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DISCONTINUOUS REGRESSION SURFACES FITTING

BY PEIHUA QIU

University of Minnesota

We suggest a three-stage procedure to recover discontinuous regres-
sion surfaces when noisy data are present. In the first stage, jump
candidate points are detected using a jump detection criterion. A local
principal component line is then fitted through these points in a neighbor-
hood of a design point. This line provides a first-order approximation to
the true jump location curve in that neighborhood. In the third stage,
observations on the same side of the line as the given point are combined
using a weighted average procedure to fit the surface at that point. If
there are no jump candidate points in the neighborhood, then all observa-
tions in that neighborhood are used in the surface fitting. If, however, the
center of the neighborhood is on a jump location curve, only those observa-
tions on one side of the line are used. Thus blurring is automatically

Ž Ž � .2 .avoided around the jump locations. This methodology requires O N k
computation, where N is the sample size and k� is the window width. Its
assumptions on the model are flexible. Some numerical results are pre-
sented to evaluate the surface fit and to discuss the selection of the
window widths.

1. Introduction. This paper provides a methodology to fit discontinuous
Ž .regression surfaces DRSs in the presence of noisy data. Geologists, for

example, often need to estimate mine surfaces from mineral samples. Be-
cause of the earth’s movement, the mine surface often splits into several
segments. It is important to know the split locations of the mine surface so
precautionary actions can be taken to reduce accidents. In image processing,

Ž .the image intensity function has step discontinuities called step edges at the
� Ž .�outlines of the objects Gonzalez and Woods 1992 . Since much of the

information in an image is conveyed by the edges and our eye�brain system
has evolved to extract edges by preprocessing that begins right at the retina
� Ž . �Bracewell 1995 , Chapter 5 , edge detection and edge-preserving image
reconstruction are important topics in image analysis. From a statistical
viewpoint, each of these problems can be regarded as an application of DRSs
fitting. We find similar problems in many other application fields, such as
meteorology and oceanography.

Figure 1b displays a noisy data set. The original regression surface is
shown in Figure 1a. It has jumps along a circle. If we ignore the jump
structure, then ‘‘blurring’’ is present in the surface fitting around the jump
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Ž . Ž . Ž .FIG. 1. a The true regression surface; b the noisy data; c the conventional kernel surface fit;
Ž .d the fitted surface by our discontinuity-preserving procedure.

Ž .positions Figure 1c . Our purpose is to reduce such blurring or to make the
Ž .surface fitting be discontinuity preserving Figure 1d . Additional discussion

of these plots is found in Section 6.
Image reconstruction is essentially the same problem as DRS fitting except

that the image intensity function usually takes discrete values while the
response variable in the regression set-up is generally continuous. In most
situations, this is not a big difference, since the value of the intensity function

Žmost often has 256 levels corresponding to an eight-bit record in computer
.memory . However, two-color images or images with more than two colors

also play an important role in image processing, especially in statistical
image analysis. For further discussion about types of images, see Switzer
Ž . Ž .1986 or Section 7.4 of Cressie 1991 .

When the image has a limited number of colors, discriminant analysis is a
natural choice to classify each pixel as the most probable color type. An
obvious drawback of this method is that it ignores the relationship among
neighboring pixels. Several modifications exist in the literature to partially

� Ž .overcome this difficulty: such as pre- or post-smoothing Switzer 1983 ,
Ž .�Switzer, Kowalick and Lyon 1982 or the use of contextual information

� Ž .�Owen 1984 . Among the possible modifications that have been proposed,
Ž .Markov random field MRF methods have become an active research area in

recent years. The true image is assumed to be a MRF, or equivalently, has a
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Ž .Gibbs distribution. Geman and Geman 1984 suggest reconstructing the
Ž .image by maximizing a posteriori MAP with a restoration algorithm which

is based on stochastic relaxation and annealing. Discontinuities are preserved
Ž .by using a line process. Besag 1986 suggests maximizing the marginal

posterior distribution at each pixel by using the iterated conditional modes
Ž . Ž .ICM algorithm. See Besag, Green, Higdon and Mengersen 1995 for a
discussion of recent developments in this area, especially for image recon-

Ž .struction with Markov chain Monte Carlo McMC .
Another kind of image reconstruction method uses a regularization frame-

� Ž .�work approach Titterington 1985 . Under this framework, the recon-
structed image is a solution of a minimization problem. The minimization
criterion usually consists of two terms. The first term measures the distance
between candidate image and data. The second term measures the smooth-
ness of the candidate image or the interaction among neighboring pixels. A

�smoothing parameter controls their trade-off. Several authors Sinha and
Ž . Ž . Ž .�Schunck 1992 ; Li 1995 ; Yi and Chelberg 1995 suggest choosing this

parameter locally to accommodate discontinuities. If a pixel is on or close to a
jump location curve, as judged by the estimates of derivatives around that
pixel, then the smoothing parameter is chosen to be zero or very small. This
kind of regularization method is closely related to the maximum-entropy

� Ž .� � Ž .�methods Titterington 1985 and the Bayesian methods Li 1995 . For
Ž .image reconstruction in emission tomography, see Green 1990 and O’Sulli-

Ž .van 1995 and references cited there.
A natural way to recover the DRS is to initially detect the jump location

Ž .curves JLCs and then to fit the regression surface separately in regions
separated by the JLCs. In order to recover the surface in connected regions,
the estimated JLCs should also have compact forms. To achieve this, some
assumptions on the JLCs are needed. When the number of JLCs is known
and the population candidate JLCs is also known, the best candidates by
some criterion could be chosen from the population as estimates of the JLCs

� Ž .by solving a minimization problem Muller and Song 1994 ; O’Sullivan and¨
Ž .� Ž .Qian 1994 . In the case that there is only one JLC, Qiu 1997 suggested a

so-called rotational difference kernel estimator of the JLC by using a rotation
Ž .transformation. Korostelev and Tsybakov 1993 investigated several kinds of

design and jump boundaries. They suggested approximating the JLCs by
piecewise polynomials and then estimating the coefficients by maximum

Ž .likelihood estimation. Rudemo and Stryhn 1994 studied two types of two-re-
gion image models with a univariate boundary representation and suggested
a nonparametric histogram-like contour estimator. When the JLCs are com-

Ž .pletely known, Shiau, Wahba and Johnson 1986 fit the DRS by partial
spline method.

In this paper, we introduce another approach to fit the DRS that reduces
computational requirements while providing greater generality by weakening
some of the assumptions traditionally found in the literature. The methodol-
ogy consists of three steps. First, we detect a set of possible jump positions
Ž .we call them jump candidate points with a jump detection criterion. These
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jump candidate points may not form curves. This kind of flexibility allows us
not to impose restrictive conditions on the JLCs. Second, we fit a local

Ž .principal component PC line through the jump candidate points in a neigh-
borhood of a design point. This PC line can be regarded as a first-order
approximation to the true JLC. The third stage uses only observations on the
same side of the line as the given design point and combines them using a
weighted average procedure to estimate the DRS. As a consequence, blurring
is avoided in the neighborhood of JLCs. In the continuous regions, however,
very few or no jump candidate points are detected in the neighborhood of
each design point. Consequently, almost all observations in the neighborhood
are actually used in the surface fit, making the fit the conventional local
smoothing estimate.

The MRF methods and other related Bayesian methods generally require
Ž .the following assumptions: 1 a prior distribution is assumed on the real

Ž . Žimage; 2 the observations have a known conditional distribution usually
. Ž .Normal distribution conditional on the real image; and 3 a correlation

Ž .structure such as MRF is assumed on the real image. Some non-Bayesian
methods assume various structure on the JLCs. For example, O’Sullivan and

Ž .Qian 1994 assumed the JLCs to be ‘‘smooth, simple and closed’’ curves.
Ž .Muller and Song 1994 assumed that the population of the JLCs was known.¨

Ž .Qiu 1997 assumed that there was only one JLC and the JLC satisfied the
Ž .Lipschitz 1 condition. The JLCs were assumed to have a univariate repre-

Ž . Ž .sentation in Rudemo and Stryhn 1994 . Shiau, Wahba and Johnson 1986
assumed the JLCs to be completely known. All of these non-Bayesian meth-
ods require that the number of JLCs should be known beforehand.

As more structure is assumed on the jump locations, the fitting of the jump
surface becomes easier. But some real applications are excluded at the same
time. Part of the purpose of this paper is to develop a method to fit the jump
surface under mild conditions on the jump locations. We do not assume any
prior distribution on the real image and on the observations. The assump-
tions we impose on the JLCs are also more general.

From a computational point of view, most Bayesian methods are designed
for images with only several colors. One reason behind this is the process of
maximizing a posteriori which is a main part of the Bayesian image recon-

Žstruction. If the number of image colors is large for most images, this
. Žnumber is 256 or the color is continuous this latter case is what interests us

.in this paper , then the maximization process at each pixel requires extensive
computation. There are two maximization processes involved in the method

Ž .suggested by Muller and Song 1994 . One is to maximize the difference of the¨
directional limits with respect to the direction at each point on the JLC, and
the second is to search for the optimal JLC candidate from the candidate
population. Each of these two processes requires extensive computation. In

�the minimax estimation of the jump boundary Korostelev and Tsybakov
Ž .�1993 , it is difficult numerically to compute the coefficients of the piecewise
polynomials by using the maximum likelihood estimation. The algorithm

Ž Ž � .2 .suggested in this paper requires O N k computation, where N is the
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sample size and k� is the width of the neighborhood. This property makes it
appropriate to handle large data sets.

One-dimensional discontinuous regression curve fitting is discussed by
Ž .many authors. McDonald and Owen 1986 suggested the ‘‘split linear

Ž .smoother’’ algorithm. Hall and Titterington 1992 proposed a method to
detect the jumps by establishing some relations among three local linear

Ž . Ž . Ž .smoothers. Muller 1992 , Qiu 1994 , Qiu, Asano and Li 1991 , Wu and Chu¨
Ž .1993a, b , among many others, discussed various kernel-type methods.

Ž .Eubank and Speckman 1993 treated the one-dimensional discontinuous
Ž .regression model as a semiparametric model. Loader 1996 suggested a jump

Ž .detector based on local polynomial kernel estimates. Qiu and Yandell 1998
Ž .suggested detecting jumps based on local least squares fits. Wang 1995

detected jumps with wavelet transformations.
This paper is organized as follows. In next section, we discuss detection of

the jump candidate points. In Section 3, the local PC line is introduced. The
DRS fit is discussed in Section 4. Properties of the surface fit are discussed in
Section 5. In Section 6, we present some numerical results concerning the

Žgoodness-of-fit and the selection of window widths. The final section Section
.7 contains some concluding remarks.

2. Detection of the possible jumps. Most edge detection methods can
be used as the first step in our three-stage DRS fitting procedure. The
proposal presented below is only one possibility. We use it here because we
know some of its theoretical properties and have the required software. For
an overview on edge detection techniques in image processing, please read

Ž . Ž .Bhandarkar, Zhang and Potter 1994 , Gonzalez and Woods 1992 , Qiu and
Ž . Ž . Ž .Bhandarkar 1996 , Rosenfeld and Kak 1982 , Torre and Poggio 1986 and

the references cited there.
Suppose that the regression model concerned is

2.1 z � f x , y � � , i , j � 1, 2, . . . , n ,Ž . Ž .i j i j i j

�Ž . Ž . 4where x , y � i�n, j�n , i, j � 1, 2, . . . , n are equally spaced design pointsi j
� � � � � 4 2in 0, 1 � 0, 1 , � are i.i.d. errors with mean 0 and unknown variance � ,i j

Ž . 2f x, y is an unknown nonparametric regression function, and N � n is the
�sample size. We further assume that there exists a partition � , i � 1, 2,i

4 � � � � Ž .. . . , s of the design space 0, 1 � 0, 1 such that: 1 each � is a connectedi
Ž . s � � � � Ž . Ž .region in the design space; 2 � � � 0, 1 � 0, 1 ; 3 f x, y is continu-i�1 i

ous in � ��� , for i � 1, 2, . . . , s, where �� denotes the boundary point seti i i
Ž . �Ž � � . �4of � and 4 there exist at most finite points x , y , j � 1, 2, . . . , s ini j j

� s � �Ž . Ž .� Ž � � . �� �� � 0, 1 � 0, 1 such that for each point x , y , j � 1, 2, . . . , s ,i�1 i j j
� � � 4 Ž . Ž � � . � �there are � , � � � , i � 1, 2, . . . , s satisfying 1 x , y � �� � ��j1 j2 i j j j1 j2

Ž . Ž . Ž .� � � � � �and 2 lim f x, y � lim f x, y . WeŽ x, y .� Ž x , y ., Ž x, y .� � Ž x, y .� Ž x , y ., Ž x, y .� �j j j1 j j j2

� s � �Ž . Ž .� Ž .call D � � �� � 0, 1 � 0, 1 the jump location curves of f x, y .i�1 i
Ž .A point x, y is defined as a singular point of the JLCs if it is on a JLC

and satisfies any one of the following three conditions.
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1. There exists some constant � � 0 such that for any 0 � � � � the0 0
Ž .neighborhood of x, y with diameter � is divided into more than two

connected regions by the JLCs.
Ž .2. There do not exist two orthogonal lines crossing at x, y such that two

opposite quadrants formed by these two lines belong to two different
Ž .regions separated by a JLC in a neighborhood of x, y .

Ž . �Ž � � . �43. x, y is one of x , y , j � 1, 2, . . . , s .j j

Ž . ŽThe above condition 1 actually defines cross points of the JLCs Figure
. Ž . Ž .2a . Condition 2 corresponds to acute angles of the JLCs Figure 2b . The

Ž � � . � Ž � � .jump magnitude is 0 at x , y , for j � 1, 2, . . . , s , if x , y is not a crossj j j j

Ž . Ž .point of the JLCs. When a JLC has a unique tangent line at x, y Figure 2c
Ž . Ž . Ž .or a JLC has an obtuse angle at x, y Figure 2d , x, y is a nonsingular

�Ž � � . �4point as long as it is not one of x , y , j � 1, 2, . . . , s .j j
Ž .A natural way to detect a jump at x , y is to consider two small regionsi j

Ž .on two different sides of x , y along some direction. The absolute differencei j

of the weighted averages of the observations in these two regions could be
maximized with respect to the direction. This maximized value could be used

� Ž . Ž .�as a jump detection criterion Muller and Song 1994 ; Qiu 1997 . However,¨
this maximization procedure requires extensive computation. Instead, we

Ž .suggest using the following least squares LS coefficients to approximate the
gradient direction of the regression surface and then to detect jumps.

Ž . Ž . Ž . Ž .FIG. 2. a Point x, y is a cross point of several JLCs; b a JLC has an acute angle at x, y ;
Ž . Ž . Ž . Ž .c a JLC has a unique tangent line at x, y ; d a JLC has an obtuse angle at x, y . The point
Ž . Ž . Ž . Ž . Ž .x, y is a singular point in cases a and b . It is a nonsingular point in cases c and d , as

�Ž � � . �4long as it is not one of x , y , j � 1, 2, . . . , s .j j
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Ž .At any design point x , y , l � 1 	 i, j 	 n 
 l, we consider its neighbor-i j
Ž . �Ž . 4hood N x , y � x , y , s, t � 
l, 
l � 1, . . . , 0, . . . , l 
 1, l with win-i j i�s j�t

dow width k � 2 l � 1 � n, where l is a nonnegative integer. A least squares
plane is fitted in this neighborhood,

ˆŽ i , j. ˆŽ i , j. ˆŽ i , j.z x , y � � � � x 
 x � � y 
 y , x , y � N x , y .Ž . Ž . Ž . Ž . Ž .î j 0 1 i 2 j i j

Ž .Qiu and Yandell 1997 proved the following results.

Ž . Ž .THEOREM 2.1. In model 2.1 , suppose that f x, y has continuous first-
Ž . Ž .order partial derivatives over 0, 1 � 0, 1 except on the JLCs at which the

first-order right and left partial derivatives have limits. The window width k
Ž .satisfies the conditions that lim k � � and lim k�n � 0. Let x, y ben�� n��

Ž . Ž . Ž .a point in 0, 1 � 0, 1 . If x, y is not on any JLC, then when n is large
enough,

'n log log k
�Ž i , j.�̂ � f x , y � O a.s.Ž .1 x 2ž /k

and
'n log log k

�Ž i , j.�̂ � f x , y � O a.s.,Ž .2 y 2ž /k
ˆŽ i, j. ˆŽ i, j. Ž . Ž .where � and � are the LS coefficients in N x , y and x , y is the1 2 i j i j

Ž . Ž .design point that is closest to x, y . If x, y is on a JLC and it is not a
singular point, then

'n log log k
�Ž i , j. Ž i , j.�̂ � f x , y � h C x , y � 	 C x , y � O a.s.Ž . Ž . Ž .1 x i j 1 1 x 2ž /k

and

'n log log k
�Ž i , j. Ž i , j.�̂ � f x , y � h C x , y � 	 C x , y � O a.s.,Ž . Ž . Ž .2 y i j 2 2 y 2ž /k

Ž . Ž .where x , y is the design point that is closest to x, y among the designi j
Ž . Ž .points on the same side of the JLC as x, y ; C x, y is the jump magnitude of

Ž . Ž . Ž . Ž .f x, y at x, y ; C x, y and C x, y are the jump magnitudes of the firstx y
Ž . Ž . Ž i, j.order x and y partial derivatives of f x, y at x, y , respectively; h and1

hŽ i, j. are two constants satisfying2

2 22 Ž i , j. Ž i , j. 2''3n k � 1 � 4k 	 h � h 	 3 2 n k � 1 � 2k ;Ž . Ž . Ž . Ž .Ž . Ž .1 2

	 and 	 are two constants between 
1 and 1.1 2

2Ž .'In Theorem 2.1, the term O n log log k �k is due to the noise. We can
ˆŽ i, j. ˆŽ i, j.see that the slopes � and � carry both the continuous and the jump1 2
Ž .information. When x, y is on a JLC and it is not a singular point, the

Ž i, j. Ž . Ž i, j. Ž .leading terms in slopes are h C x, y and h C x, y which are of order1 2
� Ž i, j. Ž i, j.ˆ ˆŽ .n�k and tend to infinity when n increases. Consequently, v � � , �i j 1 2

Ž .can be regarded as the approximate direction of jump at x, y . We should
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ˆŽ i, j. ˆŽ i, j. Ž i, j.point out that some quantities used in this paper such as k, � , � , h1 2 1
and hŽ i, j. depend on n. For simplicity, we did not make this explicit in2
notation. Their meaning should be clear from the context.

Ž . Ž .We then consider two neighboring design points x , y and x , yN 1 N 1 N 2 N 2
�along the direction of v with neighborhoods nonoverlapping but adjacent toi j

Ž . Ž . Ž .N x , y on either side cf. Figure 3 . If x, y is a nonsingular point of a JLCi j
Ž . Ž .and x , y is the design point closest to x, y , then as a direct conclusion ofi j

Ž . Ž .Theorem 2.1, N x , y and N x , y are on two different sides of thatN 1 N 1 N 2 N 2
JLC when n is large enough.

Ž .An obvious criterion to detect a jump at x , y is then to use thei j
Ž . Ž .difference of the averages of the observations in N x , y and N x , y .N 1 N 1 N 2 N 2

That is, we can use
� � �
 � z 
 z ,i j N 1 N 2

Ž . Ž .where z and z are the sample means in N x , y and N x , y ,N 1 N 2 N 1 N 1 N 2 N 2
respectively.

Ž .EXAMPLE 2.1. Let f x, y � I where I is the usual indicator func-� x � 0.54 ��4
Ž . �Ž . 4tion. Then f x, y has a unique JLC: x, y : x � 0.5, 0 	 y 	 1 with con-

stant jump magnitude 1. Figure 4a shows a cross section of this function at
Ž Ž .y � 0.5 a three-dimensional plot of f x, y could be found in Figure 9a in
. 2 � � � �Section 6 . Consider a sample of size 100 in design space 0, 1 � 0, 1 and

let k be 9. If the noise in the data is ignored, then 
 � in the cross section ofi j
y � 0.5 are shown in Figure 4b by the dotted curve.

Ž . Ž . Ž .FIG. 3. For design point x , y , its two neighboring design points x , y and x , yi j N 1 N 1 N 2 N 2
Ž .are defined as the ones whose neighborhoods are adjacent to N x , y on either side along thei j

�direction of v .i j
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Ž . Ž . Ž .FIG. 4. a A cross section of f x, y � I at y � 0.5. b The solid and dotted curves� x � 0.54
represent 
 and 
 � , respectively, in the cross section of y � 0.5.i j i j

� �Ž . 4By using 
 , design points in the band x, y : 0.37 � x � 0.63, 0 	 y 	 1i j
could possibly be detected in the case of Example 2.1, since the jump
information makes their 
 � values quite large. Consequently, the detectedi j

jumps are relatively thick. We suggest using the following criterion:

� � � �2.2 
 � min z 
 z , z 
 z ,Ž . ½ 5i j i j N 1 i j N 2

Ž .where z is the sample mean in N x , y .i j i j
In the case of Example 2.1, 
 in the cross section of y � 0.5 are shown ini j

Ž .Figure 4b by the solid curve. We can see that when x , y is far away fromi j
Ž . Ž .the JLC such that there are no jumps in N x , y , N x , y andi j N 1 N 1

Ž . Ž .N x , y , then 
 is small. If x , y is close to the JLC, then 
 isN 2 N 2 i j i j i j

relatively large. By using criterion 
 , the detected jumps are relatively thin.i j
�Ž . 4Design points outside the band x, y : 0.46 � x � 0.54, 0 	 y 	 1 are

not likely to be detected. We also notice that 
 is less than 
 � around thei j i j

JLC. Therefore it could lead to a relatively conservative jump detection by
using 
 .i j

Ž . Ž .For a constant b � 0, if no jumps exist in N x , y � N x , y �i j N 1 N 1
Ž .N x , y , thenN 2 N 2

� �P 
 � b 	 P z 
 z � bŽ . ž /i j i j N 1

Ž i , j. Ž i , j.ˆ ˆ� �� E P z 
 z � b � , � .½ 5ž i j N 1 1 2 /
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It is not hard to check that both z and z are approximately uncorrelatedi j N 1
Ž i, j. Ž i, j.ˆ ˆwith � and � and z 
 z is approximately normally distributed1 2 i j N 1

2 2Ž .with mean 0 and variance Var z 
 z � 2� �k . Therefore a naturali j N 1
threshold value for 
 isi j

'2 �̂
2.3 b � Z ,Ž . � �2nk

where � is a consistent estimate of � and Z is the 1 
 � �2 quantileˆ � �2 nn

of the standard normal distribution. Relationship between Z and � can� �2 nn

be described by

2 2'2� Z � 1 � Z exp 
Z �2Ž . Ž .� �2 � �2 � �2n n n

2'	 � 	 2� �Z exp 
Z �2 .Ž .n � �2 � �2n n

ˆ �Ž .Design points in D � x , y : 
 � b are then flagged as jump candidaten i j i j
points.

THEOREM 2.2. Under the conditions in Theorem 2.1, if :

Ž . � � pi E � � �, p � 4;11
Ž .ii lim Z �log n � �;n�� � �2n
Ž . Ž 2� p.iii lim Z �n � 0;n�� � �2n
Ž . Ž 2� p.iv 0 � lim k�n � �,n��

ˆ 
1�2� pŽ . Ž . � � �then d D � DD , D � DD � O n , a.s., where DD � � , 1 
 � � � , 1H � n � �

� �Ž . 	Ž . Ž .	 Ž .
 � � x, y : x, y 
 x
, y
 � � , x
, y
 is some singular point of the
4 Ž . 	 	 Ž .JLCs , � is any constant in 0, 0.5 , � is the Euclidean norm and d AA, BBH

denotes the Hausdorff distance between two point sets AA and BB which is
Ž . Ž 	 	 	 	.defined by d AA, BB � max sup inf � 
 � , sup inf � 
 � .H � � AA � � BB � � BB � � AA

The proof of Theorem 2.2 is given in Appendix A.
The domain DD defined in Theorem 2.2 excludes the border area of the�

ˆdesign space and the neighborhoods of the singular points. In DD , D con-� n
verges almost surely to D in Hausdorff distance by Theorem 2.2. Most local
smoothing methods share the ‘‘boundary problem.’’ When the regression
function is continuous, several proposals have been suggested in the litera-

� Ž . Ž .�ture to handle this problem e.g., Gasser and Muller 1979 ; Rice 1984 .¨
When the regression function is discontinuous, further research is needed to
detect jumps in the border area. In our simulation study presented in Section
6, we use a ‘‘padding’’ method to overcome this difficulty. In the case of jump
detection around singular points, future research is also needed.

Ž . Ž .In Qiu and Bhandarkar 1996 and Qiu and Yandell 1997 , there is some
related discussion about edge detection based on LS coefficients. Two postpro-

Ž .cessing procedures suggested by Qiu and Yandell 1997 can be applied to the
Ž . Ž .edge detection procedure 2.2 and 2.3 to delete two kinds of deceptive jump

Ž .candidates. In Qiu and Yandell 1997 , we compared the performance of our
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edge detectors with two popular edge detectors in image processing litera-
� Ž . �ture: Sobel Rosenfeld and Kak 1982 , Section 10.2 , and Laplacian of

� Ž .�Gaussian Marr and Hildreth 1980 .

3. First-order approximation to the JLCs. At the completion of the
first stage, the possible jump positions are known. In regions without jump

Žcandidate points, the regression surface could be fitted as usual by using
.kernel method, spline method or others . In regions with the jump candidate

points, however, special treatment is necessary.
Ž .First of all, we introduce some notation. Consider a design point x , yi j

� Ž . �Ž . � �4and its neighborhood N x , y � x , y : s, t � 
l , . . . , 0, . . . , l withi j i�s j�t
window width k� � 2 l� � 1. The values of k� and l� could be different from
k and l introduced in the previous section. The jump candidate points in that

�Ž . 4 Ž .neighborhood are denoted by w , v , r � 1, 2, . . . , m . We use W, V tor r
�Ž . 4denote a vector variable taking values over w , v , r � 1, 2, . . . , m ; w, v, �r r w w

and � to denote the sample means and variances of w ’s and v ’s; � tov v w v
denote their covariance.

Most jump candidate points are in the bands centered at the JLCs with
'width 2 k�n when n is large enough, since these points have high probabil-

ity for large jump detection criterion. The closer to the JLCs, the denser the
jump candidate points tend to be because more jump information is involved.

2 2Ž . Ž .We then search for a line a W 
 w � b V 
 v � 0 with a � b � 1 such
that

˜3.1 Var a W 
 w � b V 
 v � min Var a W 
 w � b V 
 v ,Ž . Ž . Ž . Ž . Ž .Ž . ˜Ž .
2 2˜a �b �1˜

Ž . Ž Žwhere Var � denotes the sample variance. An extreme case is that Var a W
. Ž ..
 w � b V 
 v � 0. In that case, all jump candidate points are on the line

Ž . Ž .a W 
 w � b V 
 v � 0.
Ž . Ž .The vector a, b determined by 3.1 is actually the second principal

Ž .component PC , the normalized eigenvector of the smaller eigenvalue of the
Ž . Ž . Ž .covariance matrix of W, V . The line a W 
 w � b V 
 v � 0 is the usual

PC line which indicates the direction that the jump candidate points have the
biggest dispersion. After some calculations, that line turns out to be
3.2 � W 
 w � � 
 � V 
 v � 0,Ž . Ž . Ž . Ž .w v 1 w w

where
2 2'� � � � � 
 � 
 � � 4� 2Ž .1 w w v v w w v v w vž /

Ž .and � is the smaller eigenvalue of the covariance matrix of W, V .1
It is not hard to check that � 
 � 	 0. Hence the PC line has an1 w w

Ž .increasing trend when w ’s and v ’s are positively correlated � � 0 and vicew v
versa. This is intuitively reasonable.

THEOREM 3.1. Besides the conditions stated in Theorems 2.1 and 2.2, we
� � Ž .suppose that lim k �n � 0 and lim k�k � 0. If x , y is the closestn�� n�� i j

design point to a given nonsingular point P on a JLC at which the JLC has a
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� Ž .unique tangent line, then the principal component line in N x , y convergesi j

to the tangent line at P both pointwise and in direction with probability 1. The
Ž 
1�2� p.convergence rate could be O n .

The above result establishes the first order approximation to the JLCs of
the local PC lines. Second or higher order approximation might also be
possible. However, this kind of generalization is not trivial. It might relate to

� Ž .�the curve�surface description in computer-aided design Farin 1993 . We
leave this issue to future research. The proof of Theorem 3.1 is given in
Appendix B.

4. Fit the jump regression surfaces. Observations on the same side of
the PC line as a selected design point are then combined as a weighted
average to fit the regression surface. The subscripts of these design points are
determined by the following set:

� s, t : � x 
 w � � 
 � y 
 v  0,Ž . Ž .Ž .� Ž .w v i�s 1 w w j�t

� �s, t � 
l , . . . , 0, . . . , l ,4
if � x 
 w � � 
 � y 
 v  0;Ž .Ž . Ž .w v i 1 w w j�4.1 S x , y �Ž . Ž .i j

s, t : � x 
 w � � 
 � y 
 v � 0,Ž . Ž .Ž .� Ž .w v i�s 1 w w j�t

� �s, t � 
l , . . . , 0, . . . , l ,4�
otherwise.

Different smoothing methods could be used here to average the observa-
tions. For simplicity of presentation, we apply the kernel smoothing method.

Ž . � �Let K x, y be a bivariate kernel function defined on 
L�2, L�2 �
� � Ž .
L�2, L�2 with L � 0 a constant. Then the surface fit at x , y is definedi j
by

Ý K Ls�k� , Lt�k� Z IŽ .s , t i�s , j�t �Ž s , t .� SŽ x , y .4i jˆ4.2 f x , y � .Ž . Ž .i j � �Ý K Ls�k , Lt�k IŽ .s , t �Ž s , t4� SŽ x , y .4i j

� Ž .When there are no jump candidate points in N x , y , then � andi j w v
� 
 � are both zero. By the above procedure, all observations are actually1 w w
used in the surface fitting. If the number of jump candidate points is very

Žsmall such that no JLS is possible in the neighborhood e.g., in the case that
.several jump candidate points exist in a corner of the neighborhood , then few

observations are dropped from the surface fit. Although our procedure works
well in these cases, we still suggest making a judgment to insure that a JLC

Žis possible in the neighborhood e.g., by the fact that the number of jump
� .candidate points is more than, say, k �2 before finding the PC line. The

computation involved in each of such judgments is much less than the
amount involved in finding the PC line. This could save considerable compu-
tation time since most design points are not jump candidate points. We also

Žwant to mention that the first two stages namely, detecting the jump
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.candidate points and defining the local PC lines of the three-stage procedure
could be updated from one design point to the next because only a few points
change. That will further reduce computation time.

5. Consistency of the fitted surface.

THEOREM 5.1. Besides the conditions in Theorems 2.1, 2.2 and 3.1, sup-
Ž .pose that f x, y has continuous second-order partial derivatives in the contin-

Ž .uous regions and the kernel function K x, y satisfies the conditions that:

Ž . Ž . Ž . � � � �i K x, y � 0 for x, y � 
L�2, L�2 � 
L�2, L�2 ;
Ž . L �2 L �2 Ž .ii H H K x, y dx dy � 1;
L �2 
L �2

Ž . L �2 Ž . L �2 Ž .iii H K x, y x dx dy � H K x, y y dx dy � 0.
L �2 
L �2
Ž . 2Then the surface fit 4.2 is uniformly L consistent in

� 	 	DD � DD � x , y : x , y 
 x
, y
 � � ,� Ž . Ž . Ž .� �

x
, y
 is some point on the JLCs ,4Ž .
Ž 
4�3. � Ž 2�3.for any constant 0 � � � 0.5. The convergence rate is O n if k � O n .

2 Ž 
1 . � � Ž 1�2 .The surface fit is L consistent with rate O n in DD � DD if k � O n .� �

Proof of Theorem 5.1 is given in Appendix C.
Ž .The above result basically says that the surface fit 4.2 behaves as well as

� Ž .the conventional kernel estimator in the continuous regions cf. Stone 1982
�for the optimal convergence rates for nonparametric regression . In the

neighborhood of the JLCs, however, it sacrifices some convergence rate
because we only use part of the observations in the surface fit. This result is

Ž .compatible with that of Theorem 5.1 in Muller and Song 1994 .¨

6. Simulation study. We present our simulation study in three parts.
In Section 6.1, accuracy of the fitted surface of the three-stage surface-fitting
algorithm is evaluated by continuing our discussion about the example of
Figure 1. Its performance around a singular point of the JLCs or when the
jump magnitude is small is investigated in Section 6.2. The algorithm is
applied to a global topographical elevation dataset in Section 6.3.

6.1. Numerical performance of the fitted surface. We study the numerical
performance of the three-stage algorithm by revisiting the example of Figure

Ž .1 first. The data in Figure 1b is from model 2.1 for equally spaced design
�Ž . Ž . 4 Ž 2 .points x , y � i�n, j�n , i, j � 1, 2, . . . , n , with errors from N 0, � ,i j

Ž . Ž .2 Ž� � 0.5 and n � 100. The regression function f x, y � 
2 x 
 0.5 
 2 y
.2

2 2 2
 0.5 � I . It has jumps at the jump location curve�Ž x
0.5. �Ž y
0.5. 	 0.25 4

Ž .2 Ž .2 2x 
 0.5 � y 
 0.5 � 0.25 with constant jump magnitude 1.
The product of two Epanechnikov kernels is used in our simulation as the

bivariate kernel function needed in the local average procedure of the algo-
9 2 2Ž . Ž .Ž .rithm. That is, K x, y � 1 
 x 1 
 y I . The signifi-�Ž x, y .��
1, 1���
1, 1�416

Ž . Ž .cance level � in 2.3 is set to be 0.001. Mean squared error MSE is used ton
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Ževaluate the surface fit. Figure 5 shows the MSE values all MSE values used
. �in this section are averages of 100 replications for several k and k . As we

expected, for a fixed k value, MSE decreases and then increases as k�

increases. The window width k� works as a tuning parameter to balance
‘‘underfit’’ and ‘‘overfit.’’ The minimal MSE with respect to k� depends on k.
Thus we do need to balance the values of k and k�. If k is very small, few
jumps are detected. In that case, the accuracy of our surface fit is almost the
same as that of the conventional kernel surface fit. If k is too large, many
false jumps are detected. That could deteriorate the surface fitting since
many observations are not used in the fitted surface. The overall minimal

Ž � .MSE with respect to both k and k is about 0.008 which corresponds
to k � 9 and k� � 15. Figure 1d shows one realization of the surface fit in
this case. Figure 1c shows the conventional kernel surface fit with window
width 15.

Figure 5 also shows that when k� is too small or too large, MSE is not
sensitive to the value of k. This implies that the surface fit would not change
much with or without using our discontinuous surface fit procedure. This is
also shown in Figure 6. The solid curve in Figure 6 represents MSE values of
the surface fits from our procedure with k � 9. The dotted curve denotes the
MSE values of the conventional kernel surface fits. The optimal MSE of the

FIG. 5. MSE values with several k and k�.
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FIG. 6. The solid line represents the MSE values of the surface fits of the discontinuity-preserving
algorithm with k � 9. The dotted line denotes the MSE values of the conventional kernel sur-
face fits.

conventional kernel fit is 0.0128. The optimal MSE of our procedure explains
62.5% of that value. Since the MSE values are calculated in the entire design
space, our procedure does improve the accuracy of the fitted surface much.

In the algorithm, we use the so-called ‘‘padding’’ method to define neigh-
borhoods of the design points in border area. That is, we expand the design
space in such a way that an ‘‘observation’’ in the expanded area takes the
same value as the observation in the original design space which is closest to
it. The expanded design space should be large enough to define neighborhoods
of all design points in the border area of the original design space.

The 2.5 and 97.5 percentiles of 100 replications of the surface fit in the
cross section of y � 0.5 are plotted in Figure 7a with the lower and upper
dashed curves, respectively. These two percentiles are defined by the third
smallest and the third largest fits of the 100 replications. The solid curve is
the cross section of the regression surface. The dotted curve is the average of
the 100 fits. We can see that the averaged fit and the percentiles all have
sharp breaks nearby the true jump locations. But these breaks are about 0.01
Ž � .less than 1�10 of k �n away from the true jumps. This amount of differ-
ence could be explained by the curvature of the jump location curve. If we
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FIG. 7. The lower and upper dashed curves denote the 2.5 and 97.5 percentiles of 100 replica-
tions of the surface fit in the cross section of y � 0.5. The solid curve is the cross section of the true

Ž .regression surface. The dotted curve is the averaged fit. a The jump location curve is a circle
Ž .2 Ž .2 2 Ž .x 
 0.5 � y 
 0.5 � 0.25 ; b the jump location curves are two straight lines x � 0.25 and
x � 0.75.

Žreplace the circle by two straight lines x � 0.25 and x � 0.75 the regression
Ž . Ž .2 Ž .2 .function becomes f x, y � 
2 x 
 0.5 
 2 y 
 0.5 � I , then�0.25	 x 	 0.754

the corresponding percentiles are shown in Figure 7b. We can see that the
difference disappears. This phenomenon may imply that the first order
approximation to the JLCs can be improved by the second or higher order
approximations.
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We then perform the simulations with several � and n values. The
Ž � .optimal MSE value and the corresponding pair k, k in each combination of

Ž . �� and n are presented in Table 1. From this table, we can see that 1 k is
Ž . �bigger than k; 2 both k and k increase with increases in sample size and
Ž .increases in � ; 3 MSE decreases with increases in sample size and reduc-

tions in � . The first finding suggests the condition lim k�k� � 0 used inn��

Theorem 3.1 is reasonable in applications. The third finding might reflect the
consistency of the fitted surface.

6.2. Performance around a singular point of the JLCs. The regression
function used in the above example has three preferable properties. First,
there does not exist any singular point on the JLC. Second, the limit of the
gradient direction of the surface at the JLC is consistent with the jump
direction. Third, the JLC is far away from the border region of the design
space. These properties should be helpful for the surface fitting. Next we

Ž .consider regression function f x, y � x � I which does� y � 0.375�0.25 x or x � 0.54
not have any of these three properties.

�Ž .Figure 8a shows the original surface. It has jumps at JLC: x, y : y �
4 �Ž . 40.375 � 0.25x and 0 	 x 	 0.5 � x, y : x � 0.5 and 0 	 y 	 0.5 with con-
Ž .stant jump magnitude 1. Point 0.5, 0.5 is a singular point of the JLC. The

Ž .gradient direction of the surface in the continuous regions is 1, 0 , which is
different from the jump direction at the left part of the JLC. As before,

Ž .observations are generated from model 2.1 for equally spaced design points
� � � � Ž 2 .in design space 0, 1 � 0, 1 , with errors from N 0, � , � � 0.5 and n � 100.

The data points are presented in Figure 8b. Figure 8c shows the gradient
� �� 4 � 4directions v of the fitted local LS planes. It is apparent that v stilli j i j

reveal the JLC well even when the gradient direction of the surface disagrees
with the jump direction. The jump detection criterion 
 is shown in Figurei j

TABLE 1
Ž . Ž � .The minimal MSE values in parentheses and the corresponding pairs of k, k for several

combinations of n and �

n

� 71 100 141 200

0.25 5, 9 7, 11 7, 11 7, 13
Ž . Ž . Ž . Ž .0.0060 0.0043 0.0029 0.0021

0.5 7, 11 9, 15 11, 17 13, 19
Ž . Ž . Ž . Ž .0.0112 0.0081 0.0055 0.0042

0.75 9, 13 9, 15 13, 21 17, 25
Ž . Ž . Ž . Ž .0.0181 0.0128 0.0079 0.0063

1 9, 13 13, 17 13, 21 19, 29
Ž . Ž . Ž . Ž .0.0242 0.0182 0.0111 0.0083
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8d by an image plot. The darker the color, the larger the value. This figure
shows that it is not unreasonable to use the ‘‘padding’’ method to handle the
‘‘boundary problem’’ in this case. The averaged surface fit of our three-stage
procedure based on 100 replications is presented in Figure 8e. The procedure
works well except at the places around the singular point. The 2.5 and 97.5
percentiles of the 100 replications of the surface fit in the cross section of
x � 0.25 are plotted in Figure 8f by the lower and upper dashed curves,
respectively.

The jump detection algorithm discussed in Section 2 often fails to detect
Ž .jumps with magnitudes less than the threshold value b defined in 2.3 . Thus

it is of some interest to evaluate the performance of the three-stage surface
fitting procedure when the jump magnitude is small. Consider the regression

Ž . �Ž .function f x, y � CI which has a unique JLC: x, y : x � 0.5, 0 	 y 	� x � 0.54
41 with constant jump magnitude C. Figure 9a shows the regression function

when C � 1. Let C change from 0 to 2 with step 0.1. For each C value,
observations are generated in the same way as in the previous examples with
� � 0.5 and n � 100. The MSE values of the three-stage procedure and the
conventional kernel smoothing method are presented in Figure 9b by the
solid and the dotted curves, respectively. From the plot, it is clear that the
two methods do not differ very much when C is small. In this case the jump
detection procedure only identifies a few jumps, making the fitted surface

� Ž .close to the conventional kernel estimate cf. 4.2 and the discussion in the
�last paragraph of Section 4 . We plot the detected jumps when C � 0.6 in

Figure 9c. More jumps are detected when C gets larger. This can be seen from
Figure 9d in which the detected jumps when C � 1 are presented. In such a
case our procedure outperforms the conventional method using the MSE
criterion.

6.3. Application to global topographical elevation data. Figure 10a shows
the global topographical elevation data contaminated by i.i.d. noise with
Ž 2 .N 0, 1500 distribution. The darker the color, the higher the elevation. The

resolution of the data is 1 degree � 1 degree in longitude and latitude. Hence
the sample size is 181 � 360 � 65,160. The elevation measurement is rela-
tive to the sea surface level, ranging from 
8,964.0 meters to 6,096.0 meters
in this data set. As mentioned in Section 1, it is not easy to apply the
Bayesian methods to this data set since the response is a continuous variable.
Because the number of JLCs cannot be counted accurately, some non-Baye-

Ž .sian methods such as those suggested by Korostelev and Tsybakov 1993 ,
Ž . Ž . Ž .Muller and Song 1994 , O’Sullivan and Qian 1994 , and Qiu 1997 are not¨

appropriate for this data set either.
In image processing literature, local smoothing operators are often used for

� Ž .two purposes. One is to remove the noise in an image Bow 1992 , Section
�9.3 . The second is to change the image from one resolution to another.

Commonly used smoothing operators include the local averaging smoothers
� Ž . �and the local median smoother Gonzalez and Woods 1992 , Section 4.3 . The

proposal suggested in this paper provides an alternative way to do local



P. QIU2236

�Ž . Ž . Ž . � 4FIG. 8. a The original regression surface; b the observations; c the gradient directions v ofi j
Ž . � 4 Ž .the fitted local LS planes; d the jump detection criterion 
 ; e the averaged surface fit basedi j

Ž .on 100 replications; f the 2.5 and 97.5 percentiles of the 100 replications of the surface fit in the
Ž .cross section of x � 0.25. In plot f , the dashed curves represent the two percentiles. The solid

curve is the cross section of the true regression surface. The dotted curve is the averaged fit.
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Ž . Ž .FIG. 9. a The regression surface with jump magnitude C � 1. b The MSE values of the
three-stage surface fitting algorithm and the conventional kernel smoothing method when C

Ž . Ž .changes from 0 to 2. c The detected jumps when C � 0.6. d The detected jumps when C � 1.

smoothing but with the jumps preserved, which might be preferable in such
applications.

Theoretically speaking, the topographical elevation changes gradually and
abrupt jumps can hardly be found. However given the low resolution of the
data, the jumps are quite obvious, particularly between land and sea. With
the jump detection algorithm introduced in Section 2, the detected jump
locations are presented in Figure 10e. Its modified version by the modification

Ž .procedures in Qiu and Yandell 1997 is shown in Figure 10f. In the algo-
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Ž . Ž 2 .FIG. 10. a A global topographical elevation data contaminated by i.i.d. noise with N 0, 1500
Ž . Ž .distribution. b The fitted surface by the three-stage jump-preserving algorithm. c The fitted

Ž .surface by the conventional kernel smoothing method. d The fitted surface by the local median
Ž .smoothing method. e The detected jump locations by the jump detection procedure discussed in

Ž . Ž .Section 2. f The modified version of the image in plot e by the modification procedures in Qiu
Ž .and Yandell 1997 .
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rithm, � is set to be 0.001 as in the previous examples. The window width kn
is chosen to be 5 for good visual impression.

We then apply the jump-preserving surface fitting procedure to this data
set. The fitted surface with k� � 15 is presented in Figure 10b. As a compari-
son, we plot the fitted surfaces by the conventional kernel smoothing method
and the local median smoothing method in Figures 10c and d, respectively.
The same window sizes are used in these three methods. We can see that our
procedure performs quite well in preserving the jumps. But some angles of
the JLCs seem to be smoothed away. This phenomenon might be explained by
the following two reasons. One is that the angles are close to some singular
points. Another is the nature of the first-order approximation to the JLCs of
the local PC lines. The MSE values of these three fitted surfaces are 5.979 �
105, 6.195 � 105 and 8.684 � 105, respectively.

For this data set, there is no ‘‘boundary problem’’ since the data are from a
globe. Longitude 0 degree west is the same location as that of longitude 0
degree east although they are at two ends in the plot. In the Arctic Circle and
the Antarctic Circle, neighborhood relationship can also be carefully defined.

7. Concluding remarks. We have presented a three-stage procedure to
fit discontinuous regression surface in the presence of noisy data. The main
features of the method are its simple computation requirements and the
weak assumptions imposed on the model. Simulation studies show that it
works well in applications. However, some quantities used in the procedure,
such as the two window widths, are still not well defined in finite sample
cases. Additional simulation studies are needed to provide more guidelines on
selection of these parameters for practical use. Alternative ways exist to
detect jump points in the first stage of our procedure and how to average the
observations in the third stage. Future research is needed to evaluate these
alternatives. The principal component lines provide first-order approxima-
tions to the jump location curves. As mentioned earlier, second or higher
order approximations might improve the procedure. All these issues should
be future research topics.

APPENDIX

A. Proof of Theorem 2.2.

� 4LEMMA A.1. Let � be a positive number and � be a sequence of positiven
Ž . Ž . � � p Ž .constants diverging to � as n � �. In model 2.1 , if i E � � �, p � 2; ii11

4� Ž 2 . Ž . Ž . 2��2� p Ž 2 . Ž .n � k � � O 1 and iii n � k � log n � o 1 , thenn n

l l1

2 �A � max � � o n � log n a.s.,Ž .Ý Ýn , � i�s , j�t n2kŽ .i�n , j�n �I� s�
l t�
l

�Ž . 4where 0 � � � 0.5 is a constant, I � i�n, j�n : � 	 i�n, j�n 	 1 
 � , l ��

Ž .k 
 1 �2, and k is a positive integer satisfying lim k � �.n��
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Ž .Lemma A.1 is a special case of Theorem 2.1 in Qiu 1997 . Its one-dimen-
Ž .sional version was given by Cheng and Lin 1981 .
Ž .We now start to prove Theorem 2.2. Let x , y be a design point in DD .i j �'Ž . Ž . Ž .If x , y is more than 3 2 k� 2n away from any JLC, then N x , y ,i j i j

Ž . Ž .N x , y and N x , y are all located in a same continuous region, sayN 1 N 1 N 2 N 2
Ž .� . From 2.2 ,1

� � � �
 	 z 
 z 	 f 
 f � 2 A ,i j i j N 1 i j N 1 n , �

where
l

2f � 1�k f x � s�n, y � t�nŽ . Ž .Ýi j i j
s, t�
l

and
l

2f � 1�k f x � s�n, y � t�n .Ž .Ž . ÝN 1 N 1 N 1
s, t�
l

Ž 2� p.By Lemma A.1, if 0 � lim k�n � �, then there exists a sample sub-n��

Ž .space � such that P � � 1 and for each � � �,

A.1 A � O n
2� p log n .Ž . Ž .n , �
� Ž .On the other hand, v and consequently x , y are uniquely determinedi j N 1 N 1

Ž .for each � � �. By the condition that f x, y has continuous first order
partial derivatives in � ,1

2 2� �� �f 
 f 	 f � , � � f � , �' Ž . Ž .i j N 1 x x y y x y

22Ž1. Ž2. Ž1. Ž2.'� � 
 � � � 
 �Ž . Ž .x x y yA.2Ž .
'2 2 k

	 B ,
n

Ž Ž1. Ž1.. Ž Ž2. Ž2.. � Ž . Ž .�where � , � and � , � are two points in x 
 k� 2n , x � k� 2n �x y x y i i

� Ž . Ž .� � Ž . Ž .� �y 
 k� 2n , y � k� 2n and x 
 k� 2n , x � k� 2n � y 
j j N 1 N 1 N 1
Ž . Ž .� Ž .k� 2n , y � k� 2n , respectively; � , � is a point between them; andN 1 x y

22� �
sB � max f x , y � f x , y � �.' Ž . Ž .Ž x , y .� � Ž� � �� . x yi� 1 i i

Ž . Ž .By A.1 , A.2 and the condition that lim Z �log n � �, when n isn�� � �2n

large enough
Z� �2n
 � b � O a.s.,i j ž /k

'Ž . Ž .and this is uniformly true for all x , y in DD and more than 3 2 k� 2ni j �

away from any JLC. Therefore
	 	A.3 sup inf x 
 y � O k�n a.s.Ž . Ž .

y�D�DD�ˆx�D �DDn �

Ž . Ž .Next, we assume that x, y is a nonsingular point on a JLC and x , y isi j

Ž .the design point closest to x, y among the design points on the same side of
Ž . Ž .the JLC as x, y . Without loss of generality, we further assume that x, y �
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Ž .�� � �� with a positive jump magnitude C x, y from � to � . Then1 2 1 2

1 1
f � f x , y � f x , yŽ . Ž .Ý Ýi j i�s j�t i�s j�t2 2k kŽ . Ž .s , t �I s , t �I1 2

1 1
� f x , y � f x , y � O k�nŽ . Ž . Ž .Ý Ý
 �2 2k kŽ . Ž .s , t �I s , t �I1 2

�I2� f x , y � C x , y � O k�n ,Ž . Ž . Ž .
 2k
�Ž . Ž . Ž . 4where I � s, t : x , y � N x , y � � , �I denotes the number ofa i�s j�t i j a a

Ž . Ž � �.� � � �design points in I , a � 1, 2, f x, y � lim f x , y , anda 
 Ž x , y .� Ž x, y ., Ž x , y .� �1

Ž . Ž � �.� � � �f x, y � lim f x , y . In the above expression, we have� Ž x , y .� Ž x, y ., Ž x , y .� � 2 'Ž . � Ž . Ž . � Ž .used the property of f x, y that f x , y 
 f x, y 	 B 2 k�n wheni�s j�t 

'Ž . � Ž . Ž . � Ž . Ž .s, t � I ; and f x , y 
 f x, y 	 B 2 k�n when s, t � I . Simi-1 i�s j�t � 2

larly,

f � f x , y � O k�n a.s. and f � f x , y � O k�n a.s.Ž . Ž . Ž . Ž .N 1 
 N 2 �

So
�I2

� �z 
 z 	 C x , y � O k�n � 2 A a.s.Ž . Ž .i j N 1 n , �2k
and

�I1
� �z 
 z 	 C x , y � O k�n � 2 A a.s.Ž . Ž .i j N 2 n , �2k

Consequently,

� 4min �I , �I1 2

 	 C x , y � O k�n � 2 A a.s.Ž . Ž .i , j n , �2k

Ž .Since x, y is a nonsingular point of the JLCs, it is not difficult to check that
� 4 2 Ž .1�4 	 min �I , �I �k 	 1�2. Therefore, x , y could be detected when n1 2 i j

Ž .is large enough. This conclusion is uniformly true for x, y � D � DD since�

Ž .min C x, y � 0. Therefore,Ž x, y .� D � DD�

	 	A.4 sup inf x 
 y � O 1�n a.s.Ž . Ž .
ˆy�D � DDx�D� DD n ��

Ž . Ž .The theorem is proved after combining A.3 and A.4 . �

B. Proof of Theorem 3.1. Suppose that the point P has coordinate
Ž . Ž .x, y and design point x , y is closest to P. Theni j

1 1
� � � �x 
 x � , y 
 y � .i j2n 2n

� Ž .Let Q denote the set of the design points in N x , y which are also in the1 i j' Ž .band of the JLC with width 3 2 k� 2n . Then Q denotes the set of the2
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� Ž .design points in N x , y and outside this band. From the proof of Theoremi j
2.2, we know that almost surely none of the design points in Q could be2
detected as jump candidates. Let � be all possible samples in the sample
space such that there are no design points in Q detected as jump candidates.2

Ž .Then P � � 1 and for any sample � � �, the detected jump points are all
in Q . Next we concentrate on the samples in �. The slope of the tangent line1
of the JLC at P is assumed to be b. Without loss of generality, we assume

Ž . � Ž .that b � �. Then detected jump candidate w , v in N x , y has ther r i j
following relationship by the Taylor expansion:
B.1 v 
 y � b w 
 x � o k��n .Ž . Ž . Ž .r j r i

Ž .From B.1 , we have
� � b� � o k��n ,Ž .w v w w

� � b2� � o k��n .Ž .v v w w

B.2Ž .

Ž .The slope of the PC line defined by 3.2 is
� 2�w v w v�

2 2� 
 �w w 1 '� 
 � � � 
 � � 4�Ž .w w v v w w v v w v

2b� � o k��nŽ .w w�
2 �2 2 2 2'� 
 b � � � 
 b � � 4b � � o k �nŽ .Ž .w w w w w w w w w w

� b � o k��n .Ž .
Ž .In the second equation of the above expression, B.2 is used. Hence the slope

Ž � .of the PC line converges to the slope of the tangent line with rate o k �n . It
Ž . Ž . Ž .is obvious that w, v converges to P with the same rate. From 3.2 , w, v is

on the PC line. Hence the PC line converges to the tangent line at P with
Ž � . � �rate o k �n . Since k is any positive integer satisfying lim k�k � 0,n��

Ž 
1�2� p.this rate can be O n .

Ž . �C. Proof of Theorem 5.1. If x , y � DD , then after some routinei j �

� Ž .�algebra manipulation cf. Section 2.5 of Wand and Jones 1995 , we have

L2� 2
L�2 L�2 2ˆVar f x , y � K u , v du dv ;Ž . Ž .H Hž /i j 2� 
L�2 
L�2kŽ .

ˆBias � E f x , y 
 f x , yŽ . Ž .ž /i j i j

2�kŽ . L�2 L�2� 2� f x , y K u , v u du dvŽ . Ž .H Hx x i j2 2n L 
L�2 
L�2

L�2 L�2��f x , y K u , v uv du dvŽ . Ž .H Hx y i j

L�2 
L�2

L�2 L�2� 2�f x , y K u , v v du dvŽ . Ž .H Hy y i j

L�2 
L�2

� O 1�k� .Ž .
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� 2�3 ˆ 2 
4�3Ž . Ž Ž .. Ž .Hence if k � O n , then MSE � Var f x , y � Bias � O n . Sincei j
Ž . �f x, y has continuous second-order partial derivatives in DD , the above�

convergence rate is uniformly true in DD
�.�

Ž . �Now if x , y � DD � DD , then we havei j � �

k� f � x , y HH K u , v u du dv�f � x , y HH K u , v u du dvŽ . Ž . Ž . Ž .x i j TT y i j TT
C.1 Bias� ,Ž .

nL HH K u , v du dvŽ .TT

L2� 2 HH K 2 u , v du dvŽ .TTˆC.2 Var f x , y � .Ž . Ž .ž /i j 2 2�k HH K u , v du dvŽ . Ž .TT

� � � � �The integration area TT is a counterpart in 
L�2, L�2 � 
L�2, L�2 the
Ž .� Ž . Ž . Ž .area of definition of K x, y of S x , y defined in 4.1 . If x , y is exactlyi j i j

� Ž . � Ž . Ž . Ž .on a JLC, then f x , y and f x , y in C.1 and C.2 could be replaced byx i j y i j
� Ž . � Ž . Ž .f x , y and f x , y , respectively, where s, t is some point inx i�s j�t y i�s j�t

Ž . � Ž 1�2 . Ž 
1 .S x , y . When k � O n , MSE � O n . �i j
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