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BY AAD VAN DER VAART
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We give an overview and appraisal of the scientific work in theoretical
statistics, and its impact, by Lucien Le Cam. The references to Le Cam’s
papers refer to the Le Cam bibliography. The reference is the first paper for
the given year if not stated.

1. Introduction. Lucien Le Cam died in April 2000 leaving more than 80
articles and several books. This paper is an attempt to give a review of his
contributions to statistics and their impact on present-day statistics. As is well
known these contributions are many, and they are not always easy to consume in
their original form. Le Cam’s 1986 book can be viewed as his own summary of
his theory, up to that date, and has a reputation of being hard to read. Many of
Le Cam’s papers are equally deep and may become fully appreciated only in the
future. Of necessity therefore this review is an eclectic one: we can only review
what we think we understand. Furthermore, our review will be biased towards
what we think is most important from the present-day point of view.

We make this point not just for modesty and politeness, but because there are
good reasons to believe that the appreciation of Le Cam’s work may still change.
For instance, Le Cam’s theory of comparison of experiments, based on a distance
between statistical experiments, while being one of his central contributions, has
attracted more interest in the last ten years than before. This theory was at the core
of Le Cam’s thinking, and many of his discoveries were made from the framework
of comparison of experiments. In contrast, typical applications, for instance local
asymptotic normality, have become popular in a more direct fashion. The future
may see a different perspective.

We have deliberately put the adjective “statistical” in the title of this paper.
Le Cam’s main scientific work is on mathematical statistics, but he has also
contributed significantly to probability theory and other subjects. This includes
work on the central limit theorem, empirical processes, Poissonization, weak
convergence theory and the history of mathematics. While it is not clear from the
title, we shall also not discuss Le Cam’s applied statistical work.

The book Le Cam (1986) takes its point of departure in the very abstract, by
describing a statistical experiment as a subset of a Riesz lattice. This abstraction
was not a late career synthesis, but was already fully present in one of his earliest
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papers, Le Cam (1964a). Nevertheless, the strategy of this review is different: we
start with topics that have become fairly familiar, and end with the more abstract
structures.

In doing so we fall into several traps that Le Cam warned against. Initially we
shall be discussing limit results, rather than approximation results. Furthermore,
we shall use the case of i.i.d. observations as the main example.

Asymptotic statistics is often equated to “limit theorems.” One of Le Cam’s
achievements was to connect these to approximation results. Regarding limit
theorems Le Cam [(1986), page xiv] writes

From time to time results are stated as limit theorems obtainable as something called
n “tends to infinity.” This is especially so in Chapter 7 where the results are just limit
theorems. Otherwise we have made a special effort to state the results in such a way
that they could eventually be transformed into approximation results. Indeed, limit
theorems “as n tends to infinity” are logically devoid of content about what happens
at any particular n. All they can do is suggest certain approaches whose performance
must then be checked on the case at hand. Unfortunately the approximation bounds we
could get were too often too crude and cumbersome to be of any practical use. Thus
we have let n tend to infinity, but we would urge the reader to think of the material in
approximation terms, especially in subjects such the ones described in Chapter 11.

Chapter 11 is about the construction of asymptotically efficient estimators in LAN
models, roughly variations on maximum likelihood estimators that are shown to
be asymptotically normal.

On the example of i.i.d. observations Le Cam [(1986), pages 555–556]
comments

However, since it is the standard i.i.d. case with its quaint concepts, such as
“consistency,” that occupies so much of the literature, we have devoted this chapter
to it in order to illustrate the applicability of the general ideas of the present volume.

In this review we shall also find the example useful to illustrate ideas that are
otherwise obscured by technical details.

The point of departure for Le Cam’s thinking about statistics was Wald’s
“theory of statistical functions” [see Wald (1950)]. This assumes given a set of
probability measures (Pθ : θ ∈ �) on some measurable space, a decision space
and a loss function. The set of probability measures can be called a “statistical
model.” Le Cam usually preferred the word “experiment,” a term that he derived
from Blackwell (1951), even though it was already familiar to Wald (1939) [Le
Cam (1986), page xvi]. The word “experiment” appears to have become closely
connected to Le Cam’s work: carrying out research on statistical experiments is
often understood as being equivalent to “working on Le Cam type theory.”

As we shall see, Le Cam coined the word “experiment” for more general
sets than sets of probability measures. In this paper an experiment E = (X,A,
Pθ : θ ∈ �) will generally be understood to be an indexed set of probability
distributions (Pθ : θ ∈ �) on a measurable space (X,A). Le Cam’s definition of
an experiment is given in Section 8.
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2. Local asymptotic normality. “Locally asymptotically normal families of
distributions” is the title of a major paper by Le Cam, published in the University of
California Publications series of 1960. The concept of local asymptotic normality
is probably among Le Cam’s best-known contributions and is also referred to by
the acronym LAN. This acronym does not appear in the paper, the closest relatives
being the letter combinations DN and DAN for “Differentially (Asymptotically)
Normal.”

The 1960 paper [Le Cam (1960a)] starts with a tribute to J. Neyman:

The present paper is an outcome of conversations between Professor J. Neyman
and the author about the construction of asymptotically similar tests. The adjective
“asymptotically” is used to convey two ideas. First, the information provided by the
sample is sufficient to give very sharp estimates of the parameters involved. Second, in
the range of “probable” values of these estimates, the family of probability measures
under study can be approximated very closely by a family of a simpler nature.

From a historical perspective the last sentence is interesting, because it shows
that local asymptotic normality was conceived by Le Cam from the beginning
as a way of approximating statistical experiments. In contrast, the concept became
popular as a formalization of a Taylor type expansion of a likelihood function
around a fixed, true parameter. A simplified version of the definition by Le Cam
and Yang (1990), which is of the latter type, is as follows.

For each n let (Pn,θ : θ ∈ �) be an indexed family of probability measures on
some measurable space (Xn,An), where � is an open subset of R

k. Let δn be
positive numbers with δn → 0. This family is called LAN at θ ∈� if there exist
a sequence of stochastic vectors 
n,θ and a nonsingular (k × k) matrix Jθ such
that 
n,θ � N(0, Jθ ) under Pn,θ and such that for every bounded sequence of
vectors hn,

log
dPn,θ+δnhn
dPn,θ

− hTn 
n,θ + 1

2
hTn Jθhn

Pn,θ→ 0(2.1)

(we use the wiggly arrow � to denote convergence in distribution of random
elements in metric spaces). The word “normality” in LAN may be explained
from the asymptotic normality of the sequence 
n,θ , but is better understood in
a different way, as we shall see.

During the last 40 years many statistical models were encountered where the
LAN concept plays a central role. The best-known example is that of replicated
experiments in which the distribution of a single observation depends smoothly
on a Euclidean parameter. Specifically, the sequence of experiments in which
Pn,θ = P nθ is the distribution of an i.i.d. sample X1, . . . ,Xn from a density pθ
such that the map θ �→ pθ is differentiable [in the precise sense of (12.1) below] is
LAN, with δn = 1/

√
n and the “centering sequence”
n,θ and “Fisher information

matrix” Jθ determined from the score function �̇θ of the model through


n,θ = 1√
n

n∑
i=1

�̇θ (Xi), Jθ = Pθ �̇θ �̇
T
θ .
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[See (12.1) for a definition of the score function.] Not uncharacteristically for
Le Cam’s writings, which often ask attention for unusual cases, this example is
contained in his 1960 paper, but as a third example, not in the prominent place
it deserved. In the 1960 paper the elegant way of defining “differentiability” of
a density in the parameter by employing the root θ �→ p

1/2
θ (see Section 12 below)

does not appear yet, but conditions are stated in terms of higher order derivatives.
For sufficiently regular parametric families θ �→ pθ it is not difficult to derive
the LAN expansion from an ordinary Taylor expansion, much in the way that
a standard analysis of maximum likelihood estimators proceeds.

A Taylor expansion of the log likelihood is not the main point of Le Cam’s
1960 paper. He uses the expansion to show the existence of asymptotically normal
estimators that are “asymptotically sufficient.” Using these estimators he is able
to show that certain decision procedures, based on normal approximations, are
asymptotically optimal.

The idea is as follows. We can write the LAN assumption (2.1) in the form

dPn,θ+δnh = exp
{
hT
n,θ − 1

2h
T Jθh+ · · ·}dPn,θ .(2.2)

If we consider θ as known, think of h as parametrizing the model, and ignore
the remainder term · · ·, then we see that the likelihood (relative to the dominating
measure Pn,θ ) depends on the data only through the statistic 
n,θ . In other words,
the statistic 
n,θ is sufficient in the statistical model (Pn,θ+δnh :h ∈ R

k), for
fixed θ .

In view of the remainder term, the sufficiency can only be true in an asymptotic
sense, in general. It is instructive to write down the preceding display for the case
of observing n i.i.d. observations X1, . . . ,Xn from the N(θ,1) distribution. For
δn = n−1/2 this takes the form

n∏
i=1

φ(Xi − θ − δnh)= exp

{
hδn

n∑
i=1

(Xi − θ)− 1
2h

2

}
n∏
i=1

φ(Xi − θ).

In this case the remainder term vanishes, Jθ = 1, and the centering sequence


n,θ = 1√
n

n∑
i=1

(Xi − θ)

is exactly sufficient. This centering variable is exactly N(h,1)-distributed un-
der θ + δnh. By the sufficiency the experiment (N(h,1) :h ∈ R) correspond-
ing to observing 
n,θ is statistically equivalent to the original experiment. We
shall see, more generally, that for an LAN sequence of experiments the ex-
periment (Pn,θ+δnh :h ∈ R

k) is “asymptotically equivalent” to the experiment
(N(h,J−1

θ ) :h ∈ R
k).

The model (Pn,θ+δnh :h ∈ R
k) is a “local experiment” indexed by a “local

parameter” h. It depends on the “original parameter” θ , as do the “sufficient
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statistics” 
n,θ . Therefore, the preceding observations may seem to carry little
relevance. However, good estimators Tn of θ ought to satisfy

√
n(Tn − θ)− J−1

θ 
n,θ
Pn,θ→ 0.(2.3)

In current terminology, following Hájek (1970), an estimator sequence Tn with
such a property is called “best regular.” It is also “asymptotically efficient” in
the sense of Rao [(1965), page 285]. Even though Le Cam (1960a) refrained
from arguing so, the method of maximum likelihood yields a best regular
sequence, under some conditions. Many Bayes estimators are best regular as well,
under some conditions. Le Cam (1960a) constructed a particular sequence Tn
satisfying (2.3) under minimal conditions.

If again we ignore the remainder term, then for every given θ and n, the
statistic Tn in (2.3) is an affine function of 
n,θ and hence it is statistically
equivalent to 
n,θ . This and the “asymptotic sufficiency” of 
n,θ suggest that the
sequence of statistics

√
n(Tn−θ), or equivalently Tn, is “asymptotically sufficient”

in the local experiments (Pn,θ+δnh :h ∈ R
k), for every fixed θ . Because Tn does

not depend on θ , Le Cam would write that they are asymptotically sufficient in the
original experiments (Pn,θ : θ ∈�).

Le Cam (1960a) succeeded in making this reasoning precise in the following
way. Call a sequence of experiments (Qn,θ : θ ∈ �) differentially asymptotically
equivalent to the experiments (Pn,θ : θ ∈�) if for every n the sample spaces are
the same and for all θ and every compact set K ,

sup
h∈K

‖Pn,θ+δnh −Qn,θ+δnh‖ → 0.

The norm ‖·‖ is the total variation norm, which can be defined as, with the
supremum taken over all measurable functions f ,

‖Q‖ = sup
‖f ‖∞≤1

|Qf |.(2.4)

This is a very strong norm, and therefore the local experiments (Pn,θ+δnh :h ∈K)
and (Qn,θ+δnh :h ∈K) for a given pair of differentially asymptotically equivalent
experiments ought to be equivalent in a statistical sense. For the testing problem,
which Le Cam (1960a) set out to solve, the equivalence is immediate from the
definition of the total variation norm: for every sequence of test functions φn the
difference between its power functions h �→ Pn,θ+δnhφn and h �→ Qn,θ+δnhφn
in the two local experiments tends to zero, uniformly in h ∈ K . Thus the two
sequences of experiments are equivalent for testing in the sense of allowing
approximately the same power functions. The equivalence can be shown to extend
to all statistical decision problems with bounded loss functions.

“Asymptotic sufficiency” of statistics will now be understood in a precise math-
etical sense as being exactly sufficient in some sequence of differentially asymptot-
ically equivalent experiments. The following theorem says that for estimators Tn
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satisfying (2.3) such differentially asymptotically equivalent experiments can al-
ways be found.

The theorem is in the spirit of Le Cam’s (1960a) Theorem 5.1 on page 58. In that
theorem Le Cam uses special estimators Tn, whereas the following theorem allows
general estimators satisfying (2.3). In this more general form the theorem is also
due to Le Cam, but it is only informally stated in Le Cam (1960a), in Appendix B
of this paper, written to answer three questions “raised by a reader of this paper
in manuscript” [Le Cam (1960a), page 94]. Condition (2.3) is precisely Le Cam’s
property (P) on page 94.

THEOREM 2.1. Assume that the LAN condition (2.1) holds, that the map
θ �→ Pn,θ (A) is measurable for every measurable setA, and that the map θ �→ J−1

θ

is continuous. Let Tn satisfy (2.3). Then there exists a sequence of experiments
(Qn,θ : θ ∈�) that is differentially asymptotically equivalent to (Pn,θ : θ ∈�) such
that Tn is sufficient in (Qn,θ : θ ∈�) for every fixed n.

We have already indicated that the maximum likelihood estimator is a typical
candidate for Tn. However, this estimator will only satisfy (2.3) under restrictive
regularity conditions. Another major result of Le Cam (1960a) is a recipe for
the construction of estimators Tn that satisfy (2.3). For this the LAN condition
is not sufficient, because this condition concerns the original experiments only
in a local sense. To make the connection between LAN and the global problem,
Le Cam’s (1960a) conditions (DN) also include the requirement that there exist
estimators θ̂n that are δ−1

n -consistent. These are estimators such that the sequence
δ−1
n (θ̂n − θ) is uniformly tight under Pn,θ , for every θ ∈�. Then Le Cam (1960a)

proposes to estimate θ by

Tn = θ̂∗
n + δnJ

−1
θ̂∗
n



n,θ̂∗

n
, θ̂∗

n = θ̂n + δnvn,

for vn variables that are uniform on the unit cube, for instance, and 
n,θ
statistics as in the LAN expansion (2.1), but subject to some minor continuity
requirements. [Because (2.1) is an approximation, the statistics 
n,θ are not
uniquely determined; Le Cam shows that one can always choose appropriate
versions.] These estimators possess the desired limit behavior (2.3) under minimal
conditions, and hence are alternatives to the maximum likelihood estimator.

The noise vn added to the preliminary estimators θ̂n has the purpose of avoiding
the need of differentiability of the maps θ �→ 
n,θ . An alternative would be to
discretize the preliminary estimators to a grid of meshwidth δn [see Le Cam (1969)
or Le Cam and Yang (1990)]. Both methods yield estimators θ̂∗

n “which do not
search for the singularities of 
n,θ ” [Le Cam (1960a), page 95], unlike maximum
likelihood estimators.
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The preceding theorem implies immediately that for every sequence of tests φn
in (Pn,θ : θ ∈ �) there exists a sequence of tests ψn based on Tn such that, for
every θ and every compact set K ⊂ R

k ,

sup
h∈K

|Pn,θ+δnhφn − Pn,θ+δnhψn| → 0.

Indeed, by the differential asymptotic equivalence this is true if it is true for the
Qn,θ+δnh instead of the Pn,θ+δnh, and for the Qn,θ+δnh the left side of the display
can be reduced to zero, by the sufficiency of Tn, for every n.

On the other hand, the theorem does not immediately tell us what types of
asymptotic power functions are possible in the original experiments. By the
“contiguity arguments” explained in the next section it can be seen that (2.3)
implies that the sequence δ−1

n (Tn − θ) is asymptotically N(h,J−1
θ )-distributed

under Pn,θ+δnh, for every h. This and the sufficiency of each Tn suggest
that, asymptotically, the possible power functions in the local experiments
(Pn,θ+δnh :h ∈ R

k) are the power functions that are possible in the experiment
(N(h,J−1

θ ) :h ∈ R
k). Le Cam makes this intuition rigorous in the last section

of Le Cam (1960a), and uses it to study the power functions of asymptotically
similar tests. We shall discuss the relationship between the experiments (Pn,θ+δnh :
h ∈ R

k) and (N(h,J−1
θ ) :h ∈ R

k) in Section 5 within the more general context of
(weak) convergence of experiments, introduced by Le Cam (1972a). The sequence
of statistics Tn satisfying (2.3) will then, besides asymptotically sufficient, also
be seen to be distinguished: its set of limit distributions (N(h,J−1

θ ) :h ∈ R
k)

is a limit experiment for the sequence of experiments (Pn,θ+δnh :h ∈ R
k). The

distinguishedness allows to formalize and generalize conclusions concerning
optimality of certain “asymptotically normal procedures.” In the 1960 paper the
asymptotic sufficiency appears to be the main point. The potential application to
asymptotic optimality is mentioned, but almost in passing [e.g., Le Cam (1960a),
page 84, paragraph 4], except for the testing case.

Thus the idea that local asymptotic normality concerns approximation by
a normal experiment, not just an expansion of a likelihood ratio process is present
already in 1960. It became more explicit later. Le Cam (1964a) introduced the
deficiency measure, and Le Cam (1969) established the relationship between the
convergence of likelihood ratios (2.1) and convergence in the deficiency distance.
(See Sections 5 and 7.) Approximation in the deficiency distance can be viewed
as a strengthening of the asymptotic sufficiency argument of Theorem 2.1, which
also immediately characterizes the set of available asymptotic risk functions.

A full description of locally asymptotically normal experiments requires
a localization through initial estimators θ̂n, and the validity of a Taylor-type
expansion (2.1) of the log likelihood ratios. The power of the concept is that
once these two requirements are fulfilled statistical questions can be answered in
a unified way. It is not necessary to impose further structure, such as the structure
offered by i.i.d. observations.
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Local asymptotic normality was subsequently established for other statistical
problems. For instance:

• reduction to the observation of sample moments
• observation of stationary Markov chains with a transition density depending

smoothly on the parameter
• Gaussian time series with spectral density depending smoothly on the parameter
• (non-Gaussian) linear time series with coefficients depending smoothly on the

parameter
• solutions to stochastic differential equations with drift or diffusion coefficient

depending smoothly on the parameter, with asymptotics on the noise tending to
zero, or the observation interval tending to infinity

• estimation of a tail index in extreme value theory
• counting processes with intensities depending smoothly on the parameter
• certain random fields
• hidden Markov models.

All these examples yield so-called “regular parametric models” in that the LAN
conditions hold at every point in the parameter set and the dependence of the
centering vectors and Fisher information on the parameter is continuous. In
other examples it can be useful to utilize LAN submodels of larger, possibly
infinite-dimensional models. For instance, in density estimation, inverse problems,
nonparametric estimation and semiparametric modeling [e.g., Ibragimov and
Has’minskii (1981), Begun, Hall, Huang and Wellner (1983), Koshevnik and
Levit (1976), Millar (1979, 1983, 1985), Pfanzagl and Wefelmeyer (1982),
Donoho and Liu (1991), Bickel, Klaassen, Ritov and Wellner (1993)].

Given the large domain of attraction of the normal distribution in the central
limit theorem, the widespread occurrence of LAN is not surprising. One may ask
if other types of approximations occur naturally.

Le Cam has studied the asymptotics for experiments based on independent
observations in some detail [e.g., Le Cam (1969, 1974)]. Under the assumption
that the individual observations are asymptotically negligible in a statistical sense,
he derived a full characterization of the possible limit experiments, and criteria
for convergence. Within this general context the LAN experiments converge to
very special Gaussian exeriments. General limits can be characterized as infinitely
divisible experiments, or more concretely as mixtures of Gaussian experiments
(not necessarily linear in the parameter) and Poisson experiments. The latter
consist of observing a Poisson process on an abstract space, with intensity
measure depending on the parameter. Interesting simple examples of Poisson
experiments arise for parametric models in which the density does not depend
differentially on the parameter, the simplest and best known case being the
experiment consisting of an i.i.d. sample from the uniform distribution, which is
“asymptotically exponential” [see, e.g., Ibragimov and Has’minskii (1981) and
Pflug (1983)].
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As is clear from the preceding list of examples, local asymptotic normality
is not limited to independent observations, but is a useful concept in many
situations involving stochastic processes. In such situations LAN often arises
from an application of the martingale central limit theorem to a two-term Taylor
approximation to the log likelihood. However, a two-term quadratic expansion of
the log likelihood process will not always give a sufficient approximation. Such
an approximation is obviously impossible if the likelihood is not smooth in the
parameter, but even for a very smooth likelihood a Taylor expansion may not do.
One example is when the Fisher information is zero; a much less trivial example
is the autoregressive process Xt = θXt−1 + Zt in the explosive case θ > 1 with
non-Gaussian innovations Zt [see Koul and Pflug (1990)].

If approximation by a quadratic Taylor expansion is possible, a situation that
has become formalized as locally asymptotically quadratic or LAQ, then the
most frequently occurring non-LAN case is local asymptotic mixed normality or
LAMN. The matrices Jθ in the quadratic term must then be taken random and
dependent on n, and the sequence 
n,θ converges in distribution to a Gaussian
scale mixture. This type of situation is relatively well-known, both because it
occurs frequently and because the limit experiment is easy to analyze [see, e.g.,
Jeganathan (1982, 1995), Basawa and Scott (1983) and Gushchin (1995)].

Thus, there are many possible limits for statistical experiments. Le Cam’s later
work moved away from the linear Gaussian approximations and addressed the ap-
proximation problem in general, even though he would develop further theory for
the LAN situation throughout his career. For instance, Le Cam (1985a) addressed
global approximations for (generalized) LAN experiments (see Section 9), and Le
Cam and Yang (1988b) studied the conditions under which experiments consisting
of observing transformations Tn(Xn) of observations Xn from an LAN sequence
of experiments are LAN.

3. Contiguity. In his 1960 paper on local asymptotic normality Le Cam also
introduced the concept of contiguity. The exact definition as given there has been
copied into many books, even though Le Cam (1986) prefers a definition in terms
of the limits of binary experiments. The famous first three lemmas, although not
stated in the form of separate lemmas, also appear in Le Cam (1960a). They
became well known through their statement by Hájek and Šidák (1967), who used
them effectively to compare the asymptotic power of rank tests.

The 1960 definition of contiguity says that two sequences of probability
measures Pn and Qn defined on measurable spaces (Xn,An) are contiguous
if for any sequence of events An ∈ An one has Pn(An) → 0 if and only if
Qn(An)→ 0. This implies that the sequences of measures Pn and Qn do not
separate asymptotically: given data from Pn or Qn it is impossible to tell with
certainty from which of the two sequences the data is generated, at least in an
asymptotic sense, as n → ∞. Indeed, if Pn and Qn are contiguous, and φn is
a sequence of tests with error probabilities Pnφn for testing the null hypothesis
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Pn satisfying Pnφn → 0, then the power Qnφn at the alternative Qn satisfies
Qnφn → 0 as well.

Actually, contiguity implies more: contiguity is “asymptotic absolute continu-
ity,” meaning that it is possible to derive asymptotic probabilities computed un-
der Pn from those computed under Qn. This is the content of Le Cam’s third
lemma, which we discuss below.

The interpretation of contiguity as “asymptotic absolute continuity” comes out
clearer in Le Cam’s (1986) definition. This says that the sequences Pn and Qn are
contiguous if every limit point (P,Q) of the experiments (Pn,Qn), in the sense of
convergence of experiments defined in Section 5, has that P and Q are absolutely
continuous.

These definitions are simple enough. The genius is that the two types of
definitions are equivalent, and that the concept of contiguity is so useful.

There are several different technical criteria to decide whether two sequences
are contiguous. The most important one is in terms of the log likelihood ratios

log
dQn

dPn
.

Contiguity is equivalent to this sequence of log likelihood ratios being asymptoti-
cally tight in R, both when computed under Pn and under Qn. In the case that this
sequence under Pn is asymptotically normal N(µ,σ 2), then contiguity is equiv-
alent to µ = −1

2σ
2. This surprising result is explained by the fact that absolute

continuity of two probability measures P andQ is equivalent to EP (dQ/dP )= 1.
If log(dQ/dP ) is N(µ,σ 2)-distributed under P , then this equation is valid if and
only if µ= −1

2σ
2.

The curious equation µ = −1
2σ

2 arises naturally for locally asymptotically
normal experiments, where it results from the expansion (2.1) of the log
likelihood in linear and quadratic terms: the sequence log(dPn,θ+δnhn/dPn,θ )
is asymptotically normal with mean the quadratic term −1

2h
T Jθh and variance

hT Jθh. Thus the sequences Pn,θ+δnhn and Pn,θ in a LAN experiment are
contiguous for every bounded sequence hn.

The characterization in terms of the log likelihood ratios suggests ways to create
“contiguous alternatives” if a sequence Pn is given: define dQn = hndPn, where
hn ≈ 1 is a perturbation such that loghn = log(dQn/dPn) behaves appropriately.

Contiguity has turned out to be a wonderful tool in many proofs, where one
is given a choice to prove convergence in probability to zero under the measure
of interest, or under any other convenient, contiguous sequence. (For a powerful
use of this see Le Cam’s proof of his Bernstein–von Mises theorem, mentioned
in Section 12.) However, the application of contiguity that has made it popular is
in the comparison of statistical tests. Here one is given a sequence of tests φn
concerning a parameter h attached to a statistical model (Pn,h :h ∈ H) and
corresponding power functions

πn(h)= Pn,hφn.
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If Pn,h0 and Pn,h1 are asymptotically separated, then any “good” sequence of tests
of the null hypothesis h0 versus the alternative h1 will have πn(h0) → 0 and
πn(h1) → 1. Such alternatives are not of much interest to compare the quality
of two sequences of tests. On the other hand, contiguous alternatives will not
allow this type of degeneracy, and hence may be used to pick a best test, or
compute a relative efficiency of two given sequences of tests. Such contiguous
alternatives may be given through the context, for instance of a parametric model.
In particular, for LAN models the measures corresponding to parameters θn,1
and θn,2 at distance θn,1 − θn,2 =O(δn) are contiguous. Alternatively, contiguous
alternatives may be constructed for the purpose of power comparisons through the
perturbation method described previously.

To prevent asymptotic separation of alternative hypotheses Pn and Qn the
full force of contiguity is not needed. Contiguity has a further use, which is to
alleviate the problem of computing the limiting distribution of a test statistic under
a (contiguous) alternative. This technique is skillfully applied to rank procedures
in Hájek and Šidák (1967), and has since become a standard tool in the asymptotic
analysis of tests. The basic procedure, known as Le Cam’s third lemma, can be
found in Le Cam (1960a).

LEMMA 3.1 (Third lemma). If Pn and Qn are contiguous sequences of
probability measures and Tn is a sequence of statistics such that (Tn, dQn/dPn)

converges in distribution under Pn to a vector (T ,V ), then Tn converges underQn

in distribution to the law L defined by L(B)= E1B(T )V .

The proof of this lemma requires some technical work, but the idea is simple.
If Pn and Qn are absolutely continuous, then

Qn(Tn ∈B)=
∫

1B(Tn) dQn =
∫

1B(Tn)
dQn

dPn
dPn.

By assumption the vector (Tn, dQn/dPn) is under Pn asymptotically distributed
as (T ,V ). This suggests that the right-hand side is asymptotic to E1B(T )V .
Contiguity is necessary and sufficient to justify passing to the limit in this
argument.

As we noted, in a LAN situation the sequence dQn/dPn is log normally
distributed. If also the sequence Tn is asymptotically normal, then typically the
sequence of vectors (Tn, log(dQn/dPn)) is asymptotically multivariate normal.
For ease of notation suppose that under Pn it is asymptotically distributed as
(T , logV ). It is an easy computation to see that in that case the distribution L
in Le Cam’s third lemma is a normal distribution with mean ET + cov(T , logV )
and the same covariance matrix as T . Thus passing from a given distribution
to a contiguous alternative typically has the result of shifting the mean of an
asymptotically normal sequence of statistics, leaving the variance the same.
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In the testing situation, with asymptotically normal test statistics Tn, it follows
that a change of measure from a null hypothesis Pn,h0 to a contiguous alternative
Pn,h1 induces a change of asymptotic mean in the test statistics Tn equal to
the asymptotic covariance between Tn and log(dPn,h1/dPn,h0) and no change of
variance. It follows that good test statistics have a large (asymptotic) covariance
with the log likelihood ratios.

As a particular example consider the power of linear rank tests. We follow
Hájek (1962) and Hájek and Šidák [(1967), pages 210–216]. Let Rn,1, . . . ,Rn,n be
the ranks of a set of independent real-valued observations X1, . . . ,Xn. To test the
null hypothesis that X1, . . . ,Xn are an i.i.d. sample from an unknown density f ,
Hájek and Šidák propose the linear rank statistic

Sn =
n∑
i=1

(cn,i − c̄n)an(Rn,i),

where an are “scores” (a map from {1, . . . , n} to R), and the cn,i are given
constants. To investigate which constants cn,i or scores are appropriate, we could
imagine that we wish to test the null hypothesis versus some particular alternative
hypothesis. Hájek and Šidák are interested in location problems and consider the
null hypothesis that the vector (X1, . . . ,Xn) is sampled from the density

pn(x1, . . . , xn)=
n∏
i=1

f (xi),

versus the alternative hypothesis, that, for given constants dn,i with d̄n = 0, they
are sampled from

qn(x1, . . . , xn)=
n∏
i=1

f (xi − dn,i).

If the density f is appropriately differentiable and the constants dn,i are
sufficiently regular [see conditions (4) and (5) of Hájek and Šidák], then, with If
the Fisher information for location of f ,

/n := log

∏n
i=1 f (Xi − dn,i)∏n

i=1 f (Xi)
≈

n∑
i=1

dn,i
f ′

f
(Xi)− 1

2

n∑
i=1

d2
n,iIf .(3.1)

This expansion takes the form of an LAN expansion. If the constants dn,i satisfy
the conditions as mentioned, then it follows that the sequences of laws Pn and Qn

of (X1, . . . ,Xn) under null and alternative hypotheses are contiguous. In an earlier
chapter Hájek and Šidák had already obtained the asymptotic distribution of the
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sequence of linear rank statistics under the null hypothesis, based on the expansion

Sn ≈
n∑
i=1

(cn,i − c̄n)φ
(
F(Xi)

)
,(3.2)

where φ is the “score generating function” for the scores an(i). [Roughly
an(i)= φ(i/n), but we omit the details.] Combined, the two approximations (3.1)
and (3.2) readily yield the joint asymptotic normality of the pair (Sn,/n) under
the null hypothesis. An application of Le Cam’s third lemma yields that under
the alternative hypothesis the test statistic is asymptotically normal with the mean
shifted by the covariance

n∑
i=1

(cn,i − c̄n)dn,i

∫
f ′

f
(x)φ

(
F(x)

)
f (x) dx.

To construct good test statistics for this particular alternative we need to maximize
this expression relative to the asymptotic standard deviation of Sn.

This leads to such a conclusion as that the Wilcoxon statistics are asymptotically
optimal test statistics if the unknown null density f belongs to the logistic family.
With the limit distributions under alternatives in hand we can also easily compute
the asymptotic relative efficiency of, for instance, the Wilcoxon test versus the
t-test, for a variety of f .

4. Minimax and convolution theorems. Theorems that in some way show
that a normal distribution with mean zero and covariance matrix the inverse of
the Fisher information is a “best possible” limit distribution have a long history,
starting with Fisher in the 1920s and with important contributions by Cramér, Rao,
Stein, Rubin, Chernoff and others, which we shall not recall here. Of course, “the”
theorem referred to is not true, at least not without a number of qualifications. Le
Cam contributed in various ways to an understanding of this issue, and eventually
gave a complete explanation.

Hájek (1970, 1972) formulated and proved two theorems, using different types
of qualifications, which are now considered as most appropriate. For instance,
his formulations, originally for parametric locally asymptotically normal models,
have been the templates for similar results for nonparametric and semiparametric
models in the 1980–1990s. The idea of studying a minimax risk derives from
statistical decision theory, and the application of local minimaxity in asymptotics
can be traced back to Le Cam (1953) and Chernoff (1956). Apparently Hájek’s
convolution theorem came to Le Cam as “a bolt out of the blue” (R. Beran,
personal communication), even though it is now common to speak of the Hájek–
Le Cam convolution theorem, as Le Cam proved major generalizations.

Both of Hájek’s theorems consider a sequence of experiments (Pn,θ : θ ∈ �)
that is LAN (2.1) at a given point θ . The point θ is fixed throughout.
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THEOREM 4.1 (LAM). For any estimator sequence Tn and bowl-shaped loss
function � : Rk → [0,∞),

sup
c

lim inf
n→∞ sup

‖h‖<c,θ+δnh∈�
Eθ+δnh�

(
δ−1
n (Tn − θ − δnh)

)≥ ∫
�dN(0, J−1

θ ).(4.1)

THEOREM 4.2 (Convolution). Let Tn be sequence of estimators such that
δ−1
n (Tn − θ − hδn) � Lθ under Pn,θ+hδn for some fixed distribution Lθ and

every h ∈ R
k . Then there exists a probability measure Mθ such that Lθ =

N(0, J−1
θ ) ∗Mθ .

Hájek’s proofs of these results are long and technical, based on approximations
as in Le Cam (1960a). A key ingredient is his Lemma 3.3 [Hájek (1972),
page 185], which derives directly from Le Cam [(1960a), page 84, paragraph 5],
and shows that the centering variables 
n,θ in (2.1) are “distinguished.” Le
Cam realized that there is a simpler and more general approach, based on the
notion of a limit experiment. As we noted the experiments (Pn,θ+δnh :h ∈ R

k) are
asymptotically like the normal experiment (N(h,J−1

θ ) :h ∈ R
k). The convolution

and minimax theorems may be derived from viewing the normal experiment as
a whole as a “lower bound” for the sequence of experiments (Pn,θ+δnh :h ∈ R

k).
Le Cam (1972a) made this idea rigorous in great generality by introducing an
appropriate concept of convergence of experiments. (See Section 5.) It was obvious
from his earlier work that the sequence (Pn,θ+δnh :h ∈ R

k) converges to the normal
experiment given previously, according to this notion.

A deeper understanding of Hájek’s theorems can be obtained by relating the
criterion used to judge a sequence of estimators Tn to the same criterion applied to
estimators in the limit experiment (N(h,J−1

θ ) :h ∈ R
k). In the case of the minimax

theorem the local asymptotic minimax risk at θ , the infimum of the left side of (4.1)
over all possible estimators sequence Tn, is lower bounded by the minimax risk in
the limit experiment, given by

inf
T

sup
h∈Rk

Eh�(T − h),(4.2)

the infimum being over all (randomized) estimators T based on an observation X
from the N(h,J−1

θ ) distribution. [The supremum over h ∈ R
k corresponds to θ

being an inner point of the parameter set �, so that the local parameter sets
δ−1
n (θ − �) will grow to R

k , as n → ∞.] It is standard statistics to compute
the minimax risk in a normal location experiment, at least for nice loss functions
and a completely “unknown” location parameter, as in (4.2). For the symmetric,
bowl-shaped loss functions used in Hájek’s theorem the minimax estimator is
T (X) = X, and the minimax risk is the right-hand side of (4.1), as X − h is
N(0, J−1

θ )-distributed under every h, so that

sup
h

Eh�(X− h)=
∫
�dN(0, J−1

θ ).
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An added insight here is that the minimax risk (4.2) is a valid lower bound for
the local asymptotic minimax risk for any loss function that “survives” taking
limits. This includes all lower semi-continuous functions � : Rk → [0,∞) with the
property that lim inf‖y‖→∞ �(y) ≥ �(x) for every x ∈ R

k . Similarly, the minimax
theorem remains valid at boundary points θ of the parameter set, provided the
sequence of local parameter sets δ−1

n (θ − �) converges in a suitable sense to
a limit H and the supremum in (4.2) is restricted to h ∈ H . However, it may not
be possible to evaluate (4.2) explicitly in these cases.

Hájek’s convolution theorem puts a regularity restriction on the estimator
sequence. A sequence of estimators Tn is regular at θ if the sequence δ−1

n (Tn −
θ − δnh) converges under θ + δnh to a fixed limit distribution, independent of h,
for every h. Le Cam realized that the corresponding regularity restriction on
estimators T in the limit experiment is location equivariance. We can see this by
matching up the law of δ−1

n (Tn − θ) − h under Pn,θ+δnh and the law of T − h

under N(h,J−1
θ ). Regularity requires that the first law tends to Lθ as n→ ∞, and

hence for a matching estimator T the second must be Lθ as well, for every h. Thus
the distribution under h of T − h is independent of h. Such estimators T that are
“equivariant-in-law” are rare. The identity T (X)=X is an example. It had already
been proved by Boll (1955) that the distribution of a general equivariant estimator
could be written as a convolution: they can be represented as the sum X + U of
the “optimal estimator” X and random, ancillary noise U independent of X.

The preceding exposition is written in readily interpretable statistical language.
For flavor, we include a formulation of the convolution theorem by Le Cam. It is
concrete in that it concerns the full shift case, albeit on a general locally compact
group � [Le Cam (1986), page 128]:

The operator Sα in (ii) below maps a given distribution F into the distribution B �→
F(α−1B). Condition (iii) that the sequence Xn is distinguished means that its set
of limit distributions {Fθ : θ ∈ �} in (i) are a limit experiment for the sequence of
experiments Fn .

The above arguments lead almost immediately to a nice result of J. Hájek. A form
of it is as follows. Consider the case where � and Z are one and the same locally
compact group G. For each n let Fn = {Pθ,n : θ ∈�} be an experiment indexed by �.
Consider also two statistics, say Xn and Yn, available on Fn and taking values in
G= Z =�.

PROPOSITION 2. Assume that the following conditions are satisfied:

(i) The distributions Fθ,n = L(Xn | Pθ,n) and Gθ,n = L(Yn | Pθ,n) converge,
respectively, to limits Fθ and Gθ .

(ii) The limits Fθ and Gθ are such that Fαθ = SαFθ and Gαθ = SαGθ .
(iii) For the sequence of experiments {Fn} the Xn are a distinguished sequence.
(iv) The Fθ are absolutely continuous with respect to the Haar measure of G.

Furthermore, G admits almost invariant means.

Then there is a probability measure Q such that Gθ = Fθ ∗Q for all θ .
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5. Limits of experiments. The observations concerning limit experiments
and lower bounds were laid down in Le Cam (1972a). Le Cam (1972a) opens
with:

In a recent paper J. Hájek (1970) proved a remarkably simple result on the limiting
distribution of estimates of a vector parameter θ . It turns out that this result, as well
as many of the usual statements about asymptotic behavior of tests or estimates, can
be obtained by a general procedure which consists roughly in passing to the limit first
and then arguing the case for the limiting problem. This passage to the limit relies on
some general facts which perhaps are not entirely elementary. They depend heavily
on techniques of L. Le Cam (1964a). However, these general facts are of interest by
themselves. If they are taken for granted the basic result of Hájek (1970) and many
results of A. Wald (1943) become available immediately.

The paper Le Cam (1972a) appeared in the Proceedings of the Sixth Berkeley
Symposium, where Hájek (1972) presented his local asymptotical minimax
theorem. Le Cam gives explicit credit to Hájek for helping shape the paper
[Le Cam (1972a), page 246]:

Any resemblance between our results and those of Hájek is not entirely accidental,
since the present paper was greatly modified after Hájek’s presentation during the
Symposium.

The first line of this remark, made in the introduction of Le Cam (1972a), should
probably be understood as an expression of appreciation for Hájek’s achievement.
It is not very accurate, because the overlap between the papers is small.

As he acknowledged in the preceding quotation, Le Cam’s (1972a) paper is
far from elementary. The general facts from his 1964 paper “which perhaps are
not entirely elementary” concern convergence of experiments in a “deficiency
measure,” which we review in more detail in Section 7. For now we only describe
the meaning of zero deficiency.

The deficiency δ(E ,F ) of an experiment E relative to another experiment F ,
with the same parameter set but possibly a different sample space, is zero if and
only if statistical aims achievable in the experiment F can be achieved at least
as well in the experiment E . The experiment F is then also said to be weaker
than E . This notion can be made precise in several equivalent ways, by using risk
functions, randomizations, or through the matching-in-law of statistics. The third
characterization is most relevant to the implications of limits of experiments and
says that given a statistic in the experiment F , one can find a (randomized) statistic
in E with exactly the same set of laws.

A concrete statement of the third type is as follows. (It is a theorem
or a definition, depending on one’s starting point.) We define a randomized
estimator T in an experiment with sample space (X,A) and values in a metric
space D as a (Borel) measurable map T :X × [0,1] → D. We evaluate its “law
under P ” as the law of T (X,U) for X having law P and U being a uniform
variable independent of X, that is, as (P × λ) ◦ T −1, for λ the Lebesgue measure
on [0,1].
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THEOREM 5.1. Let E = (X,A,Ph :h ∈H) and F = (Y,B,Qh :h ∈H) be
dominated experiments. Then δ(E ,F )= 0 if and only if for every Polish space D

and every randomized estimator T in F with values in D there exists a randomized
estimator S in E such that (Ph × λ) ◦ S−1 = (Qh × λ) ◦ T −1 for every h ∈H .

Since we can measure statistical difficulty through the possible sets of laws of
statistics, we should prefer E over F .

The assumptions of domination and Polishness can be removed at the expense of
technical difficulties. In Section 8 we discuss how Le Cam solved these difficulties.

A main result of Le Cam (1972a) can be stated as follows.

THEOREM 5.2. Let Sn :X → D be a sequence of statistics defined in
experiments En = (Xn,An,Pn,h :h ∈H) and with values in a fixed metric space D

such that Sn � Qh under Pn,h for every h ∈ H . Set F = (Qh :h ∈ H). Then
δ(E ,F )= 0 for every weak limit point E of the sequence En.

The theorem relates two types of weak convergence. The first type is the
usual convergence in distribution �, here applied to statistics Sn and yielding
a collection F = (Qh :h ∈ H) of limit laws of the sequence Sn (on the Borel
σ -field of D). The second type concerns weak convergence of a sequence of
statistical experiments, a type of convergence which we still need to define. It
is applied here to subsequences or subnets of the sequence of experiments En.
The two types of convergence concern different types of objects (statistics and
experiments) and hence cannot be compared directly. However, the theorem says
that the usual weak convergence leads to experiments that are weaker than the
experiments obtained as limits in the other type of convergence.

As we noted there are several ways to interpret zero deficiency between
experiments. Using the interpretation through the existence of (randomized)
estimators, we can reformulate the theorem as follows.

THEOREM 5.3. Let Sn :X → D be a sequence of statistics defined in
experiments En = (Xn,An,Pn,h :h ∈H) and with values in a fixed Polish metric
space D such that Sn � Qh under Pn,h for every h ∈ H . Assume that the
sequence En converges to E = (X,A,Ph :h ∈ H). If E is dominated, then there
exists in E a randomized estimator T :X × [0,1] → D such that T possesses
law Qh under Ph, for every h ∈H .

Before giving a definition of convergence of experiments, let us see how the
theorem can be used to prove Hájek’s theorems. We need the information that the
sequence of local experiments En := (Pn,θ+δnh :h ∈ R

k) extracted from an LAN
sequence (Pn,θ : θ ∈ �) converges to the experiment E := (N(h,J−1

θ ) :h ∈ R
k)

encountered previously. Next we consider a sequence of R
k-valued statistics Tn
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in the experiments (Pn,θ : θ ∈�) and assume that Sn := δ−1
n (Tn − θ) converges in

distribution under Pn,θ+δnh to a limit distribution Qh. (The parameter θ is fixed in
this argument; we have suppressed it from the notation.) By the preceding theorem
there exists a (randomized) statistic T : Rk → R

k in the Gaussian experiment E
such that T possesses the law Qh under h, for every h ∈ R

k . In other words,
the sequence δ−1

n (Tn − θ − δnh) converges in distribution under Pn,θ+δnh to the
distribution of T − h under h.

If the sequence of estimators Tn is regular with limit law Lθ , then it
follows immediately that T − h possesses law Lθ under every h. In group-
statistics language the statistic T must be equivariant-in-law. We can now apply
Boll’s (1955) result to see that the distribution Lθ can be decomposed as in the
convolution theorem.

We can similarly prove Hájek’s LAM theorem. General weak convergence
theory and lower semicontinuity of � give that

lim inf
n→∞ Eθ+δnh�

(
δ−1
n (Tn − θ − hδn)

)≥ Eh�(T − h).

This is true for every local parameter h. We can now add first the sup‖h‖<c within
the lim inf on the left-hand side, making this bigger, and next the supc on the far
left-hand side, making this still bigger, thus creating the left-hand side of (4.1). We
may make the same changes on the right side, and keep the inequality, yielding
a right-hand side

sup
h∈Rk

Eh�(T − h).

It is standard decision theory that this expression is minimized by T (X,U)=X,
for any bowl-shaped loss function. For this estimator the expression in the display
reduces to the right-hand side of (4.1).

This argument is based on the assumption that the sequence δ−1
n (Tn − θ − δnh)

converges in distribution under Pn,θ+δnh to a limit distribution, for every h, but
Hájek’s minimax theorem is valid for every estimator sequence Tn. We can extend
the preceding proof by a compactification argument. For instance, if we consider
the estimators Tn to be maps in a compactification of R

k , then the sequence Tn
is automatically tight and will converge in distribution along subsequences, by
Prohorov’s theorem.

Le Cam would compactify in a different way, by interpreting Theorem 5.2
in a more abstract setting, involving “procedures” rather than statistics, an
abstract definition of “statistical experiments” and an extended definition of
“risk functions.” Theorem 5.3 is a special, but statistically more transparent
form of Le Cam’s (1972a) main result, which is closer to Theorem 5.2.
A direct proof of this special theorem is not necessarily easier than the proof
of the corresponding abstract theorem, because it asserts the existence of
concrete statistical objects: randomized estimators. In contrast, Theorem 5.2 yields
“procedures” or “transitions.” Only if one takes certain representation theorems
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for linear functionals and operators for granted, the special theorem can become a
corollary of the more abstract formulation. These are among the “general facts
which perhaps are not entirely elementary,” which Le Cam asked to take for
granted at the beginning of his 1972 paper. (See the quotation at the beginning
of this section.)

This difference is comparable to proofs of Prohorov’s theorem in weak
convergence theory. Prohorov’s theorem (which was independently proved by
Le Cam) says that every uniformly tight sequence of random elements Xn in
a metric space possesses a weakly converging subsequence. It is relatively easy to
extract a subsequence n′ such that Ef (Xn′)→ Lf for every bounded, continuous
real function f and some positive linear map L, but it requires some effort to
show that L is representable by a probability measure. The uniform tightness of
the sequence Xn is most crucial in this second part of the argument, because it
implies that the limit L must be a special type of functional.

Because the convergence of the local experiments of an LAN sequence of
experiments to a Gaussian shift experiment in the sense of Le Cam (1972a) was
clear from Le Cam’s previous work [e.g., Le Cam (1969)], Le Cam could recover
Hájek’s theorems by analyzing the Gaussian limit experiment. Le Cam (1972a)
recovers the convolution theorem within the context of general (i.e., possibly non-
Gaussian) Euclidean shift experiments as limits, but pays relatively little attention
to the minimax theorem. Le Cam (1979a) completed the analysis of Hájek’s
theorems by proving that the difference between two sequences of estimators that
converge to a randomized estimator that is uniquely determined by its risk function
must necessarily converge to zero. This applies for instance to LAM sequences of
estimators of a parameter of dimension lower than three.

The great contribution of Le Cam (1972a) was to describe limiting experiments
in general: one can apply the same arguments as given also in many other situ-
ations, including the LAMN or LAQ experiments mentioned before, the Poisson
experiments arising when rescaling nonsmooth parametric experiments, or nonlin-
ear Gaussian experiments arising as subexperiments in non- and semiparametric
statistics. The “passing to the limit” will be the same each time, but analyzing the
limit experiment may not give such nice and simple results as in the Gaussian case.
For instance, one may be left with a statement that the asymptotic minimax risk is
bounded below by the minimax risk in an experiment involving the observation of
several Poisson processes with intensities depending on the parameter.

In that sense the assertion of the convolution theorem is special: even if one can
define a notion of regularity in many settings, equivariant-in-law estimators are not
always characterized by a convolution property.

The definition of weak convergence of experiments given in Le Cam (1972a)
employs the deficiency distance of Le Cam (1964a): a sequence (or net) of
experiments En = (Pn,h :h ∈H) converges to a limit experiment E = (Ph :h ∈H)
if for all finite subsets I ⊂ H 
(E In ,E

I ) → 0, where E In = (Pn,h :h ∈ I ) is the
subexperiment with parameter restricted to I , and 
 is the deficiency distance,
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as discussed in Section 7. This definition is statistically meaningful, but not
the easiest definition to work with in examples. In most cases convergence of
experiments is proved through marginal weak convergence of the log likelihood
ratio processes. An alternative definition of convergence of En = (Pn,h :h ∈H) to
E = (Ph :h ∈H) is that, for every h0 ∈H and finite set I ⊂H ,(

dPn,h

dPn,h0

)
h∈I
�
(
dPh

dPh0

)
h∈I
,(5.1)

where the laws of the vectors on the left are computed under Pn,h0 and the law of
the vector on the right is computed under Ph0 . The wiggly arrow denotes ordinary
weak convergence in R

I .
It is not difficult to verify that the likelihood ratio process of an LAN

sequence of experiments converges to the likelihood ratio process of a Gaussian
experiment in this sense. Indeed, the likelihood ratios of the Gaussian experiment
(N(Jθh, Jθ ) :h ∈ Rk) are given by

dN(Jθh, Jθ)

dN(0, Jθ)
(
)= eh

T
−(1/2)hT Jθh.(5.2)

This Gaussian experiment corresponds to observing 
 with a N(Jθh, Jθ ) distri-
bution, and is, for fixed θ , equivalent to the experiment consisting of observing
J−1
θ 
, which possesses a N(h,J−1

θ ) distribution. The LAN condition (2.1) shows
that the likelihood ratio process dPn,θ+δnh/dPn,θ possesses exactly the same form,
up to a term that converges to zero in probability. This verifies (5.1) for h0 = 0;
verification for other values of h0 is similar.

It is the realization of the equivalence of the two definitions, together with the
theorem as stated previously, that create the breakthrough of Le Cam’s (1972a)
paper. Le Cam (1972a) did not emphasize the equivalence, but did make the
connection between weak convergence in terms of the deficiency distance and
the weak convergence of likelihood ratio processes (5.1) in the special case
that H is finite and Pn,h0 is replaced by the sum µn = ∑

h Pn,h. The laws of
these likelihood ratio processes under µn are known as the canonical or conical
measures of the experiments. This connection had previously been explored in
Le Cam [(1969), page 14, Théorème 1, apparently found earlier, but unpublished]
and Torgersen (1968, 1970).

6. Superefficiency. Le Cam has contributed to an understanding of the super
efficiency phenomenon at various points in his career, using the new insights
obtained to give sharper, prettier, or deeper results at each point. We have written
a longer review of these contributions for Le Cam’s Festschrift [Pollard, Torgersen
and Yang (1997)] and therefore shall be briefer here. The result must be mentioned,
because it is both incredibly pretty and extremely relevant.

In the 1940s an estimator sequence was said to be superefficient if its asymptotic
variance was smaller than the inverse Fisher information as given by the Cramér–
Rao bound for the variance of unbiased estimators. The existence of such
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superefficient estimators appeared to indicate that, in the LAN case, the normal
distribution N(0, J−1

θ ) does not give a lower bound for asymptotic estimation.
Some of the superefficient estimators can be easily discarded, because their

risk functions behave erratically. This includes for instance the Hodges estimator
Tn = X̄n1|X̄n|<n−1/4 of a normal mean based on a sample X1, . . . ,Xn from the
N(θ,1)-distribution. This estimator is designed to have small risk at the parameter
value θ = 0, but as a result has, for any fixed n, large risk at other parameter
values close to 0, even though the risk at every fixed parameter value decreases
below J−1

θ eventually, as n → ∞. Not all superefficient estimators are bad,
however. In particular, shrinkage estimators, discovered by Stein (1956) shortly
after Le Cam (1953) wrote on superefficiency, are superefficient and are good
estimators. Depending on the loss function they beat the usual estimators, which
have a N(0, J−1

θ ) limit distribution.
There are several ways to save the Cramér–Rao bound. One is to consider

local maximum risk, and this culminated in Hájek’s LAM theorem considered
before. Hodges estimator fails the quality test imposed by Hájek’s LAM theorem,
because its LAM risk at θ = 0 is infinite. However, a disadvantage of taking
a maximum risk is that it may hide differences. For instance, in terms of the LAM
risk the shrinkage estimators (which are really better in dimensions 3 and up) are
equivalent to the usual estimators. This is because the risk functions are asymptotic
to each other as the parameter tends to infinity, even though one is always below
the other.

Another way to save the Cramér–Rao bound is to note that asymptotic super-
efficiency can occur only on very small sets of parameters, for instance null sets
for the Lebesgue measure. Le Cam proved this for the first time in 1953, in his
thesis. The following is a much nicer result, discovered by Le Cam later on. It can
be deduced from results in Le Cam (1973b).

THEOREM 6.1. Assume that the sequence of experiments (Pn,θ : θ ∈�⊂ R
k)

is LAN at every θ with norming rate δn and nonsingular Fisher information
matrices Jθ . Let the maps θ → Pn,θ be measurable. Let Tn be an estimator
sequence such that δ−1

n (Tn− θ) converges to a limit distribution Lθ under every θ .
Then there exist probability distributions Mθ such that, for Lebesgue almost
every θ ,

Lθ =N(0, J−1
θ ) ∗Mθ.

This remarkable theorem yields the assertion of Hájek’s convolution theorem
at almost every parameter value θ , without having to impose the regularity
requirement on the estimator sequence. The convolution property implies that the
covariance matrix of Lθ , if it exists, must be bounded below by the inverse Fisher
information, and much more. Such consequences were also obtained by direct
arguments by other authors, for example, Bahadur (1964).
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The reason that the theorem is true is even more remarkable and is the main
focus of Le Cam (1973b): it is roughly true that any estimator sequence Tn is
“almost Hájek regular” at almost every parameter θ , at least along a subsequence
of {n}. Le Cam [(1986), pages 128–129] explains this as follows. Let Gn(θ,h)
be the distribution of δ−1

n (Tn − θ) under Pn,θ+δnh and define “shift operators” Sαi
working on these distributions by

Gn(θ,h)S
α
1 =Gn(θ + α,h),

Gn(θ,h)S
α
2 =Gn(θ,h+ α).

Furthermore, let SαG=G∗ δα denote the measureG shifted by the vector α. This
notation implies the algebraic identity

Gn(θ,h)S
δnα
1 = S−αGn(θ,h)Sα2 .

Le Cam [(1986), page 133] proceeds:

On the right side the coefficient δn does not appear explicitly. On the left side the shift
operates only by an amount δnα which tends to zero. Thus, passing to the limit one
should expect that, with a modicum of continuity, one will obtain an invariance relation
such as G= S−αGSα2 . This is precisely what happens, but it is perhaps surprising, or
even frustrating that the amount of continuity needed to obtain such a relation is very
little indeed.

Next it turns out that one can get already very far, for instance as far as
the preceding theorem, under just some measurability conditions, rather than
continuity. This brings out both the beauty of the limit results, and their dangers.
The example of shrinkage estimators shows that the asymptotic null sets are not
necessarily small for finite n.

As this intuitive argument shows, this principle of automatic equivariance has
nothing to do with LAN or Gaussian experiments. It is a consequence of rescaling
a given Euclidean experiment. A concrete way to illustrate this is the following
lemma, which shows that every estimator sequence in arbitrary experiments is
almost regular in the sense of Hájek at almost every parameter.

LEMMA 6.2. Let Tn be estimators in experiments (Pn,θ : θ ∈ �) indexed by
a measurable subset� of R

k . Assume that the map θ → Pn,θ (A) is measurable for
every measurable set A and every n, and suppose that there exist distributions Lθ
such that for Lebesgue almost every θ the sequence rn(Tn − θ) tends under θ in
distribution to a limit Lθ . Then for every γn → 0 there exists a subsequence of {n}
such that, for Lebesgue almost every (θ, h), along the subsequence, the sequence
rn(Tn − θ − γnh) converges in distribution under θ + γnh to Lθ .

As we saw, the Hájek regularity translates into equivariance of the matching
estimator in the limit experiment. In the LAN case this next implies a convolution
property. In other cases the restriction of equivariance may imply different
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properties, but in most cases it will imply a lot. The form of the implication
depends on the form of the limit experiment corresponding to the sequence
(Pn,θ+δnh :h ∈ R

k). The experiment (N(h,J−1
θ ) :h ∈ R

k), obtained under LAN,
is a full shift of the N(0, J−1

θ ) distribution under the additive group. If we replace
the normal distribution by another Lebesgue absolutely continuous one, but retain
the full shift property, then we shall again obtain a convolution theorem, but with
a non-Gaussian kernel. This follows from Boll’s (1955) result, who proved that
the invariant law of an equivariant estimator in a dominated location experiment
(P ◦ δh :∈ R

k) always possesses the base distribution P as a convolution factor.
Shift experiments are common as limits, but they are not always full. An

example of a partial shift is obtained by letting the nth experiment consist of
observation of a sample of size n from the uniform measure on [−θ, θ]. This
gives a shift of the distribution of a pair of two independent exponential variables
over the diagonal in R

2. (The intuitive explanation is that the two sufficient
statistics for this experiment, the minimum and the maximum of the observations,
are asymptotically exponential.) An example of a conditional shift experiment
is obtained under LAMN. There is a great variety of other interesting limit
experiments.

To each of these corresponds a superefficiency result. We give one simple
example to illustrate this.

LEMMA 6.3. Let Tn be estimators based on an i.i.d. sample of size n from the
uniform distribution on [0, θ] such that the sequence n(Tn− θ) converges under θ
in distribution to a limit Lθ , for every θ > 0. Then

∫ |x|2 dLθ(x)≥ θ2 for Lebesgue
almost every θ .

The final statement on the superefficiency problem was made by Le Cam
(1973b). The treatment there, copied in Le Cam [(1986), pages 132–144] is
complicated, because Le Cam avoids assuming that the estimators of interest,
or the experiments in which they are defined, converge to limits, as we did in
the preceding. Instead he imposes a weak topology for which one always has
limit points and next shows that every limit point has the invariance property.
This invariance (or equivariance) is valid both for sets of limit distributions and
limit experiments. It can be deduced from this, that if the local experiments
(Pn,θ+δnh :h ∈ R

k) converge to limit experiments, for every θ , then these limits
must be “invariant,” for almost every θ . Thus one can (almost) always apply group
invariance arguments to derive optimal equivariant estimators, and hence a best
possible limit distribution for a regular estimator sequence. The “invariance” takes
the following form [simplified from Le Cam (1973b)].

THEOREM 6.4. Suppose that the experiments (Pn,θ+δnh :h ∈ R
k) converge

to limit experiments Eθ = (Pθ,h :h ∈ R
k) such that the maps h �→ Pθ,h are
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continuous, for every θ . Then for almost every θ there exists a measurable
space (Xθ ,Aθ ) and measurable bijections Sθ,h :Xθ → Xθ such that Sθ,h1Sθ,h2 =
Sθ,h1+h2 and such that Eθ is equivalent to the experiment (Xθ ,Aθ ,Pθ ◦ S−1

θ,h :
h ∈ R

k).

Regarding the last sentence, any experiment that is equivalent to a given
limit experiment, in the sense of having deficiency distance zero, is also a limit
experiment. Thus a limit experiment is far from unique. The theorem asserts that
it can be chosen to resemble a shift experiment, relative to the action of certain
bijections. The example of partial shifts shows that one can not always arrange it
so that Xθ = R

k and Sθ,h is a translation by h.

7. Deficiency. Le Cam introduced his deficiency distance between two
experiments in 1964. The motivation came from two sources. We quote from
Le Cam’s review of Torgersen’s book [Le Cam (1992a)]:

Statisticians have been “comparing experiments” for a long time. One can see this just
by glancing at R. A. Fisher’s The Design of Experiments (1935) and at Neyman’s
“On two aspects of the representative method” (1934). However, in most instances,
the comparisons were in terms of the performance of some special test or estimation
procedure. The subject of the volume under review is said to have started in 1949
by a suggestion of J. von Neumann, quickly followed by a Rand Memorandum of
Bohnenblust, Shapley and Sherman [(1949), unpublished].

David Blackwell and Charles Stein soon recognized the statistical nature of the
Rand Memorandum. Within the next years they proved, under a variety of restrictions,
one of the main theorems of the subject. The result is often called the Blackwell–
Sherman–Stein theorem. One of the visible differences with previous work of, say,
J. Neyman, is that Blackwell and Stein looked at all the possible loss functions and risk
functions for all the decision problems for the solution of which the experiment might
have been performed.

It was a great success of the early authors (Blackwell, Sherman, Stein) and of later
ones such as V. Strassen, to show that “E better than F ” means that there is a Markov
kernel T that applied to X and the Pθ reproduces measures Qθ on B . In symbols
Qθ = T Pθ . That is F is reproducible from E by “tossing coins.”

Another current of ideas came from the asymptotic statistical theory where one
wanted to approximate some experiments by simpler ones. This can be said to have
started, in a very special case, by a paper of A. Wald (1943). Eventually, the author of
this review introduced the ideas of “deficiencies,” “distance,” weak convergence and
the like.

Le Cam’s 1964 paper can be seen as an attempt to make the Blackwell–
Sherman–Stein quantitative, thus enabling him to address the problem of approxi-
mation of experiments initiated by Wald. The Blackwell–Sherman–Stein theorem
is a statement that one statistical experiment E is “better” or “more informative”
than another experiment F if and only if the second experiment can be obtained
from the first through “randomization.” In the terminology of Le Cam (1964a) this
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means that the deficiency δ(E ,F ) of E relative to F is zero. The major advance of
Le Cam (1964a) was to quantify “deficiency” through a number δ(E ,F ), thus en-
abling him to put asymptotic approximation and comparison of experiments within
one framework.

Le Cam’s 1964 paper was actually written in the late 1950s. Le Cam liked
telling the story of how and why publication of the paper was delayed. From his
own perspective he had written the paper as mathematically straightforward as
possible, thus making the subject simple, but the referees did not recognize that
kind of simplicity, and questioned its relevance to statistics. It is in this paper that
the abstract functional-analytic machinery that Le Cam would use in most of his
later papers first appears. The paper is very similar in spirit to the first chapters of
his 1986 book.

Let us first look at the statistical content of deficiency. According to Wald’s
decision theory two statistical experiments can be compared by the set of risk
functions available in each of them. In Wald’s theory one is given an experiment
(X,A,Pθ : θ ∈ �), a decision space (D,D) and a loss function � :�× D → R.
A decision procedure is a Markov kernel (x,D) �→ τx(D) from (X,A) into
(D,D), with the interpretation that given an observation x ∈ X one chooses
a decision from D according to the distribution τx . The risk of this procedure is
defined to be the function

θ �→R(θ; τ ) :=
∫
X

∫
D

�(θ, y)τx(dy) dPθ(x).

The purpose in the Wald framework is to find statistical procedures τ with a
small risk function. Thus it is natural to say that the experiment E is “more
informative” or “better” than the experiment F if for every procedure τ in F
there is a procedure σ in E with R(θ;σ) ≤ R(θ; τ ) for every θ ∈ �. The
realization of Blackwell–Sherman–Stein was that this is equivalent to the existence
of a randomization of E that exactly produces F .

The idea is the same as in a proof that a sufficient statistic indeed contains all
information on a parameter. In that example we wish to prove that observing only
the sufficient statistic is as informative as observing the original observation. The
randomization is here the conditional law of the observation given the sufficient
statistic. Because it is assumed to be free of the parameter, this conditional law
can be used to generate a (pseudo) observation given the observed value of the
sufficient statistic. This pseudo observation is just as good as a real observation,
because it has the same laws.

A general randomization within the Wald setup is a Markov kernel T from
the sample space of E = (X,A,Pθ : θ ∈ �) into the sample space of F =
(Y,B,Qθ : θ ∈�). Given an observation x in E we can generate an “observation”
y in the sample space of F according to the Markov kernel Tx . If x is sampled
from P , write T P for the distribution of y, that is,

T P (B) :=
∫
Tx(B)dP (x).(7.1)
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If T Pθ = Qθ for every θ ∈ � and x is generated from Pθ ∈ E , then the
corresponding y will be generated from Qθ ∈ F and hence be exactly as an
observation in F . If this is true, then we can produce an observation in F from an
observation in E , and hence the experiment E is better in the sense of comparison
of the available loss functions, because we can match any procedure in F by
a procedure in E : first produce y from x, next proceed with y as in F .

Thus existence of a randomization from E into F implies that E is better.
The Blackwell–Sherman–Stein theorem says that the converse is also true (under
some conditions): if E is better than F , then there exists a Markov kernel T with
T Pθ =Qθ for every θ ∈�, that is, F is a randomization of E .

It follows that the comparison of available risk functions and the existence of
randomizations lead to the same order on statistical experiments. This is a partial
order only, because, in actual fact, there are not so many pairs of experiments that
are in an ordered relationship in this way. The success of Le Cam’s (1964a) paper
was to quantify the comparison idea, so that it becomes an approximation idea. The
deficiency δ(E ,F ) of the experiment E relative to the experiment F is defined as

δ(E ,F )= inf
T

sup
θ∈�

‖T Pθ −Qθ‖,(7.2)

where the infimum is taken over all randomizations T , and the norm ‖·‖ is the
total variation norm (2.4). (The deficiency number or the norm ‖·‖ are sometimes
defined with an additional factor 1

2 or 2.) A deficiency of zero corresponds to
the existence of a perfect randomization, one with the property that T Pθ = Qθ

for every θ ∈ �. Thus, by the Blackwell–Sherman–Stein theorem a deficiency
δ(E ,F ) of zero is equivalent to E being better than F in terms of risk functions.

However, in most cases the deficiency is strictly positive and hence the
Blackwell–Sherman–Stein theorem has nothing to say. Le Cam (1964a) showed
that the equivalence between using randomizations and comparison of risk
functions extends to the case of two general experiments. He proved the following
theorem.

THEOREM 7.1. For any ε ≥ 0 and any loss function with values in the unit
interval δ(E ,F ) ≤ ε if and only if for every procedure τ in F there exists
a procedure σ in E such that R(θ;σ)≤R(θ; τ )+ 1

2ε for every θ ∈�.

This theorem is simple enough and full of statistical meaning: 1
2 times the

deficiency δ(E ,F ) is approximately the maximal difference in risk between E
and F . That Le Cam’s paper was held up for a number of years is connected to the
fact that the theorem is not quite true if we interpret the objects, experiments, risk,
procedures, and deficiency, exactly in the way that we described them so far. It is
possible to make somewhat restrictive assumptions on the experiments E and F
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and the decision space D to save the theorem as it stands, but Le Cam was not
willing to do so. In his view it was more elegant and easier to change the meaning
of the entities in the theorem. He replaced the Markov kernels, employed both
as randomizations and statistical procedures, by certain linear maps, later called
“transitions,” and appropriately redefined risk functions. In the introduction of his
1964 paper [Le Cam (1964a), page 1419] Le Cam writes:

The study of definitions of sufficiency is marred by technical difficulties of a measure
theoretic nature, which may be judged rather irrelevant for ordinary statistical purposes.
To avoid these difficulties we have been led to generalize the usual description of what
is meant by an experiment, ignoring σ -additivity and other regularity conditions. The
bulk of the paper is intended to show that such a generalization is very convenient in
many respects. Furthermore, there is no essential difficulty in returning to the usual
system after the main results have been proved.

We shall follow Le Cam on this route in the next section. For now, let us note that
the “restrictive assumptions” are actually not very restrictive. Most situations of
statistical interest are covered by the following theorem, which is a translation of
Le Cam’s (1964a) result in more common statistical language. The objects in this
theorem may be interpreted in the usual way.

First, assume that the statistical experiments E = (X,A,Pθ : θ ∈�) and F =
(Y,B,Qθ : θ ∈ �) are dominated, that is, there exist σ -finite measures that
dominate all probability measures Pθ and Qθ , respectively. Second, assume that
the sample spaces of E and F and the decision space (D,D) are all Polish spaces
with their respective Borel σ -algebras (equivalently: complete separable metric
spaces with σ -fields generated by the open or closed balls). Then we define the
deficiency δ(E ,F ) by (7.2) with the infimum taken over all Markov kernels T
from (X,A) into (Y,B). This setting resembles the one of Heyer (1973).

THEOREM 7.2. Assume the setup of the preceding paragraph. Then δ(E ,F )

≤ ε if and only if for every Markov kernel T from (Y,B) into (D,D) there exists
a Markov kernel S from (X,A) into (D,D) such that for every loss function �
with values in [0,1], and every θ ∈�,∫ ∫

�(θ, z)Sx(dz) dPθ(x)≤
∫ ∫

�(θ, z)Ty(dz) dQθ(y)+ 1
2ε.

In a comment on lecture notes distributed at a Yale course in 1994 [organized
by David Pollard in honor of Le Cam’s 65th birthday; see van der Vaart (1994)] Le
Cam wrote that “he had no difficulty with the Polish assumptions, except that they
are assumptions.” Indeed, it is nice to remove them. A closer look would reveal
the different roles the assumptions play and how they could be relaxed. However,
a full removal of the assumptions will require that:

• we redefine δ(E ,F ) by taking the infimum over the larger class of “transi-
tions” T
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• we replace the Markov kernels S and T by elements of the larger class of
“procedures”

• we do not define the risk by an integral or expectation.

Le Cam defended this route in the late 1950s, and never changed his mind on this.
For instance, in the first chapter of his 1986 book he points out the arbitrariness of
sample spaces in statistics, and eliminates these altogether. Without sample spaces
we cannot have Markov kernels, of course.

8. L and M spaces. What is a statistical experiment according to Le Cam?
In his 1964 paper he gives the following definition (page 1421):

DEFINITION 1. A single stage experiment E = {�,E,X, {Pθ }} consists of a set �,
a set E of bounded numerical functions on a set X and a map θ → Pθ which to each
θ ∈ � associates a numerical function Pθ defined on E. The system is assumed to
satisfy the following requirements.

(i) E is a vector lattice for the usual operations carried out point by point.
(ii) The function I , identically equal to unity on X, is an element of E.

(iii) Each Pθ is a positive normalized linear functional on E.
(iv) E is complete for the norm ‖f ‖ = sup{|f (x)|;x ∈ X}.

Just before giving this definition Le Cam remarks that the set X and the nature ofE
as a space of functions are there “to facilitate a return to the usual structures.” Later
on he would remove the “sample space” altogether. In his 1986 book an experiment
is defined as a map θ �→ Pθ from an arbitrary set � into the nonnegative boundary
of the unit ball in an abstract L-space, a Banach lattice or Riesz space of special
type.

Le Cam was an early user of the theory of Banach lattices. Some of the essential
concepts, including abstract L- and M-spaces, go back to the 1930–1940s, but
much of the mathematical theory was developed by functional analysts in the
period 1950–1970. The first accounts in book form were those of Schaefer (1974)
and Luxemburg and Zaanen (1971).

Whereas a reader of the first chapter of Le Cam (1986) may wonder whether
this is a book on statistics at all, the 1964 definition was written purposely in such
a way that the statistical experiment is relatively easy to recognize. It is probably
a defendable position to say that Le Cam (1964a) did not waste much more effort
to appeal to statisticians. He does explain tools and objects step by step as he
develops the theory, but he gives few references to the literature, and rarely relates
to statistics in a concrete way. [Le Cam’s basic reference for Riesz theory probably
was the Bourbaki volume on integration, although in his 1964 paper he refers only
to the volume of Bourbaki (1955) on topological vector spaces, which appears to
have no material on vector lattices.]

The main abstraction is to view a probability measure Pθ not as a prescription
for distributing mass on a set X, but rather as a functional that takes functions
f :X → R into numbers. If one were given a measurable structure on the set X,
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the functions f were chosen measurable, and the object Pθ were a measure relative
to this structure, then these functionals could be taken as the maps

f �→ Pθf :=
∫
f (x) dPθ(x).

One may not wish to use all measurable functions here, but may rather single out
a collection E of relevant functions, and restrict the Pθ to this collection, as in the
definition. As required by (iii) the functionals Pθ are linear and positive in that they
take nonnegative functions f into nonnegative numbers. They are thus elements of
the Riesz dual (or order dual ) E∗ of E, the set of all linear functions P :E → R

that map intervals [f,g] = {v ∈E :f ≤ v ≤ g} into bounded subsets of R.
The order dual is similar to the better known dual space of a normed vector

space. In fact, for a partially ordered vector lattice E (as in Le Cam’s definition)
that is equipped with a norm the order dual and norm dual are identical, provided
some mild compatibility properties between norm and ordering exist. However, Le
Cam (1964a) did not refer much to the norm structure and worked mostly within
the Riesz lattice setup.

In the 1964 paper the preceding definition of an experiment is followed
by two more definitions, giving the L- and M-spaces of the experiment E =
{�,E,X, {Pθ : θ ∈ �}}. The L-space L(E) is the smallest band in E∗ that
contains {Pθ : θ ∈�}, and the M-space M(E) is the order dual of this band. The
concepts of bands and order duals do not make part of standard introductions to
functional analysis today and must have been exotic also in the 1950s. We shall
not go into the details here, but note that in the case that the Pθ are probability
measures on a measurable space, the corresponding L-space is the set of all
probability measures that are dominated by some countable linear combination
of the Pθ . In particular, the L-space of a dominated experiment (X,A,Pθ : θ ∈�)
can be identified with the L1(X,A,µ)-space for µ a dominating measure that is
equivalent to the set of Pθ .

It is far from obvious that bands have statistical relevance, but they do. The
1964 paper is truly remarkable, both by translating statistical concepts in concepts
of Riesz spaces, and in its level of abstraction and generality. Whereas many
mathematical theories evolve in small steps to a higher level, it appears that here Le
Cam has made a giant step, which was not announced in earlier work, by himself
or others.

Some ten out of the 36 pages are used to “indicate the relations between our
description of decision procedures and the more usual ones” [Le Cam (1964a),
page 1420]. This number of pages appears high enough, but this number at the
same time appears to indicate that the claim that “there is no essential difficulty
in returning to the usual system after the main results have been proved” [Le Cam
(1964a), page 1419] is perhaps overstated. On the whole the paper was and is
difficult to understand. It is doubtful that a paper of this content would receive an
enthusiastic reception by the present day board of The Annals of Statistics.
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It would be senseless to describe Le Cam’s framework here in a few pages, but
we do wish to include the exact definitions of the deficiency distance, transitions
and procedures [see, e.g., Strasser (1985) or Torgersen (1991) for extended
introductions]. As we mentioned an experiment E possesses an “L-space” L(E),
which may be taken to be the L1(X,A,µ)-space for a dominating measure
if the experiment is represented through probability measures on a measurable
space (X,A) and dominated. Also it does not make much difference for the
following to replace the L-space by the set L(X,A) of all signed measures
on (X,A), which in general will be bigger than L(E). A transition from an
experiment E into an experiment F is a positive, norm-preserving, linear map
T :L(E)→L(F ) between theL-spaces of the experiments. Given representations
of the experiments E and F through measures on measurable spaces (X,A) and
(Y,B), a transition can be taken to be such a map between the spacesL(X,A) and
L(Y,B) of all signed measures on these spaces, or in the dominated cases between
the associated L1-spaces. In this case any Markov kernel T yields a transition
P �→ T P , as in (7.1), but not every transition need be given by a Markov kernel.

The deficiency δ(E ,F ) can now be defined exactly as in (7.2), but with the
infimum computed over all transitions T between E and F . It can be symmetrized
to a distance 
 on the collection of experiments by defining


(E ,F )= δ(E ,F )∨ δ(F ,E).

Le Cam appears never to have given a name to this distance, but often refers to it
as the “distance 
.” Several authors now refer to it as the Le Cam distance.

One of the nice properties of transitions is that the collection of all transitions
possesses certain compactness properties. [To be more precise, the set of all
transitions into the second dual of L(F ), which is a slightly larger set of operators,
is compact for the topology of pointwise convergence.] This implies, for instance,
that if the deficiency δ(E ,F ) is zero, then the infimum in (7.2) is attained and
hence there exists a transition T such that T Pθ =Qθ for all θ ∈ �. This is true
with Markov kernels only under restrictive assumptions. It can also be shown that
the deficiency between two experiments is determined by the deficiencies between
all finite subexperiments. In fact

δ(E ,F )= sup
I

inf
T

sup
θ∈I

‖T Pθ −Qθ‖,

where the first supremum is taken over all finite subsets I of �. In Section 5
we mentioned that the weak convergence of a sequence of experiments En to
a limit E , which can be expressed in convergence of the likelihood ratio processes,
is equivalent to the convergence to zero, 
(E In ,E

I )→ 0, of the Le Cam distance
between all finite subexperiments. In view of the preceding display the difference
between weak convergence and convergence in the Le Cam distance (“strong
convergence”) is uniformity in finite sets.
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Just as a Markov kernel has a meaning both as a randomization (i.e.,
“transition”) between experiments and as a decision procedure, a transition plays
a double role. In the Wald theory a decision space is a set D, and a statistical
procedure is a Markov kernel from the sample space into the decision space.
Such a Markov kernel T induces a bilinear map on the product L(X,A) × F

of the signed measures on the sample space (X,A) and a given vector space F of
measurable functions f : D → R, given by

(P,f ) �→
∫
X

∫
D

f (y)T (x, dy) dP (x).

A pair (P,1) of a probability measure and the unity function is mapped onto 1.
Le Cam defines a procedure as a bilinear, positive map of norm 1 on L(E)× F ,
where F is a uniform lattice of functions on a given set D. We may view such
a procedure (P,f ) �→ T (P,f ) also as a map P �→ T (P, ·) from L(E) into the set
of positive, norm-preserving, linear maps on F , in other words as a map from L(E)
into the dual space F ∗ of F . Because this dual space is necessarily an L-space, we
can also think of T as a transition of L(E) into F ∗.

Because we have now lost both the law of the observation and the induced
sample distribution of the Markov kernel, we cannot define risk as an expectation.
However, the map (P,f ) �→ T (P,f ) is the abstraction of the integral in the
preceding display. If f = �θ = �(θ, ·) were our loss function, then the map
θ �→ T (Pθ , �θ ) would be the natural candidate risk function of the procedure T . It
may well be that the loss functions �θ are not in the domain F of the procedure.
To accommodate this possibility, the risk function of the procedure T is defined as

R(θ;T )= sup
0≤f≤�θ ,f∈F

T (Pθ , f ).

This can be defined for an arbitrary loss function �: no measurability or
integrability is required. On the other hand, if we are in a setting of measures
on a sample space and procedures are given by Markov kernels, then the new
definition of “risk” will reduce to the old definition of risk as an expectation only
under some regularity conditions (e.g., lower semicontinuity if F is taken to be the
set of bounded, uniformly continuous functions on a metric space).

It is now possible to reread Theorem 7.1. It is correct if the deficiency, risks and
procedures are interpreted according to the preceding definitions.

In general, the set of procedures is larger than the set of Markov kernels.
A simple example illustrating this is the statistical problem of testing a null
hypothesis that an observation X was sampled from the uniform distribution on
[0,1] versus the alternative that it was sampled from one of the Dirac measures δθ ,
for θ ∈ [0,1]. We can take the two-point set {0,1} as a decision space. A Markov
kernel from [0,1] into {0,1} corresponds to the test that rejects the null hypothesis
with probability Tx{1} if x is observed. The error probabilities of this test are

α =
∫ 1

0
Tx{1}dx, β = sup

0≤θ≤1

∫
(1 − Tx{1}) dδθ(x)= sup

0≤θ≤1
(1 − Tθ {1}).
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Of course, it is not possible to test the two hypotheses in a sensible way: every test
has α+β ≥ 1. However, using the Hahn–Banach theorem one can show that there
exists a transition T from the set of all signed Borel measures on [0,1] to the dual
F ∗ = R

2 of F =C({0,1})= R
2 such that

T
(
U [0,1], (0,1))= 0, 1 − T

(
δθ , (0,1)

)= 0 every θ ∈ [0,1].
These numbers give the risk function of the transition and hence must be
interpreted as its error probabilities. It follows that there exists a perfect transition,
even though there is no sensible statistical procedure. [The notation (0,1) is used
to denote the function f : {0,1} → R with f (0) = 0 and f (1) = 1. This is the
loss function under the null hypothesis, the uniform measure. The loss function
under the alternative hypothesis, the Dirac measures, is (1,0). We must have
T (P, (1,0))= 1 − T (P, (0,1)), because T (P, (1,1))= 1 for every transition.]

This is bothersome. The discrepancy between the abstract setting and the
measure-theoretic formulation appears to arise, because a Markov kernel is more
than just a positive, linear map. Apparently, more than intuition may be lost when
viewing a probability measure as an algebraic object, rather than as a recipe
to distribute mass. In the preceding example the discrepancy arises because the
experiment is not dominated. The example appears to indicate that it is not enough
to solve a statistical problem within the abstract formulation, but it is necessary
to translate the solution back into statistical terms. Le Cam had no difficulty in
switching from the abstract to the measure-theoretic setup and vice versa. The fact
that he rarely makes the transition explicit in his writings is one reason that his
work is hard to read.

Is the preceding example a serious challenge to Le Cam’s theory? It is not
a serious statistical example, because it poses a problem that has no solution
in the usual statistical framework. Thus one could argue that Le Cam’s abstract
setting simply allows the discussion and “solution” of a problem that is outside the
scope of the usual framework. This position was taken by David Pollard (personal
communication), who also pointed out that allowing transitions as statistical
procedures is similar to accepting Kolmogorov’s definition of a conditional
expectation in cases where there is no regular version of a conditional law, a widely
accepted practice. On the other hand, the example does appear to warn us not to
stop after solving a problem in Le Cam’s framework, but to pursue its implications
for the usual setup.

While Le Cam would acknowledge a role for measure theory, his main objection
to the usual way of describing statistical experiments is that a given practical
situation might be describable by many different types of sample spaces and “true”
measures. If one happened to choose the “wrong one,” one might get burdened by
technical problems, for no good reason. Furthermore, any experiment in Le Cam’s
sense can be represented as an experiment in the usual way if the sample space is
chosen appropriately [Le Cam (1986), pages 12–13]:
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Thus, as asserted previously, we have not introduced in the abstract framework any
objects which could not be introduced as well in the traditional structure.

Thus one could ask “why then use the abstract framework?” The point is that the above
representation is very special. It is only one of a multitude of possibilities, and the usual
setup where E = {Pθ , θ ∈�} is given by probability measures Pθ on a σ -field A carried
by a set X does not insure that the σ -field A or the set X are selected well enough to
be able to proceed without trouble. The abstract framework avoids the troubles caused
by X or similar sets by ignoring them. However, since many readers may be much more
familiar with the traditional setup, we shall now indicate that it may be used provided
suitable assumptions are duly satisfied.

After discussing such suitable assumptions, Le Cam [(1986), pages 14–15]
continues:

Returning to the why and how of the “abstract” setting given previously, the reader will
easily convince himself that the abstract setting is just meant to ignore the representation
problems described here. The main “statistical” statements elaborated in this book do
not depend on such representations.

One may or may not go along with this philosophical statement. A fact is that
for many mathematical proofs it certainly works to solve the problem at a higher
level of abstraction first, and next try to translate it back. This was a major point of
Le Cam (1964a), repeated in most of his later work. In this review we have spent
relatively little time on the abstract setup, but instead have focused on a selection
of other great ideas, more closely connected to statistics as a part of probability.
It is likely, however, that Le Cam discovered these great ideas from his abstract
viewpoint first. David Pollard (personal communication) pointed out that for Le
Cam, trained in the Bourbaki tradition, the “abstract point of view” might have
been perfectly obvious and natural, so that representations in terms of measures
always were a secondary and perhaps even unnecessary step.

In any case, one must agree that a result such as Theorem 7.1 is mathematically
appealing.

9. Comparison of experiments. Even though the deficiency distance has
strong statistical significance, it has turned out to be hard to use it, because it is
difficult to compute for a given pair of experiments. Among the rare situations
where a more or less concrete representation is possible are group models. For
instance, the deficiency between two full shift experiments E = (P ∗ δh :h ∈ R

k)

and F = (Q ∗ δh :h ∈ R
k) for Lebesgue absolutely continuous probability

measures P and Q on R
k can be written as

δ(E ,F )= inf
M

‖P ∗M −Q‖,(9.1)

where the infimum is taken over all probability measures M . The explanation
for this is given already in Le Cam (1964a): the transitions between a pair of
experiments that are invariant under the action of a group can be chosen to be
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invariant under this action, without changing the value of the infimum defining
the deficiency. In particular, for shift experiments the transitions can be chosen
invariant under translation. It can next be shown that all translation invariant
transitions are representable through convolution in the form T P = P ∗M , for
some measure M .

Le Cam (1964a) proved this invariance property for group models using
the Kakutani fixed point theorem, and later applied the same arguments in his
treatment of Hájek’s convolution theorem and its generalizations, including the
infinite-dimensional convolution theorem of Le Cam (1994). His approach also
led to rigorous, general statements of the Hunt–Stein theorem, and other results
that are well known, but rarely rigorously stated.

If P and Q in the preceding are Gaussian measures, then it can be shown
that the minimizing M in (9.1) can also be chosen Gaussian and hence it is
possible to compute the deficiency exactly. More generally, Torgersen studied
deficiencies between experiments corresponding to (Gaussian) linear models. [See
Torgersen (1991).] These are among the rare examples where the deficiency is
known exactly.

Unlike Torgersen, whose book is titled “Comparison of Statistical Experi-
ments,” Le Cam (1986) presented his book with asymptotics in mind: “Asymptotic
Methods in Statistical Decision Theory.” The scope for the deficiency distance is
considerably wider for asymptotic comparison of experiments. The purpose may
then be to show that
(En,Fn)→ 0 for two seemingly very different sequences of
experiments. The two sequences En and Fn are then called “equivalent.” Risk func-
tions available in En must then also be approximately available in Fn as n→ ∞.

As noted in Section 5, for experiments with finitely many parameters the
weak convergence En → E is equivalent to (or defined by) 
(En,E)→ 0. This
immediately yields many examples of equivalent sequences of experiments.

Another easy example of asymptotically equivalent sequences of experiments
arises from local asymptotic normality. For a LAN sequence (Pn,θ : θ ∈ �) and
every compact K ⊂ R

k,



(
(Pn,θ+δnh :h ∈K), (N(h,J−1

θ ) :h ∈K))→ 0.(9.2)

This goes only slightly beyond the weak convergence of the sequence of
experiments (Pn,θ+δnh :h ∈ R

k) to its Gaussian limit, which is equivalent to
convergence of all finite subexperiments in the Le Cam distance. In (9.2) the finite
sets of parameters are replaced by compact sets.

The asymptotic equivalence (9.2) suffers from the same drawback as the weak
convergence of experiments connected to LAN, in that it gives a local equivalence,
for the original experiments rescaled around a fixed parameter value θ . Generally
the result is valid for every θ and one may next try to glue the different
approximations together into a global one. This was achieved by Le Cam (1975a,
1985a) for independent observations under the assumption of existence of a

√
n-

consistent sequence of estimators. The two-step approach, local approximation
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followed by gluing together using initial estimators, is reminiscent to the one in
his 1960 paper on local asymptotic normality, but it differs at essential points.
In fact, the 1960 paper predates the introduction of the deficiency distance and
hence could not make reference to comparison of experiments. Le Cam [(1985a),
page 234] restates the LAN conditions, roughly requiring:

(A0) existence of
√
n-consistent estimators for θ ;

(A1) the approximation (9.2) holds at every θ .

In fact, he imposes conditions (A0), (A1), (A2) more general than this, allowing
the parameter set to be a general metric space, not necessarily a subset of Euclidean
space. The additional condition (A2) then roughly requires that the local parameter
set is approximable by a finite-dimensional set. He remarks [Le Cam (1985a),
page 234)]:

Les conditions LAN de [Le Cam 1960a] ne sont pas énoncées sous cette forme pour une
raison très simple: Elles ont été écrites en décembre 1957 alors que la distance 
 n’a
été introduite qu’en décembre 1958. Toutefois on peut s’assurer sans grande difficulté
que la construction d’estimateurs asymptotiquement exhaustifs de [Le Cam (1960a)]
dépend essentiellement seulement des conditions (A0), (A1) et (A2). Elle dépend
naturellement beaucoup de (A0). Cette condition a disparu dans ce qu’il est maintenant
convenu d’appeler les conditions LAN (voir par exemple Ibragimov–Has’minskii).
Sans une condition telle que (A0) on ne peut espérer obtenir que des résultats tout
à fait locaux.

For our simplistic LAN situation (2.1), with an open parameter set � ⊂ R
k ,

one type of global approximation can be obtained as follows. Because the normal
distribution depends continuously on its covariance matrix relative to the total
variation distance, the normal distributions N(h,J−1

θ ) in (9.2) can be replaced
by N(h,J−1

θ+δnh) if the matrices J−1
θ depend continuously on the parameter θ . It is

a trivial consequence of the definition of the Le Cam distance and the continuity
of the normal distributions in its parameters, that the asymptotic equivalence (9.2)
then remains valid. (As transitions for comparison of the two normal experiments
we can use the identity, in both directions.) We obtain an approximation by
the heteroscedastic Gaussian experiments (N(h,J−1

θ+δnh) :h ∈ K). This more
complicated approximation has the advantage that the special role of the central
parameter θ diminishes if we rescale back to the original parameter: we may write
the approximation as



(
(Pn,θ ′ : θ ′ ∈ θ + δnK),

(
N(θ ′, δ2

nJ
−1
θ ′ ) : θ ′ ∈ θ + δnK

))→ 0.(9.3)

[The Gaussian experiment in this display is equivalent to the Gaussian experi-
ment (N(δ−1

n (θ ′ − θ), J−1
θ ′ ) : θ ′ ∈ θ + δnK), by sufficiency.] This shows that the

sequences of experiments (Pn,θ : θ ∈�) and (N(θ, δ2
nJ

−1
θ ) : θ ∈�) are asymptoti-

cally equivalent if restricted to (small, shrinking) subsets of the parameter set�. In
general, this does not imply anything about the equivalence of the full experiments.
However, Le Cam (1975a) proved that these local equivalences and in addition the



666 A. VAN DER VAART

existence of estimators that can reduce the global problem to the correct local prob-
lem imply the global equivalence. In the present case we need estimators θ̂n that
are δ−1

n -consistent uniformly in θ .
We shall also need that the LAN approximations (9.2) are valid uniformly in θ ,

for every compact setK , which we shall refer to as uniform LAN. [Such uniformity
follows from uniform versions of the LAN expansion (2.1).]

THEOREM 9.1. Suppose that the sequence of experiments (Pn,θ : θ ∈�⊂ R
k)

is uniformly LAN with invertible matrices J−1
θ that are norm-bounded and depend

uniformly continuously on the parameter. Assume that there exist estimators θ̂n
such that Pθ (‖θ̂n − θ‖ > Mnδn) → 0 uniformly in θ , as n → ∞, for every
sequence Mn → ∞. Then the sequences of experiments (Pn,θ : θ ∈ �) and
(N(θ, δ2

nJ
−1
θ ) : θ ∈�) are asymptotically equivalent.

Surprisingly, a theorem of this type cannot be found in Le Cam (1975a). Most
of this paper is concerned with proving the existence of estimators θ̂n satisfying
the condition of the theorem, in the case of independent observations. One of
the seven sections addresses the global equivalence. It contains the key theorem
that glues the local approximations together given the estimator sequence θ̂n,
but this theorem is not applied to any concrete case. This is odd, because in the
introduction to the paper Le Cam motivates the search for conditions for existence
of suitable preliminary estimators θ̂n exactly by the fact that they are needed for
global approximations. Le Cam [(1975a), page 13]:

The idea that “when the number of observations is large” such a family can be
approximated by a Gaussian family of distributions occurs in the remarkable paper
Wald (1943). Subsequently the present author suggested that asymptotically sufficient
estimates providing the kind of approximation described by Wald can often be obtained
by a two steps “adaptive” procedure as follows. One first finds a good but rough
estimate θ̂ of the value of θ . Then, in the vicinity of the estimated value, one
approximates the logarithms of likelihood ratios by a suitable quadratic expression. One
proceeds as if the quadratic expression was obtained from the logarithms of likelihood
ratios of an actual Gaussian family of measures.

Perhaps Le Cam found the preceding theorem too obvious a corollary to state it, or
perhaps he did not want to state a corollary that was not in its final form. He must
have known the theorem already in 1975.

Le Cam took up the problem of global approximation again in Le Cam (1985a).
A good part of this paper is concerned with generalizations of (9.2) to situations
where the parameter set� is allowed to be a general metric space, subject to certain
dimensionality restrictions, and hence where there is no nice finite-dimensional,
linear, local parameter set. Some of these generalizations concern models that are
infinite-dimensional in the usual sense. In other examples � is Euclidean, but the
statistical model requires an infinite-dimensional Gaussian approximation.
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One particular example of the second type is the location model generated by
the density p(x)= c exp(−|x|α) for 0< α < 1/2. If Pn,θ is the distribution of an
i.i.d. sample of size n from the density x �→ p(x − θ), then the local experiments
(Pn,θ+δnh :h ∈ K), for δn = n−1/(1+2α) and a compact interval K ⊂ R, converge
(in the Le Cam distance) to the experiment consisting of observing a Gaussian
process (Xt : t ∈K) with continuous sample paths and

EhXt = Cθ
(|h|1+2α − |t|1+2α − |h− t|2α+1),

cov
h
(Xs,Xt )= Cθ

(|s|1+2α − |t|1+2α − |s − t|2α+1).
An intuitive explanation is that the process X is the limit in distribution of the log
likelihood ratio process under Pn,θ+δnh [see Prakasa Rao (1968), Pflug (1983) or
Janssen, Milbrodt and Strasser (1985)]. The convergence of experiments is noted
in Le Cam [(1969), pages 110–111]. The Gaussian process X is highly nonlinear
in the arguments (h, t). The resulting Gaussian experiment is a (nonlinear) one-
dimensional curve within an infinite-dimensional Gaussian experiment.

We shall turn to Le Cam’s 1985 result on global approximation. Let (Pθ : θ ∈�)
be an experiment with arbitrary parameter set �. For simplicity we assume that it
is dominated by a σ -finite measure µ. Let H be the Hellinger distance, defined by
its square

H 2(θ, θ ′)= 1
2

∫ (√
pθ − √

pθ ′
)2
dµ.(9.4)

Assume that, for any sequence (θn, θ ′
n) ∈�2 such that nH 2(θn, θ

′
n) is bounded and

every ε > 0,

nPθn

∣∣∣∣∣
√
dPθ ′

n

dPθn
− 1

∣∣∣∣∣
2

1

{∣∣∣∣∣
√
dPθ ′

n

dPθn
− 1

∣∣∣∣∣> ε√n
}

→ 0,

nPθ ′
n
(dPθn = 0)→ 0.

(9.5)

These conditions replace the LAN condition. The first condition in the display is
a Lindeberg condition that ensures that the variables

√
dPθ ′

n
/dPθn − 1 satisfy the

central limit theorem. In view of Le Cam’s second lemma (see Section 12) this
gives the asymptotic normality of the sequence of log likelihood ratios.

We define the dimension numbers “D(τ) of� for the pair (H, τ )” in Section 10.
For an initial understanding of the following theorem it suffices to know that
they are uniformly bounded if � under H is metrically smaller than a subset of
a Euclidean space, for instance if k‖θ − θ ′‖α ≤H(θ, θ ′)≤K‖θ − θ ′‖α for some
positive constants k, K and α > 0.

THEOREM 9.2. Assume that (9.5) holds and that the dimension D(τ) of �
for the pair (H, τ ) is uniformly bounded in τ . Then there exists a sequence of
Gaussian experiments Fn with parameter set � that is asymptotically equivalent
to the sequence En = (P nθ : θ ∈�).
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Le Cam [(1985a), Théorème 4.3] proves a somewhat more general result,
allowing the parameter set � to depend on n, and experiments with an arbitrary
number of observations, which need not be identically distributed.

In general, the Gaussian experiments Fn do not have a simple description,
as in Theorem 9.1. Le Cam defines an experiment (Qθ : θ ∈ �) to be Gaussian
if the measures Qθ are mutually absolutely continuous and the log likelihood
ratios process log(dQθ/dQθ0) is a Gaussian process under Qθ0 (for some θ0
and then for all θ0). Every Hilbert space V indexes a “canonical” Gaussian
experiment (Gv :v ∈ V ), and it can be shown that any Gaussian experiment arises
as a subexperiment of such a canonical experiment. Taking this for granted for the
moment we can describe the experiments Fn.

Le Cam (1985a) constructs the experiments Fn in the preceding theorem as
follows. Let V be the set of all discrete signed measures with finitely many support
points on �. We can define inner products on V by

〈v1, v2〉n = 4n
∫ ∫ ∫ √

pθ
√
pη dµdv1(θ) dv2(η).

For the semi-pre-Hilbert space V we can construct a canonical experiment
(Gn,v :v ∈ V ) (see below). Next we embed � into V through the map θ �→
δθ − δθ0 , for some arbitrary θ0 ∈ �, where δθ is the Dirac measure at θ . This
defines Fn as the subexperiment Fn = (Gn,δθ−δθ0 : θ ∈�).

In order to define the canonical experiment (Gn,v :v ∈ V ) let (Zn,v :v ∈ V )
be an isonormal Gaussian process indexed by (V, 〈·, ·〉n): a mean zero Gaussian
process with covariance cov(Zn,v1,Zn,v2) = 〈v1, v2〉n. If this Gaussian process
is defined on the probability space (F,U,Gn,0), then the canonical Gaussian
experiment can be defined as (F,U,Gn,v :v ∈ V ) with Gn,v defined through its
density relative to Gn,0 given by

dGn,v

dGn,0
= eZn,v−(1/2)‖v‖2

n.

This is very general, but also somewhat abstract. In particular, we do not
immediately regain the simple Gaussian experiments with Euclidean sample
spaces, which arise from LAN. This results from the fact that a given experiment
may have many representations: two experiments E and F that do not look alike
at all may well be equivalent in the sense that 
(E ,F )= 0.

Another way of describing the canonical Gaussian experiment would be to say
that it consists of observing the process (Xn,w :w ∈ V ) forXn,w =Zn,w+〈w,v〉n,
where v is the unknown parameter. The marginal distributions of this process
are multivariate normal with covariance matrix the identity and the parameter v
appearing only in the mean vector, in a linear fashion. Thus the experiment can be
termed linear, homoscedastic Gaussian. Any Gaussian experiment can be written
in this form, for some Hilbert space V and the parameter ranging over some subset
of V .
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In that particular representation the observation takes its values in the sample
space R

V , which is of very high dimension. To reduce the dimensionality of the
observation we may restrict the index to a subset W of V . In particular, we might
use a subset W ⊂ V that permits an isonormal Gaussian process (Zn,w :w ∈W)
with bounded, uniformly continuous sample paths, relative to the norm onW ⊂ V .
If the closed linear span of W contains V , then we can also describe the canonical
experiment as consisting of observing (Zn,w + 〈w,v〉n :w ∈ W). This process
takes its values in the sample space UC(W) of uniformly continuous functions
on W , and can be termed a Brownian motion process with linear drift. If we are
interested in the restriction of the experiment to a subset V0 ⊂ V of parameters, we
can reduce W accordingly to a subset whose closed linear span contains V0, down
to a finite set if V0 is finite dimensional.

Because 〈v1, v2〉n = n〈v1, v2〉1 for every v1, v2 ∈ V , the process Zn,v can be
constructed as

√
nZ1,v . By rescaling the observation we can also describe the

Gaussian experiment as observation of the process (n−1/2 + Z1,w + 〈w,v〉1 :
w ∈W).

Thus the approximating Gaussian experiments can be described in many ways.
Which representation is the most useful one depends on the purpose of the
approximation. Linear, homoscedastic representations may seem easiest to handle,
but if the dimensionality of the Gaussian experiment is large, or the parameter is
restricted to a nonlinear subset, classical decision theory for Gaussian experiments
may be insufficient to yield the desired results. It is fortunate that LAN leads to
such simple Gaussian experiments, at least locally.

The experiments (N(θ, δ2
nJ

−1
θ ) : θ ∈�) are, in general, not Gaussian according

to Le Cam’s definition. They are (curved) exponential families of degree two.
In Chapter 14 of his 1986 book, Le Cam studies approximations by exponential
families, without, according to his own words, reaching the same depth as for the
asymptotically Gaussian case.

Even though the preceding theorem also covers certain infinite-dimensional
situations, Le Cam’s (1975a, 1985a) main focus appears to be the finite-
dimensional models. It was not until recently that it was discovered that similar
techniques can be applied to the usual infinite-dimensional statistical models
of interest. A breakthrough was obtained by Nussbaum (1996) following work
by Brown and Low (1996), and this has motivated several developments in the
past years. We do not intend to review these developments, but we do include
a discussion of Nussbaum’s result, as it is an important recent motivation for
studying Le Cam’s writings.

Nussbaum considers the problem of estimating a density f on the unit interval
[0,1] based on an i.i.d. sample of size n. The density is known to be bounded
above and below by given constants and to satisfy a uniform Lipschitz condition
of order α > 1/2: for some L,

|f (x)− f (y)| ≤ L|x − y|α.(9.6)
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The sequence of experiments En obtained by letting n→ ∞ can be approximated
by a sequence of Gaussian experiments. As we noted, Gaussian experiments
can be represented in many equivalent ways. In the present case a convenient
concrete representation is as follows. Let the experiment Fn consists of observing
a stochastic process (Xt : t ∈ [0,1]) taking its values in the space C[0,1] and
possessing the same law as∫

[0,t]
f 1/2(s) ds + 1

2n
−1/2Wt,

for Wt a standard Brownian motion process.

THEOREM 9.3. Let the experiments En and Fn be as described previously
with parameter set equal to the collection of all probability densities f on the unit
interval [0,1] ⊂ R satisfying the Lipschitz condition (9.6) and minx f (x)≥ η for
given positive constants η, L. Then 
(En,Fn)→ 0 as n→ ∞.

Nussbaum’s proof of this result follows the same principle as Le Cam’s proof
of the preceding theorems. First it is shown that for every fixed f a local
experiment around f can be approximated by a Gaussian experiment. Next the
local approximations are glued together in a global approximation through the use
of an estimator with an appropriate convergence rate.

A closer look reveals two important differences. First the local experiments used
in Theorems 9.1 and 9.2 are within the range of contiguity, which means not bigger
than of the order 1/

√
n in the Hellinger distance, in the case of i.i.d. observations.

This is good enough in that case, because there exist initial estimators that attain
this rate of convergence, for instance in view of Theorem 10.2 discussed in the next
section. In truly infinite-dimensional situations the best estimators do not possess
such a fast rate of convergence. As a result it is necessary to obtain equivalence for
larger local experiments, before proceeding to the second part of the argument,
pasting the local experiments together. A second augmentation of Le Cam’s
approach is in the pasting argument. Le Cam’s argument [e.g., Proposition 8,
page 78 of Le Cam (1986), or Theorem 1 on page 23 of Le Cam (1975a)] is
completely general, without requiring an i.i.d. setup, but does appear to work only
for models of bounded metric dimension. Nussbaum’s argument uses the i.i.d.
nature of the experiment by splitting the experiment in two independent halves
and works without dimensionality restrictions.

The importance of Theorem 9.3 lies, besides in its intellectual interest, in that
it relates seemingly different experiments in a very strong sense. The Gaussian
experiments do involve observation of a drifted Brownian motion and may not
be as simple as one might wish. However, the parameter n, which has the
complicated role of product size in the original experiments, enters the Gaussian
experiments in a transparent way as a scalar measuring the noise level. Moreover,
computations for the Gaussian model, which can be reduced to independent
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Gaussian variables by sufficiency, are relatively easy. In any case, for several
models for the parameter f of interest (e.g., Hölder or Besov balls) the “Gaussian
white noise model” had been studied prior to 1996 for many years, particularly
by the Russian school in statistics [e.g., Ibragimov and Khasminskii (1977),
Pinsker (1980)]. The theorem allows one to transfer known results for the Gaussian
experiments, such as minimax bounds and constants, to the problem of density
estimation, under some conditions. More recent work has achieved the same for
other problems besides density estimation.

10. Metric entropy. In the last decade a number of authors have worked on
nonparametric or semiparametric estimation from the perspective of complexity of
a statistical model. These authors were interested in minimum contrast estimators
[e.g., van de Geer (1993), Wong and Shen (1995), Birgé and Massart (1993, 1998)]
or posterior distributions [e.g., Ghosal, Ghosh and van der Vaart (2000)] and
complexity is measured through entropy numbers. The use of entropy numbers
to bound the risk of estimators goes back to Le Cam, who introduced metric
dimension in statistics in Le Cam (1973a), made significant progress in Le
Cam (1975a), and was a great inspiration for further work in France, in particular
that of Birgé (1983).

Le Cam himself did not have great interest in minimum contrast estimators
(compare the remarks on his attitude to maximum likelihood in Section 11),
but focused on obtaining upper and lower bounds for rates of convergence
of estimators or posterior distributions, expressed in the metric entropy of the
parameter set. The title of his 1973 paper “Convergence of estimates under
dimensionality restrictions” reflects his view of metric entropy as a means of
moving away from the usual parametric models to more general models, still
restricted by dimensionality. Birgé (1983) showed that the approach could lead
to completely general results that can cover both parametric models, where the
dimension is fixed and the rate of convergence for a canonical distance is “always”
the square root of the number of observations, and general nonparametric statistical
models, such as classes of densities restricted by smoothness.

A concept of metric entropy was defined by Kolmogorov and Tikhomirov
[(1961); Russian original (1959)], and was studied subsequently for numerous
metric spaces. This concept was used by Dudley (1967) to give sufficient
conditions for continuity of Gaussian processes, and was the basis for striking
generalizations of Donsker’s theorem on the weak convergence of the empirical
process. For the statistical purpose mentioned previously the concept can be used
in its original form, but it is not quite the right concept. Instead Le Cam introduced
a concept of metric dimension, which could be described as a “local entropy.”

DEFINITION 10.1. Given a positive number τ the dimensionD(τ) of a metric
space � with metric H for the pair (H, τ ) is the smallest number D such that for
every δ ≥ τ every set of diameter 2δ can be covered by no more than 2D sets of
diameter δ.
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According to this definition we may obtain many “dimensions”D(τ) of�, if we
vary the number τ . To understand this, it is useful to consider the case of a subset�
in R

k , where, for simplicity we take the supremum norm ‖θ‖∞ = maxi |θi |.
A k-dimensional ball (i.e., hypercube) of radius δ can be covered by 2k hypercubes
of radii δ/2. (We just cut each of the k axes in two.) It follows that, for any τ > 0,
the dimensionD(τ) of a set�⊂ R

k for the pair (‖ · ‖∞, τ ) is bounded above by k.
Thus Le Cam’s dimension numbers are bounded above by the “true” dimension of
the set in this case.

The title of Section 16.5 in Le Cam (1986), from where we copied the
preceding definition and the following results, is “Estimates for Finite Dimensional
Parameter Spaces.” This may be somewhat misleading, because the results concern
the situation where the dimension numbers D(τ) are finite for every τ , but
not necessarily bounded. Finiteness of the function τ �→ D(τ) implies some
restrictions on the size of �, but allows � to be infinite-dimensional in the usual
sense.

This becomes clearer if the dimension numbers are related to Kolmogorov’s
metric entropy. Let N(δ,�,H) be the minimal number of balls of radius δ > 0
needed to cover the set�. Every set of diameter 2δ fits into a ball of radius 2δ, and
a covering of such a ball by balls of radii δ/2 gives a covering by sets of diameter δ.
Thus

D(τ)≤ sup
θ∈�

sup
δ≥τ

N
(
δ/2, {θ ′ ∈� :H(θ ′, θ)≤ 2δ},H )≤N(τ/2,�,H).

The right-hand side is finite for every τ > 0 if and only if the set � can be
covered by finitely many balls of an arbitrarily small radius. This is equivalent
to the compactness of the metric completion of �. Many sets � that are ordinarily
considered to be infinite-dimensional meet this criterion. For example, for the set
of all monotone densities θ : [0,1] → [0,10] andH the Hellinger distance the right
side of the display is of the order 1/τ as τ → 0, whereas for densities θ : [0,1] → R

whose root has α uniformly bounded derivatives it is of the order (1/τ )1/α.
Finiteness of Le Cam’s dimension numbers requires less than compactness.

We state one typical theorem showing the existence of certain estimators
attaining a rate of convergence that is upper bounded through Le Cam’s dimension
numbers. For clarity we state the theorem for the case of i.i.d. observations, so that
it gives a rate in terms of the number of observations, and will be concerned with
a rate of convergence only. The theorem can be found in Le Cam [(1986), page
498 or 505] in a more general situation and as an explicit upper bound on the risk.

We look for an estimator θ̂n for a parameter θ contained in an arbitrary set �
based on n i.i.d. observations from a density pθ relative to a given measure. The
metric of choice is the Hellinger distance, whose square is given in (9.4). This
particular distance is chosen, because it guarantees the existence of certain tests.
Other distances could be used, but the tests should be derived explicitly and the
result will be particular to the sitation at hand [cf. Donoho and Liu (1991) for
examples].
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THEOREM 10.2. For every sequence of numbers εn ↓ 0 such that D(εn) ≤
nε2
n for every n there exist estimators θ̂n and a constantC such that EθH 2(θ̂n, θ)≤

Cε2
n for every θ ∈�.

For instance, for truly finite-dimensional models of dimension k we derive the
rate εn = k/

√
n, because D(εn) ≤ k = n(k/

√
n)2 = nε2

n. For a big model with
local entropy of the order (1/ε)1/α we obtain the rate εn = n−α/(2α+1), because
this is the minimal solution of the equation (1/εn)1/α ≤ nε2

n. These are rates for
the Hellinger distance. For irregular parametric models these may well translate
into different rates (also faster than 1/

√
n) for the parameter in a natural distance

on the parameter set. Characteristically, concrete examples of models and the
corresponding rates are not given by Le Cam (1986) or Le Cam (1975a). It is
necessary to read Birgé (1983, 1986) to be able to appreciate what is being done
here. According to Birgé (personal communication), Le Cam was aware of the
applications to infinite-dimensional problems as early as the 1970s, but this is not
readily apparent from Le Cam’s writing.

Estimators as in the preceding theorem are constructed explicitly by Le Cam
and Birgé (1983), but appear not to be very practical. The recent work mentioned
at the beginning of this section shows that similar results can be obtained for more
natural estimators defined through a minimization criterion, such as least squares
or maximum likelihood. The drawback of such “natural” approaches is that they
only can be proved to work under more restrictive conditions. For instance, the
simple condition on the metric dimension of the theorem is replaced by an integral
condition involving the larger bracketing entropy of the form∫ εn

0

√
logN[](ε, {θ :H(θ, θ0)≤ 2ε},H)dε ≤ nε2

n.

[For the notation see, e.g., van der Vaart and Wellner (1996), Section 3.4.] This is
partly a theoretical problem of getting a proof done, but is also due to an inherent
instability of defining a procedure through a global search for a “peculiarity” of
a contrast function (i.e., its point of extremum). The brackets are needed to have
a better control of the contrast function, and the integral comes in, because the
minimum contrast searches a continuous parameter set. The entropy criterion of
Theorem 10.2 is simpler, because Le Cam’s approach solves the problem of finding
estimators in steps: it starts by selecting first a suitable net of approximations over
the parameter set, and next picks the best element of this set by a testing argument.
Recently, researchers have returned to this idea of using sieves [often credited to
Grenander (1981), but present in Le Cam (1960a, 1969)], and it is likely to play an
important role in methods for model selection.

The question arises if the general rates given by the preceding theorem are
sharp. This is the case, under some conditions, as was shown by Birgé (1983). In
contrast, the rates obtained by Le Cam for posterior distributions [Le Cam (1986),
pages 509–529], using similar methods, appear to be sharp only under restrictive
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dimensionality conditions. Recent work [Ghosal, Ghosh and van der Vaart (2000)]
appears to indicate that this is because a completely metric entropy based approach
is not feasible in this case, but an augmentation of Le Cam’s methods does give
the desired results.

11. Central dogmas of statistics. Le Cam was no fan of the method of
maximum likelihood. His 1960 paper on local asymptotic normality offered
an alternative class of estimators with the properties that maximum likelihood
estimators were thought to have. He writes [Le Cam (1960a), page 94]:

This author is firmly convinced that a recourse to maximum likelihood is justifiable
only when one is dealing with families of distributions that are extremely regular. The
cases in which m.l. estimates are easily obtainable and have been proved to have good
properties are extremely restricted. One of the purposes of this paper is precisely to
deëmphasize the role of m.l. estimates. Since, however, the m.l. estimates seem to
exert a quasi-hypnotic attraction, a comparison of the results obtained herein with those
obtainable for m.l. estimates is given below.

He kept this skepticism towards the centerpiece of Fisherian statistics through-
out his career. His 1990 paper “Maximum likelihood: An introduction” [Le Cam
(1990a)] is essentially a list of examples where maximum likelihood estimators
do not exist, are not unique, or not consistent. His major book of 1986 hardly
mentions the method of maximum likelihood. In a short section of his 1986 book
the problems of the method are highlighted and Le Cam writes [Le Cam (1986),
page 622]:

The terms “likelihood” and “maximum likelihood” seem to have been introduced by
R. A. Fisher who seems also to be responsible for a great deal of propaganda on the
merits of the maximum likelihood method.

In view of Fisher’s vast influence, it is perhaps not surprising that the presumed
superiority of the method is still for many an article of faith promoted with religious
fervor. This state of affairs remains, in spite of a long accumulation of evidence to the
effect that maximum likelihood estimates are often useless, or grossly misleading.

This is notable, as Le Cam’s LAN theory is often viewed informally as showing
that maximum likelihood estimators are asymptotically normal and efficient.

On the other hand, Le Cam contributed throughout his career to the investigation
of conditions under which the method of maximum likelihood does work. This
culminated in his paper Le Cam (1970b), which we discuss in Section 12.

Le Cam was milder towards Bayesian methods, but mostly because of the
important role that Bayesian procedures play within the Wald decision theory. He
writes [Le Cam and Yang (1990), page 165]:

We have not taken a stand on Bayesianism as a philosophy. [. . .] Contrary to often
expressed opinions, Bayes’ approach had not disappeared from Statistics in the second
quarter of the 20th Century. It was quite alive in most places except those that seem to
have fallen under the influence of Fisher. It can certainly be used as shown here, but in
practical situations it should be used with extreme caution.
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The “extreme caution” should be understood in the context of the chapter, which
contains a discussion of the inconsistency of many posteriors. Le Cam’s relative
preference of Bayesian over maximum likelihood methods does not reflect a truly
Bayesian spirit. Decision theory, based on expectations over sample spaces, was
central to his thinking, and priors featured in this as generators of procedures, not
as expressions of subjective beliefs.

The word “likelihood” is not often used by Le Cam, and rarely in the way many
statisticians write about “likelihood.” In his discussion of the book by Berger and
Wolpert (1988) on the likelihood principle, Le Cam discerns two bodies of theory.
The type 1 statistical theory centers around an experiment, and the mathematical
model for it, a set of probability measures. [The following quotes are from
Le Cam’s discussion, published in Berger and Wolpert (1988), pages 182–185.2.]

This kind of endeavor has given us the Neyman–Pearson theory and Wald’s theory
of “statistical decision functions.” One can readily claim that the whole enterprise is
misguided, but it does seem to have a role to play in certain endeavors, like planning
experiments, settling arguments that involve several scientists and odd questions such
as “is methotrexate effective in the treatment of colon cancer.”

There is another body of theory, call it “type 2,” that deals with axioms of coherent
behavior and principles of evaluation of evidence. Some of it, and perhaps most of
it, has to do with what “one” should “think” after the results of the experiments have
become known.

In a strictly mathematical view of the problem, there is no overlap between the two
approaches because “type 1” does not have any probabilities to play with once the dice
have been cast.

Here the situation is complex because “type 1” theories have given proofs that
“experiments” are characterized by the distributions of their likelihood functions. Also
it is a standard result of “type 1” theories that Bayes procedures, or their limits form
complete classes. A main difference is that the “type 1” theories insist that they are
about risk functions, not possible interpretations of single posterior distributions.

This author presumes that there is some value in some of “classical statistics” and also
in the likelihood principle, but feels that one cannot support the practical application of
either (or of other theories) on purely mathematical grounds. One should keep an open
mind and be a bit “unprincipled.”

Le Cam’s most important objection to Berger and Wolpert’s type 2 theory is that
it is based on a notion of “evidence” attached to a pair (E,x) of an experiment and
an observation, which is not clearly defined and cannot be used in arguments as if
it were a mathematical function.

I have, of course, no objection to a theory of “evidence” based on a function of pairs
(E,x). It just fails to connect properly with my own intuitive notion of what evidence
is. Therefore I do not feel bound in practice by the theorems derived from such a theory.

In summary I remain opposed to the apparent normative aspect of a theory that says
that I must abide by the LP when I am unable to put my emotion and various bits of
knowledge, or lack of knowledge, into it.
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12. Mathematical beauties. In this last section we draw attention to a few
contributions, where Le Cam did not introduce a new statistical idea, but treated
a classical subject with amazingly pretty mathematical techniques. Thus he
showed that mathematical statistics does not have to consist of theorems whose
statement, carefully including a long list of dreary regularity conditions, is longer
than the proof.

First consider local asymptotic normality in the case of i.i.d. observations. As
we noted the LAN expansion can be derived by a Taylor expansion under Cramér
type conditions. This would involve at least two derivatives of the maps θ �→ pθ(x)

and domination conditions on the second partial derivative. Some years after
introducing LAN Le Cam found that the expansion is actually valid given a single
derivative of the root density θ �→ p

1/2
θ .

Let the observations be an i.i.d. sample X1, . . . ,Xn from a density pθ
relative to some σ -finite measure µ on the measurable space (X,A) indexed by
a parameter θ in an open subset �⊂ R

k .

THEOREM 12.1. Assume that there exists a measurable function �̇θ :X → R
k

such that, as h→ 0,∫ [
p

1/2
θ+h − p

1/2
θ − 1

2h
T �̇θ p

1/2
θ

]2
dµ= o(‖h‖2).(12.1)

Then the experiments (P nθ : θ ∈ �) are LAN (2.1) at θ with δn = n−1/2, Jθ =
Pθ �̇θ �̇

T
θ and


n,θ := 1√
n

n∑
i=1

�̇θ (Xi).

Even though �̇θ is now defined through a derivative in quadratic mean, it must
still be interpreted as the usual score function of the model, and Jθ as the usual
Fisher information. This follows from the fact that, under regularity conditions,
∂/∂θ p

1/2
θ = 1

2 (∂/∂θ logpθ)p
1/2
θ . It is possible to give sufficient conditions for the

differentiability of θ �→ p
1/2
θ in terms of ordinary derivatives and domination or

continuity conditions [see the appendix of Hájek (1972)], but the differentiability
in quadratic mean is not only prettier, but also exactly right for getting the LAN
expansion. Furthermore, it can be the basis for getting the asymptotic normality of
maximum likelihood estimators or posterior distributions. (See below.)

The most remarkable feature of Theorem 12.1 is that it derives the quadratic,
that is, second degree, expansion of the likelihood (2.1) from the existence of
a single derivative of the map θ �→ p

1/2
θ . This is connected to the dual expression

of the Fisher information as the variance of a score and minus the expectation of
the derivative of the score, but is a good deal deeper. See Pollard’s contribution to
Le Cam’s Festschrift [Pollard, Torgersen and Yang (1997)] for a further discussion.
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The preceding theorem appears to be given for the first time in Le Cam (1966),
embedded in a treatment of the more general situation of experiments consisting
of observing a sample of independent variables (not necessarily asymptotically
normal), and after preliminary work by Hájek in the special case of location
models. The theorem is intimately connected to Le Cam’s second lemma, obtained
in Le Cam (1960a) and so named by Hájek and Šidák (1967). An extended version
of this lemma specialized to i.i.d. observations [see Le Cam (1969), Proposition 1,
page 47] asserts that, for a scaling rate δn such that nH 2(θ + δnhn, θ)=O(1) for
every converging sequence hn, the approximation

log
n∏
i=1

pθ+δnh
pθ

(Xi)= 2
n∑
i=1

(√
pθ+δnh
pθ

(Xi)− 1

)
+ constant + oP (1)

can be valid only if the random variables on both left-hand and right-hand sides
of this display are asymptotically normal. Such asymptotic normality (for every h)
does not by itself imply LAN, because the random part of the limiting Gaussian
process may not be linear in h, with the appropriate relationship to the quadratic
part, as required by LAN. The linearization of the map h �→ p

1/2
θ+δnh guaranteed by

the differentiability (12.1) provides this linearity.
Rather than (12.1) one might require that, for some matrix Jθ , and uniformly

in g, h running through compacta,

n

∫ (√
pθ+δng − √

pθ
)(√

pθ+δnh − √
pθ
)
dµ→ 1

4gJθh.(12.2)

Then it will follow that δn = φ(n)/
√
n for a slowly varying function φ. If this

function φ can be chosen equal to 1, (12.2) holds, and nPθ+δnh(pθ = 0) → 0
for all θ , then it can be deduced that (12.1) holds for almost every θ [see
Le Cam (1969), pages 96–100, in particular the bottom of page 100]. One
might conclude that for i.i.d. observations the differentiability (12.1) is intimately
connected to the scaling rate 1/

√
n.

The asymptotic normality of posterior distributions, known as the Bernstein–
von Mises theorem, occupied Le Cam’s attention as early as 1953, when he
proved a version of this theorem. After explaining that the theorem is really due to
Laplace, Le Cam and Yang [(1990), page 165] write:

Fisher, whose work [(1922), (1925)] parallels that of Laplace in more than one way,
does not seem to have added results on the behavior of posterior distributions. This
may be because he did not view kindly the use of prior distributions and substituted
a philosophy based on “fiducial probabilities.” These seem to have been introduced as
a result of a logically erroneous argument.

Le Cam (1953) revived Laplace’s argument. He used the convergence of posterior
distributions to obtain a sort of asymptotic minimax theorem, and an asymptotic
admissibility result for the one dimensional case. The conditions used there are very
strong.
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The “very strong conditions” were just the typical Taylor expansion type
conditions in the spirit of Cramér. The following theorem is much nicer and can be
deduced from Théorème 2 on pages 131–132 of Le Cam (1969), or from Chapter 7
in Le Cam and Yang (1990). We consider the i.i.d. case and make some simplifying
conditions to bring out the essence of Le Cam’s approach. It does apply more
generally to locally asymptotically normal models, and can probably be used in
other cases as well.

Let the observations be an i.i.d. sample X1, . . . ,Xn from a density pθ relative
to some σ -finite measure µ satisfying (12.1) at every point in a set � ⊂ R

k and
such that the maps (θ, x) �→ pθ(x) are measurable. We shall also assume that Jθ is
nonsingular for every θ , that the map θ �→ Jθ is continuous and that the parameter
is identifiable, that is, the map θ �→ Pθ is one-to-one.

The posterior density relative to a prior measure K is given by

B �→ P�̄n|X1,...,Xn
(B)=

∫
B

∏n
i=1 pθ(Xi) dK(θ)∫ ∏n
i=1 pθ(Xi) dK(θ)

.

THEOREM 12.2 (Laplace–Bernstein–von Mises–Le Cam). Suppose that for
some compact neighborhood �0 ⊂ � of θ0, there exists a sequence of tests φn
such that

P nθ0
φn → 0, sup

θ /∈�0

P nθ (1 − φn)→ 0.(12.3)

Furthermore, let the prior measure be absolutely continuous in a neighborhood
of θ0 with a continuous positive density at θ0. Then the corresponding posterior
distributions satisfy

∥∥P√
n(�̄n−θ0)|X1,...,Xn

−N(
n,θ0, J
−1
θ0
)
∥∥ Pnθ0→ 0.

Again no second or higher order derivatives of pθ relative to the parameter
are needed. A further simplification of the theorem is obtained by assuming � to
be compact. Then the condition (12.3) on existence of tests is trivially satisfied,
because we can choose �0 =�.

It is customary to write the Bernstein–von Mises theorem with a different
“centering sequence.” Under conditions somewhat stronger than we have imposed
so far, the maximum likelihood estimators θ̂n satisfy

√
n(θ̂n − θ)−
n,θ

Pnθ→ 0.

If this is true, then by the invariance of the total variation norm under location
and scale changes and the continuity of the normal distribution as a function of its
mean value, the assertion of the theorem can be written∥∥∥∥P�̄n|X1,...,Xn

−N

(
θ̂n,

1

n
J−1
θ0

)∥∥∥∥ P
n
θ0→ 0.
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Whereas Wald would have written the maximum likelihood estimator, Le Cam
would rather steer us away from this. The advantage of Le Cam’s formulation
is that maximum likelihood estimators need more regularity conditions for good
behavior.

In Section 11 we noted that Le Cam was critical of the method of maximum
likelihood, which in his view looks for a “peculiarity” of the likelihood function.
This did not prevent him from investigating conditions under which the maximum
likelihood estimator does have the properties that are usually ascribed to it.
Le Cam’s 1970 paper is a thorough investigation of the relationships between
different sets of conditions related to the differentiability in quadratic mean of
a density θ �→ pθ . The discussion is complicated by the choice not to make the
usual simplifying assumptions, such as an open parameter set, differentiability at
every point of the parameter set, and positive and continuous Fisher information.
Le Cam’s (1970b) results on the asymptotic normality of the maximum likelihood
estimator for parameters of dimension 2 or higher are interesting, but the most
remarkable result concerns maximum likelihood estimators of one-dimensional
parameters. His main result, Proposition 6 in the last section of Le Cam (1970b)
has a long list of assumptions, but all of these are due to the choice to be as general
as possible. The result is clearly a final one on the one-dimensional case.

The following theorem is a corollary of Le Cam’s Proposition 6. Characteris-
tically for Le Cam’s writing, such a simple corollary is not included in his paper,
with the result that Proposition 6 has been ignored by many authors in the past
30 years.

We consider again the setup of an i.i.d. sample from a density pθ relative
to some measure µ on some measurable space. The parameter set � is now
assumed to be a sub-interval of the real line, which we shall first assume to be
compact. Under the conditions of the following theorem there exist versions of
the densities pθ such that the processes θ �→ pθ(Xi) are separable. It is to be
understood that the likelihood is constructed from such a version.

THEOREM 12.3. Let �⊂ R be a compact interval and assume that the map
θ �→ p

1/2
θ is differentiable in quadratic mean (12.1) with continuous, positive

Fisher information Jθ . Then if the data are sampled from pθ for an interior point θ
of �, there exist maximum likelihood estimators θ̂n and the sequence

√
n(θ̂n − θ)

is asymptotically normal with mean zero and variance 1/Jθ .

The compactness assumption is unpleasant. Le Cam does not assume this, but
assumes instead that the set {t :H 2(Pt ,Pθ) ≤ ε} is bounded for some ε > 0 and,
with the supremum taken over all partitions of �,

sup
θ0<θ1<···<θm

∑
i

H 2(Pθi ,Pθi+1) <∞.
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This helps a little, but generally some sort of compactness assumption cannot be
removed without addressing the problem of consistency first, possibly by different
methods, not discussed by Le Cam (1970b).

Other relaxations allowed by Le Cam’s Proposition 6 concern the differentiabil-
ity in quadratic mean (for a result under θ it is not necessary to impose the differ-
entiability throughout the interval), and the continuity and existence of the Fisher
information [it suffices that limt→0H

2(Pθ+t , Pθ )/t2 exists in a neighborhood of
the true θ and that this true θ is a Lebesgue point of the resulting function].

Acknowledgments. Rudy Beran, Lucien Birgé, David Pollard and Jon Well-
ner were very kind to read the present paper, to point out mistakes and to provide
additional comments. I am very grateful for their support.
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