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This paper establishes the global asymptotic equivalence between
the nonparametric regression with random design and the white noise
under sharp smoothness conditions on an unknown regression or drift
function. The asymptotic equivalence is established by constructing explicit
equivalence mappings between the nonparametric regression and the white-
noise experiments, which provide synthetic observations and synthetic
asymptotic solutions from any one of the two experiments with asymptotic
properties identical to the true observations and given asymptotic solutions
from the other. The impact of such asymptotic equivalence results is
that an investigation in one nonparametric problem automatically yields
asymptotically analogous results in all other asymptotically equivalent
nonparametric problems.

1. Introduction. The purpose of this paper is to establish the global asymp-
totic equivalence between the nonparametric regression with random design and
the white noise under sharp smoothness conditions on an unknown regression or
drift function. We establish this asymptotic equivalence by constructing explicit
equivalence mappings between the nonparametric regression and the white-noise
problems, as in Brown and Low (1996) for their asymptotic equivalence results.
The equivalence mapping from the nonparametric regression to the white noise
provides synthetic observations of the white noise from the nonparametric regres-
sion such that the distributions of the synthetic observations are asymptotically
equivalent to those of the true observations of the white noise. For any asymptotic
solution to a white-noise problem, the application of the solution to the synthetic
observations provides an asymptotic solution to the corresponding nonparamet-
ric regression problem with identical asymptotic properties. Likewise, the equiv-
alence mapping from the white noise produces synthetic observations of the non-
parametric regression problem and synthetic asymptotic solutions to white-noise
problems based on those of the corresponding nonparametric regression problems.
The impact of such asymptotic equivalence results is that an investigation in one
nonparametric problem automatically yields asymptotically analogous results in
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all other equivalent nonparametric problems. For example, the Pinsker (1980) es-
timator can be used to produce asymptotically minimax estimators of the whole
regression function for Sobolev classes in nonparametric regression with i.i.d. de-
sign points under L2-loss. The results of Fan (1991) on the convergence rates for
estimation of quadratic functionals can be directly translated into the nonparamet-
ric regression setting. Additional important examples, references and discussion
can be found in Brown and Low (1996) and Nussbaum (1996). More recent results
for potential applications of the asymptotic equivalence include Donoho and John-
stone (1998), Donoho, Johnstone, Kerkyacharian and Picard (1996), Efromovich
(1998) and Tsybakov (1998), among many others.

Recently there have been several papers on the global asymptotic equivalence
of certain nonparametric experiments. Brown and Low (1996) established global
asymptotic equivalence of the white-noise problem with unknown drift f to
the nonparametric regression problem with deterministic design and unknown
regression f . Nussbaum (1996) established global asymptotic equivalence of
the white-noise problem to the nonparametric density problem with unknown
density g = f 2/4. In both these instances the global asymptotic equivalence
was established under a smoothness assumption: f belongs to the Lipschitz
classes with smoothness index α > 1/2. It has also been demonstrated that
such nonparametric problems are typically asymptotically nonequivalent when the
unknown f belongs to larger classes, for example, with smoothness index α ≤
1/2. Brown and Low (1996) showed the asymptotic nonequivalence between the
white-noise problem and nonparametric regression with deterministic design for
α ≤ 1/2; Efromovich and Samarov (1996) showed that the asymptotic equivalence
may fail when α < 1/4. Brown and Zhang (1998) showed the asymptotic
nonequivalence for α ≤ 1/2 between any pair of the following four experiments:
white noise; density problem; nonparametric regression with random design; and
nonparametric regression with deterministic design.

The asymptotic equivalence established in this paper between the nonparametric
regression with random design and the white noise applies to compact classes of
functions in a Besov space with smoothness index α = 1/2, described in Section 3.
This result is sharp in the sense that the asymptotic equivalence fails for balls of
positive radii in the same Besov space with α = 1/2, as shown in Brown and
Zhang (1998). It follows that the asymptotic equivalence holds in Lipschitz and
Sobolev classes with smoothness index α > 1/2, since balls of positive radii in
these spaces are contained in compact sets in the Besov space with smoothness
index α = 1/2. Furthermore, upper bounds of order n−α∧(1/2) are provided for
the difference between the unknown functions of the synthetic and true versions
of the experiments for all α > 0, so that certain asymptotic results can be easily
translated between the white-noise problem and nonparametric regression even for
smoothness index α < 1/2. The equivalence mappings constructed here improve
upon those based on infinite Haar series expansions in Brown and Zhang (1996),
where a stronger Besov metric with smoothness index α = 1/2 was used.
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In the rest of the section, we formally describe the white-noise and nonpara-
metric regression experiments and global asymptotic equivalence, and then state
in Theorem 1 the asymptotic equivalence between the white-noise problem and
nonparametric regression for the Lipschitz and Sobolev classes for α > 1/2, with
some discussion. The equivalence mappings between the two experiments are con-
structed in Section 2. In Section 3, we derive certain upper bounds for the Hellinger
distances between the probability measures of the two experiments under these
equivalence mappings; based on these upper bounds, we prove Theorem 1 and
establish sharper asymptotic equivalence results. We have the following:

1. White noise ξ1,n. A Gaussian process {Z�n(t), 0≤ t ≤ 1} is observed such that

Z�n(t)≡
∫ t

0
f (x) dx + B

�(t)√
n
, 0≤ t ≤ 1,(1.1)

with a standard Brownian motion B�(t) and an unknown f ∈ Fn. Here we
allow the parameter spaces Fn to depend on n.

2. Nonparametric regression with random design ξ2,n. Random vectors (Yi,Xi),
1≤ i ≤ n, are observed such that

Yi ≡ f (Xi)+ εi, 1≤ i ≤ n,(1.2)

where {εi, 1 ≤ i ≤ n} are i.i.d. N(0,1) variables independent of {Xi,1 ≤
i ≤ n} and {Xi, 1 ≤ i ≤ n} are i.i.d. uniform random variables on [0,1].
Again, f ∈ Fn. The asymptotic theory in this paper also applies to i.i.d. design
points X′i with any continuous distribution G with the transformation Xi =
G(X′i ) and the corresponding translation of the conditions on f . We shall focus
on the uniform case without loss of generality.

3. Asymptotic equivalence. Two sequences of experiments {ξ1,n, n ≥ 1} and
{ξ2,n, n≥ 1}, with a common parameter space Fn for each n, are asymptotically
equivalent if

�(ξ1,n, ξ2,n;Fn)→ 0 as n→∞.(1.3)

For any two experiments ξ1 and ξ2 with a common parameter space �,
�(ξ1, ξ2;�) is Le Cam’s distance [cf., e.g., Le Cam (1986) or Le Cam and Yang
(1990)] defined as

�(ξ1, ξ2;�)≡ sup
L

max
j=1,2

inf
δ(k)

sup
δ(j)

sup
θ∈�

∣∣E(j)θ L(θ, δ(j))−E(k)θ L(θ, δ(k))
∣∣,

where the first supremum is taken over all decision problems with loss function
‖L‖∞ ≤ 1, given the decision problem and j = 1,2, k ≡ 3− j (k = 2 for j = 1
and k = 1 for j = 2) and the minimax value of the maximum difference in risks
over� is computed over all (randomized) statistical procedures δ(!) for ξ!, and the
expectations E(!)θ are evaluated in experiments ξ! with parameter θ , != j, k. The
statistical interpretation of the Le Cam distance is as follows: if �(ξ1, ξ2;�) < ε,
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then for any decision problem with ‖L‖∞ ≤ 1 and any statistical procedure δ(j)

with the experiment ξ (j), j = 1,2, there exists a (randomized) procedure δ(k) with
ξ (k), k = 3−j , such that the risk of δ(k) evaluated in ξ (k) nearly matches (within ε)
that of δ(j) evaluated in ξ (j).

For 0< α ≤ 1, the Lipschitz classes are formally defined as

F (L)
α,M ≡

{
f :‖f ‖(L)α ≤M}

, ‖f ‖(L)α ≡ sup
0≤x<y≤1

|f (x)− f (y)|
|x − y|α ,(1.4)

and the Sobolev classes are formally defined as

F (S)
α,M ≡

{
f :‖f ‖(S)α ≤M}

, ‖f ‖(S)α ≡
[ ∞∑
j=−∞

|j |2α|aj (f )|2
]1/2

,(1.5)

where aj (f ) ≡ ∫ 1
0 e

i2πjtf (t) dt are the Fourier coefficients of f . For both
Lipschitz and Sobolev classes, α is the smoothness index. It follows from
Theorem 2 in Section 3 that the asymptotic equivalence also applies to other
classes of f , for example, balls of positive radii in Sobolev-type spaces with a
seminorm of the form [∑∞

j=−∞ b2α
j |〈f,ψj 〉|2]1/2 for certain bj/j → 1 and basis

{ψj }, as long as these balls are contained in compact sets in the Besov space with
norm ‖f ‖(B) in (3.4).

THEOREM 1. Let ξ1,n and ξ2,n be the white-noise and nonparametric
regression experiments with random design as in (1.1) and (1.2). Then

lim
n→∞�

(
ξ1,n, ξ2,n;F (L)

α,M

)= 0 and lim
n→∞�

(
ξ1,n, ξ2,n;F (S)

α,M

)= 0(1.6)

for all α > 1/2 and M <∞.

Suppose ξj,n are characterized by families of probability measures {P (j,n)f ,

f ∈ Fn} in certain sample spaces Xj,n. The basic idea for the proof of (1.3)
is to explicitly construct (a) randomized versions ξ̃j,n of ξj,n, characterized

by families of probability measures {P̃ (j,n)f , f ∈ Fn} in certain spaces X̃j,n,

and (b) equivalence mappings T1,n : X̃1,n → X2,n and T2,n : X̃2,n → X1,n,
independent of f , such that

lim
n→∞ sup

f∈Fn

H
(
P̃
(k,n)
f ◦ T −1

k,n ,P
(j,n)
f

)
= 0, k = 3− j, j = 1,2,(1.7)

where H(P̃ (k,n)f ◦ T −1
k,n ,P

(j,n)
f ) are the Hellinger distances between measures

P̃
(k,n)
f ◦ T −1

k,n and P (j,n)f in the spaces Xj,n. The asymptotic equivalence (1.3) is
a consequence of (1.7) due to the following reasons: given a loss function L and
a statistical procedure δ(j,n) with the experiment ξ (j,n), the equivalence mappings
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provide a (randomized) synthetic procedure δ̃(k,n) = δ(j,n) ◦ Tk,n from the other
experiment ξ (k,n), k = 2 for j = 1 and k = 1 for j = 2, such that

sup
f∈Fn

∣∣∣E(j,n)f L(f, δ(j,n))−E(k,n)f L(f, δ̃(k,n))
∣∣∣

= sup
f∈Fn

∣∣∣∣ ∫
Xj,n

L(f, δ(j,n))
{
dP

(j,n)
f − dP̃ (k,n)f ◦ T −1

k,n

}∣∣∣∣(1.8)

≤ 2‖L‖∞ sup
f∈Fn

H 2
(
P̃
(k,n)
f ◦ T −1

k,n ,P
(j,n)
f

)
[cf., e.g., Brown and Low (1996) for a proof of the above inequality]. Thus,

�(ξ1,n, ξ2,n;Fn)≤ 2 maxj=1,2 supf∈Fn H
2(P̃

(3−j,n)
f ◦ T −1

3−j,n,P
(j,n)
f ).

In the above discussion, the synthetic statistical procedures mentioned in the
beginning of the section are formally defined as δ̃(k,n) = δ(j,n) ◦ Tk,n, k = 3− j .
It is worthwhile to emphasize that these synthetic procedures depend on the
loss function only through the original procedures δ(j,n), so that δ̃(k,n) and δ(j,n)

share the same asymptotic properties even when evaluated with (infinitely) many
loss functions [e.g., L(f, δ) = I {(f (x) − δ(x))/rn ≤ t} for all real (x, t) in the
evaluation of asymptotic distributions at rate rn]. For the proof of Theorem 1,
in Section 3, we simply set Fn = F (L)

α,M or Fn = F (S)
α,M for all n in (1.7). The

equivalence mappings constructed in Section 2 are independent of (α,M). Thus,
the asymptotic equivalence results also cover the adaptive situations where a
family of problems with different α is considered.

Throughout the sequel, the unknown function f is assumed to belong to
L2[0,1] ≡ {f :‖f ‖<∞}, where ‖f ‖ ≡ {∫ 1

0 f
2(t) dt}1/2.

2. The equivalence mappings. This section describes in detail the mappings
{Tj,n} satisfying (1.7) which provide the asymptotic equivalence claimed in this
paper. The fact that these mappings yield asymptotic equivalence will be proved in
Sections 3 and 4. For convenience in both construction and proof these mappings
are broken into several stages.

For clarity and notational convenience, we shall use boldface capital letters
to denote vectors and collections of stochastic processes of continuous time t ,
denote functions of Z� ≡ {Z�(t) ≡ Z�n(t), 0 ≤ t ≤ 1} in (1.1) with a � and
those of (X,Y) = {(Xi, Yi), i ≤ n} in (1.2) without the �. For quantities with
two subscripts, we shall use Uk to denote {Uk,!, ! = 0, . . . ,2k − 1} for any
symbol U (e.g., U =W,W�,N,f,Z, etc.), with or without explicit declaration.
The parameter n is fixed unless otherwise stated, and the subscript n and the
continuous variable t of stochastic processes are often dropped as in Z� above.

Equivalence mappings from nonparametric regression. We begin with data
(X,Y) in (1.2) in the nonparametric regression problem. The construction then
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proceeds in several stages to produce synthetic observations of the white-noise
problem, of the form of a random function Z ≡ {Z(t) ≡ Zn(t), 0 ≤ t ≤ 1}. We
will show in Sections 3 and 4 that under suitable smoothness conditions on Fn,
the Hellinger distance between the distributions of Z� in (1.1) and Z converges to
zero uniformly in f ∈ Fn, which implies (1.7) for j = 1 and k = 2.

The construction is built on a binary representation scheme for [0,1]. To
motivate our method, we shall describe key random variables from Z� to be
approximated in distribution by their counterpart from (X,Y) throughout the
construction. Define

Z
�

k ≡ {Z�k,!,0≤ ! < 2k}, Z
�

k,! ≡ 2k
{
Z�
(
!+ 1

2k

)
−Z�

(
!

2k

)}
.(2.1)

A naive approach is to approximate directly a discretization of the process Z�,
{Z�(!/2k) =∑!−1

j=0Z
�

k,j /2
k, 0 ≤ ! ≤ 2k}, at a certain resolution level k by the

corresponding averages of (X,Y), that is, to approximate Z
�

k in distribution by

Yk ≡ {Yk,!,0≤ ! < 2k}, Y k,! ≡ 1

Nk,!

∑
Xi∈Ik,!

Yi,(2.2)

for certain fixed k = k1, where Ik,! ≡ [!/2k, (!+ 1)/2k) and

Nk,! ≡ #{Xi :Xi ∈ Ik,!}, != 0, . . . ,2k − 1.(2.3)

Note that Z
�

k is a vector of independent normal variables and conditionally on X,
Yk is a vector of independent normal variables with

Ef
[
Yk,!|X]= ηk,! ≡ 1

Nk,!

∑
Xi∈Ik,!

f (Xi)≈ 2k
∫
Ik,!

f (t) dt =EfZ�k,!(2.4)

and

Varf (Y k,!|X)= 1/Nk,! ≈ 2k/n=Varf (Z
�

k,!).(2.5)

This direct approximation works for deterministic {Xi = i/(n+ 1), i ≤ n} as in
Brown and Low (1996). However, for random X, the approximation 1/Nk,! ≈
2k/n in (2.5) for the variance is accurate only for large Nk,!, that is, for small k,
but a good approximation to Z� by its discretization requires fine resolution, that
is, large k = k1. [The approximation (2.4) is valid for large k as long as Nk,! ≥ 1,
based on the smoothness of f .] This dilemma is overcome with the following
multiresolution construction: approximate Z

�
k0,!

by

Zk0,! ≡ Y k0,!1{Nk0,!>0} + (2k0/n)1/2Ũk0,!1{Nk0,!=0}, 0≤ ! < 2k0,(2.6)

at a relatively low resolution with small k0, and approximate the differences

W�
k,2! ≡−W�

k,2!+1 ≡ (Z �k,2! −Z�k,2!+1)/2(2.7)
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by normalized Y k,2! − Yk,2!+1 to match the conditional variance given X; that is,
approximate (2.7) by

Wk,2! ≡−Wk,2!+1 ≡
{
Ck,2!(Y k,2! − Y k,2!+1)/2, if Nk,2!Nk,2!+1 > 0,

(2k−1/n)1/2Ũk,2!, otherwise,
(2.8)

for 0≤ ! < 2k−1 and k = k0+ 1, . . . , k1, up to a fine resolution with large k1 > k0,

where Ck,2! =
√

2k+1/n
√
Nk,2!Nk,2!+1/Nk−1,! and Ũ = {Ũk,!, k ≥ k0, ! ≥ 0} is

a sequence of i.i.d. N(0,1) variables independent of (X,Y). Note that Ik,! =
Ik+1,2!∪Ik+1,2!+1 and randomization with Ũ is used when Zk0,! andWk,2! cannot
be directly derived from (X,Y).

It follows from (2.1) and (2.7) that

W�
k,2! =Z�k,2! −Z�k−1,! and W�

k,2!+1 =Z�k,2!+1 −Z�k−1,!,(2.9)

so that the mapping from Z
�

k1
to {Z �

k0
,W�

k, k0 < k ≤ k1} is one-to-one, where
W�
k ≡ {W�

k,!, 0≤ ! < 2k}. In fact, by (2.9) the inverse mapping is

Z
�

k1,!
=Z�k0,[2k0!/2k1 ] +

k1∑
k=k0+1

W�
k,[2k!/2k1 ](2.10)

for 0≤ ! < 2k1 , where [a] is the integer part of a. Thus, we define

Zk1,! ≡Zk0,[2k0!/2k1 ] +
k1∑

k=k0+1

Wk,[2k!/2k1 ], 0≤ ! < 2k1,(2.11)

and construct a synthetic version of the discretization of the white noise by setting

Z(!/2k1)≡ 2−k1

!−1∑
j=0

Zk1,j , 0≤ !≤ 2k1 .(2.12)

In the final stage, the construction of Z from (2.12) is done by randomization:

Z(t)≡ B̃!(2k1 t − !)√
n2k1

+Z
(
!

2k1

)
+
(
t − !

2k1

)
Zk1,!,(2.13)

for !/2k1 ≤ t < (! + 1)/2k1 , 0 ≤ ! < 2k1 , where B̃ = {B̃!(·),0 ≤ ! < 2k1} is a
sequence of independent Brownian bridge processes independent of (X,Y, Ũ).
This ensures that the conditional distribution of Z given Zk1 = zk1 is identical to
that of Z� given Z

�

k1
= zk1 , assuming f is constant on each interval Ik1,!.

We have completed the construction of the equivalence mapping T2,n : (X,Y,
Ũ, B̃)→ Z, up to the specification of k0 = k0(n) and k1 = k1(n) > k0, that is,
the mappings given by (2.2), (2.6), (2.8), (2.11), (2.12) and (2.13) with (X,Y)
randomized by (Ũ, B̃). The key to the construction is the approximation(

Z
�

k0
,W�

k, k0 < k ≤ k1
)≈ (

Zk0,Wk, k0 < k ≤ k1
)

in distribution.(2.14)
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For the asymptotic equivalence claims, we choose integers k0 and k1 satisfying

k0 →∞, 2k0/
√
n→ 0, n/4≤ 2k1 < n/2.(2.15)

The choice of k1 above produces the simplest explicit upper bounds in our
statements. Our results still hold, with possibly different constant factors in upper
bounds in certain cases, if 2k1 are of the order n. Furthermore, the asymptotic
equivalence for the Lipschitz and Sobolev classes holds for more economical
choices of k1 satisfying n2−2αk1 → 0, 1/2< α ≤ 1. See Lemma 1 and the remark
thereafter.

Equivalence mappings from the white-noise problem. The preceding steps
which map the nonparametric regression into a stochastic process can be reversed
to produce an asymptotic equivalence map in the reverse direction. To do so, we
begin with Z� ≡ {Z�n(t), 0≤ t ≤ 1} in (1.1) and some i.i.d. uniform [0,1] variables
X≡ {Xi : i ≤ n} independent of Z�, and then recover {Y�

k }, the counterpart of {Yk}
with the white noise problem, from {Z�

k ,W
�
k} through (2.14). This immediately

yields

Y
�

k0
≡ {

Y
�

k0,!
,0≤ ! < 2k0

}≡ Z
�

k0
(2.16)

at resolution level k = k0. Furthermore, since

Y k,2!+j = Y k−1,! + (−1)j
Nk,2!+1−j
Nk−1,!

(
Y k,2! − Yk,2!+1

)
, j = 0,1,(2.17)

0≤ ! < 2k−1, k = k0 + 1, . . . , appropriate Y
�

k ≡ {Y �k,!, 0≤ ! < 2k} are produced
by setting inductively, for k = k0 + 1, . . . ,

Y
�
k,2!+j ≡ Y�k−1,! + V �k,2!+j , j = 0,1, != 0, . . . ,2k−1− 1,(2.18)

where, for the W�
k in (2.7) and Nk = {Nk,!, 0≤ ! < 2k} in (2.3),

V �k,2!+j ≡
2W�

k,2!+jNk,2!+1−j
Ck,2!Nk−1,!

,(2.19)

with the convention 0/0 = 0 in the case of Nk,2!+1−j = 0, in view of (2.8). For
suitable k1 > k0 [e.g., specified in (2.15)], this gives

Y
�

k1,!
=Z�k0,[2k0!/2k1 ] +

k1∑
k=k0+1

V �
k,[2k!/2k1 ], 0≤ ! < 2k1 .(2.20)

Note that Y
�

k1,!
is well defined wheneverNk1,! > 0.

Finally, we construct Y� = {Y �i , i ≤ n}, with Y �i being the synthetic Yi , from
Y
�

k1
≡ {Y �k1,!

, 0≤ ! < 2k1} by randomization. Let e�i , 1≤ i ≤ n, be i.i.d. N(0,1)
variables independent of (Z�,X). Define

Y �i ≡ Y �k1,!
+ ẽ�i , ẽ�i ≡ e�i −

∑
Xi∈Ik1,!

e�i /Nk1,!,(2.21)
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for the Nk1,! variables with Xi ∈ Nk1,!. This ensures that the conditional
distribution of Y� given (Y

�

k1
,X) = (yk1,x) matches that of Y given (Yk1,X) =

(yk1,x), with Y
�

k1
and Yk1 in (2.20) and (2.2), respectively, and assuming f is

constant on each interval Ik1,j . (Thus if, e.g., X1, . . . ,XNk1,!
are the set of values

of X which fall in Ik1,!, then Y �1 , . . . , Y
�
Nk1 ,!

are conditionally on Y
�

k1
jointly normal

with common mean Y
�

k1,!
and singular covariance matrix I − N−1

k1,!
11′.) This

completes the construction of T1,n : (Z�,X, ẽ�)→ (X,Y�), given by (2.1), (2.7)
and (2.19)–(2.21), with Z� randomized by (X, ẽ�), where ẽ� = {ẽ�i , 1 ≤ i ≤ n} is
as in (2.21).

REMARK. The choice of k1 =∞ will result in slightly different equivalence
mappings, based on infinite Haar series expansions, with the same asymptotic
properties. Equivalence mappings based on infinite Haar series expansions can
be found in Brown and Zhang (1996), using a different approximation of W�

k,!

than (2.8). The advantage of the current version is the conditional independence of
Wk,! given X between different resolution levels, which leads to a weaker Besov
norm in the upper bound and a clearer presentation.

3. Asymptotic equivalence. In this section we shall prove a stronger version
of Theorem 1 based on the mappings defined in Section 2. As mentioned in
the Introduction, we shall establish in Theorem 2 below the global asymptotic
equivalence between the white noise and nonparametric regression for compact
sets in a Besov space with smoothness index α = 1/2. We shall also provide direct
comparisons between the synthetic and true observations in Theorems 3 and 4,
with upper bounds for their differences for general α > 0. An upper bound for
the Hellinger distances between probability distributions in the two experiments,
stated in Lemma 1 below, is crucial in our proofs.

Let (Z�,X, ẽ�) and (X,Y, Ũ, B̃) be respectively the randomizations of (1.1)
and (1.2) described in Section 2 [cf. (2.21), (2.6), (2.8) and (2.13)]. Throughout the
section, for any U-valued mappings U� from (Z�,X, ẽ�) and U from (X,Y, Ũ, B̃)
(e.g., U= Zk,Wk,Yk , etc.), we shall denote by Hf (U�,U) the Hellinger distance
between the distributions of U� and U in U when f is the true unknown function
in (1.1) and (1.2), and we shall denote by Hf,X(U�,U) the conditional version of
Hf (U�,U) given X. Since the distribution of X is identical for both randomized
experiments,

H 2
f (U

�,U)≤H 2
f

(
(U�,X), (U,X)

)= EH 2
f,X(U

�,U).(3.1)

According to (1.7), we shall find upper bounds on

Dn(f )≡max
{
H 2
f (Z

�,Z),H 2
f

(
(X,Y�), (X,Y)

)}
,(3.2)

where Z�, Z, X, Y and Y� are given by (1.1), (2.13), (1.2) and (2.21).
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Let f̄k be the piecewise average of f at resolution level k, that is, the piecewise
constant function defined by

f̄k ≡ f̄k(t)≡
2k−1∑
!=0

fk,!1{t∈Ik,!}, fk,! = 2k
∫
Ik,!

f (t) dt,(3.3)

with the intervals Ik,! in (2.2). For f ∈L2[0,1] define the Besov norm

‖f ‖(B) ≡ ‖f ‖(B)1/2,2,2, ‖f ‖(B)α,p,q ≡
{ ∞∑
k=0

(
2kα‖f̄k − f̄k+1‖p)q

}1/q

,(3.4)

based on the Haar system, where ‖f ‖p is the Lp[0,1]-norm and α is the
smoothness index.

THEOREM 2. Let Dn(f ) be given by (3.2) and let k1 = k1(n) satisfy 2k1 ≥
n/4. Then, for f ∈L2[0,1],

Dn(f )≤ 3

2

{‖f − f̄k0‖(B)
}2 + 22k0+1

n
.(3.5)

Consequently, for all compact sets F in the Besov space {f :‖f ‖(B) <∞},
�(ξ1,n, ξ2,n;F )≤ 2 sup

f∈F
Dn(f )→ 0,(3.6)

provided that k0 and k1 are chosen as in (2.15).

In many applications, it is more convenient to express the synthetic observations
in the form of the true ones.

THEOREM 3. Let Z ≡ {Z(t)≡ Zn(t), 0≤ t ≤ 1} be the synthetic white noise
from (1.2), given by (2.13) with k0 = 0 and n/4 ≤ 2k1 < n/2. Then Z can be
decomposed into

Zn(t)=Gn(t)+ B(t)√
n
, 0≤ t ≤ 1,(3.7)

where Gn(t)≡ Ef [Zn(t)|X] and {B(t), 0≤ t ≤ 1} is a Brownian motion process
independent of X (and thus of Gn). Furthermore, Gn(·) is a piecewise linear
function with derivative gn(·) such that

n1/2
√
Ef ‖gn − f ‖2 ≤√5‖f ‖(B)1/2,2,2(3.8)

and with the norms in (1.4), (1.5), (3.4), 0< α < 1/2,

nα
√
Ef ‖gn − f ‖2 ≤

[
5/2

2(k1+1)(1−2α)

{
‖f − f̄0‖2 +

k1∑
k=0

2k‖f − f̄k‖2

}]1/2

(3.9)
≤min

{
C(L)α ‖f ‖(L)α ,C(S)α ‖f ‖(S)α ,C(B)α ‖f ‖(B)α,2,2

}
for certain finite constants C(L)α , C(S)α and C(B)α .
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THEOREM 4. Let (Xi, Y �i ), 1 ≤ i ≤ n, be the synthetic observations of the
nonparametric regression from the white noise (1.1), given by (2.21) with k0 = 0
and n/4≤ 2k1 < n/2. Then

Y �i = g�n(Xi)+ ε�i , 0≤ i ≤ n,(3.10)

where g�n(·) is piecewise constant at resolution level k1, g�n(Xi) = Ef [Y �i |X],
and {ε�i ,1 ≤ i ≤ n} are i.i.d. N(0,1) variables independent of g�n. Furthermore,
Ef

∑n
i=1(g

�
n(Xi) − f (Xi))2 ≤ nEf ‖g�n − f ‖2 and (3.8) and (3.9) hold with gn

replaced by g�n.

Theorems 1 and 2 are immediate consequences of the following lemma.

LEMMA 1. Let Dn(f ) be given by (3.2). Then, for all f ∈ L2[0,1] and
k0 = k0(n) > 0,

Dn(f )≤ 7

8
2k0‖f − f̄k0‖2 + 5

8

k1∑
k=k0

2k‖f − f̄k‖2 + 22k0+1

n

(3.11)

+
(
n

4
− 2k1

)
‖f − f̄k1‖2,

and, for k0 = 0,

Dn(f )≤ 5

8

{
‖f − f̄0‖2 +

k1∑
k=0

2k‖f − f̄k‖2

}
+
(
n

4
− 2k1

)
‖f − f̄k1‖2.

REMARK. In the rest of the proof, we take k1 = k1(n) satisfying 2k1 ≥ n/4, so
that the last terms in the upper bounds in Lemma 1 can be omitted for simplicity.
The asymptotic equivalence results are still valid for other choices of k1 as long
as n‖f − f̄k1‖2 → 0, which holds for the Lipschitz and Sobolev classes when
n2−2αk1 → 0, 1/2< α ≤ 1.

We shall prove Lemma 1 and Theorems 3 and 4 in Section 4. The proof of
Theorem 2 and the statement and proof of a stronger version of Theorem 1 are
given here based on Lemma 1.

PROOF OF THEOREM 2. Due to the decomposition ‖f − f̄k‖2 = ‖f −
f̄k+1‖2 + ‖f̄k − f̄k+1‖2, the sum in (3.11) can be written as

k1∑
k=k0

2k‖f − f̄k‖2 =
k1∑
k=k0

2k
∞∑
j=k
‖f̄j − f̄j+1‖2

= 2
∞∑
j=k0

2j∧k1‖f̄j − f̄j+1‖2 − 2k0‖f − f̄k0‖2.
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Similarly, the Besov norm of f − f̄k can be written as {‖f − f̄k‖(B)}2 =∑∞
j=k 2j

×‖f̄j − f̄j+1‖2. Thus, we obtain (3.5) by inserting the above identities into (3.11).
A set F in the Besov space is compact if and only if supf∈F ‖f − f̄k‖(B)→ 0
as k→∞. Thus, (3.6) follows from (1.8) and (3.5), as k0 →∞ and 22k0/n→ 0
in (2.15). This completes the proof. �

THEOREM 5. Let ξ1,n and ξ2,n be as in (1.1) and (1.2) and 1/2 < αn ≤ 1.
Then

lim
n→∞�

(
ξ1,n, ξ2,n;F (L)

αn,Mn

)
= 0 and lim

n→∞�
(
ξ1,n, ξ2,n;F (S)

αn,Mn

)
= 0,

provided that cn ≡ (1− 21−2αn)−1M2
n/n

αn−1/2 → 0.

PROOFS OF THEOREMS 1 AND 5. Let Fn be either F (L)
αn,Mn

or F (S)
αn,Mn

.

By (1.4) and (1.5), there exists a universal constant C∗ such that ‖f − f̄k‖ ≤
C∗max{‖f ‖(L)α ,‖f ‖(S)α }/2kα for all 0< α ≤ 1. Thus,

�(ξ1,n, ξ2,n;Fn)≤ 2 sup
f∈Fn

Dn(f )

≤ 22k0+2

n
+ 2C2∗2k0(1−2αn)M2

n

(
7

8
+ 5/8

1− 21−2αn

)
,

which is bounded by 4(2k0/
√
n)2 + 3C2∗(

√
n/2k0)cn→ 0 for k0 satisfying

√
cn ≤

2k0/
√
n < 2

√
cn. This proves Theorem 5. Also, it follows from the above proof

that Theorem 1 holds with k0 in (2.15) independent of α. �

4. Proofs of Lemma 1 and Theorems 3 and 4. The proofs of Lemma 1 and
Theorems 3 and 4, given at the end of the section, are based on several lemmas
which are of some independent interest. In addition to (3.3), the quantities vk,! and
the identities below are used in the proofs:

vk,! ≡
∫
Ik,!

{f (t)− fk,!}2 dt =
∫
Ik,!

f 2(t) dt − 2−kf 2
k,!,(4.1)

‖f − f̄k‖2 =
∫ 1

0
{f (t)− f̄k(t)}2 dt =

2k−1∑
!=0

vk,!(4.2)

and due to fk−1,! = (fk,2! + fk,2!+1)/2, for != 0, . . . ,2k−1− 1,

(fk,2! − fk,2!+1)
2 = 2k+1(vk−1,! − vk,2! − vk,2!+1).(4.3)

Let us reverse (2.13) by setting B̃� ≡ {B̃�! ,1≤ ! < 2k1} with

B̃�! (t)≡
√
n2k1

{
Z�
(
t + !
2k1

)
−Z�

(
!

2k1

)
− t

2k1
Z
�

k1,!

}
.(4.4)
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Likewise, we produce the counterpart ẽ of ẽ� = {ẽ�i , i ≤ n} in (2.21) with

ẽ≡ {ẽi ,1≤ i ≤ n}, ẽi = Yi − Y k1,! ∀Xi ∈ Ik1,!.(4.5)

LEMMA 2. Let Z�, Z, X, Y and Y� be as in (3.2). Then

H 2
f,X(Z

�,Z)≤H 2
f,X(B̃

�, B̃)+H 2
f,X(Z

�

k1
,Zk1),(4.6)

H 2
f,X

(
(X,Y�), (X,Y)

)≤H 2
f,X(ẽ

�, ẽ)+H 2
f,X(Y

�

k1
,Yk1),(4.7)

with the variables in (2.1), (2.11), (2.20) and (2.2). Moreover,

H 2
f,X(Y

�

k1
,Yk1)≤H 2

f,X(Z
�

k1
,Zk1)

(4.8)
≤

2k0−1∑
!=0

H 2
f,X(Z

�

k0,!
,Zk0,!)+

k1∑
k=k0+1

2k−1−1∑
!=0

H 2
f,X(W

�
k,2!,Wk,2!),

with the variables in (2.1), (2.6), (2.7) and (2.8) [cf. (2.14)].

PROOF. The proof is based on two well-known properties of the Hellinger dis-
tance: (1) the squared Hellinger distance of product measures is less than the sum
of the squared Hellinger distances on the marginal measures; (2) Hf,X(U�,U) ≥
Hf,X(Ũ�, Ũ) if Ũ� = T (U�) and Ũ= T (U) for a single mapping T , withHf,X(U�,
U)=Hf,X(Ũ�, Ũ) for invertible T .

It follows from (4.4) and (2.1) that B̃� is independent of Z
�

k1
given X, so

that (4.6) holds as the mapping Z�→ (B̃�,Z
�

k1
) is the inverse of (2.12)–(2.13).

Similarly, (4.7) follows from the independence between ẽ and Yk1 given X
[cf. (4.5) and (2.2)] and the inverse relationship between the mapping in (2.21) and
the mapping in (4.5) and (2.2). Finally, (4.8) is the consequence of the following
facts corresponding to properties (1) and (2) of the Hellinger distance: (1a) by (2.1)
and (2.7) the combined vector

U� ≡ (
Z
�

k0,!
,0≤ ! < 2k0,W�

k,2!,0≤ ! < 2k−1, k0 < k ≤ k1
)

is composed of independent normal random variables independent of (and thus
given) X; (1b) by (2.2), (2.6) and (2.8) the combined vector

U≡ (
Zk0,!,0≤ ! < 2k0,Wk,2!,0≤ ! < 2k−1, k0 < k ≤ k1

)
is composed of independent normal random variables given X; (2a) the mappings
from U� to (Z

�

k0
,W�

k, k0 < k ≤ k1), that is,W�
k,2! =−W�

k,2!+1 in (2.7), and then to

Z
�

k1
in (2.10) are invertible and identical to those from U to (Yk0,Wk, k0 < k ≤ k1)

in (2.8) and then to Zk1 in (2.11); (2b) the mapping (Z
�

k0
,W�

k, k0 < k ≤ k1) to Y
�

k1

in (2.19)–(2.20) is identical to the mapping from (Yk0,Wk, k0 < k ≤ k1) to Yk1

in (2.17). This completes the proof. �
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The computations about the expectations of the right-hand sides of (4.6), (4.7)
and (4.8), provided in Lemmas 5, 6 and 7 below, are based on the facts about
the Hellinger distance between normal variables summarized in Lemmas 3 and 4
below.

LEMMA 3. Let Uj be N(µj ,σ 2
j ) variables, j = 1,2. Then

H 2(U1,U2)≤ 2
(
σ 2

1

σ 2
2

− 1
)2

+ (µ1−µ2)
2

2(σ 2
1 + σ 2

2 )
.(4.9)

PROOF. With pj being the density of Uj , H(U1,U2) is∫ (√
p1(t)−

√
p2(t)

)2
dt = 2

(
1−

√
2σ1σ2

σ 2
1 + σ 2

2

exp
[
− (µ1 −µ2)

2

4(σ 2
1 + σ 2

2 )

])
,

which implies (4.9) as 1 −
√

2σ/(1+ σ 2) ≤ (1 − σ)2 ≤ (σ 2 − 1)2 for σ =
σ1/σ2. �

LEMMA 4. Let B̃0 be a Brownian bridge process. Then

H 2(B̃0 + h, B̃0)≤ 1
4

∫ 1

0

{
h′(t)

}2
dt(4.10)

for all differentiable h with h(0)= h(1) and h′ ∈ L2[0,1]. Let ε′i be i.i.d. N(0,1)
variables and let ci be constants. Then

H 2((ε̃′1, . . . , ε̃′m), (ε̃′1, . . . , ε̃′m)+ (c̃1, . . . , c̃m)
)≤ 1

4

m∑
i=1

c̃2
i ,(4.11)

where ε̃′i = ε′i −
∑m
i=1 ε

′
i/m and c̃i = ci −∑m

i=1 ci/m.

PROOF. Set ε̃′ = (ε̃′1, . . . , ε̃′m) and c̃ = (c̃1, . . . , c̃m). Let φj , j = 1, . . . ,
m − 1, be orthonormal vectors in the (m − 1)-dimensional space {(a1, . . . , am) :∑
j aj = 0}. Then ε̃′ =∑m−1

j=1 Ujφj and c̃ =∑m−1
j=1 ajφj , where Uj = 〈ε̃′, φj 〉 are

i.i.d. N(0,1) and aj = 〈c̃, φj 〉. Thus, by property (1) of the Hellinger distance in
the proofs of Lemmas 2 and 3,

H 2(ε̃′, ε̃′ + c̃)≤
m−1∑
j=1

H 2(Uj ,Uj + aj )≤
m−1∑
j=1

a2
j

4
=

m∑
i=1

c̃ 2
i

4
.

The proof of (4.10) is omitted as it is an infinite dimensional version of (4.11)
based on expansions with orthonormal basis in the space {g ∈ L2[0,1] :∫ 1

0 g(t) dt = 0}. �
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LEMMA 5. Let B̃�, B̃, ẽ� and ẽ be given by (4.4), (2.13), (2.21) and (4.5),
respectively. Then

max
{
EH 2

f,X(B̃
�, B̃),EH 2

f,X(ẽ
�, ẽ)

}≤ n
4
‖f − f̄k1‖2.(4.12)

REMARK. Since B̃� and B̃ are independent of X, Hf,X(B̃�, B̃)=Hf (B̃�, B̃).

PROOF OF LEMMA 5. Conditionally on X the random vectors ẽ�(!) ≡ (ẽ�i ,Xi ∈
Ik1,!), 0 ≤ ! < 2k1 , are independent of each other by (2.21), and the random
vectors ẽ(!) ≡ (ẽi , Xi ∈ Ik1,!), 0≤ ! < 2k1 , are independent of each other by (4.5).
Furthermore, Ef [ẽ�i |X] = 0 and Ef [ẽi |X] = f (Xi) − ηk1,!, where ηk,!, given
in (2.4), is the average of f (Xi) for Xi ∈ Ik,!. Thus, by property (1) of the
Hellinger distance in the proof of Lemma 2 and (4.11) of Lemma 4,

H 2
f,X(ẽ

�, ẽ)≤
2k1−1∑
!=0

H 2
f,X(ẽ

�
(!), ẽ(!))≤

2k1−1∑
!=0

∑
Xi∈Ik1,!

(
f (Xi)− ηk1,!

)2
/4.

Since ηk1,! are the minimizers of the inner sum on the right-hand side above,

H 2
f,X(ẽ

�, ẽ)≤
2k1−1∑
!=0

∑
Xi∈Ik1,!

(
f (Xi)− fk1,!

)2
/4=

n∑
i=1

(
f (Xi)− f̄k1(Xi)

)2
/4.

This implies EH 2
f,X(ẽ

�, ẽ) ≤ n‖f − f̄k1‖2/4 after taking the expectation on both

sides, as E(f (Xi) − f̄k1(Xi))
2 = ‖f − f̄k1‖2. The proof of the upper bound for

EHf,X(B̃�, B̃) is omitted as it is an L2[0,1]-version of the above using (4.10) of
Lemma 4. �

LEMMA 6. Let Z
�

k0,!
and Zk0,! be as in (2.1) and (2.6). Then, for k0 > 0,

2k0−1∑
!=0

EH 2
f,X(Z

�

k0,!
,Zk0,!)≤

22k0+1

n
+ 2k0−1‖f − f̄k0‖2.(4.13)

For k0 = 0, EH 2
f,X(Z

�

0,0,Z0,0)≤E{Ef [Z0,0|X]−EfZ �0,0}2/{4 Varf (Z0,0|X)} =
‖f − f̄0‖2/4.

PROOF. We shall only prove (4.13) for k0 > 0. The proof for k0 = 0, with
Nk0,0 = n, is simpler and omitted. Since Z

�

k0,!
and Zk0,! given X are both normal

variables, by (2.4), (2.5) and Lemma 3,

H 2
f,X(Z

�

k0,!
,Zk0,!)≤ 2

(
2k0/n

1/Nk0,!

− 1
)2

+ (fk0,! − ηk0,!)
2

2(2k0/n+ 1/Nk0,!)
,(4.14)
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where fk0,! is as in (3.3). Since ηk0,! =
∑
Xi∈Ik0,! f (Xi)/Nk0,! is the average of

Nk0,! i.i.d. variables f (Xi) with conditional mean fk0,! given Nk0,!,

Ef
[
(fk0,! − ηk0,!)

2 |Nk0,!

]= Var(f (Xi) |Xi ∈ Ik0,!)

Nk0,!

= 2k0vk0,!

Nk0,!

,(4.15)

where vk0,! is as in (4.1). Thus, by (4.14) and algebra,

E
[
H 2
f,X(Z

�
k0,!
,Zk0,!) |Nk0,!

]≤ 2
(

2k0

n

)2(
Nk0,! −

n

2k0

)2

+ 2k0−1vk0,!.

This inequality is also valid for Nk0,! = 0 since the Hellinger distance is always
bounded by 2. Taking the expectation on both sides above and then summing
over !, we obtain

2k0−1∑
!=0

EH 2
f,X(Z

�

k0,!
,Zk0,!)≤

22k0+1

n
+ 2k0−1

2k0−1∑
!=0

vk0,!.

This implies (4.13) by (4.2). �

LEMMA 7. LetW�
k,2! andWk,2! be as in (2.7) and (2.8). Then, for k0 < k ≤ k1,

2k−1−1∑
!=0

EH 2
f,X(W

�
k,2!,Wk,2!)≤

2k−1∑
!=0

E

({Ef [Wk,!|X] −EfW�
k,!}2

4 Varf (Wk,!|X)
)

≤ 2k−1‖f − f̄k−1‖2 − 3

8
2k‖f − f̄k‖2.

(4.16)

PROOF. By (2.1), (2.2), (2.4), (2.5), (2.7) and (2.8),

Ef [W�
k,2!|X] =

1

2
(fk,2! − fk,2!+1), Varf [W�

k,2!|X] =
2k−1

n
,(4.17)

and, with Ck,2! =
√

2k+1/n
√
Nk,2!Nk,2!+1/Nk−1,! as in (2.8),

Ef [Wk,2!|X] = Ck,2!

2
(ηk,2! − ηk,2!+1), Varf [Wk,2!

∣∣X] = 2k−1

n
,(4.18)

with the convention Ck,2! = 0 for Nk,2!Nk,2!+1 = 0. Since both vectors (Z
�

k,2!,

Z
�

k,2!+1) and (Y k,2!, Y k,2!+1) given X are composed of independent normal
random variables, W�

k,2! and Wk,2! are both conditionally normally distributed,
so that, by Lemma 3 and (4.17) and (4.18),

H 2
f,X(W

�
k,2!,Wk,2!)≤ n

2k+3

{
Ck,2!(ηk,2! − ηk,2!+1)− (fk,2! − fk,2!+1)

}2
.(4.19)

Given (Nk,2!,Nk,2!+1), ηk,2!+j are averages of collections of Nk,2!+j i.i.d.
random variables with means fk,2!+j , j = 0,1, as in the proof of Lemma 6.
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Moreover, these two collections of variables are conditionally independent of each
other. Thus, the conditional expectation of the right-hand side of (4.19) can be
broken into a sum of variance terms as in (4.15) and a squared bias term, that is,

2k+3

n
E
[
H 2
f,X(W

�
k,2!,Wk,2!)|Nk,2!,Nk,2!+1

]
≤ C2

k,2!

{
2kvk,2!
Nk,2!

+ 2kvk,2!+1

Nk,2!+1

}
+ (1−Ck,2!)2(fk,2! − fk,2!+1)

2.

(4.20)

A suitable upper bound for the random factor (1 − Ck,2!)2 of the squared bias
term above can be found based on Nk−1,!/4− Nk,2!Nk,2!+1/Nk−1,! = (Nk,2! −
Nk−1,!/2)2/Nk−1,!, due to Nk,2! +Nk,2!+1 =Nk−1,!, and the inequalities (

√
b−√

a)2 ≤ (b− a)2/b and (
√
b−√a)2 ≤ |b− a| for all nonnegative a and b; to wit

(1−Ck,2!)2 = (2k+1/n)
(√
n/2k+1−

√
Nk,2!Nk,2!+1/Nk−1,!

)2

≤ 2k+2

n

{(√
n

2k+1
−
√
Nk−1,!

4

)2

+
(√

Nk−1,!

4
−
√
Nk,2!Nk,2!+1

Nk−1,!

)2}

≤ 2k

n

2k−1

n

(
n

2k−1
−Nk−1,!

)2

+ 2k+2

n

(Nk,2! −Nk−1,!/2)2

Nk−1,!
1{Nk−1,!>0}.

Taking expectations on both sides, we find

E(1−Ck,2!)2 ≤ 2k

n

(
1− 1

2k−1

)
+ 2k

n
≤ 2k+1

n
,(4.21)

since Nk−1,! ∼ Bin(n,21−k) and (Nk,2!|Nk−1,! = m) ∼ Bin(m,1/2). The vari-
ance term in (4.20) can be written as

C2
k,2!

{
2kvk,2!
Nk,2!

+ 2kvk,2!+1

Nk,2!+1

}
= 22k+1

n

(
Nk,2!+1

Nk−1,!
vk,2! + Nk,2!

Nk−1,!
vk,2!+1

)
,

which implies

EC2
k,2!

{
2kvk,2!
Nk,2!

+ 2kvk,2!+1

Nk,2!+1

}
≤ 22k

n
(vk,2! + vk,2!+1).(4.22)

Inserting (4.21) and (4.22) into the expectation of (4.20) and then evoking (4.3),
we find

EH 2
f,X(W

�
k,2!,Wk,2!) ≤ 2k

8
(vk,2! + vk,2!+1)+ 1

4
(fk,2! − fk,2!+1)

2

= 2k−1vk−1,! − 3

8
2k(vk,2! + vk,2!+1).

Summing over 0≤ ! < 2k−1, we obtain (4.16) via (4.2). �
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PROOF OF LEMMA 1. We shall only prove the upper bound for Hf (Z�,Z) in
the case of k0 > 0, since the proof of the upper bound for Hf ((X,Y�), (X,Y))
is identical and the proof for k0 = 0 is simpler. Inserting the inequalities in
Lemmas 5, 6 and 7 into the expectations of (4.6) and (4.8) of Lemma 2, we
find

EHf,X(Z
�,Z)≤ EH 2

f,X(B̃
�, B̃)+

2k0−1∑
!=0

EH 2
f,X(Z

�

k0,!
,Zk0,!)

+
k1∑

k=k0+1

2k−1−1∑
!=0

EH 2
f,X(W

�
k,2!,Wk,2!)

≤ n
4
‖f − f̄k1‖2 + 22k0+1

n
+ 2k0

2
‖f − f̄k0‖2

+
k1∑

k=k0+1

(
2k−1‖f − f̄k−1‖2 − 3

8
2k‖f − f̄k‖2

)
.

This gives the EHf,X(Z�,Z) portion of (3.11) by algebra. �

PROOF OF THEOREM 3. For k0 = 0 and given X, the covariance structure
of (Z0,Wk, 1 ≤ k ≤ k1, B̃) is identical to that of (Z

�

0 ,W
�
k, 1 ≤ k ≤ k1, B̃�),

as shown in the proofs of Lemmas 5, 6 and 7. Since the equivalence mappings
are linear given X, Z must have the same conditional covariance structure as
Z�, so that (3.7) holds. Since (2.13) is done through randomization, Gn(t) is a
continuous piecewise linear function with derivative gn,k1,! = Ef [Zk1,!|X] in the
interval Ik1,!, and n‖gn−f ‖2 = n‖gn− f̄k1‖2+n‖f − f̄k1‖2. It follows from (2.1)
and (2.12) that

n‖gn − f̄k1‖2 =
2k1−1∑
!=0

{gn,k1,! − fk1,!}2
2k1/n

=
2k1−1∑
!=0

{Ef [Zk1,!|X] −EfZ�k1,!
}2

Varf (Zk1,!|X)
.

Since U = (Z0,0,Wk,2!, 0 ≤ ! < 2k−1, 1 ≤ k ≤ k1) is a vector of independent
variables given X, the mapping from Zk1 to U is orthogonal and the right-hand
side above must be

{Ef [Z0,0|X] −EfZ �0,0}2
Varf (Z0,0|X)

+
k1∑
k=1

2k−1−1∑
!=0

{Ef [Wk,2!|X] −EfW�
k,2!}2

Varf (Wk,2!|X)
= n‖gn − f ‖2 − n‖f − f̄k1‖2.
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Taking the expectation on both sides above and then using Lemmas 6 and 7, we
obtain

nEf ‖gn − f ‖2

≤ n‖f − f̄k1‖2 + ‖f − f̄0‖2 + 4
k1∑
k=1

(
2k−1‖f − f̄k−1‖2 − 3

8
2k‖f − f̄k‖2

)

≤ 5

2

{
‖f − f̄0‖2 +

k1∑
k=0

2k‖f − f̄k‖2

}
+ (n− 2k1+1)‖f − f̄k1‖2.

This implies (3.8) and the first inequality of (3.9). The second inequality of (3.9)
is a well-known fact (cf. the proof of Theorems 1 and 5). �

PROOF OF THEOREM 4. For each ! and those Xi ∈ Ik1,!, g
�
n(Xi) = Ef [Y �i |

X] = Ef [Y �k1,!
|X] does not depend on i, due to the independence of e�i and X

in (2.21). Since the mapping from (Z
�

0,0,W
�
k,2!, 0≤ ! < 2k−1, 1≤ k ≤ k1) to Y

�

k1

is orthogonal given X and Varf (Y
�

k1,!
|X)=Varf (Y k1,!|X)= 1/Nk1,!,

n∑
i=1

(
g�n(Xi)− f (Xi)

)2

= ∑
Nk1,!>0

[{Ef [Y �k1,!
|X] −Ef [Y k1,!|X]}2

Varf (Y
�

k1,!
|X) + ∑

Xi∈Ik1,!
{f (Xi)− ηk1,!}2

]

≤ {Ef [Z0,0|X] −EfZ �0,0}2
Varf (Z

�

0,0|X)
+

k1∑
k=1

2k−1−1∑
!=0

{Ef [Wk,2!|X] −EfW�
k,2!}2

Varf (W�
k,2!|X)

+
n∑
i=1

{f (Xi)− f̄k1(Xi)}2.

Note that Ef [Y k1,!|X] = ηk1,! as in (2.4). The proof is completed as the rest
follows directly from the corresponding parts in those of Lemma 5 and Theo-
rem 3. �
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