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ANALYSIS OF OLDEST-OLD MORTALITY:
LIFETABLES REVISITED1

BY JANE-LING WANG, HANS-GEORG MULLER AND WILLIAM B. CAPRA¨
University of California, Davis

This paper provides a data analysis and some methodological ad-
vances which contribute to an ongoing scientific debate about the patterns
of aging. One of the problems we address is how to estimate a hazard
function when only aggregated information on the lifetimes in the form of
a lifetable is available. This problem affects the estimation of oldest-old
mortality which in turn plays an important role in the quantification of
biological lifespan and longevity. We illustrate these issues with an analy-
sis of mortality data obtained from cohorts of nematodes. The methods
involve data transformation with the aim of bias reduction when estimat-
ing the hazard function. We provide rigorous asymptotic results for the
smoothing of lifetables and show that the transformation approach is
supported by both asymptotic and simulation results. We also demon-
strate how the information contained in many samples of lifetables, as
typically obtained in aging experiments, can be summarized in a two-
dimensional hazard surface.

1. Introduction. Recent publications have suggested that, in contrast to
earlier assumptions, the mortality of the very oldest individuals of a species

Ž .shows distinct signs of deceleration. Suzman, Willis, and Manton 1992
suggested that many of these ‘‘oldest-old’’ individuals are actually healthier
than one might have expected. They observed that the mortality of the elderly
in the United States, as measured by the hazard function, decelerates
somewhat after age 85. Such findings, if confirmed, will have to be taken into
consideration when predicting future numbers of elderly and in particular of
‘‘oldest-old,’’ that is, those aged 85 or above. The consequences for the future
social security, pension, and health care systems are potentially enormous.
Formally, the hazard function, also referred to as force of mortality by
demographers, is defined by

1
�� �� t � lim P T � t , t � � T � t ,Ž . Ž .

���0

where T is the random lifetime of an individual and P denotes probability.
Since human data are neither very precise nor obtained in a controlled

environment, large-scale experiments with the aim of determining biological
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patterns of survival and longevity were conducted with medflies by Carey,
Ž .Liedo, Orozco and Vaupel 1992 , with Drosophila by Curtsinger, Fukui,

Ž .Townsend and Vaupel 1992 and with nematodes by Brooks, Lithgow and
Ž .Johnson 1994 . A particular goal of these studies was to clarify the question

whether a possible ‘‘deceleration of oldest-old mortality’’ exists in these
populations.

In a study based on the survival of more than a million medflies which
caught the attention of demographers and the scientific world at large, Carey,

Ž .Liedo, Orozco and Vaupel 1992 observed a notable deceleration of mortality
in a study of the long-term survival of cohorts of the Mediterranean fruit fly
Ceratitis capitata. For this species, after a certain age, further aging appar-
ently does not lead to further heightened risk of death, and the hazard rates
were observed to decline for the ‘‘oldest-old’’ group. In particular, this rules

� Ž .�out the classical Gompertz model assumption Gompertz 1825 for the
survival distribution. The scientific debate on future trends in life expectan-
cies and whether the Gompertz model is applicable or not is still unsettled
� Ž . Ž . Ž .�see Perls 1995 , Kelner and Marx 1996 and Jazwinski 1996 . In this
paper, we address some statistical issues which are relevant to this debate.

The Gompertz model, which is still in common use to describe the trajec-
tory of aging, implies that mortality increases exponentially with age; the

Ž .logarithm of the hazard function � t is assumed to be a linear function of the
age t. Thus,

1.1 log � t � log � � � t ,Ž . Ž . Ž .Ž . 0 1

Ž . �1tor equivalently, � t � � . This is an extreme value distribution which0
corresponds to sharply increasing risk for the oldest-old. Oldest-old mortality
is commonly expected to reflect high-risk situations. The plausibility of this
expectation and the competing risks interpretation explains the popularity of
the Gompertz distribution. Thus the results of Carey, Liedo, Orozco and

Ž .Vaupel 1992 , who showed that in fact a deceleration takes place, were quite
unexpected.

One possible explanation for the deceleration of mortality is heterogeneity
of the population. Models for composite populations, which take heterogeneity
into account, are often referred to as frailty models and could provide an

� Ž .�explanation for these findings see, e.g., Vaupel and Carey 1993 . Frailty
models in demographic applications go back to Vaupel, Manton and Stallard
Ž . Ž .1979 ; see also Manton, Stallard, and Vaupel 1986 . In such models it is
assumed that individual hazard rates follow a given parametric model, for
instance the Gompertz model, where the coefficients are assumed to be
random and to correspond to varying degrees of individual ‘‘frailty.’’ Hazard
rate deceleration at later ages could then be attributed to the fact that the
more frail individuals die at earlier ages, so that individuals still alive at
older ages are a selected group of more robust subjects with relatively lower
mortality.

A consequence of this demographic selection effect is that if the population
were in fact homogeneous, then hazard rates would not decelerate at later
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ages. Thus any observed deceleration in hazard rates is an artifact of the
heterogeneity in a population, and not of a slowing or deceleration of risk at
the individual level.

A simple demonstration of the fact that frailty models can lead to an
apparent nonmonotone population hazard function even though the hazard
functions of all individuals are strictly monotone increasing is given in Fig-
ure 1. It is assumed here that the population consists of a mixture of two

1subpopulations, each occurring with probability . The survival distribution2

of both subpopulations is Gompertz, for subpopulation 1 with parameters
Ž . Ž . Ž .� , � � 2, 0.025 , and for subpopulation 2 with parameters � , � �01 11 02 12
Ž .1.5, 0.15 . The fact that individual monotone hazard functions can lead to a
nonmonotone population hazard function was also pointed out in Vaupel and

Ž .Yashin 1985 .
Other parametric models that have been advocated for mortality include

� Ž .the Weibull and logistic models Congdon 1993 , Juckett and Rosenberg
Ž . Ž .�1993 , Wilson 1994 . Instead of dwelling on the various parametric models,
we reanalyzed these data using nonparametric smoothing techniques, with
the aim of ‘‘letting the data speak for themselves’’ and focusing on the
oldest-old group. While carrying out this analysis, we encountered two issues
of general interest: first, how to estimate hazard functions from lifetable data

FIG. 1. Hazard functions for homogeneous and heterogeneous populations. Hazard function for
Ž . Ž .Gompertz � � 2, � � 0.025 is dotted, hazard function for Gompertz � � 1.5, � � 0.1501 11 02 12

is dash-dotted, and hazard function of mixture where each of the original models occurs with
1probability is solid.2
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which are often aggregated or discretized; and second, how to summarize the
information contained in samples of lifetables.

The second issue arises since, in studies of oldest-old mortality, typically
many cohorts are observed, each of which produces a set of lifetable data. The
first issue has already been studied extensively both in the demographic and
statistical literature. However, we discovered a bias effect due to the dis-
cretization of the lifetable data, which is caused by the aggregation of the
lifetimes into intervals. This bias is particularly noticeable in the right tail
when the hazard function is increasing in that region. Moreover, this bias
may create the visual effect of a deceleration of the hazard function in the
right tail. Therefore, this is an important issue when analyzing oldest-old
mortality.

Our research was motivated by the analysis of data on the survival of 79
Ž .cohorts of genetically homogeneous nematodes Caenorhabditis elegans by

Ž .Brooks, Lithgow and Johnson 1994 , hereafter referred to as BLJ. These
authors aimed to resurrect the universality of the Gompertz model. They
attempted to demonstrate that for genetically homogeneous cohorts of nema-
todes, the Gompertz model fits well. The implication was that Carey, Liedo,

Ž .Orozco and Vaupel’s 1992 findings on mortality deceleration would be due to
heterogeneity and would not be observed if homogeneous individuals were
involved. However, the analysis of BLJ ignored the occurrence of censored

Ž .data 40% were right censored and, moreover, the Gompertz model fits
presented in BLJ appear to provide at best a questionable fit to the data.

Nonparametric estimation of hazard functions from lifetables is an impor-
tant alternative to parametric modeling, since the choice of a parametric
model turns out to be rather difficult; moreover, nonparametric methods can

Ž .be used to check informally the validity of a parametric model. Hoem 1976a
�compared parametric modeling of mortality so-called analytic graduation;

Ž .� �see Hoem 1972 with a nonparametric estimate so-called linear graduation;
Ž .�see Hoem 1984 . A number of commonly used smoothing methods like

smoothing splines, kernel estimates and local polynomial fitting can be used
to implement the basic step of smoothing lifetables. In the approach proposed
here, local polynomial fitting methods are used as implementation of smooth-
ing methods. Since nonparametric estimates do not impose restrictive model
assumptions in contrast to the Gompertz model or other parametric ap-
proaches, they are especially suitable for exploratory data analysis.

As we show in the following, straightforward implementation of smoothing
for lifetable data may result in sizeable biases of the resulting hazard
function estimate, in particular for the oldest-old age range. This is due to the
discretization bias mentioned above. The nematode data of BLJ provide a
case in point. Here, 79 genetically homogeneous cohorts with 30 nematodes in
each cohort were observed for 67 days, and a second experiment involved the
observation of survival in a mass culture of 180,000 genetically homogeneous
nematodes raised at a somewhat higher temperature. The discretization of
these lifetime data occurs as dead nematodes were counted at the end of each
day. The exact lifetimes are therefore unknown. Censoring also occurs, as
some of the nematodes vanish from the observation area.
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We use this example to point out the shortcomings of the directly smoothed
� Ž .�lifetable estimate Hoem 1976b, 1984 and to investigate a modified esti-

mate based on a data transformation which substantially reduces the bias
encountered at the oldest lifetimes. Such a transformation is particularly
beneficial for diagnostic assessment of the Gompertz model, as the nontrans-
formed data lead to a bending of the hazard rate estimate near the right
boundary. Thus even if the data were from a Gompertz distribution, the
estimated hazard rate could create a false impression of deceleration at
advanced ages. We also discuss how the data obtained from various cohorts,
as customarily obtained in mortality studies, can be combined in a hazard
surface plot.

Our paper is organized as follows: the problems associated with analyzing
aggregated lifetime data are discussed in Section 2. The proposed transforma-
tion estimate is developed in Section 3. Details of the application to the
problem of assessing oldest-old mortality for the BLJ nematode data are
presented in Section 4. This section also contains a discussion of practical
aspects such as bandwidth selection. The results of a simulation study
evaluating the performance of the nonparametric estimates are reported in
Section 5. Section 6 contains concluding remarks.

Asymptotic justifications for the proposed transformation method are pro-
Ž . Ž .vided in Sections 2 Theorem 2.1 and 3 Theorems 3.1, 3.2 . Proofs and

auxiliary results, some of which are of interest in their own right, are
compiled in the Appendix. We note here that even for the untransformed
smooth lifetable estimates, not much is known about their asymptotic proper-
ties. The bias and variance expressions in Theorem 3.1 are new, to the best of
our knowledge.

2. Transforming the discretized hazard function. Associated with
each of the n subjects enrolled in a study of mortality are the data pairs
Ž .T , C , i � 1, . . . , n, where T is the lifetime and C is a censoring time.i i i i
Usually these times are considered to be continuous random variables. If the

Ž .subjects were followed continuously, then the observed data are X , � ,i i
i � 1, . . . , n, under the usual random censorship model, where X �i

Ž .min T , C , and � � 1 is the censoring indicator. Among many otheri i i �T � C �i i

Ž . Ž .authors, Anderson and Senthilselvan 1980 , Gray 1990 , and Muller and¨
Ž .Wang 1994 discussed nonparametric estimation of the hazard function

Ž .when the actual data X , � , the observed time of death or failure, arei i
observed. Theoretical results for this situation can be found in Ramlau-Han-

Ž . Ž . Ž .sen 1983 , Tanner and Wong 1983 , Yandell 1983 and Muller and Wang¨
Ž .1990 . But usually there is some, possibly small, interval over which ob-
served lifetimes are aggregated, since subjects typically cannot be monitored
continuously. Aggregation effects were discussed previously in Tanner and

Ž .Wong 1984 .
In a typical lifetable or mortality study, data are not observed continuously

or are rounded to the nearest unit. For example, when studying mortality of
insects or nematodes, data are collected daily, and human mortality data are
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usually recorded to the nearest year. Thus instead of actually observing
Ž .X , � for individual i, we observe data accumulated over a partition of pi i

� �intervals, I , I , . . . , I , of the fixed interval 0, L for some constant L � 0.1 2 p
In order to simplify the presentation and avoid unnecessary technicalities,

we present in the following the practically most common and relevant case,
where the intervals I are of equal length. The nonequal length case leads toi
analogous results as long as certain regularity conditions like the existence of
a design density for the end points of the intervals in the sense of Sacks and

Ž .Ylvisaker 1970 , are satisfied. In the equal length case, we assume that the
length of these intervals is fixed at � � 0. Thus � determines the degree of
aggregation, that is, � � L�p, and may range from one year, when studying
human mortality from lifetables, to one day when studying mortality of
insects or nematodes.

Ž .The midpoint of the jth interval I is then t � � j � 1 � ��2, whilej j
� Ž .I � � j � 1, � j , j � 1, . . . , p. In mortality studies based on lifetables, onej

Ž .does not observe the actual lifetimes X , � , but instead the aggregated datai i
Ž .1 , � , i � 1, . . . , n. Thus in lifetable studies, one does notŽ X � I ., j�1, . . . , p ii j

observe the true time of death or censoring X , but only the fact that X � Ii i j
for some j.

Ž .The data observed for each interval I can be summarized as n , d ,j j j

j � 1, . . . , p, where d is the number of observed deaths in the interval I ,j j

and n is the number of subjects at risk at the beginning of the jth inter-j
val I :j

n n

d � 1 , n � 1 .Ý Ýj Ž X � I j , � �1. j Ž X � �Ž j�1..i i i
i�1 i�1

A raw estimate of the hazard function based on lifetables consists of the
Ž Ž ..data pairs t , q t , j � 1, . . . , p. Here,˜j j

dj
2.1 q t �Ž . ˜Ž .j �nj

is the proportion of subjects at risk at the start of the jth interval I who diej
during that interval, standardized by the interval length �. For � � 1,

Ž . Ž . Ž .demographers refer to q � as the crude death rate. Note, however, that q t˜ ˜
is an empirical estimate of the discretized version of the hazard function
defined by

� � �
�1q t � � P T � t � , t � T � t �Ž . žž /2 2 2

F t � ��2 � F t � ��2Ž . Ž .T T� ,
� F t � ��2Ž .T

2.2Ž .

Ž . Ž .where F t � P T � t is the survival function. Demographers call thisT
Ž . Ž .function q the conditional probability of dying at age t when � � 1 . One

Ž Ž .. Ž . Ž . Ž .expects heuristically that E q t 	 q t and q t 	 � t . Contrary to this˜
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Ž . Ž . Ž . Ž . Ž Ž ..FIG. 2. a Comparison of true hazard function � t with q t , q t and � q t for thec
Ž Ž .. Ž . Ž Ž .. Ž .Gompertz model on the log scale, log � t � log 0.001 � 0.2 t. Shown are log � t solid ,

Ž Ž .. Ž . Ž . Ž Ž .. Ž . Ž . Ž Ž Ž ... Ž . Ž .log q t 2.2 dotted , log q t 2.4 dash-dotted , and log � q t 2.6 dashed . Horizontalc
Ž Ž .. Ž Ž Ž ...axis is t. Here the difference between the log � t and log � q t is constant at 0.00167 and the

differences between the two curves are thus not noticeable; that is, solid and dashed graphs
Ž . Ž . Ž Ž .. Ž .coincide. b Same as a but for Weibull case with log hazard function log � t � log 0.08t .

Ž . Ž Ž .. Ž Ž Ž ...Horizontal axis is log t . Here log � t is exactly the same as log � q t .

Ž Ž .. Ž Ž ..expectation, Figure 2a shows that log q t differs significantly from log � t
for the Gompertz distribution at later ages, where � is the hazard function
Ž . Ž Ž .. Ž Ž ..1.1 . We see that log q t actually bends at the later ages whereas log � t

Ž .is a linear function for the Gompertz model in accordance with 1.1 .
Figure 2b shows a similar result for a Weibull distribution with increasing

Ž Ž .. Ž . Ž Ž ..failure rate. Here, log � t is linear in log t , yet we see that log q t bends
Ž . Ž .for large values of log t . The reason is that it follows from 2.2 that

Ž . Ž .q t � 1�� so that � 
 1 implies q t � 1. This means that any estimator
Ž . Ž .like q t or a simply smoothed version which targets q t must incur a˜

Ž .substantial bias whenever � t � 1. These straightforward estimates are
therefore unsuitable for the analysis of lifetable data as for instance those
obtained in the BLJ study, where the focus is on oldest-old mortality, and

Ž .high values of the hazard function � t are expected to occur.
Ž Ž ..Nonparametric methods with the aim of smoothing lifetable data t , q t˜j j

Ž .have been discussed by various authors. Borgan 1979 and Hoem and Len-
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Ž .nemann 1988 discussed moving average techniques in this context, Copas
Ž . Ž .and Haberman 1983 and Bloomfield and Haberman 1987 used kernel

Ž .smoothers, and Hoem 1976b, 1984 investigated the use of locally weighted
least squares, which he referred to as the method of minimum modified
chi-square. No matter which of these methods is used, the target function to

Ž .which the various smoothed lifetable estimates converge is the function q t
Ž .rather than the hazard function � t . As a consequence, they are all subject to

the discretization bias problem.
Another hazard estimate, commonly adopted by practitioners, in particular

demographers and actuarial statisticians, is the so-called ‘‘central death
rate’’:

dj
2.3 q t � ,Ž . ˜ Ž .c j ��2 n � nŽ . Ž .j j�1

which targets the function

P T � t � ��2, t � ��2Ž .Ž .
q t �Ž .c ��2 P T � t � ��2 � P T � t � ��2Ž . Ž . Ž .Ž .

F t � ��2 � F t � ��2Ž . Ž .T T�
��2 F t � ��2 � F t � ��2Ž . Ž . Ž .Ž .T T

2.4Ž .

Ž .rather than q t . This estimate is motivated by the assumption that deaths
occur uniformly during the lifetable interval.

Ž Ž ..Figure 2 also displays the functions log q t for the Gompertz andc
Ž .Weibull distributions, respectively. These figures show that although log qc

Ž . Ž .stays close to log � for a longer period than log q , at later ages it also
Ž .suffers from a bias problem when � t gets large. This bias is simply a
Ž .consequence of the observation that q t � 2��. Although the size of thisc

bias problem is somewhat reduced as compared to the one for q, it still looms
Ž .large for large values of � t . We note that in many applications with modest

values of the hazard function, as they typically occur in medical applications,
the discretization bias incurred by q or q is not particularly prominent.c

Since both q and q are found to be essentially unsatisfactory to deal withc
Ž .the discretization bias, we take a closer look at the relationship between q t

Ž .and � t with the aim of finding an improved transformation of the function
Ž .q t . From the relation between hazard and survival functions,

t
F t � exp � � u du ,Ž . Ž .HT ž /0

we find by simple algebra,

t���2
2.5 � log 1 � �q t � � u du.Ž . Ž . Ž .Ž . H

t���2
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This suggests the transformation

2.6 � x � �log 1 � � x �� .Ž . Ž . Ž .
Ž Ž .. Ž . t�� �2 Ž .Note that � q t � 1�� H � u du is the slope of the cumulativet�� �2

Ž .hazard function over the time interval t � ��2, t � ��2 . Some demogra-
Ž Ž ..phers would refer to � q t as ‘‘discrete-interval hazard function.’’

Ž Ž ..An appealing property of � q t is as follows. For the Gompertz distribu-
tion,

1 t���2
� q t � � exp � t dtŽ . Ž .Ž . H 0 1� t���2

�0� exp � t exp � ��2 1 � exp �� � ,Ž . Ž . Ž .Ž .1 1 1��1

and therefore

�
log � q t � log � � � t � � � log 1 � exp �� � � log ��Ž . Ž . Ž . Ž .Ž .Ž . Ž .0 1 1 1 12

�
� log � t � � � log 1 � exp �� � � log �� .Ž . Ž . Ž .Ž . Ž .1 1 12

Ž Ž Ž ...This demonstrates that log � q t is linear in t with the same slope as
Ž Ž .. Ž Ž Ž ...log � t , but with a different intercept. Estimation of log � q t therefore

provides a diagnostic tool to check the Gompertz model assumption. If one
Ž Ž Ž ...finds that log � q t is not linear, then the Gompertz model is suspect. Also,

Ž Ž Ž ... Ž Ž ..log � q t is expected to be close to log � t when � or � is small. In1
Ž Ž Ž ...Figure 2a, where � � 1 and � � 0.2, the difference between log � q t and1

Ž Ž ..log � t disappeared from view as the difference in intercepts between the
two lines is only 0.00167. For the particular Weibull distribution in Figure 2b

Ž Ž Ž ... Ž Ž ..there is no difference between log � q t and log � t .
Ž . Ž Ž Ž ...A comparison of q, q and � q in Figure 2 shows that log � q tc

Ž Ž ..provides by far the best approximation of log � t . Figure 3 provides the
same comparison on the original scale. Here the discretization bias associated

Ž . Ž .with q t and q t is even more apparent, while the bias associated withc
Ž Ž ..� q t still remains negligible and thus disappears from view.
The following result quantifies the asymptotic improvement achievable

Ž Ž .. Ž .when one uses � q t rather than q t .

Ž . Ž .THEOREM 2.1. If assumptions A.1 � A.3 of the Appendix are satisfied for
a fixed t � 0, then:

log 1 � �q t �2Ž .Ž . � 2i � q t � � � � t � � t � o � ;Ž . Ž . Ž . Ž . Ž .Ž .
� 24

2� �
�2 3 2ii q t � � t � � t � � t � 4� t � o � .Ž . Ž . Ž . Ž . Ž . Ž . Ž .

2 24
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Ž . Ž . Ž . Ž . Ž Ž ..FIG. 3. a Comparison of true hazard function � t with q t , q t and � q t for thec
Ž . Ž .Gompertz model on the original scale, � t � 0.001 exp 0.2 t , for the same functions as in Figure

Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž Ž .. Ž . Ž .2. Shown are � t solid , q t 2.2 dotted , q t 2.4 dash-dotted , and � q t 2.6 dashed .c
Ž . Ž Ž ..Horizontal axis is t. Again the differences between � t and � q t are so small that they are not

Ž . Ž . Ž .noticeable. b Same as a but for Weibull case with hazard function � t � 0.08t. Horizontal
Ž . Ž Ž ..axis is t. Here � t is exactly the same as � q t .

Ž Ž .. Ž . Ž 2 .The proof is in the Appendix. This result shows that � q t � � t � O � ,
Ž . Ž . Ž .whereas q t � � t � O � , as � � 0, where � is the length of the aggrega-

Ž .tion intervals. Thus � q provides a better approximation to the hazard
function than q does, finitely as well as asymptotically.

3. Nonparametric estimation of the hazard function from aggre-
gated data. In this section we describe the proposed methods to obtain

Ž . Ž Ž ..smooth estimates of the functions q t and � q t . We first note that a
variety of smoothing methods are available to estimate a smooth regression

Ž . � � � Ž .function g x � E Y X � x , given scatterplot data x , y , j � 1, . . . , p. Wej j
place the estimation problem into a fixed design regression setting, since the
lifetable data are aggregated over fixed intervals. The predictors will be
the midpoints t of the interval I , and the corresponding observations arej j

Ž . Ž .the raw estimates q t in 2.1 .˜ j
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Let

p

3.1 S x , b , x , y , w � W x , b yŽ . Ž . Ž .Ž . Ýj j j j jj�1, . . . , p
j�1

Ž .be a general smoothing procedure acting on the scatterplot data x , y andj j

employing case weights w . The smoother S is defined by specifying thej
Ž .smoothing weight functions W x, b , where b is a bandwidth or smoothingj

parameter. Specification of appropriate properties of these smoothing weight
functions W then leads to consistency properties of S for the target, thej

Ž � .regression function E Y X � x .
Specific estimates for fixed design nonparametric regression which have

�this form are, for instance, convolution-type kernel estimators Gasser and
Ž . Ž .�Muller 1979 ; for an overview, see Muller 1988 or smooth spline estimators¨ ¨

� Ž .for an introduction and review see Eubank 1988 , Green and Silverman
Ž .�1994 . More recently, estimators based on local polynomial fitting, discussed

Ž . Ž . Ž .previously by Cleveland 1979 , Lejeune 1985 and Muller 1987 have¨
become more popular, in particular after their superior behavior in random

Ž .design nonparametric regression was established by Fan 1992 ; see also the
Ž .monograph by Fan and Gijbels 1996 .

It is of interest to note here that the local polynomial fitting method, also
known as locally weighted least squares, was used already in 1879 by J. P.
Gram. This famous Danish mathematician was the codiscoverer of the
Gram�Schmidt orthogonalization and originator of Gram’s determinant. Less
well known is the fact that he was an early pioneer and perhaps the
originator of the method of local least squares. Interestingly enough, he
developed this method with the aim of smoothing lifetable data. His original

� Ž .�dissertation was written in Danish Gram 1879 and the main results were
� Ž .�later published in German Gram 1883 . The section on smoothing lifetable

data was excluded from the 1883 publication and has eluded most statisti-
Ž .cians. Compare Hoem 1983 for an interesting historical account of the early

history of lifetable smoothing.
A version of Gram’s smoothing procedure is what is nowadays known as

locally weighted least squares, or local linear or polynomial fitting. The most
Ž .common version corresponds to fitting linear lines to scatterplot data x , y ,j j

j � 1, . . . , p, within windows of the predictor variable around a fixed plot.
This estimate is defined by

S t , b , x , y , wŽ .Ž .L j j j j�1, . . . , p

p t � x 2j� arg min min w K y � a � a x � t ,Ž .Ž .Ý j j 0 1 jž /ba1a j�10

3.2Ž .

where w are case weights, that is, the curve estimate at t is the estimatedj
intercept of the fitted line, which is centered at t. We choose the kernel
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function
2 � �1 � u , if u � 1,K u �Ž . ½ 0, otherwise,

� Ž .�which is known to be optimal in the mean square sense Muller 1987 .¨
Ž .While we use estimators S 3.2 in our data examples, the asymptoticL

results derived in the Appendix are valid for more general smoothers of type
Ž . Ž . Ž .3.1 under regularity conditions on the smoothing weights W x, b in 3.1 .j

Case weights are expected to play an important role due to the high degree
of heteroscedasticity in lifetable data: assuming that the number of subjects
n at risk at the start of each interval I , j � 1, . . . , p, is fixed, then thej j

Ž .distribution of �q t , the proportion of deaths in the jth interval, is approxi-˜ j
Ž .Ž Ž ..mately binomial with variance �q t 1 � �q t �n . Thus the variance in-j j j

creases over time as the number of subjects at risk n decreases. Severalj
simulation studies, the results of which are reported in Muller, Wang and¨

Ž .Capra 1997 , showed that the best weighting scheme is one of the simplest
such schemes: choose case weights simply proportional to the number of
subjects at risk, that is,

3.3 w � n .Ž . j j

This scheme was therefore implemented in the data applications and simula-
tions reported in the remainder of this section and Section 5.

Ž . Ž .Our smoothed estimate q t of q t is nowˆ

3.4 q t � q t , b � S t , b , t , q t , w ,Ž . Ž . Ž .ˆ ˆ ˜Ž .Ž .ž /L j j j j�1, . . . , p

Ž . Ž . Ž .where q t � d ��n as in 2.1 , and for the hazard function � t we propose˜ j j j
the estimate

3.5 � q t � �log 1 � �q t �� .Ž . Ž . Ž .Ž . Ž .ˆ ˆ
The following asymptotic results, the proofs of which are in the Appendix,

allow comparisons of the asymptotic bias and variance behavior of q andˆ
Ž .� q , viewed as estimates of the hazard function �. Exact expressions for theˆ

bias and variance of q can be found in Theorem A.1, and the following results˜
are based on this core result.

Ž . Ž .THEOREM 3.1. If assumptions A.2 � A.5 in the Appendix are satisfied for
a fixed t � 0, then:

� �2
�2i E q t � � t � � t � � tŽ . Ž . Ž . Ž . Ž .Ž .ˆ

2 24
1

�3 2 2 2 2� 4� t ,� b � t u K u du � o � � b ;Ž . Ž . Ž . Ž .H2
� t 1Ž .

2ii Var q t � K u du � o .Ž . Ž . Ž .ˆ H ž /nb 1 � F t nbŽ .Ž .
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Ž . Ž .THEOREM 3.2. If assumptions A.1 � A.5 in the Appendix are satisfied for
a fixed t � 0, then:

�2
�E � q t � � t � � tŽ . Ž . Ž .Ž .ˆ

24iŽ .
1

�2 2 2 2� b � t u K u du � o � � b ;Ž . Ž . Ž .H2
� t 1Ž .

2ii Var � q t � K u du � o .Ž . Ž . Ž .Ž .ˆ H ž /nb 1 � F t nbŽ .Ž .

Ž . Ž Ž ..The mean square consistency and rate of convergence of q t and � q tˆ ˆ
now follows immediately from Theorems 3.1 and 3.2. We note that the
derivation of the mean squared error properties of the transformed estima-
tors in Theorem 3.2 as given in the Appendix relies on specific properties of
lifetable data.

We conclude that while the pointwise variances for these two estimates are
Ž .the same, the bias behavior relative to the target � t differs markedly. While

2 Ž .q has leading bias terms of the order � � b , � q has leading bias terms ofˆ ˆ
the order �2 � b2 and is therefore less subject to discretization bias as � � 0.

Ž .Moreover, � q has the usual and desirable bias behavior for nonparametricˆ
curve estimates, in the sense that the bias is proportional to the second

�Ž . Ž .derivative � t of the target function, � t . This allows predicting local bias
which will be small near flat parts of the target function �, downwards near

�Ž . �Ž .peaks where � t � 0 and upwards near troughs where � t � 0. In con-
trast, the bias behavior for q is quite complicated and unwieldy for practicalˆ
purposes.

4. Application to biological lifespan and oldest-old mortality
for nematodes.

4.1. Hazard functions from nematode cohort lifetables. In an attempt to
demonstrate that the Gompertz model is valid whenever there is only little
heterogeneity in a population, BLJ conducted an experiment where they
studied the survival of 79 cohorts of nematodes, each of which consisted of 30
nematodes which were genetically identical for each cohort. A large amount
of right censoring which occurs in these data was ignored by BLJ in their
analysis. In our own analysis of these data, we applied the new estimate
Ž .� q , as well as q, which both adjust for censoring. For each of theseˆ ˆ

estimators, case weights proportional to the number at risk were used
Ž .according to 3.3 . In a second experiment, BLJ obtained data on the survival

of 180,000 genetically homogeneous nematodes which were kept in a mass
culture and were maintained at a higher temperature. We compared the

Ž .estimators q and � q for these data as well.ˆ ˆ
Starting with the results for the second experiment, Figure 4 shows the

Ž .estimates q and � q for the mass culture data. Until day 13, the samplingˆ ˆ
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Ž . Ž . Ž .FIG. 4. Estimates q dotted and � q solid for the hazard functions of a mass culture ofˆ ˆ
ˆ ˆnematodes, for a cohort of 180,000 genetically homogeneous nematodes. Bandwidths b , b wereq �

Ž . Ž .fixed at 3 days, respectively, 3.7 days. a Estimates shown on original scale. b Estimates shown
on log scale. Clear differences emerge in the area of oldest-old mortality in the right tail of the
hazard function.

procedure was different from that of an ordinary lifetable: on each day, 200
nematodes were sampled at random from the surviving nematodes at the
beginning of that day, and the number of dead nematodes in this subsample
was recorded. Starting from day 14, when 824 nematodes were still at risk,
the full lifetable was observed. This design was devised by the biologists in
order to make the experiment feasible.

We took this design into account when assigning the case weights, which
Ž .were set equal to w � min n , 200 , i � 1, 2, . . . , n denoting the number ofi i i

nematodes at risk at the beginning of the ith day. This amounted to w � 200i
for i � 1, . . . , 14 and w � n for i � 14. We chose bandwidths b � 3 days fori i

Ž .q and b � 3.7 days for � q . The latter bandwidth was determined accordingˆ ˆ
Ž .to formula 4.4 below.

We find notable differences in the right tail of these estimates. The
observed differences for the transformed versus the untransformed estimates
are due to the much larger discretization bias for the nontransformed esti-
mate at high levels of the hazard function. It is clear that the differences
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between the two estimates affect conclusions regarding the tail behavior and
thus affect the assessment of goodness-of-fit of parametric models such as the
Gompertz model.

In this example, both estimates show an initial phase of linear increase of
the log hazard function, followed by a slowing of the increase. The estimate q̂
clearly shows signs of deceleration in the right tail, while this is not so for
Ž .� q , which remains linear or even accelerates on the log scale. This is anˆ

instance where visual right tail inspection is heavily influenced by the choice
of estimator. It is likely that q is severely biased on the right tail, as by itsˆ

Ž .very nature, q � 1�day; in contrast, � q indicates that values much aboveˆ ˆ
1�day do occur here. The fact that the right tail is linear or even accelerated
on the log scale probably is possibly due to the accelerated nature of this
experiment which was conducted at 25.5�C rather than the normal tempera-

�ture of 20�C and also at higher food concentrations see Vaupel, Johnson and
Ž .�Lithgow 1994 . The early concavity in both log hazard function estimates

provides strong evidence against the validity of the Gompertz model for these
data, in contrast to the claim made in BLJ.

Further evidence against this claim is found by evaluating the data from
the first experiment, where complete lifetables were obtained for 79 cohorts
consisting each of 30 genetically homogeneous nematodes. The transformed

Ž .estimates � q for all 79 cohorts, grouped into four quartiles according toˆ
mean lifetime of the cohort, are shown in Figure 5. The estimated hazard
functions are shown in the log scale and the bandwidths for all curves were
fixed at 6 days, in order not to magnify differences between individual hazard
curves which may be driven by differences in individual bandwidth choices.

Viewed in their entirety, these nonparametric hazard function estimates
demonstrate that the simple Gompertz model certainly is not the correct
underlying parametric model for all homogeneous cohorts, contradicting the
claim made by BLJ. We find that almost none of the individually estimated
hazard functions for the 79 cohorts corresponds to roughly a straight line, as
would be required by the Gompertz model. Instead, virtually all these esti-
mates show concave behavior in the log scale. We note here that some or
perhaps all authors of BLJ no longer contend that their cohorts fit a Gom-
pertz model at extreme ages.

4.2. Bandwidth choice. The selection of the bandwidth b in the smoother
Ž .is important for the practical behavior of estimates q and � q . Assumingˆ ˆ

Žthat the raw data d �n are approximately independent this assumption willi i
.be justified in Theorem A.1 below , classical methods of bandwidth choice as

have been developed for nonparametric regression can be used. We are not
going to embark on a discussion of the pros and cons of the various band-
width selectors. Instead, we focus on the problem how to choose bandwidths

Ž .for the transformed estimates � q , once a bandwidth choice for q is avail-ˆ ˆ
able. For the latter choice one could use cross-validation, due to its simplicity,
or any other of a variety of bandwidth selection methods, including visual
bandwidth choices.
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Ž .FIG. 5. All estimated hazard functions � q for the 79 cohorts of 30 genetically homogeneousˆ
nematodes, arranged according to quartile of mean lifetime of the respective cohort. Bandwidths
were fixed at 6 days, and hazard function estimates are shown on log scale. First quartile shown

Ž . Ž . Ž .in panel A , second quartile in panel B , third quartile in panel C and fourth quartile in
Ž .panel D .

ˆŽ .Let ISE �, b denote the integrated squared error for an arbitrary smooth
Ž̂ . Ž .estimate � t, b of � t , obtained by involving at some step the smoothing

Ž .procedure S with smoothing parameter b as in 3.1 , that is,L

2ˆ ˆ4.1 ISE �, b � � t , b � � t dt .Ž . Ž . Ž .Ž . H
This can be approximated by the summed squared error

p1 2ˆ ˆ4.2 SSE �, b � � t , b � � t .Ž . Ž . Ž . Ž .Ý j jp j�1

Ž .We define optimal bandwidths b and b as minimizers of 4.2 whenq �
ˆ ˆŽ . Ž . Ž . Ž Ž ..� t, b � q t or � t, b � � q t . These finitely optimal bandwidth choicesˆ ˆ

Ž .require knowledge of � t , and are only useful for simulation comparisons.



¨J.-L. WANG, H.-G. MULLER AND W. B. CAPRA142

We describe now how cross-validation could be used as a method to
Ž .determine b and b from the data; compare for instance Rice 1984 for aq �

discussion of cross-validation and related bandwidth selectors. Cross-valida-
tion is based on a measure of how well the smoothed estimates predict
observed data. Optimal bandwidths b are estimated byq

p
2�jˆ4.3 b � arg min w q t , b � q t .Ž . ˆ ˜Ž . Ž .Ž .Ýq j j j

b j�1

Ž . �jHere w are the case weights used in the smoothing step 3.2 , and q is theˆj
Ž . Ž .smoothed estimate of q t , obtained from 3.2 by omitting the jth data pair

Ž .t , q .˜j j
Estimation of optimal smoothing parameters b used to obtain the trans-�

Ž Ž ..formed estimate � q t, b requires additional considerations. Since thisˆ q
estimate is obtained by transforming another smooth estimate, cross-valida-
tion cannot be applied directly. By the delta method, one finds

2Var � q 	 Var q � 1 � �q .Ž . Ž . Ž .Ž .ˆ ˆ ˆ
Ž .This implies that if we used the same bandwidth for q and � q , we wouldˆ ˆ

ˆŽ .incur a larger variance for � q . We propose to choose b in such a way thatˆ �

Ž .the resulting estimate � q has the same variance on average as the varianceˆ
ˆof q when using b .ˆ q

ˆ Ž .Given a bandwidth estimate b of b , which could be obtained by 4.3 orq q

by any other reasonable bandwidth selector, this consideration leads to the
bandwidth estimate

1�5
p p2� �ˆ ˆ ˆ4.4 b � b Var q t � 1 � �q t , b Var q tŽ . ˜ ˆ ˜Ž . Ž .Ž . Ž .Ý Ýž /ž /� q j j q j½ 5

j�1 j�1

�
Ž Ž .. Ž .for b . Here Var q t is an estimate of the variance of q t , given by˜ ˜�

� �
4.5 Var q t � S t , b , t , Var q t , w .Ž . Ž .Ž .˜ ˜Ž .Ž .ž /L j j j j�2, . . . , p�1

This estimate of the variance is a smoothed version of the empirical�
Ž Ž ..variances Var q t , j � 2, . . . , p � 1, obtained from the squared residual of˜ j

Ž .the least squares estimate of the curve q t at time t from the data at timesj
j � 1 and j � 1. For equidistant t ’s we obtainj

2
2 q t � q t� ˜ ˜Ž . Ž .j�1 j�1

Var q t � � q t .˜ ˜Ž . Ž .Ž .j j3 2

Ž .This residual variance has been proposed by Rice 1984 ; compare also Hall,
Ž . Ž .Kay and Titterington 1990 , Muller and Stadtmuller 1993 , and Seifert,¨ ¨

Ž .Gassser and Wolf 1993 for further developments. We choose the bandwidth
Ž . Ž .b � t � t �5 in the smoothing step 4.5 .p 1

We note that the use of case weights w is only one way to address thei
heteroscedasticity in the lifetable data. Another possibility would be to adopt
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Ž . �a local instead of global bandwidth choice procedure see Muller, Wang and¨
Ž .�Capra 1997 .

4.3. Summarizing samples of lifetables by a hazard surface. Since the
individual sizes of the 79 cohorts of nematodes studied in the main experi-
ment of BLJ are fairly small, it is of interest to combine the survival
information contained in the 79 cohorts in one statistical graph. A hazard
surface was used previously for this purpose in Wang, Muller, Capra and¨

Ž .Carey 1994 . We assume that not only age affects the value of the hazard
function, but also the mean lifetime of the specific cohort considered, and that
both influences are smooth. In particular, we take here the point of view that
the hazard function observed for a particular cohort is a random function.

Ž .Denote observed mean lifetime a cohort-specific random variable by 	,
Ž .and age by t, and denote the random hazard function for a cohort with

Ž .mean lifetime 	 at age t by � t, 	 . It is then natural to define
in analogy
to nonparametric regression
the hazard surface as

�4.6 � t , � � E � t , 	 	 � � .	 4Ž . Ž . Ž .

Estimation of this hazard surface requires two smoothing steps, first smooth-
ing in the age direction t, in order to estimate the random hazard functions
associated with each cohort, and then smoothing in the mean lifetime direc-

Ž Ž .. Ž .tion �. Using the transformed estimate � q t, b in 3.5 with bandwidthˆ � j
b , based exclusively on data from the jth cohort with observed mean lifetime�

	 , one thus obtainsj

ˆ4.7 � t , � � S � , b t , 	 , � q t , b .Ž . Ž . Ž .Ž ˆŽ .Ž .ž /L � i � i i�1, . . . , 79

Ž .Here b t is the bandwidth used for smoothing in the mean lifetime direc-�

tion when age is t, and b is the bandwidth used for smoothing in the age�

direction.
It turned out to be necessary to let b depend on the age t. Variable�

bandwidth choice was necessary for this smoothing step, owing to the het-
eroscedasticity in the hazard function estimates, with higher variances to-
ward the right tail, and also because of the different shapes of the functions
Ž .� t, � , viewed as functions in the argument �, when t is varying. For the

Ž .choice of b , we explored two options: 1 fixing b at the same value for all� �

cohorts by an intuitively appealing value, for which we choose 4 days; and
Ž . Ž .2 cross-validation 4.4 , carried out separately for each cohort. The choice of

Ž . Ž .the function b t is then done by cross-validating the smoother S in 4.7 ,� L
Ž Ž Ž .. .given the data 	 , � q t, b , j � 1, . . . , 79, for all fixed t equal toˆj � j

0, 1, 2, . . . , 30 days. The resulting cross-validation scores are shown as dots in
Figure 6, for the cases where b is fixed at 4 days and where b is chosen by� �

cross-validation. While these cross-validation bandwidths appear to follow a
trend, their variability is quite high and there occur also outlying values. The
two choices of b are seen to lead to very similar results.�
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FIG. 6. Cross-validation score functions for choosing the bandwidth for b , smoothing in the�

Ž . Ž .mean lifetime direction. a With bandwidth b for age direction fixed at 4 days. b With�

cross-validation bandwidth choice for b .�

Ž .To arrive at the functions b t actually used for the second smoothing�

step, we smoothed the scatterplots in Figure 6 by using the locally weighted
least squares smoother S with bandwidth fixed at 5 days. This led to theL

Ž .estimated log hazard surfaces 4.7 shown in Figures 7 and 8 for the two
cases where b is fixed at 4 days and where b is chosen by cross-validation.� �

As expected, the hazard surface obtained for the cross-validation option is
more variable, but overall the estimated hazard surfaces are quite similar.

The hazard surfaces as shown on the log scale in Figures 7 and 8 confirm
strong initial bending and concavity for all cohorts, and some flattening
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FIG. 6.
Continued

toward the right tail for the cohorts with relatively large mean lifetimes. It
also appears that there is a consistent ‘‘valley’’ across cohorts at around age
10, followed by a ‘‘mountain ridge.’’ These features are not compatible with
the Gompertz model, which would predict a ‘‘ruled’’ log hazard surface in the
sense that cross-sections through the surface for any fixed mean lifetime are
linear.

Summarizing the survival behavior observed for various cohorts in the
form of a hazard surface plot is a simple and effective graphical tool. It can be
applied whenever a covariate or characteristic can be associated with each
cohort, and individual hazard functions depend in a smooth fashion on this
covariate. If, as is mostly the case in practice, the individual cohort behavior
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FIG. 7. Estimated hazard surface as a function depending on age and cohort mean lifetime;
shown on the log scale from two perspectives, using fixed bandwidth b � 4d in the age direction,�

and cross-validation for selecting b , the bandwidth in the mean lifetime direction.�

is observed in the form of a lifetable, the hazard surface plot needs to be
combined with the transformation method to estimate cohort-specific hazard
functions as described in the previous section. The combination of the two
methods then leads to a practically useful graphical device for survival
analysis in general and the analysis of oldest-old mortality in particular.

5. Simulation results. We conducted a simulation study to address the
Ž . Ž . Ž .issues of how the estimators q 3.4 and � q 3.5 compare in estimatingˆ ˆ

Ž . Ž .� t . The performance criterion was the SSE 4.2 achieved by an estimator.
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FIG. 8. Estimated hazard surface on the log scale as in Figure 7, but using cross-validation
bandwidths for both b and b , the bandwidths for age and mean lifetime directions.� �

This comparison involved various samples sizes, n � 30, 100, 1000, 104, 105

and 106. The larger the sample size, the more subjects will survive to high
ages and therefore the larger the right end point of the range up to which the
hazard function can be estimated. For each single Monte Carlo run, the right
end point of this range was determined separately as the right end point
where the number of subjects at risk dropped to 4. Since this right end point
increases with sample size and the SSE is not adjusted for range, this means
that SSE’s for different sample sizes n, as well as for different models, are
not comparable. The values tend to increase with sample size. The only
meaningful comparison is between estimates at the same sample size and for
the same model.
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TABLE 1
Ž . Ž . Ž . Ž .Simulation results, comparing estimators q 3.4 and � q 3.5 for complete uncensored dataˆ ˆ

Sample Size
4 5 6Model Estimate 30 100 1000 10 10 10

Gompertz q 0.0314 0.0626 0.2941 0.9441 2.224 4.320ˆ
Ž .Gompertz � q 0.0334 0.0329 0.0268 0.0241 0.0170 0.0402ˆ

Weibull q 0.0433 0.0850 0.2418 0.5279 0.9226 1.470ˆ
Ž .Weibull � q 0.0571 0.0354 0.0246 0.0175 0.0186 0.0198ˆ
Ž . Ž .Case weights as in 3.3 and finitely optimal bandwidths, minimizing the SSE 4.2 are used.
Ž . Ž . Ž .Gompertz model is � t � 0.001 exp 0.2 t , and Weibull model is � t � 0.08t. Reported are SSE’s

over a range determined separately for each Monte Carlo run. The right end point of this range
was the time at which the number of subjects at risk dropped to 4. Note that this point is
increasing with sample size n, and so is SSE. For this reason, only comparisons of SSE’s for the
same sample size and the same model make sense.

In terms of models, we chose a Gompertz model with hazard function
Ž . Ž . Ž .� t � 0.001 exp 0.2 t and a Weibull model with hazard function � t � 0.08t.

From these models, lifetime data were simulated. For the Gompertz model,
the case of censored data was also investigated by using an exponential
censoring distribution. The mean of the censoring distribution was adjusted
in such a way that approximately 50% of the data were censored. The
originally continuous data were then aggregated into lifetables with aggrega-
tion interval length � � 1 day.

Ž .Weighting 3.3 was used, and bandwidths were chosen in either one of two
ways: for the results reported in Table 1, covering only uncensored data,

Ž .bandwidths were chosen finitely optimal as minimizers of SSE 4.2 . For the
results reported in Table 2, which include the case of censored Gompertz data

ˆ ˆŽ . Ž .as well as uncensored data, data-based bandwidths b 4.3 for q and b 4.4ˆq �

Ž .for � q were used.ˆ
From the results in Table 1 it is immediate that, when using optimal

Ž .bandwidths, it is advantageous to use the transformed estimate � q ratherˆ
than q for the Gompertz and Weibull models considered for moderately largeˆ
or large sample sizes. For sample sizes of 1000, the achievable gain in SSE is
of the order of a factor 10, and for sample sizes of 106 it is of the order of a
factor of 100.

Table 2 shows that these relations are more or less preserved when
Ž . Ž .data-based bandwidth choices 4.3 and 4.4 are used. In this case, the

necessary sample size for strong gains of the transformed estimate is still
about 100 for the Weibull model and somewhat larger for the Gompertz
model with uncensored or censored data. In all cases, the gains are again
dramatic for sample sizes of 1000 and beyond.

These simulation results clearly demonstrate the superiority of the trans-
formed estimates for moderate to large sample situations. The severe bias
which afflicts the untransformed estimate is visualized in Figure 9, which
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TABLE 2
ˆ Ž .Simulation results paralleling the setting of Table 1, but with estimated bandwidths b 4.3q

ˆ Ž .and b 4.4�

Sample Size
4 5 6Model Estimate 30 100 1000 10 10 10

Gompertz q 0.0523 0.0819 0.3260 1.006 2.311 4.474ˆ
Ž .Gompertz � q 0.0823 0.0826 0.0850 0.0903 0.0656 0.2927ˆ

Weibull q 0.0559 0.1120 0.2832 0.6691 1.162 1.803ˆ
Ž .Weibull � q 0.0859 0.0742 0.0851 0.1085 0.0762 0.0739ˆ

Gompertz, censored q 0.0406 0.0585 0.1856 0.6510 1.545 3.021ˆ
Ž .Gompertz, censored � q 0.0502 0.0627 0.0653 0.0581 0.0388 0.0416ˆ

The case of censored data is included for the Gompertz model, with approximately 50%
censoring. Reported are SSE’s as in Table 1. Ranges of support and therefore SSE’s differ for
uncensored and censored data and are not comparable.

Ž .FIG. 9. a Mean hazard function estimates based on 500 simulations from the Gompertz
Ž . Ž . 6distribution with � t � 0.001 exp 0.2 t , with sample size n � 10 for each simulation. Shown

Ž . Ž . Ž . Ž . Ž . Ž Ž .. Ž .are � t solid line , and the averages of estimates q t 3.4 dotted line , and � q t 3.5ˆ ˆ
ˆ ˆŽ . Ž .dash-dotted line . Cross-validation bandwidths b and b were used for q and � q , respectively.ˆ ˆq �

Ž . Ž . Ž . Ž .Horizontal axis is time in days . b Same as a but for Weibull distribution with � t � 0.08t.
Ž .Horizontal axis is time in days .
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Ž . Ž Ž ..shows the means of the hazard function estimates q t and � q t , alongˆ ˆ
Ž .with � t , for 500 estimated functions, one per Monte Carlo run. The esti-

mates use cross-validation bandwidths. These comparisons are shown for
6 Ž .uncensored data, for n � 10 , and for both Gompertz Figure 9a Weibull

Ž .Figure 9b cases.

6. Concluding remarks. Although smoothing techniques have been ap-
plied extensively for hazard estimation, properties of the smoothed lifetable
estimate q remained mostly unexplored. In this paper we derive the meanˆ
and variance expression for the smoothed lifetable estimate of the hazard
function. Such expressions can be utilized for bandwidth choices. They also
demonstrate that a transformation of the smoothed lifetable hazard function
estimate is necessary in many cases to reduce the bias resulting from the
aggregation of the data in the lifetable. Both theoretical findings and simula-
tions illustrate the advantage of such a transformation.

The transformation is particularly relevant for the study of oldest-old
mortality in large sample experiments. Our analysis of nematode survival
experiments casts doubts on the universality of the Gompertz model, even for
populations which are genetically homogeneous. This becomes particularly
obvious when we combine the sample of 79 cohorts of genetically homoge-
neous nematodes to construct a hazard surface. More work will be needed on
the important issues of combining information from samples of lifetables and
the inclusion of covariates.

APPENDIX

Auxiliary results and proofs. In this section we compile the basic
assumptions for the asymptotic results, the proofs and a key auxiliary result
Ž .Theorem A.1 which is of interest in its own right. We use the following
notation: let T be the random lifetime and C the random censoring time for a

Ž .subject; T and C are assumed to be independent. Let X � min T, C be the
observed time of failure of a subject and � � 1 be the corresponding	X�T 4
censoring indicator. We define the following functions which are of relevance
for lifetable data:

F t � P T � t , the distribution function of the lifetimes T ,Ž . Ž .T

which is assumed to have a density f t � F� t ;Ž . Ž .T T

� t � f t � 1 � F t , the hazard function;Ž . Ž . Ž .Ž .T T

F t � P C � t , the distribution function of the censoring times C ;Ž . Ž .C

F t � P X � t , the distribution function of the observed data;Ž . Ž .
F t � 1 � F t � 1 � F t 1 � F t ;Ž . Ž . Ž . Ž .T C

p t � P X � t � ��2, t � ��2 , � � 1 ;Ž . ŽŽ .
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and
�1 �q t � � P T � t � ��2, t � ��2 T � t � ��2 .Ž . ŽŽ .

Ž .Let � be a point such that F � � 1. We make the following assumptions
for a fixed point t at which the estimators are to be compared:

A.1 t � � , and hence F t 
 F � � 
 for some 
 � 0;Ž . Ž . Ž .
A.2 � is twice continuously differentiable in a neighborhood of t .Ž .

A basic assumption for the asymptotic analysis is that the lengths of the
aggregation intervals converge to 0 as n � �;

A.3 � � 0 as n � �.Ž .

In addition, we assume that the kernel function K and the bandwidth b
Ž .used in the smoothing procedure S 3.2 satisfy the conditionsL

� �K has compact support on �1, 1 , K u 
 0, sup K u � �,Ž . Ž .

K u du � 1, uK u du � 0, u2K u du � �,Ž . Ž . Ž .H H HA.4Ž .

K 2 u du � �;Ž .H

and

� 3A.5 b � 0, nb � � and log n � 0 as n � �.Ž . Ž .
b

We note that

A.6 p t � �q t F � j � 1 .Ž . Ž .Ž .Ž . Ž .j j

Ž . Ž . Ž .PROOF OF THEOREM 2.1. i Using 2.5 , 2.6 and a Taylor expansion of �,
we have

1 t���2
� q t � � s dsŽ . Ž .Ž . H

� t���2

1 t���2 2 2� �� � t � � t s � t � � t s � t �2 � o s � t dsŽ . Ž . Ž . Ž . Ž . Ž .H
� t���2

�2
� 2� � t � � t � o � .Ž . Ž . Ž .

24
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Ž . Ž . Ž .ii From 2.6 , using i , one finds

�1q t � � 1 � exp ��� q tŽ . Ž .Ž .Ž .
� �2

2 3 3� � q t � � q t � � q t � O �Ž . Ž . Ž . Ž .Ž . Ž . Ž .
2 6

2 2� � �
� �2� � t � � t � � t � � t � tŽ . Ž . Ž . Ž . Ž .

24 2 12

2 2� �
�3 2 2 2� � t � � t � t � o � � o � ,Ž . Ž . Ž . Ž . Ž .

6 8

when the result follows. �

Ž . � Ž . .Noting that t � � j � 1 � ��2 and I � � j � 1 , � j , we state thej j
Ž . Ž .following result regarding the moment structure of q t � d ��n in 2.1 ,˜ j j j

which provides the key step for the proofs of Theorems 3.1, 3.2. Define, for
� .any � in 0, 1 ,

n 1 kn n�kI � � � 1 � �Ž . Ž .Ýn ž /kkk�1

n�1 n1 � � 1
n� � � ��� � � � Ýn n � 1 1 kk�1

A.7Ž .

n n� � x � �Ž .1��
� dx .H x0

Ž . Ž . Ž . Ž .THEOREM A.1. Under assumptions A.1 � A.5 , it holds for q t and q t˜ ˜i j
Ž .in 2.1 , 1 � i � j � p, that:

ni E q t � 1 � F � j � 1 q tŽ . Ž .Ž .˜Ž . Ž .j j

n� 1 � F � j � 1Ž .Ž .
2� �

�2 3 2� � t � � t � � t � 4� t � o � ;Ž .Ž . Ž . Ž . Ž .Ž .j j j j2 24

ii Var q t � ��1q t 1 � �q t I F � j � 1Ž . Ž .Ž .Ž .˜Ž . Ž . Ž .Ž . Ž .j j j n

� q t 1 � q t F n � j � 1Ž .Ž .Ž . Ž .Ž .j j

n n� q t F � j � 1 1 � q t F � j � 1Ž . Ž .Ž . Ž .Ž . Ž .j j

� t 3�Ž .j 2� 1 � � t � O � ;Ž .Ž .jn� 1 � F � j � 1 2Ž .Ž .
n

iii Cov q t , q t � O 1 � 
 for i � j.Ž . Ž . Ž .˜ ˜Ž . Ž .Ž .i j



ANALYSIS OF OLDEST-OLD MORTALITY 153

PROOF. Note that uniformly in 0 � � � 1,

1
A.8 nI � � .Ž . Ž .n 1 � �

Ž . Ž .Note further that A.1 and A.8 imply

�1
A.9 I F t � nF t 1 � o 1 .Ž . Ž .Ž .Ž . Ž .Ž . ž /n j�1 j�1

Ž .Let B n, p denote a random variable with a binomial distribution with
parameters n and p. We note the following three facts:

n1 1 n � 1 k�1 n�kE � F t F tŽ . Ž .Ý ž /k � 1k1 � B n � 1, F tŽ .Ž . k�1

n1 n k n�k� F t F tŽ . Ž .Ý ž /knF tŽ . k�1
A.10Ž .

1
n� 1 � F t ;Ž .

nF tŽ .
�2

E 1 � B n � 1 , F tŽ . Ž .ž /
n 1 n � 1 k�1 n�k� F t F tŽ . Ž .Ý 2 ž /k � 1kk�1A.11Ž .

n 1�1 n k n�k� nF t F t F tŽ . Ž . Ž .Ž . Ý ž /kkk�1

�1
� nF t I F t ;Ž . Ž .Ž .Ž . n

and

�2
E 2 � B n � 2, F tŽ .Ž .ž /

n 1 n � 2 k�2 n�k� F t F tŽ . Ž .Ý 2 ž /k � 2kk�2

n1 k � 1 n k n�k� F t F tŽ . Ž .Ý2 ž /kkn n � 1 F tŽ . Ž . k�2

A.12Ž .

1
n� 1 � F t � I F t .Ž . Ž .Ž .n2n n � 1 F tŽ . Ž .

Defining

�� �m y � E � � 1 X � y ,Ž .



¨J.-L. WANG, H.-G. MULLER AND W. B. CAPRA154

we find

1n Ž X � I , � �1.1 j 1E q t � EˆŽ .j � nj

n
�� E E 1 XŽ .Ž X � I , � �1. 11 j 1�

1
��E X1nž /1 � Ý 1Ž X � �Ž j�1.. k�2 Ž X � �Ž j�1..1 k

n � j �1
� m y E 1 � B n � 1, F � j � 1 dF yŽ . Ž . Ž .Ž .Ž .H ½ 5

� Ž .� j�1

n � j �1nA.13 � m y 1 � F � j � 1 nF � j � 1 dF yŽ . Ž . Ž . Ž . Ž .Ž . Ž .H
� Ž .� j�1

� j�1n� 1 � F � j � 1 � F � j � 1 m y dF yŽ . Ž . Ž . Ž .Ž . Ž . H
Ž .� j�1

�1n� 1 � F � j � 1 � F � j � 1 p tŽ . Ž .Ž . Ž . Ž .j
n� 1 � F � j � 1 q tŽ .Ž . Ž .j
n� 1 � F � j � 1Ž .Ž .

2� �
�2 3 2� � t � � t � � t � 4� t � o � ,Ž .Ž . Ž . Ž . Ž .Ž .j j j j2 24

Ž . Ž .using Theorem 2.1 ii . This implies i .
Ž .Further, for the proof of ii , we find

n
2 2E q t � E 1 �n˜ Ž .j Ž X � I , � �1. i2 1 j 1�

n n � 1Ž .
2� E 1 �n .Ž�Ž j�1.� X , X � � j , � �� �1. i2 1 2 1 2�

A.14Ž .

Ž . Ž .By A.6 and A.9 ,
n

2E 1 �nŽ X � I , � �1. j2 1 j 1�

n � j
� m yŽ .H2� Ž .� j�1

�2
� E 1 � B n � 1, F � j � 1 dF yŽ . Ž .Ž .Ž .ž /A.15Ž .

�12� I F � j � 1 � F � j � 1 p tŽ . Ž .Ž . Ž .Ž . Ž .n j

� I F � j � 1 q t �� .Ž .Ž .Ž . Ž .n j
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Ž . Ž .Furthermore, using A.6 and A.12 ,
2E 1 �nŽ�Ž j�1.� X , X � � j , � �� �1. j1 2 1 2

�� E E 1 X , XŽ .Ž�Ž j�1.� X , X � � j , � �� �1. 1 21 2 1 1

�E 1 � 1Ž X � �Ž j�1.. Ž X � �Ž j�1..1 2ž
�2n

A.16 � 1 X , XŽ . Ý Ž X � �Ž j�1.. 1 2k /
k�3

� j � j
� m y m zŽ . Ž .H H

Ž . Ž .� j�1 � j�1

�2
�E 2 � B n � 2, F � j � 1 dF y dF zŽ . Ž . Ž .Ž .Ž .ž /

1 � F n � j � 1 � I F � j � 1Ž . Ž .Ž . Ž .Ž .n 2� p tŽ .j2n n � 1 F � j � 1Ž . Ž .Ž .
1 � F n � j � 1 � I F � j � 1Ž . Ž .Ž . Ž .Ž .n 2 2� � q t .Ž .jn n � 1Ž .

Ž . Ž .Thus, A.14 � A.16 imply
2 2E q t � I F � j � 1 q t �� � q tŽ .Ž .Ž .˜ Ž . Ž . Ž .j n j j

� q2 t F n � j � 1 � q2 t I F � j � 1 .Ž . Ž .Ž . Ž .Ž .Ž . Ž .j j n

Ž . Ž . Ž .From A.1 , A.8 and Theorem 2.1 ii , we obtain
22Var q t � E q t � E q t˜ ˜ ˜Ž . Ž . Ž .Ž . Ž .j j j

� ��1q t 1 � �q t I F � j � 1Ž .Ž .Ž .Ž . Ž .Ž .j j n

� q t 1 � q t F n � j � 1Ž .Ž .Ž . Ž .Ž .j j

n n� q t F � j � 1 1 � q t F � j � 1Ž . Ž .Ž . Ž .Ž . Ž .j j

�q t 1 � �q tŽ . Ž .Ž .j j� 1 � o 1Ž .Ž .2n � F � j � 1Ž .Ž .
2 2 31 � �� t � � �2 � t � O �Ž .Ž .Ž . Ž .j j�

2n � F � j � 1Ž .Ž .
2�

2 3� �� t � � t � O � 1 � o 1Ž . Ž .Ž .Ž . Ž .j j2

� t 3�Ž .j 2� 1 � � t � O � 1 � o 1 ,Ž . Ž .Ž .Ž .jž /2n � F � j � 1Ž .Ž .
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Ž . Ž .which implies ii . For the proof of iii , we observe that for i � j,

E q t q tŽ .˜ ˜Ž .i j

nn Ý 1Ý 1 k�1 Ž X � I , � �1.h�1 Ž X � I , � �1. k j kh i h� E
�n �ni j

n n � 1Ž .
� E 1 � n nŽ .Ž X � I , X � I , � �� �1. i j2 1 i 2 j 1 2�

n n � 1Ž .
�� E E 1 X , XŽ .Ž X � I , X � I , � �� �1. 1 22 1 i 2 j 1 2½�

�1n

�E 1 � 1 � 1ÝŽ X � �Ž i�1.. Ž X � �Ž i�1.. Ž X � �Ž i�1..1 2 mž m�3

� 1 � 1Ž X � �Ž j�1.. Ž X � �Ž j�1..1 2

�1n

� 1 X , X .Ý Ž X � �Ž j�1.. 1 2m 5/m�3

n n � 1Ž . � i � j
� m y m zŽ . Ž .H H2� Ž . Ž .� i�1 � j�1

�1 �1
�E 2 � M � M 1 � M dF y dF zŽ . Ž . Ž . Ž .1 2 2

n n � 1Ž . �1 �1� p t p t E 2 � M � M 1 � M .Ž . Ž . Ž .Ž .i j 1 2 22�
Ž .Here, M , M , M has a multinomial distribution with parameters n �0 1 2

2, � , � and � , where0 1 2
n

M � 1 ,Ý0 Ž X � �Ž i�1..m
m�3

n

M � 1 ,Ý1 Ž X � Ž�Ž i�1.m �Ž j�1.� .m
m�3

n

M � 1Ý2 Ž X � �Ž j�1..m
m�3

Ž Ž .. Ž Ž .. Ž Ž .. Ž Ž ..and � � F � i � 1 , � � F � j � 1 � F � i � 1 , � � F � j � 1 . Us-0 1 2
1 a Ž .�1ing H x dx � 1 � a , we find0

�1 �1E 2 � M � M 1 � MŽ . Ž .1 2 2

1 1 1�M �M M1 2 2� E x y dx dyŽ .H H
0 0

1 1 n � 21�m �m m m m m1 2 2 0 1 2� x y � � � dx dyÝH H 0 1 2m , m , mž /0 1 20 0 m , m , m0 1 2
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1 1 n�2� x � � � x � � xy dy dxŽ .H H 0 1 2
0 0

n�1 n�1
� � � x � � x � � � � xŽ . Ž .1 0 1 2 0 1� dxH n � 1 �Ž .0 2

n1 � F � i � 1Ž .Ž . �1
� F � i � 1 F � j � 1Ž . Ž .Ž . Ž .

n n � 1Ž .
n n� � � � �Ž .0 1 0� .

n n � 1 � �Ž . 1 2

Ž . Ž .Now use A.1 and A.6 to obtain

n nE q t q t � q t q t 1 � F � i � 1 � O F � j � 1 ,Ž . Ž . Ž . Ž .Ž . Ž .Ž .˜ ˜Ž . Ž .i j i j

which implies

nCov q t , q t � q t q t 1 � F � i � 1Ž . Ž . Ž .Ž .˜ ˜Ž . Ž .Ž .i j i j

n n� q t q t 1 � F � i � 1 1 � F � j � 1Ž . Ž . Ž .Ž . Ž .Ž .i j

� O F n � j � 1Ž .Ž .Ž .
n n� q t q t 1 � F � i � 1 F � j � 1Ž . Ž . Ž .Ž . Ž .Ž .i j

� O F n � j � 1Ž .Ž .Ž .
nn� O F � j � 1 � O 1 � 
 ,Ž . Ž .Ž .Ž . Ž .

Ž .from which iii follows. �

This result is now applied to the proofs of Theorems 3.1 and 3.2.

Ž . Ž .PROOF OF THEOREM 3.1. i By 3.1 , the locally weighted least squares
Ž . Ž .estimate q t 3.2 is defined asˆ

p

q t � S t , b , t , q t , w , j � 1, . . . , p � W t , b q t ,Ž . Ž .ˆ ˜ ˜Ž . Ž .Ž . ÝL j j j j j
j�1

Ž . Ž .where the W t, b are weight functions. According to Muller 1987 , there¨j
Ž . �Ž Ž .exists a kernel function K satisfying A.4 and lim sup W t, b �p�� 1� j� p j

Ž .. � Ž .W t, b � 1 � 0 defining 0�0 � 1 , where the weight functions for theK , j
kernel estimate are given by

1 t � u� j
W t , b � K du.Ž . HK , j ž /b bŽ .� j�1
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The locally weighted least squares estimate therefore can be written as

p

q t � W t , b q tŽ . Ž .ˆ ˜Ž .Ý K , j j
j�1

p W t , bŽ .j� W t , b � 1 q tŽ . ˜Ž .Ý K , j jž /W t , bŽ .K , jj�1
A.17Ž .

p

� W t , b q t 1 � o 1 ,Ž . Ž .Ž .˜Ž .Ý K , j j
j�1

Ž . Ž . Ž .noting that K u 
 0. Applying Theorem A.1 i and A.17 ,

p

E q t � W t , b E q t 1 � o 1Ž . Ž . Ž .Ž .ˆ ˜Ž .Ý K , j j
j�1

p

� W t , bŽ .Ý K , j
j�1

n� 1 � F � j � 1Ž .Ž .Ž .
A.18Ž .

2� �
�2 3 2� � t � � t � � t � 4� t � o �Ž .Ž . Ž . Ž . Ž .Ž .j j j jž /2 24

� 1 � o 1 .Ž .Ž .

By the mean value theorem for integrals,

p p�
2W t , b � 1Ž .Ý ÝK , j Ž � t�� j � � 2 b.2bj�1 j�1

t � u �� j 2� K du 1 � OH ž / ž /ž /b bŽ .� j�1

A.19Ž .

�
2� HK u du � O � .Ž . Ž .

b

Ž .From A.19 and an application of the Cauchy�Schwarz inequality,

p
nW t , b F � j � 1 � tŽ . Ž .Ž . Ž .Ý K , j j

j�1

1�2 1�2p p
2 2 2 n� W t , b 1 � t F � j � 1Ž . Ž .Ž .Ž .Ý ÝK , j ŽW Ž t , b.� 0. jK , jž / ž /

j�1 j�1

n� O 1 � 
 .Ž .Ž .
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Next, using the moment conditions on the kernel function, and a Taylor
expansion, it follows by a well-known argument that

p 2b
� 2 2A.20Ž . W t , b � t � � t � � t u K u du � o b ,Ž . Ž . Ž . Ž . Ž .Ž .Ý HK , j j 2j�1

and similarly,
p

2 2 2A.21 W t , b � t � � t � O b ,Ž . Ž . Ž . Ž .Ž .Ý K , j j
j�1

p
� �A.22 W t , b � t � � t � o 1 ,Ž . Ž . Ž . Ž .Ž .Ý K , j j

j�1

p
3 3 2A.23 W t , b � t � � t � O b .Ž . Ž . Ž . Ž .Ž .Ý K , j j

j�1

Ž . Ž .n 2We note that nb � � according to A.5 . Therefore, 1 � 
 �b � 0, so that
Ž .n Ž 2 . Ž . Ž .1 � 
 � o b . The result follows from A.18 � A.23 .

Ž . Ž . Ž .ii We find from Theorem A.1 ii , iii that

p
2Var q t � W t , b Var q tŽ . Ž .Ž .ˆ ˜Ž .Ž .Ý K , j j

j�1

p p

� W t , b W t , b Cov q t , q t 1 � o 1Ž . Ž . Ž . Ž .Ž .˜ ˜Ž .Ž .Ý Ý K , i K , j i j
i�1 j�1

i � j

p
�12� W t , b � t n � F � j � 1 1 � o 1Ž . Ž . Ž .Ž . Ž .Ž .Ý K , j j

j�1

p p
n� W t , b W t , b O 1 � 
 1 � o 1 .Ž . Ž . Ž . Ž .Ž .Ý Ý K , i K , j

i�1 j�1

i � j

Ž . Ž .Now A.19 and K u 
 0 imply
p p

n
W t , b W t , b O 1 � 
Ž . Ž . Ž .Ž .Ý Ý K , i K , j

i�1 j�1

i � j

2p p
n2� W t , b � W t , b O 1 � 
Ž . Ž . Ž .Ž .Ý ÝK , j K , jž /

j�1 j�1

� �n n n� 1 � O O 1 � 
 � O 1 � 
 � O 1 � 
 ,Ž . Ž . Ž .Ž . Ž .ž / ž /ž /b b
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and
p 1 1

2W t , b o � o .Ž .Ý K , j ž / ž /n� nbj�1

Ž .Here and in other places, we use the fact that the O � terms are uniform in
j � 1, . . . , p. Furthermore, the smoothness assumptions on � and F imply by

Ž . Ž .an argument analogous to Gasser and Muller 1979 , using A.19 ,¨
p � t 1 � tŽ .Ž .j2 2W t , b � K u du 1 � o 1 .Ž . Ž . Ž .Ž .Ý HK , j nbn � F � j � 1 F tŽ . Ž .Ž .j�1

The result follows. �

Ž . ŽPROOF OF THEOREM 3.2. Applying a Taylor expansion of � x � �log 1 �
. Ž . Ž . Ž .� x �� 2.5 at the point x � q t , we obtain for a mean value � between q t

Ž .and q t ,ˆ
1

A.24 � q t � � q t � q t � q t .Ž . Ž . Ž . Ž . Ž .Ž . Ž . Ž .ˆ ˆ
1 � ��

Ž . Ž . Ž .We see from the proof of Theorem 3.1 i and A.5 that the weights W t, bj
employed in the smoothing procedure S satisfyL

�
� � � �A.25 max W t , b � sup K u 1 � �Ž . Ž . Ž . Ž .j bj

Ž .for a constant � � 0. We also note that A.4 and the design assumptions
imply that

p 2b
A.26 1 � .Ž . Ý 	W Ž t , b.� 04i �i�1

Ž . Ž . Ž .Letting � � 1 � � sup K u , where � is as in A.25 , we note that
p p1 d � di i

A.27 q t � W t , b � 1 .Ž . Ž . Ž .ˆ Ý Ýi 	W Ž t , b.� 04i� n b ni ii�1 i�1

Ž .We next observe that the number of summands on the r.h.s. of A.27 for
which one has

d 1i
A.28 
 ,Ž .

n � log ni

Ž� �2 .among the indices i � 1, . . . , p, is of the order O log n . To see this, note
Ž Ž .�1 .that d �n 
 1�� log n requires n � n 1 � � log n . Denote the counti i i�1 i

Ž .of indices i where A.28 happens by � . A conservative upper bound for � is
Ž .obtained by assuming that A.28 happens for all indices 1, . . . , � , that is, a

	 4subset of the index set 1, 2, 3, . . . , p composed of a string of initial indices.
For this situation, an upper bound for � is obtained from the requirement
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Ž Ž .�1 .�n 1 � � log n � 1. This leads to the bound

log n 2� �A.29 � � � � O log n .Ž . Ž .�1log 1 � � log nŽ .Ž .
Ž . Ž .We infer from A.26 � A.29 that

� b 1 12� �q t � O log n � � OŽ .ˆ ½ 5ž / ž /b � � log n � log n

Ž .for n large enough and fixed t, observing A.5 . Since according to Theorem
Ž . Ž . Ž .2.1, q t � � t � O � , we conclude that for the mean value � � � , �� � 0,n

Ž .so that on the r.h.s. of A.24 ,

�11 � �� � 1 as n � �.Ž .
Therefore,

� q t � � q t � q t � q t 1 � o 1 .Ž . Ž . Ž . Ž . Ž .Ž . Ž . Ž . Ž .ˆ ˆ
Ž . Ž . Ž . Ž .Now i follows immediately from Theorem 2.1 i and Theorem 3.1 i , while ii

Ž .follows from Theorem 3.1 ii . �
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