain.
The optimal adaptive rate was also calculated in Lepski (1990). It turned out
to be �ε

√
ln ε−1�2β/�2β+1� which differs from the nonadaptive one by the extra

log-factor [see also Brown and Low (1992)].
Recently the problem of pointwise adaptive estimation has received a new

impetus in connection with the problem of global function estimation for Besov
classes. It was shown in Lepski, Mammen and Spokoiny (1997) that a kernel
estimator with a variable data-driven bandwidth based on pointwise adap-
tation achieves the minimax rate of estimation over a wide scale of Besov
classes and hence this kind of estimator shares rate optimality properties
with wavelet estimators; see, for example, Donoho and Johnstone (1994, 1992),
Kerkyacharian and Picard (1993) and Donoho et al. (1995).

In the present paper we continue studying the problem of pointwise adap-
tive estimation. The aim is to describe an asymptotically optimal (at the level
of a constant) pointwise adaptive procedure.

Below we consider two settings for which an optimal (in the asymptotic
sense) pointwise adaptive procedure can be shown explicitly. The first ap-
proach can be described as follows. Let a function f�·� be observed with noise
and let us estimate the value of this function at a point t0. We study the prob-
lem of an adaptive bandwidth selection in kernel estimation with a given ker-
nel K. For pointwise adaptation we use the adaptive procedure from Lepski,
Mammen and Spokoiny (1997) with a more accurate choice of its parameters.
We prove that this estimation procedure is sharp optimal in the adaptive sense
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over the class of all feasible estimators not only of kernel type. This kind of
result is a little bit surprising since we know from Sacks and Strawderman
(1982) that for nonadaptive pointwise estimation linear (and, in particular,
kernel) methods are not sharp optimal.

The first setting assumes that the kernelK is given and only the bandwidth
h is to be selected. The other approach is in a simultaneous selection of a kernel
and a bandwidth. We consider this problem under the qualitative assumption
that the function f belongs to some Hölder class with unknown parameters.

The paper is organized as follows. In the next section we formulate the
problem of optimal bandwidth selection and present the related results. We
also briefly discuss possible applications of these results to the problem of
global function estimation. In Section 3 we consider the problem of optimal
pointwise adaptive estimation under Hölder-type constraints on the estimated
function. Some possible developments of the presented results are discussed
in Section 4. The proofs are mostly deferred to Section 5.

2. Optimal bandwidth selection. In this section we consider the prob-
lem of data-driven bandwidth selection for a given kernel K. We propose
a pointwise selection rule and show that the resulting estimator is optimal
(asymptotically when the noise level goes to zero) among the class of all fea-
sible estimators not only of kernel type.

2.1. Model and kernel smoothers. We consider the simplest “signal+white
noise” model when an observed process X�t�, t ∈ �0;1�, obeys the following
stochastic differential equation:

dX�t� = f�t�dt+ εdW�t�:(2.1)

Here ε is the level of noise and we assume that this level is “small”; that is,
we consider the asymptotics as ε → 0. The process W = �W�t�; t ≥ 0� is a
standard Wiener process. The function f�·� in (2.1) is to be estimated at a
point t0 ∈ �0;1�.

Let K�·�; be a kernel, that is, a function satisfying the usual assumptions
[see the following conditions �K1�–�K5�]. Consider the family of the kernel
estimators f̃h�t0� of the value f�t0�:

f̃h�t� =
1
h

∫
K

(
t− t0
h

)
dX�t�;(2.2)

with a positive bandwidth h. Furthermore, we assume that h is small enough
and the support of the function K��t− t0�/h� is contained in �0;1�. This as-
sumption allows us to avoid the boundary problem and to change integration
over �0;1� to integration over the whole real line. That is why we omit the
integration limits here in the definition (2.2) and in what follows.

The problem is to select by the data X some bandwidth ĥ to minimize the
corresponding risk

Ef

∣∣f̃ĥ�t0� − f�t0�
∣∣r;(2.3)
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where r ≥ 1 is a given power. The exact statement of the problem will be given
later on. We start with a preliminary discussion.

2.2. Preliminaries. Denote, for h > 0,

Khf�t0� =
1
h

∫
K

(
t− t0
h

)
f�t�dt:

We use the usual decomposition of the loss for the kernel estimators f̃h�t0�,
f̃h�t0� − f�t0� =Khf�t0� − f�t0� + ξ�h� = B�h� + ξ�h�;(2.4)

where the stochastic term ξ�h� with

ξ�h� = ε

h

∫
K

(
t− t0
h

)
dW�t�

is obviously a Gaussian zero-mean random variable with variance

σ2�h; ε� = ε
2�K�2
h

:

The standard bandwidth choice in nonparametric estimation is motivated by
the balance relation between the bias and stochastic terms in the decompo-
sition (2.4). The bias term B�h� = Khf�t0� − f�t0� for a bandwidth h is non-
random but it depends on the function f, B�h� = Bf�h�, and it characterizes
the accuracy of approximation of an estimated function by the applied method
of approximation (in the present context by kernel smoothers). The stochastic
term is a Gaussian random variable with zero mean and variance σ2�h; ε�
and it depends typically on the error level ε, the kernel K and the bandwidth
h but not on the function f.

Minimization of the losses leads to a balance equation of the form Bf�h� �
σ�h; ε�, where the symbol “�” means the equivalence in order. Indeed, a de-
crease on the order of 1�h� usually results in an increase on the order of
σ�h; ε� and vice versa, and such a balance relation is necessary for obtaining
the optimal pointwise rate. But the function f is unknown and hence the bias
function Bf�h� is also unknown. One standard approach used here is based
on the smoothness assumption that the function f belongs to some function
class, for instance, to Hölder or Sobolev ball 6�β;L� with smoothness param-
eters β;L; see, for example, Ibragimov and Khasminskii (1981). Under such
a constraint, one may estimate the bias Bf�h� by Const.Lhβ and we arrive
at the standard balance equation

Lhβ � σ�h; ε� = ε�K�h−1/2:(2.5)

The approach proposed later develops this idea in the following sense. We try
to adapt the estimation procedure and particularly the bandwidth selector rule
not to some function class but to the function f itself. Of course, the quality
of estimation still depends on some smoothness (or regularity) properties of
this function. As soon as the kernel K is fixed (this means that the method of
approximation of the function by its kernel smoothers is fixed), we measure
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these regularity properties of the function f at the point t0 by the bias function
Bf�h�. [Note that the method of describing the smoothness properties of a
function in terms of the rate of approximation by kernel smoothers is one of
the standard approaches in approximation theory. For instance, if a kernel is
of a proper regularity, then Sobolev or Besov smoothness function classes can
be defined in these terms; see, e.g., Triebel (1992).]

Denote, for h > 0,

1�h� = 1f�h� = sup
0<η<h

∣∣Kηf�t0� − f�t0�
∣∣:(2.6)

An adaptive procedure which would realize the bandwidth selection rule due
to the following balance equation:

1�h� � σ�h; ε�(2.7)

could be called “ideal” since such a procedure would adapt directly to local
(pointwise) smoothness properties of the unknown function.

Unfortunately, such a balance equation [and even the classical balance
equation (2.5)] cannot be realized for the problem of pointwise adaptive es-
timation. This phenomenon was discovered by Lepski (1990); see also Brown
and Low (1992). The idea behind this is that the loss of a minimax estimator,
being normalized, will not be asymptotically degenerate. [Recall that for the
problem of global function estimation losses are typically degenerate; see, e.g.,
Lepski (1991).]

It turned out that, in order to handle an adaptive procedure in the case
of an estimation at a point, one has to take some majorant for the stochastic
term to control stochastic fluctuations. Namely, the balance relation

1f�h� � σ�h; ε�
√

ln ε−1 = ε
√

ln ε−1
√
h

allows one to estimate adaptively but the corresponding rate also includes such
a log-factor. One can say that this extra log-factor is an unavoidable payment
for pointwise adaptation which can be neither removed nor improved (in the
sense of rate of convergence).

This phenomenon also admits the following interpretation. An adaptive
estimation means that we have to estimate not only the unknown value f�t0�
of the function f at t0 but also the underlying smoothing parameter which
leads to some loss of efficiency. One may characterize this loss of efficiency
as a noise magnification with some factor dε which is treated as a payment
for adaptation. Now we denote ε̃ = εdε and we are trying to realize the same
balance equation (2.5) or (2.7) with ε̃ in place of ε, that is,

1�h� � σ�h; ε̃�:(2.8)

The minimal (in order) value of dε for which this can be done could be called
“an adaptive factor.” In the context of estimation over Hölder classes, due to
Lepski (1990), this factor was found to be

√
ln ε−1.
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We shall now describe the similar result in the context of kernel estimation
with a fixed kernel. First we indicate the corresponding adaptive factor which
appeared to be

√
r ln�hmax/hmin�, where �hmin; hmax� is the range of adaptation.

Then we show that the presence of this log-factor leads to degenerate behavior
of the corresponding normalized losses that allows us to optimize the balance
equation (2.8) in the following sense: we rewrite it in the form

1�h� = Cσ�h; ε̃�(2.9)

and try to select the constant C in an optimal way in order to get the min-
imal value of the risk in (2.3). After the constant C has been specified, the
bandwidth hf which is the solution of this balance equation might be called
an “ideal adaptive bandwidth” corresponding to the given kernel and to local
regularity properties of an estimated function expressed by the bias function
Bf�h�. In the following discussion we propose an expression for the constant
C = C�K�, present an adaptive bandwidth selector and show that the result-
ing estimator performs in a way as if the value hf were known. Moreover, we
show that this estimator is optimal among the class of all feasible estimators,
not only of kernel type.

Of course, the resulting notion of optimality, particularly the notion of the
“ideal adaptive bandwidth,” the corresponding accuracy of estimation and the
corresponding adaptive procedure depend on the kernel K. This dependence
is natural and in some sense unavoidable. Taking another kernel, we will get
another procedure and another accuracy of estimation. But this dependence
is not crucial from the point of view of rate of estimation. If the kernel K
is of proper regularity, then the proposed procedure achieves the usual min-
imax rate for all standard smoothness classes; see Remark 2.7. Moreover,
considering the problem of adaptive estimation at a point under Hölder-type
constraints, a kernel (more precisely, a family of kernels) can be chosen in
such a way that the resulting procedure becomes asymptotically optimal in
the classical minimax sense over Hölder function classes; see Section 3.

2.3. Kernel. Now let a fixed kernel K�·� satisfy the following conditions:

�K1� The function K�u� is symmetric, that is, K�u� =K�−u�, u ≥ 0.
�K2� The function K�·� is compactly supported, that is, K�u� = 0 for all u

outside some compact set C on the real line.
�K3�

∫
K�u�du = 1.

�K4� �K�2 =
∫
K2�u�du <∞.

�K5� The function K�·� is continuous at the point t = 0 and K�0� > �K�2.

Note that no assumptions were made about the smoothness properties of
the kernel K; that is, it can be even discontinuous.

2.4. Bandwidth selection problem: “ideal adaptive bandwidth.” Now we
make precise the problem of bandwidth selection and define the notion of an
“ideal adaptive bandwidth” for the function f.
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We assume that, besides the kernel K, two values hmin; ε and hmax; ε are
given for each ε such that hmin; ε > ε

2, hmax; ε ≤ 1 and

hmin; ε/hmax; ε→ 0; ε→ 0:(2.10)

For notational simplicity, we will omit the subindex ε in hmin; ε and hmax; ε.
We will select a bandwidth h in the interval h ∈ �hmin; hmax�; that is, hmin

is the smallest and hmax is the largest admissible value of the bandwidth.
Denote

dε =
√
r ln

hmax

hmin
:(2.11)

By (2.10) one has dε→∞ as ε→ 0.
First we show that “the payment for adaptation” or “the adaptive factor”

could not be less in order than dε.

Theorem 2.1. Let d′ε be such that d′ε/dε → 0 as ε → 0 and let ε′ = εd′ε.
Then for any C;C′ > 0 and ε small enough there exist two functions f0 and
f1 such that

1f0
�hmax� ≤ Cσ�hmax; ε

′�;

1f1
�hmin� ≤ Cσ�hmin; ε

′�
and, for any estimator Tε of f�t0�,

max
{
Ef0

∣∣∣∣
Tε − f0�t0�
σ�hmax; ε

′�

∣∣∣∣
r

;Ef1

∣∣∣∣
Tε − f1�t0�
σ�hmin; ε

′�

∣∣∣∣
r}
> C′:

The assertion of this theorem claims that if d′ε is less in order than dε, then
the balance rule (2.8) with ε′ in place of ε̃ “does not work” in the sense that
the corresponding normalized risk tends to infinity.

Furthermore, we explore the case with the adaptive factor dε from (2.11).
Note that this factor enters automatically in the expression of the minimax
rate of convergence and the less is the range �hmin; hmax� the less is the pay-
ment for adaptation. In any case dε is not larger (in order) than

√
ln ε−1 and

this is the typical order.
Now we define the notion of an “ideal adaptive bandwidth” which refers to

the balance equation (2.9) with the optimal choice of a constant. Set

C�K� = K�0�
�K�2 − 1:(2.12)

Definition 2.1. Let dε be defined by (2.11), ε̃ = εdε and σ�h; ε̃� =
�K�ε̃h−1/2. Let also, given f�·�, the function 1�h� = 1f�h� be defined by (2.6).
The value h∗f with

h∗f = sup
{
h ≤ hmaxx 1�h� ≤ C�K�σ�h; ε̃�

}

is called the “ideal adaptive bandwidth” for the function f.
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Remark 2.1. The function 1�h� is, by definition, monotonely increasing
and the function σ�h; ε̃� is, on the contrary, monotonely decreasing with
σ�h; ε̃� → ∞ as h ↓ 0. This provides that the set �hx 1�h� ≤ C�K�σ�h; ε̃��
is nonempty and h∗f is uniquely defined. Moreover, the function σ�h; ε� is
continuous and if the function 1�h� is also continuous, then we arrive at
the equation of the form (2.9) for the “ideal adaptive bandwidth.” But, gen-
erally speaking, the function 1�h� is right-continuous and hence one cannot
guarantee that the equation (2.9) has a root.

The choice of a constant C�K� is motivated by the following optimality
results. In fact, we will propose an estimator which is optimal (in the adaptive
sense) among all feasible estimators and which provides just the accuracy
corresponding to this balance equation.

Remark 2.2. The definition of the “ideal adaptive bandwidth” given here
depends on the kernel K, the noise level ε and the function f which is quite
natural. But also this notion depends essentially on the range of adaptation
�hmin; hmax�. This is one more reason why we prefer to speak about an “ideal
adaptive bandwidth” rather than about an “ideal bandwidth.”

Now we are ready to describe an adaptive bandwidth selector and then
formulate the main results.

2.5. A bandwidth selector. Denote

d�h� =
√

1 ∨ �p ln�hmax/h��;

α�h� = 1√
d�h�

(2.13)

and define the grid H inductively by

H =
{
h∈

[
hmin; hmax

]
x h0=hmax; hk+1=

hk
1+ α�hk�

; k=0;1;2; : : :
}
:(2.14)

Now set

ĥ = max
{
h ∈ H x

∣∣f̃h�t0� − f̃η�t0�
∣∣ ≤ �1+ α�η��σ�η; ε�d�η� ∀ η < h; η ∈ H

}
:

Here f̃h�t0� is the usual kernel estimator defined by (2.2). Finally, set

f̂ε�t0� = f̃ĥ�t0�:

Remark 2.3. The proposed adaptive procedure is based on a comparison
of kernel estimators with different bandwidths from the grid H which is of
geometric-type structure. We will see that the total number of elements in H
and hence the total number of compared bandwidths is of logarithmic order.

The bandwidth ĥ can be treated in the following way. It is the largest band-
width h such that f̃h does not differ “significantly” from kernel estimators
with smaller bandwidth.
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Remark 2.4. It is easy to observe that the whole construction of the pro-
posed bandwidth selector requires knowledge of the noise level ε, the kernel
K, the norm degree r and the range of adaptation �hmin; hmax�. For practical
applications only the exact knowledge of the noise level ε is somewhat prob-
lematic. But this difficulty can be handled in the usual way by using a pilot
estimator of the noise level. Note also that the value hmin is used only for the
definition of the grid H . This fact is rather important since it allows us to
apply this adaptive rule for any adaptive range with the fixed upper value
hmax (and with the smallest hmin). Particularly, if one admits hmax = 1, then
one gets a uniform adaptive procedure. The question of a reasonable choice
of the parameter hmax is also discussed later in this section in the context of
global function estimation.

The following results claim asymptotic optimality of this bandwidth selec-
tor ĥ.

2.6. Main results. Let, given a function f, the corresponding smoothness
characteristic (the “optimal adaptive bandwidth”) h∗f be defined by Definition
2.1. Denote by Fε the class of functions f�·� with h∗f ≥ hmin:

Fε =
{
f�·�x h∗f ≥ hmin

}
:

We shall assume that the estimated function f belongs to Fε. The meaning of
this assumption is clear. If we start the adaptive procedure from the bandwidth
hmin, then we have to be sure that the regularity of the function f described
by the value h∗f is not less than hmin. Note also that the constraint of the sort
f ∈ Fε is rather mild. If, for instance, hmin � ε2, then any function with locally
(around t0) bounded variation belongs to Fε.

Now we formulate the main results. The first result describes the accuracy
which is attained by the proposed estimator f̂ε.

Theorem 2.2. Let K�·� be a kernel satisfying conditions �K1�–�K5� and
also the following condition:

�K6� sup
0<c≤1

∫ ∣∣K�u� − cK�cu�
∣∣2 du =

∫
K2�u�du:

Then the estimator f̂ε�t0� which is a kernel estimator with an adaptive band-

width ĥ provides

sup
f∈Fε

Ef

∣∣∣∣
f̂ε�t0� − f�t0�
σ�h∗f; ε̃�

∣∣∣∣
r

= �C�K� + 1�r�1+ oε�1��:

Remark 2.5. Here and in what follows we denote by oε�1� any sequence
depending possibly on ε; r and the kernel K but not on a function f and such
that

oε�1� → 0; ε→ 0:
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The next result shows that the performance of the estimator f̂ε cannot
be improved in the minimax sense, that is, this estimator is asymptotically
efficient.

Theorem 2.3. Let a kernel K�·� satisfy conditions �K1�–�K5� and also the
condition

�K7� inf
0<c≤1

∫
K�u�K�cu�du =

∫
K2�u�du:

Then for each ε > 0 there exist two functions f0�·� and f1�·� (depending on ε)
such that h∗f0

= hmax, h∗f1
≥ hmin and, for any estimator Tε,

max
f∈�f0; f1�

Ef

∣∣∣∣
Tε − f�t0�
σ�h∗f; ε̃�

∣∣∣∣
r

≥ �C�K� + 1�r�1− oε�1��:

The scope of the results of Theorems 2.2 and 2.3 claims the asymptotic
optimality of the estimator f̂ε�t0� if the kernel K satisfies conditions �K1�–
�K7�. The question for which kernels these conditions are fulfilled is discussed
later in this section.

Remark 2.6. The first result states the properties of the estimator f̂ε�t0�
which are uniform over the very wide function class Fε, whereas the lower
bounds result from Theorem 2.3 is stated for the class consisting of two func-
tions. Moreover, we will use f0�t� ≡ 0 and only f1 depends on ε.

Remark 2.7. It is of interest to observe which accuracy of estimation pro-
vides the estimator f̂ε�t0� from Theorem 2.2 in the usual sense.

Let the function f to be estimated belong to some Hölder class 6�β;L� (for
the precise definition, see Section 3). Let m be the maximal integer which is
less than β. If the kernel K has the regularity m, that is, K is orthogonal to
polynomials t; : : : ; tm, then one easily has

1�h� = 1f�h� = sup
η≤h

∣∣Kηf�t0� − f�t0�
∣∣ ≤ CLhβ;

with some constantC depending only on β andK�·�. Now the balance equation
1�h∗f� = C�K�σ�h∗f; ε̃� ≤ Cε̃�h∗f�−1/2 leads to the asymptotic relation h∗f ≥
Cε̃2/�2β+1� and hence

σ�h∗f; ε̃� ≤ Cε̃2β/�2β+1� �
(
ε
√

ln ε−1
)2β/�2β+1�

:

Therefore, and as expected, the result of Theorem 2.1 guarantees the near
optimal rate of estimation over Hölder classes. Moreover, an optimal kernel
choice provides asymptotically optimal (up to a constant) pointwise-adaptive
estimation over the Hölder classes. The discussion of this problem is the sub-
ject of the second part of the paper.

Due to Theorem 2.3, the result of Theorem 2.2 cannot be improved in the
uniform sense over the class Fε; that is, we have to pay for adaptation at least
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dε = �r ln�hmax/hmin��1/2. But, considering a single function f, this payment
could be possibly brought down. In fact, the lower bound from Theorem 2.3
can be applied to any range of adaptation containing this function and the
best result will be obtained for the case of the maximal possible value of hmin,
that is, as if the characteristic h∗f of the function f due to Definition 2.1 were
exactly hmin.

Now we modify Definition 2.1 in this spirit and present the result.

Definition 2.2. Let C�K� be due to (2.12) and let, for a given function
f, the functions 1f�h� and d�h� be defined by (2.6) and (2.13), respectively.
Define

hf = sup
{
h ≤ hmaxx 1f�h� ≤ C�K�σ�h; ε�d�h�

}
:(2.15)

Compared with Definition 2.1, one may observe that the last definition
depends only on the upper value hmax of the range of adaptation. Note also
that for any f ∈ Fε one has hf ≥ h∗f since d�h� ≤ dε for h ∈ �hmin; hmax�.
We will see from the next result that the value d�hf� can be viewed as the
individual payment for adaptation for a particular function f from the range
of adaptation.

Before we state the assertion, let us point out one more important question.
Theorems 2.2 and 2.3 assume for the range of adaptation �hmin; hmax� that
hmax/hmin → ∞ as ε → 0. Now, speaking about the individual payment for
adaptation, we change hmin to h∗f. But what happens if h∗f is about hmax? The
answer to this question is of special importance in view of applications of the
pointwise adaptive method to the problem of global estimation; see Section 2.7.
The next result shows that the proposed procedure “works” for h∗f � hmax, too,
but we are able to state only rate optimality there.

Theorem 2.4. Let K�·� be a kernel satisfying conditions �K1�–�K6�. Then

the estimator f̂ε�t0� provides for some constant C depending on K and r only
and ε small enough

sup
f∈Fε

Ef

∣∣∣∣
f̂ε�t0� − f�t0�
σ�hf; ε�d�hf�

∣∣∣∣
r

≤ C:

Moreover, if f ∈ Fε is such that hf/hmax = oε�1�, then

Ef

∣∣∣∣
f̂ε�t0� − f�t0�
σ�hf; ε�d�hf�

∣∣∣∣
r

= �C�K� + 1�r�1+ oε�1��:

2.7. Applications to global function estimation. Now we briefly discuss
possible applications of Theorem 2.2 or 2.4 to the problem of (global) function
estimation. We consider the estimator of a function f which is an implemen-
tation of the pointwise adaptive procedure at each point t ∈ �0;1�. As already
mentioned, the resulting estimator f̂�·� can be viewed as a kernel estimator
with the variable bandwidth ĥ�·�, that is, f̂�t� = f̃ĥ�t��t�.
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In the following discussion we explore the properties of this estimator in
the standard minimax sense. This means that the quality of the estimator
f̂�t� is measured by the mean integrated error of the form

Rf�f̂� = E
∫ 1

0

∣∣f̂�t� − f�t�
∣∣r dt =

∫ 1

0
E
∣∣f̂�t� − f�t�

∣∣r dt;

and we are interested in the limit behavior (rate of decay to zero as ε→ 0) of
the maximal value

sup
f∈F

Rf�f̂�;

where F is a prescribed function class, for example, Hölder, Sobolev or Besov
ball.

The results presented previously allow us to split the analysis of the prop-
erties of f̂ into two different parts: for the first statistical part, everything is
done by Theorem 2.4:

Rf�f̂� ≤ C
∫ 1

0

∣∣σ�hf�t�; ε�d�hf�t��
∣∣r dt;

where hf�t� is the pointwise smoothness characteristic of a function f due to
Definition 2.2.

The second part relates to the approximation theory: given F , we have to
calculate or estimate the value

sup
f∈F

∫ 1

0
�σ�hf�t�; ε�d�hf�t���r dt:(2.16)

One example of such a calculation can be found in Lepski, Mammen and
Spokoiny (1997) for the case of F being an arbitrary Besov ball. The resulting
conclusion is as follows. If the kernel K is of proper regularity and if the value
hmax is about 1, then the procedure achieves near minimax rate of convergence
for this function class (within a log-factor).

Moreover, the proper choice of hmax leads to the exact minimax rate (without
a log-factor). Of course, the corresponding optimal choice of hmax depends on
the parameters of the Besov ball and hence requires some information a priori.
For a data-driven choice of this parameter, one more global adaptive procedure
is to be done; cf. Juditsky (1995).

The idea why the proper choice of the parameter hmax allows us to remove
the extra log-factor and to get the minimax rate can be explained in the fol-
lowing way. This factor obviously comes from the multiplier d�hf�t�� in (2.16)
which is typically of the logarithmic order. The only exception is, due to The-
orem 2.4, for the case when hf�t� is near the upper value hmax of the range
of adaptation. But, if this level is taken properly, then it appears that for all
functions f from a prescribed Besov ball and for “almost” all points t ∈ �0;1�
the pointwise characteristic hf�t� is about hmax (because of the trimming from
above at this level). For the points with hf�t�/hmax = oε�1� we still have some
loss of accuracy of logarithmic order but their contribution into the integral
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(2.16) is relatively small. This explains how this extra log-factor can be re-
moved from the global rate of estimation.

2.8. Choice of a kernel and a range of adaptation. Here we briefly discuss
some aspects of the choice of the kernel K�·� and the range �hmin; hmax�.

Strictly speaking, Theorems 2.2–2.4 can be applied only for kernels satisfy-
ing conditions �K1�–�K7�. Note, however, that the procedure makes sense
for any kernel under �K1�–�K4�, see, for example, Lepski, Mammen and
Spokoiny (1997).

Another interesting question is the optimization of the kernel K. It turns
out that the optimal kernel is produced by the optimization subproblem: to
maximize the value K�0�/�K�2 over a given function class. The discussion of
this problem for the case of Hölder function classes is the subject of the next
section. Note only that the solution K∗ to the aforementioned optimization
subproblem automatically satisfies conditions �K6� and �K7�.

The lower bound hmin is recommended to be taken as small as possible. For
the abstract “white noise” model under consideration, this bound is of order ε2.
For more realistic models (see Section 4), this choice is restricted by reasons of
the experiment’s equivalence. In particular, the relevant results of Brown and
Low (1996) and Nussbaum (1996) suggest taking for hmin the value of order
hmin � ε2/�1+1/2� = ε4/3 corresponding to the smoothness parameter 1/2.

2.9. Nested kernels. Now we consider one generalization of the problem
considered previously. Namely, we study the situation if one takes different
kernels for different bandwidth values. This idea is quite natural since small
bandwidth values correspond to functions of low regularity and there is no
necessity to take high-order kernels. The last hint is justified by the results in
the next section on optimal estimation over Hölder classes. We will see that
the optimal procedure takes different kernels for different bandwidths and the
kernel regularity increases as the bandwidth becomes larger; see Section 3.

Keeping in mind this application and for reference convenience, we formu-
late a general result on optimal bandwidth selection for a given set of kernels.
More precisely, we assume that a system (net) of kernels K = �Kh; h > 0�
depending possibly on ε is given. The case considered previously of a fixed
kernel corresponds to Kh�·� =K�·�. As before, we impose some conditions on
these kernels:

(K1) The functions Kh�u� are symmetric, that is, Kh�u� =Kh�−u�, u ≥ 0.
(K2) The system of functions Kh�·� is compactly supported, that is, Kh�u� = 0

for all h and all u outside some compact set C on the real line.
(K3)

∫
Kh�u�du = 1.

(K4) suph �Kh�2 = suph
∫
K2
h�u�du <∞ and infh�Kh�2 > 0.

(K5) Set

C�h� =Kh�0��Kh�−2 − 1:
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Then there exist two positive constants C1;C2 such that

C1 ≤ C�h� ≤ C2:

We also introduce two conditions which are natural generalizations of �K6�
and �K7�.
(K6) Uniformly in h,

sup
0<c≤1

∫
�Kh�u� − cKh/c�cu��2 du∫

K2
h�u�du

= 1+ oε�1�:

(K7) Uniformly in h,

sup
0<c≤1

Kh�0� −
∫
Kch�u�Kh�cu�du

Kh�0� −
∫
K2
h�u�du

= 1+ oε�1�:

Now we consider the family of kernel estimators

f̃h�t0� =
1
h

∫
Kh

(
t− t0
h

)
dX�t�:(2.17)

The stochastic term for such an estimator has variance σ2�h; ε� with

σ2�h; ε� = ε
2�Kh�2
h

:

Let again an interval �hmin; hmax� be given with

hmax/hmin →∞
and we choose a bandwidth h in this range. Denote similarly to before

Khf�t0� =
1
h

∫
Kh

(
t− t0
h

)
f�t�dt;

1�h� = 1f�h� = sup
0<η<h

∣∣Khf�t0� − f�t0�
∣∣;

dε =
√

2r ln
σ�hmin; ε�
σ�hmax; ε�

;

ε̃ = εdε;

d�h� =
√

2r ln
σ�h; ε�
σ�hmax; ε�

;

ψ�h; ε� = �C�h� + 1�σ�h; ε� =Kh�0��Kh�−2σ�h; ε�:

(2.18)

Now the definitions of the “ideal adaptive bandwidth” h∗f or hf and of the
bandwidth selector ĥ are kept fixed with the modifications indicated previ-
ously.

The method of the proofs of Theorems 2.2–2.4 can be extended without any
changes to the situation under consideration.
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Theorem 2.5. Let a system of kernels K = �Kh� satisfy conditions (K1)–

(K6). Then the estimator f̂ε�t0� corresponding to the adaptive bandwidth ĥ
provides

sup
f∈Fε

Ef

∣∣∣∣
f̂ε�t0� − f�t0�
ψ�h∗f; ε̃�

∣∣∣∣
r

≤ 1+ oε�1�:

Theorem 2.6. Let conditions (K1)–(K5) and (K7) be fulfilled. Then for each
ε > 0 there exist two functions f0�·� and f1�·� such that hf0

= hmax, hf1
≥ hmin

and, for an arbitrary estimator Tε,

max
f∈�f0;f1�

Ef

∣∣∣∣
Tε − f�t0�
ψ�h∗f; ε̃�

∣∣∣∣
r

≥ 1− oε�1�:

Theorem 2.7. Under (K1)–(K6) there is a constant C such that for ε small
enough

sup
f∈Fε

Ef

∣∣∣∣
f̂ε�t0� − f�t0�
ψ�hf; εd�hf��

∣∣∣∣
r

≤ C:

If f ∈ Fε is such that hf/hmax = oε�1�, then

Ef

∣∣∣∣
f̂ε�t0� − f�t0�
ψ�hf; εd�hf��

∣∣∣∣
r

≤ 1+ oε�1�:

3. Adaptive pointwise estimation over Hölder classes. In this sec-
tion we consider the problem of pointwise adaptive estimation for the model
(2.1) under the qualitative assumption that the function f belongs to some
Hölder class 6�β;L�. Given β;L, define m as the maximal integer number
less than β. Then 6�β;L� is the set of functions f such that

�f�m��t� − f�m��s�� ≤ L�t− s�β−m; t; s ∈ R1:

Here f�m� means the mth derivative of f.
We explore the case of adaptive estimation of f�t0� when the parameters

β;L are unknown. Surprisingly, this adaptation can be performed in an op-
timal way and the following results describe the optimal adaptive procedure
and the optimal attainable accuracy.

First we make more precise the problem of adaptive estimation. We assume
that the parameters β;L lie in given intervals β ∈ �β∗; β∗�, L ∈ �L∗;L∗�
with some positive β∗ < β∗ and L∗ ≤ L∗. These parameters characterize the
range of adaptation in the case under consideration. Note that the smoothness
parameter β is of the most importance to us. For the Lipschitz constant L,
we only need the qualitative assumption that it be separated away from zero
and infinity. Apparently the results and the procedure can be stated in such
a way when the values L∗ and L∗ are not used.
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To formulate the main results, we introduce the following optimization prob-
lem which is an optimal recovery problem; see Korostelev (1993), Donoho and
Liu (1991), Donoho and Low (1992) and Donoho (1994a, b):

�Pβ�x supg�0� subject to





∫
g2 ≤ 1;

g ∈ 6�β;1�:
Let gβ solve this problem and let val�Pβ� mean gβ�0�.

Remark 3.1. The explicit solution gβ and the value val�Pβ� = gβ�0� are
known only for β ≤ 1; see, for example, Korostelev (1993). Set

fβ�t� = �1− �t�β�+:
Then gβ�t� = afβ�bt�, where the constants a; b are defined by

abβ = 1; ab−1/2 = �fβ�2 = 1:

In particular,

val�Pβ� = gβ�0� = ��2β+ 1��β+ 1�/4β2�β/�2β+1�:

The case β > 1 is much more difficult and, to our knowledge, the solution gβ
admits an explicit description only for β = 2. Some more qualitative properties
of the functions gβ are discussed later in this section.

It is useful to introduce the notation
τ = �β;L�;

T = �τ = �β;L�x β ∈ �β∗; β∗�; L ∈ �L∗;L∗��:
For each τ ∈ T denote also

ϕ�τ; ε� = gβ�0�L1/�2β+1�ε2β/�2β+1�:(3.1)

Note that ϕ�τ; ε
√

ln ε−1� is the optimal asymptotic accuracy of estimation over
Hölder class 6�τ� = 6�β;L� in sup-norm; see Korostelev (1993) and Donoho
(1994b).

For the pointwise estimation, the rate is ε2β/�2β+1� but it cannot be attained
adaptively for an unknown β; see Lepski (1990) and Brown and Low (1992).
The optimal adaptive rate turned out to be again �ε

√
ln ε−1�2β/�2β+1�; see Lep-

ski (1990). Now we describe the optimal pointwise adaptive procedure and
evaluate the corresponding asymptotic risk. Denote

~ε =
[
r

(
1

2β∗ + 1
− 1

2β∗ + 1

)
ln ε−1

]1/2

;

ε̄ = ε~ε;

~�β� =
[
r

(
1

2β+ 1
− 1

2β∗ + 1

)
ln ε−1

]1/2

;

with β < β∗.
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The proposed adaptive estimator will be described later in this section. Now
we formulate the results where we assume that β∗ ≤ 2. Possible extensions
to the case of arbitrary β∗ are discussed in the next section.

Theorem 3.1. Let the estimators T̂ε of f�t0� be as defined in Section 3.1.
Then

sup
τ∈T

sup
f∈6�β;L�

Ef

∣∣∣∣
T̂ε − f�t0�
ϕ�τ; ε̄�

∣∣∣∣
r

≤ 1+ oε�1�:

To formulate the lower bound, we have to describe first the extreme points
of the range of adaptation T . Note that the parameters β;L have different
influence on the accuracy of estimation. For larger β, the value ϕ�τ; ε� is
smaller. But, if L increases, then ϕ�τ; ε� also increases. Denote τ∗ = �β∗;L∗�
and τ∗ = �β∗;L∗�. Obviously,

ϕ�τ∗; ε� ≤ ϕ�τ; ε� ≤ ϕ�τ∗; ε�:

The next result claims optimality of the estimator T̂ε in the uniform sense
on the whole interval of adaptation.

Theorem 3.2. For each ε > 0 there exist functions f0 ∈ 6�τ∗� and f1 ∈
6�τ∗� such that, for any estimator Tε of f�t0�,

max
{
Ef0

∣∣∣∣
Tε − f0�t0�
ϕ�τ∗; ε̄�

∣∣∣∣
r

;Ef1

∣∣∣∣
Tε − f1�t0�
ϕ�τ∗; ε̄�

∣∣∣∣
r}
≥ 1− oε�1�:

Finally, we describe the performance of the estimator T̂ε on each particular
class 6�τ�, τ ∈ T .

Theorem 3.3. Let τ = �β;L� with β < β∗. Then

sup
f∈6�τ�

Ef

∣∣∣∣
T̂ε − f�t0�
ϕ�τ; ε~�β��

∣∣∣∣
r

≤ 1+ oε�1�:

Now we present the estimation rule.

3.1. Estimation procedures. The proposed procedure is a specialization of
the procedure from the previous section for a set of nested kernels with a
special choice of kernels K. The construction of these kernels is closely related
to the solutions gβ to the problems �Pβ� given previously. Roughly speaking,
the kernels Kβ are obtained by normalization from gβ to provide

∫
Kβ = 1.

Unfortunately, it is unknown whether the functions gβ are compactly sup-
ported and, in particular, it is not clear whether the integrals

∫
gβ are finite.

Apparently these values do not enter into the answer and the desirable kernels
can be defined using a proper truncation.
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Define the modification of the problem �Pβ� under support constraints
[Donoho (1994b)]. Given A > 0,

�Pβ�−A;A��x supg�0� subject to





∫ A
−A
g2 ≤ 1;

g ∈ 6�β;1�:

One has easily val�Pβ� ≤ val�Pβ�−A;A�� and we also use the property
[Donoho (1994b), Lemma 6.1]

val�Pβ�−A;A�� → val�Pβ�; A→∞:(3.2)

Moreover, using the method from Donoho and Low (1992), Theorem 3, one
may state this assertion uniformly in β. In what follows we assume that a
number A is taken depending on ε and growing as ε→ 0, for instance, A =
Aε = log ε−1.

Denote by gβ;A the solution to �Pβ�−A;A��. For more information about
the behavior of the functions gβ;A, see Lemma 5.5.

To apply the procedure from the preceding section, we have to state the
correspondence between the bandwidth h and the smoothness parameters τ =
�β;L�. Denote

h�τ� = �ε~�β�/L�2/�2β+1�;

hmin = h�τ∗�;
hmax = h�τ∗�:

(3.3)

Next, introduce a function β�h� as a solution in β of the equation

hβ = σ�h; ε~�β�� = ε~�β�h−1/2;

that is,

β�h� = ln�ε~�β��
lnh

− 1
2
:(3.4)

Denote also

Kh = λ−1
β gβ;A1�−A;A�;(3.5)

with λβ =
∫A
−A gβ;A�t�dt. Now the data-driven bandwidth ĥ is defined in Sec-

tions 2.5 and 2.9 and we let T̂ε = f̃ĥ�t0�.

4. Further developments.

4.1. Other nonparametric statistical models. In this paper we concentrate
on the simplest “white noise” model (2.1). This type of model allows us to em-
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phasize more clearly the main ideas, avoiding a lot of technical details which
correspond to more realistic models. However, we believe that other kinds of
nonparametric statistical models (discrete-time regression models with Gauss-
ian and non-Gaussian errors, density or spectral density function models, etc.)
can be considered in the same manner, perhaps under some technical assump-
tions. The results of Brown and Low (1996), Low (1992) and Nussbaum (1996)
can be mentioned in this context. These results guarantee equivalence in some
sense between the regression or density function models and a proper white
noise model if the smoothness parameter is more than 1/2. This motivates the
applicability of Theorems 2.2–2.4 for these models.

4.2. Estimation of linear functionals. The problem of estimation at a point
can be considered as the particular case of the problem of estimation of a lin-
ear functional. The problem of estimation of linear functionals was studied
intensively in the present context in Donoho and Low (1992), Donoho and Liu
(1991), Donoho (1994b) and Efroimovich and Low (1994). The corresponding
results show a close relation between the particular problem of pointwise esti-
mation and a general problem for an arbitrary linear functional. We conjecture
that all of the results given previously can be extended in a similar way to the
general case.

4.3. The case β∗ > 2. The fact β∗ ≤ 2 was used essentially in the proof of
Theorems 3.1–3.3, in particular, for the proof of Lemma 5.5.

For the case β∗ > 2, the statements of Theorem 3.1 or 3.3 cannot be ex-
tended directly from the case β∗ ≤ 2 because the structure of Hölder classes
is not embedded: 6�β′;1� does not belong to 6�β;1� for β′ < β. It can be il-
lustrated explicitly by the first statement of Lemma 5.7 where one easily has
G�β′; βyA� = ∞, for instance, if β′ = 1 and β = 3 since 6�3;1� contains all
linear functions.

Nevertheless, we conjecture that all the results stated previously can be
extended to the case of an arbitrary β under some additional constraints on
the Hölder classes 6�β;L� for β > 2 type of boundedness of all derivatives of
order 1; : : : ; �β�.

5. Proofs. In this section we prove Theorems 2.2 and 2.3. The result
of Theorem 2.1 follows from Theorem 2.3. The necessary corrections for the
proofs of Theorems 2.4–2.7 are obvious and omitted. Finally, we show how one
can derive the result of Theorems 3.1–3.3 from the general results of Theorems
2.5–2.7.

5.1. Proof of Theorem 2.2. Let us fix some function f from Fε and let hf; ĥ
be due to Definition 2.2. Without loss of generality we assume that hf ∈ H .
Otherwise we can replace hf by the closest from below point of H and the
result of Theorem 2.2 remains valid.

The definition of hf yields for each h ≤ hf the inequality
∣∣Khf�t0� − f�t0�

∣∣ ≤ C�K�σ�hf; ε�d�hf�;(5.1)



OPTIMAL POINTWISE ADAPTIVE ESTIMATION 2531

where

d�h� =
(
r ln�hmax/h�

)1/2
:

We consider the case when hf is separated away from hmax, that is,

�d�hf��−1 = oε�1�:(5.2)

The case with d�hf� � hmax can be considered in a similar way; see also
Lepski, Mammen and Spokoiny (1997).

Recall the notation

ψ�h; ε� = �C�K� + 1�σ�h; ε� = �C�K� + 1� ε�K�h−1/2;

α�h� = d−1/2�h�
and define the value hf;1 as a solution of the equation

α�hf;1�σ�hf;1; ε�d�hf;1� = 4C�K�σ�hf; ε�d�hf�:(5.3)

One has obviously hf;1 < hf for ε small enough in view of (5.2).
Now we split the grid H into three parts

H �1� = �h ∈ H x h ≥ hf�;
H �2� = �h ∈ H x hf;1 < h < hf�;
H �3� = �h ∈ H x h ≤ hf;1�;

and decompose the risk of the estimator f̂ε�t0� in a similar way:

Ef

∣∣f̂ε�t0� − f�t0�
∣∣r = Ef

∣∣f̂ε�t0� − f�t0�
∣∣r1�ĥ ≥ hf�

+Ef

∣∣f̂ε�t0� − f�t0�
∣∣r1�hf;1 < ĥ < hf�

+Ef

∣∣f̂ε�t0� − f�t0�
∣∣r1�ĥ ≤ hf;1�

= R�1�ε +R�2�ε +R�3�ε :
We shall explore each term in this decomposition separately starting from
R
�1�
ε .
Set, for h > 0,

ζ�h� = σ−1�h; ε�ξ�h�:
Then the random variable ζ�h� is for any h standard normal. Using now the
definition of ĥ, the decomposition (2.4) and (5.1), we find

R�1�ε ≤ Ef

(∣∣f̃ĥ�t0� − f̃hf�t0�
∣∣+

∣∣f̃hf�t0� − f�t0�
∣∣)r1�ĥ ≥ hf�

≤ Ef

[
�1+ α�hf��σ�hf; ε�d�hf�
+C�K�σ�hf; ε�d�hf� + �ξ�hf��

]r1�ĥ ≥ hf�
≤ �1+ α�hf��rEf

[
ψ�hf; ε�d�hf� + σ�hf; ε��ζ�hf��

]r1�ĥ ≥ hf�
≤ �1+ α�hf��rψr�hf; εd�hf��Ef

(
1+ d−1�hf��ζ�hf��

)r1�ĥ ≥ hf�:

(5.4)

To estimate the last expression, we use the following technical assertion.
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Lemma 5.1. Let ζ be a standard Gaussian random variable and let A be
a random event on the same probability space. Then the following statements
are satisfied:

(i) There exist positive constants Cr; γr such that, for any γ < γr,

E�1+ γ�ζ��r1�A� ≤ �1+ 2r
√
γ�P�A� +Cr exp�−1/�2γ��:

(ii) It holds for some constant C′r and any positive numbers γ; 0, with 0 ≥ 1
and γ0 ≥ 1,

E�1+ γ�ζ��r1�A� ≤ C′r�γ0�r�P�A� + exp�−02/2��:

Proof. We get

E�1+ γ�ζ��r1�A� ≤ E�1+√γ�r1�A� +E�1+ γ�ζ��r1��ζ� > γ−1/2�:
Now (i) follows from the fact that for γ < γr = 21/�r−1� − 1

�1+√γ�r − 1 ≤ 2r
√
γ;

E�1+ γ�ζ��r1��ζ� > γ−1/2� ≤ Cr exp�−1/�2γ��;
which can be readily verified.

Next, one obtains under 0 ≥ 1 and γ0 ≥ 1 in a similar manner

E�1+ γ�ζ��r1�A� ≤ E�1+ γ0�r1�A� +E�1+ γ�ζ��r1��ζ� > 0�
≤ �γ0�r

[
�1+ �γ0�−1�rP�A� + ��γ0�−1 + �ζ�/0�r1��ζ� > 0�

]

≤ C′r�γ0�r
[
P�A� + exp�−02/2�

]
: 2

Since d−1�hf� = oε�1� and hence α�hf� = oε�1�, we get from (5.4) using
Lemma 5.1(i), with γ = d−1�hf�,

R�1�ε ≤ ψr�hf; εd�hf��P�ĥ ≤ hf��1+ oε�1��:

Next, we estimate R�2�ε . One has, similar to before,

R�2�ε =
∑

h∈H �2�
Ef

∣∣f̃�h��t0� − f�t0�
∣∣r1�ĥ = h�

≤
∑

h∈H �2�
Ef

(
C�K�σ�hf; ε�d�hf� + �ξ�h��

)r1�ĥ = h�

≤
∑

h∈H �2�
Ef

(
ψ�hf; ε�d�hf� + σ�hf; ε��ζ�h��

)r1�ĥ = h�

≤ ψr�hf; εd�hf��
∑

h∈H �2�
Ef

(
1+ γ�h��ζ�h��

)r1�ĥ = h�;

(5.5)

where

γ�h� = σ�h; ε�
ψ�hf; ε�d�hf�

= σ�h; ε�
�C�K� + 1�σ�hf; ε�d�hf�

:(5.6)
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Evidently, γ�h� ≤ γ�hf;1� for h ∈ H �2� and using Lemma 5.1(i), we get

R�2�ε ≤ ψr�hf; εd�hf��
∑

h∈H �2�

(
1+ 2r

√
γ�h�

)
P�ĥ = h� +Cr exp�−1/�2γ�h���

≤ ψr�hf; εd�hf��
[(

1+ 2r
√
γ�hf;1�

)
P�hf;1 < ĥ < hf�

+Cr#�H �2�� exp�−1/�2γ�hf;1���
]
:

Here #�H �2�� means the number of elements in H �2�. Due to (5.3) and (5.6),

γ�hf;1� =
σ�hf;1; ε�

�C�K� + 1�σ�hf; ε�d�hf�

≤ C�K�
4�C�K� + 1�d�hf;1�α�hf;1�

≤ 4α�hf;1�

and hence γ�hf;1� = oε�1�. Next, it is easy to estimate

#�H �2�� ≤ ln�hf/hf;1�
1− �1+ α�hf;1��−1

≤ ln�hf/hf;1�
α�hf;1�

and hence

#�H �2�� exp�−1/�2γ�hf;1��� = oε�1�:
Therefore,

R�2�ε ≤ ψr�hf; εd�hf��
[
P�hf;1 < ĥ < hf� + oε�1�

]
:

Getting together the estimates for R�1�ε and for R�2�ε , we obtain

R�1�ε +R�2�ε ≤ ψr�hf; εd�hf��
[
P�ĥ > hf;1� + oε�1�

]

≤ ψr�hf; εd�hf�� �1+ oε�1��:
It remains to show that

R�3�ε = ψr�hf; εd�hf�� oε�1�:
One gets similarly to (5.5)

R�3�ε ≤ ψr�hf; εd�hf��
∑

h∈H �3�
Ef

(
1+ γ�h��ζ�h��

)r1�ĥ = h�;(5.7)

where γ�h� is due to (5.6) and, for h ∈ H �3�,

γ�h� < σ�h; ε�
σ�hf; ε�

≤
√
hf

h
:

We shall estimate this sum using Lemma 5.1(i), but first we show that the
probability Pf�ĥ = h� is small enough.
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Lemma 5.2. For each h ∈ H �3�,

P�ĥ = h� ≤ 2α−1�h� exp�−d2�h�/2− d�h��:

Proof. Let us fix some h ∈ H �3� and let h+ be the preceding element of
H , that is, h = h+/�1+ αh+�. We also use the notation

H −�h� = �η ∈ H x η < h�:
The definition of ĥ yields

P�ĥ = h� ≤
∑

η∈H −�h�
P
(∣∣f̃η�t0� − f̃h+�t0�

∣∣ > �1+ αη�σ�η; ε�d�η�
)
:

Since h < hf;1, then η;h+ < hf and by (5.1)
∣∣f̃η�t0� − f̃h+�t0�

∣∣ ≤
∣∣Kηf�t0� − f�t0�

∣∣+
∣∣Kh+f�t0� − f�t0�

∣∣+ �ξ�η� − ξ�h+��
≤ 2C�K�σ�hf; ε�d�hf� + �ξ�η� − ξ�h+��:

But η ≤ h ≤ hf;1 and thus

2C�K�σ�hf; ε�d�hf� ≤ α�h�σ�h; ε�d�h�/2 ≤ α�η�σ�η; ε�d�η�/2:
Notice also that

ξ�η� − ξ�η+� = ε
∫ ( 1

η
K

(
t− t0
η

)
− 1
h+
K

(
t− t0
h+

))
dW�t�;

that is, this difference is normal N �0; σ2�η;h+y ε�� with

σ2�η;h+y ε� =
ε2

η

∫ ∣∣K�u� − cK�uc�
∣∣2 du;

where c = η/h+ ≤ 1.
The condition �K6� provides

σ2�η;h+y ε� ≤ σ2�η; ε�:
We now obtain

Pf�ĥ = h� ≤
∑

η∈H −�h�
Pf
(
�ξ�η� − ξ�h+�� > �1+ α�η�/2�σ�η; ε�d�η�

)

=
∑

η∈H −�h�
P

(
�ζ� > �1+ α�η�/2�d�η� σ�η; ε�

σ�η;h+y ε�

)

≤
∑

η∈H −�h�
P
(
�ζ� > �1+ α�η�/2�d�η�

)

≤
∑

η∈H −�h�
exp�−�1+ α�η�/2�2 d2�η�/2�:

To complete the proof of the lemma, we notice that

�1+ α�η�/2�2 d2�η� > d2�η� + 2d�η�
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and one derives easily, using the definition of the grid H ,
∑

η∈H −�h�
exp�−d2�η�/2− d�η�� ≤ exp�−d�h��

∑

η∈H −�h�
�h/hmax�r/2

≤ exp�−d�h��α−1�h��h/hmax�r/2

and the lemma follows.

Now we apply Lemma 5.1(ii) to each term in (5.7) with γ = γ�h� and 0 =
0�h� =

√
d2�h� + 2d�h�. We obtain for each h ∈ H �3�, using Lemma 5.2,

Ef

(
1+ γ�h��ζ�h��

)r1�ĥ = h�

≤ C
[
d�h�

√
hf/h

]r(
P�ĥ = h� + exp�−d2�h�/2− d�h��

)

≤ Cdr+1�h��hf/h�r/2 exp�−d2�h�/2− d�h��
= Cdr+1�h� exp�−d�h���hf/hmax�r/2:

Therefore,

R�3�ε ≤ Cψr�hf; εd�hf�� exp�−d2�hf�/2�
∑

h∈H �3�
dr+1�h� exp�−d�h��:

The following lemma completes the proof of the theorem.

Lemma 5.3. There is a constant C such that
∑

h∈H �3�
dr+1�h� exp�−d�h�� ≤ C:

Proof. Let hk be the kth element of the grid H , that is,

hk = hmax

k−1∏
i=0

�1+ α�hi��−1:

Then obviously, for large k,

d2�hk� = r ln�hmax/h�

= r
k−1∑
i=0

�1+ α�hi��

≥ rk ln�1+ α�hk��
≥ rkα�hk�/2 = rkd−1/2�hk�/2:

This yields

d�hk� ≥ �rk/2�2/5:

Similarly, one gets d�hk� ≤
√
rk.
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Now let kf be such that hf;1 = hkf . Then easily

∑

h∈H �3�
dr+1�h� exp�−d�h�� ≤

∞∑
k=kf
�rk��r+1�/2 exp�−�rk/2�2/5� ≤ C

and the assertion follows. 2

Theorem 2.2 is proved.

5.2. Proof of Theorem 2.3. Define

f0�t� ≡ 0

and

f1�t� = �1− αε�
ε√

hmin�K�

√
r ln

hmax

hmin
K

(
t− t0
hmin

)

= �1− αε�
σ�hmin; ε�dε
�K�2 K

(
t− t0
hmin

)

= vεK
(
t− t0
hmin

)
;

(5.8)

where

αε = d−1/2
ε =

(
p lnhmax/hmin

)−1/4 = oε�1�

and

vε = �1− αε�σ�hmin; ε�dε�K�−2:

It is obvious that

hf0
= hmax:

Next we show that

hf1
≥ hmin:

In fact, for each η < hmin one has by �K7�, for c = η/hmin,

∣∣Kηf1�t0� − f1�t0�
∣∣ =

∣∣∣∣
1
η

∫
K

(
t− t0
η

)[
f1�t� − f1�t0�

]
dt

∣∣∣∣

= vε
∣∣∣∣
1
η

∫
K

(
t− t0
η

)[
K

(
t− t0
hmin

)
−K�0�

]
dt

∣∣∣∣

= vε
∣∣∣∣
∫
K�u��K�uc� −K�0��dt

∣∣∣∣

≤ vε�K�0� − �K�2�:



OPTIMAL POINTWISE ADAPTIVE ESTIMATION 2537

This gives, for f1,

1�hmin� = 1f1
�hmin� ≤ �1− αε�

K�0� − �K�2
�K�2 σ�hmin; ε�dε

= �1− αε�C�K�σ�hmin; ε�dε;
which means that hf1

≥ hmin.
Let the measures P0; ε and P1; ε correspond to the model (2.1) with the

functions f0 and f1, respectively. It is clear that these measures are Gaussian.
Moreover, by Girsanov’s theorem

dP1; ε

dP0; ε
= exp

{
ε−1

∫
f1�t�dX�t� −

1
2
ε−2

∫
f2

1�t�dt
}

= exp
{
qεζε −

1
2
q2
ε

}

where

q2
ε = ε−2

∫
f2

1�t�dt;

ζε =
ε−1

qε

∫
f1�t�dX�t�

(5.9)

and

L
(
ζε � P0; ε

)
= N �0;1�:

The theorem will follow if we show that, for any estimator Tε,

lim inf
ε→0

Rε = 1;(5.10)

where

Rε = max
{
E0; ε

∣∣∣∣
Tε

ψ�hmax; ε�dε

∣∣∣∣
r

;E1; ε

∣∣∣∣
Tε − f1�t0�
ψ�hmin; ε�dε

∣∣∣∣
r}

and E0; ε;E1; ε mean integration w.r.t. the measures P0; ε;P1; ε.
Note that

f1�t0�
ψ�hmin; ε�dε

= 1− αε

and denote

θε =
Tε

ψ�hmin; ε�dε�1− αε�
;

Dε =
ψ�hmin; ε�
ψ�hmax; ε�

=
√
hmax

hmin
:

With this notation,

Rε = �1− αε�r max
{
Dr
εE0; ε�θε�r;E1; ε�1− θε�r

}
:
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Now (5.10) is equivalent to

lim inf
ε→0

max
{
Dr
εE0; ε�θε�r;E1; ε�1− θε�r

}
≥ 1:

Furthermore, due to (5.8) and (5.9),

q2
ε =

∫
f2

1�t�dt

= ε−2v2
ε

∫
K2

(
t− t0
hmin

)
dt

= ε−2v2
εhmin�K�2

= �1− αε�2r ln
hmax

hmin

= �1− αε�2d2
ε

and

1
qε

(
r lnDε −

1
2
q2
ε

)
= 1
�1− αε�dε

(
d2
ε −

1
2
�1− αε�2d2

ε

)
≥ αεdε→∞

as ε→ 0.
Now the result of the theorem follows directly from the next lemma.

Lemma 5.4. Let for each ε > 0 two Gaussian measures P0; ε and P1; ε be
given with

ln
dPε;1
dPε;0

= qεζε −
1
2
q2
ε;

where

L �ζε � P0; ε� = N �0;1�

and qε→∞.
Then let the numbers Dε be such that

1
qε

(
r lnDε −

1
2
q2
ε

)
→∞:(5.11)

Then for any estimator θε such that

lim inf
ε→0

Dr
εE0; ε�θε�r ≤ C <∞;(5.12)

one has

lim inf
ε→0

E1; ε�θε − 1�r ≥ 1:
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Proof. Fix any estimators θε satisfying (5.12). Then take an arbitrary
M> 0 and denote

π = 1
2CM

;

where C is from condition (5.12). This condition yields for ε small enough

Dr
εE0; ε�θε�r ≤ 2C

and

Rε = E1; ε�θε − 1�r ≥ E1; ε�1− θε�r + πDr
εE0; ε�θε�r − 2Cπ:

Denote

Zε =
dP0; ε

dP1; ε
:

One has

Zε = exp
{
−qεζε + 1

2q
2
ε

}
= exp

{
−qε�ζε − qε� − 1

2q
2
ε

}
;

where by Girsanov’s theorem

L �ζε − qε � P1; ε� = N �0;1�
and hence

P1; ε�ζε − qε ≤M� = 8�M�;
where 8�·� is the Laplace function.

Now set

δε = exp�−qε�
and introduce events

Aε = �θε ≤ δε�;
Bε = �ζε − qε ≤M�:

Now one has, on Aε ∩Bε,
Zε ≥ exp

{
−qεM− 1

2q
2
ε

}
;

�1− θε� ≥ 1− δε;
and �θε� ≥ δε on the complement Ac

ε of Aε. Therefore,

Rε ≥ E1; ε�1− θε�r + πDr
εE0; ε�θε�r −

1
M

= E1; ε
(
�1− θε�r + πDr

εZε�θε�r
)
− 1
M

≥ P�Aε��1− δε�r + πDr
εδ
r
ε exp

{
−qεM−

1
2
q2
ε

}
P�Ac

ε ∩Bε�:
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Condition (5.11) implies

Dr
εδ
r
ε exp

{
−qεM−

1
2
q2
ε

}
= exp

{
r lnDε −

1
2
q2
ε − rqε −Mqε

}

= exp
{
qε

[
1
qε

(
r lnDε −

1
2
q2
ε

)
− r−M

]}

→∞; ε→ 0:

(5.13)

Now we use that P�Ac
ε ∩ Bε� ≥ P�Ac

ε� − P�Bcε� and P�Bcε� = 8̄�M� =
1−8�M�. If P�Ac

ε� ≥ 2P�Bcε� = 28̄�M�, then Rε is large in view of (5.13). But
if P�Ac

ε� ≤ 2P�Bcε� = 28̄�M�, then

Rε ≥ P�Aε��1− δε�r − 1/M

≥ �1− 28̄�M���1− δε�r − 1/M:

This proves that

lim inf
ε→0

Rε ≥ �1− 28̄�M�� − 1/M

for each finite M> 0, and the lemma follows. 2

5.3. Proof of Theorems 3.1 and 3.3. We deduce Theorems 3.1 and 3.3 as
corollaries of Theorems 2.5 and 2.7. For this we have to check conditions (K1)–
(K7) for the kernels �Kh� and to verify that the results of Theorems 2.5 and
2.7 provide just the accuracy claimed in Theorems 3.1 and 3.3.

We start with a technical result describing some useful properties of the
solution gβ;A to the problem �Pβ�−A;A��.

Lemma 5.5. Let A > 1 and β∗ ≤ 2. The following statements are fulfilled
for each β ≤ β∗:

(i) The solution gβ;A to Pβ�−A;A� exists and is unique.

(ii) The function gβ;A is symmetric, that is, gβ;A�t� = gβ;A�−t�, t ∈ R1.
(iii) The function gβ;A has maximum at t = 0, and for β > 1 one has

g′β;A�0� = 0.

(iv)
∫A
−A g

2
β;A = 1.

(v) For any f ∈ 6�β;1� with f�0� = gβ;A�0�,
∫ A
−A
fgβ;A ≥

∫ A
−A
g2
β;A = 1

and, in particular,

∫ A
−A
gβ;A ≥ gβ;A�0�−1:(5.14)

(vi) The functions gβ;A are continuous in β ≤ β∗ and u ∈ �−A;A�.
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Proof. For the case with β ≤ 1, all the statements can be checked directly
using the explicit form of the solution gβ;A. Therefore, we are checking only
the case with β > 1.

The first three statements follow immediately from the general results of
convex analysis.

Statement (iv) can be proved by renormalization arguments; cf. Donoho and
Low (1992). Indeed, let f ∈ 6�β;1� be such that

∫A
−A f

2�t�dt < 1. For a > 1,
the function fa = aβf�a ·� ∈ 6�β;1� and

∫ A
−A
f2
a�t�dt = a2β−1

∫ Aa
−Aa

f2�t�dt:

Since f ∈ 6�β;1�, then, taking a = 1+ α with some positive α small enough,
one gets

∫A
−A f

2
a < 1 but fa�0� > f�0�. This proves (iv).

To check (v), let us take any f ∈ 6�β;1� with f�0� = gβ;A�0�. Then, for each
α ∈ �0;1�, one has fα = �1−α�gβ;A+αf ∈ 6�β;1�. Obviously, fα�0� = gβ;A�0�
and, arguing as before and using the definition of gβ;A, one obtains

∫A
−A f

2
α ≥ 1,

that is,
∫ A
−A

[
�1− α�gβ;A + αf

]2

=
∫ A
−A
g2
β;A + 2α

∫ A
−A
gβ;A�f− gβ;A� + α2

∫ A
−A
�f− gβ;A�2

≥
∫ A
−A
g2
β;A:

This yields for α small that
∫A
−A gβ;A�f− gβ;A� ≥ 0.

The relation (5.14) is the specialization of this inequality with f ≡ gβ;A�0�.
As claimed in (vi), the continuity of gβ;A in β follows from the fact that the

optimization criterion for the problem Pβ�−A;A� does not depend on β and
the set of constraints is of the form

�g�s� − g�t�� ≤ �s− t�β; β ≤ 1; s; t ∈ �−A;A�;
�g′�s� − g′�t�� ≤ �s− t�β−1; g′�0� = 0; β ∈ �1;2�; s; t ∈ �−A;A�;

which again depends on β in a continuous way.

Now we shall check the properties of the kernels �Kh� from (3.5). Conditions
(K1)–(K5) follow directly from Lemma 5.5. To verify (K6), we use the following
simple fact.

Lemma 5.6. Let the kernels �Kh� be defined by (3.4) and (3.5). Then there
exists c�ε� → 0 as ε→ 0 such that, uniformly in c ∈ �c�ε�;1�,

�Kh/c�
�Kh�

= 1+ oε�1�:
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Proof. One has directly from the definition (3.4) of β�h� that, for each
c ∈ �0;1�,

β�h� − β�h/c� = oε�1�:

This yields the assertion in view of Lemma 5.5(vi). 2

The last result reduces (K6) to �K6� for the kernels Kβ = λ−1
β gβ;A1�−A;A�,

or, equivalently,

∫ (
gβ;A1�−A;A��u� − cgβ;A1�−A;A��cu�

)2
du ≤

∫ A
−A
g2
β;A�u�du:(5.15)

Now evidently gβ;A�cu� ∈ 6�β;1� for c ≤ 1 and by Lemma 5.5(v)

∫ (
gβ;A1�−A;A��u� − cgβ;A1�−A;A��cu�

)2
du

= �1+ c�
∫ A
−A
g2
β;A�u�du− 2c

∫ A
−A
gβ;A�u�gβ;A�cu�du

≤ �1− c�
∫ A
−A
g2
β;A�u�du

and the assertion (5.15) follows.
Now we may apply Theorem 2.5 which guarantees for a function f the

accuracy of estimation

ψ�hf; ε̃� =
Khf
�0�

�Khf
�
εdε√
hf

;

where dε =
√
r ln�hmax/hmin� and hf is defined by Definition 2.1. Theorem 3.1

will be proved if we show that for each τ = �β;L� and any f ∈ 6�β;L�,

hf ≥ h�τ��1+ oε�1��;(5.16)

ϕ�τ; ε̄� = ψ�h�τ�; ε̃��1+ oε�1��:(5.17)

Here h�τ� is defined by (3.3) and ϕ�τ; ε� by (3.1), that is,

ϕ�τ; ε̄� = gβ�0�L1/�2β+1�(ε~ε
)2β/�2β+1� = gβ�0�

ε~ε√
h�τ�

;(5.18)

ψ�h�τ�; ε̃� =
Kh�τ�
�Kh�τ��

εdε√
h�τ�

:(5.19)

By straightforward calculation,

dε = ~ε �1+ oε�1��:(5.20)
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Let β′ = β�h�τ�� be the solution in β of the equation

�h�τ��β = ε~ε√
h�τ�

:(5.21)

It easily follows that

β′ = β�1+ oε�1��:(5.22)

Now, using the definition of the kernels �Kh�, (3.2), Lemma 5.5(iv) and (vi)
and Lemma 5.6, we conclude

Kh�τ��0�
�Kh�τ��

= gβ′;A�0� = gβ;A�0��1+ oε�1�� = gβ�0��1+ oε;A�1��;(5.23)

where oε;A�1� → 0 as ε→ 0 and A→∞.
Putting together (5.18)–(5.23), we get (5.17).
It remains to prove (5.16). For this, due to Definition 2.1, we have to check

that, given τ = �β;L� and f ∈ 6�β;L�, one has, for h = h�τ� and η < h,

∣∣Kηf�t0� − f�t0�
∣∣ ≤ C�h�σ�h; εdε��1+ oε�1��:(5.24)

As before, we get, for h = h�τ�,

C�h� = �Kh�0� − �Kh�2�/�Kh� = gβ;A�0� − λ−1
β :(5.25)

Next

�Kηf�t0� − f�t0�� =
1
η

∫
Kη

(
t− t0
η

)
�f�t� − f�t0��dt

≤
∫
Kη�u��f�t0 + uη� − f�t0��:

Let β′ = β�η�. One has β′ < β since η < h.
Note also that for f ∈ 6�β;L� one has g�u� = �Lηβ�−1�f�t0+uη�−f�t0�� ∈

6�β;1�. Hence

∣∣Kηf�t0� − f�t0�
∣∣ ≤ Lηβλ−1

β′

∫ A
−A
gβ′;A�u��g�u� − g�0��du

= Lhβ�η/h�βG�β′; βyA�;

where

G�β′; βyA� = sup
g∈6�β;1�

∣∣∣∣
∫ A
−A
λ−1
β′ gβ′;A�u��g�u� − g�0��du

∣∣∣∣:
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Now the required assertion (5.24) follows from (5.20), (5.21), (5.25) and the
next technical statement.

Lemma 5.7. For any A > 0 and β∗ ≤ 2, one has, uniformly in β′; β ∈
�β∗; β∗�, β′ < β,

G�β′; βyA� ≤ C <∞

and

G�β′; βyA� → G�β;βyA� = gβ;A�0� − λ−1
β ; β′ → β:(5.26)

Proof. The first statement follows for β′; β ≤ 1 and for β′; β ∈ �1;2� from
Lemma 5.5(vi). For β′ ≤ 1 and β > 1 we use additionally the fact that for A
large enough gβ′;A = gβ′ and

∫
ugβ′�u�du = 0:

Show the equality in (5.26). It can be rewritten as follows. For any g ∈ 6�β;1�,
∫ A
−A
gβ;A�u��g�0� − g�u��du ≤ gβ;A�0�

∫ A
−A
gβ;A�u�du− 1:

But in this form the statement follows from Lemma 5.5(iv) and (v), since one
may assume without loss of generality that g�0� = gβ;A�0�. 2

5.4. Proof of Theorem 3.2. Theorem 2.6 cannot be applied directly since
we are not sure that the function f1 from this theorem belongs to 6�τ∗� [with
τ∗ = �β∗;L∗�]. But the idea of the proof remains valid. If the property of
compactness of supports for gβ were proved, then we could take f0 ≡ 0, f1�t� =
�1 − αε�ψ�hmin; ε̃�g−1

β �0�gβ��t − t0�/hmin� with some small αε = oε�1� and
proceed as in the proof of Theorem 2.6. Without the assumption of support
compactness, one may use the method from Donoho (1994b) which relies on the
solution of a special compactified optimization problem. We omit the details.
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