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EMPIRICAL EDGEWORTH EXPANSIONS
FOR SYMMETRIC STATISTICS1

BY HEIN PUTTER AND WILLEM R. VAN ZWET

University of Leiden and University of North Carolina, Chapel Hill

In this paper the validity of a one-term Edgeworth expansion for
Studentized symmetric statistics is proved. We propose jackknife esti-
mates for the unknown constants appearing in the expansion and prove
their consistency. As a result we obtain the second-order correctness of
the empirical Edgeworth expansion for a very general class of statistics,
including U-statistics, L-statistics and smooth functions of the sample
mean. We illustrate the application of the bootstrap in the case of a
U-statistic of degree two.

Ž .1. Introduction. Let XX , AA be a measurable space and P a probability
Ž .measure on XX , AA . Let X , X , . . . be a sequence of i.i.d. random variables,1 2

taking values in XX with unknown common distribution P. Let t : XX N � PP �N
� be symmetric as a function on XX N, that is, for every x , . . . , x � XX and1 N

� 4 � 4every permutation � , . . . , � of 1, . . . , N , we have1 N

t x , . . . , x ; P � t x , . . . , x ; P .Ž . Ž .N 1 N N � �1 N

It will be assumed throughout this paper that

1.1 T � t X , . . . , X ; PŽ . Ž .N N 1 N

is a random variable with expectation

1.2 ET � 0 for all NŽ . N

2Ž . 2and variance � T � � , satisfyingN N

1.3 0 � c � � 2 � C � � for all NŽ . N

for finite positive constants c and C. Suppose that T �� converges inN N
distribution to a standard normal distribution. Typically, the accuracy of the
normal approximation is of the order N�1�2 as N tends to infinity. In this
paper we shall focus on second-order approximations, that is, on approxima-

Ž �1�2 .tions with error oo N to the distribution functions of T �� and also ofN N
the Studentized version T �S , where S2 is an estimator of � 2. We shallN N N N

Ž .accomplish this by first proving the validity of a one-term Edgeworth
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Ž �1�2 .expansion with remainder oo N and then estimating the unknown con-
stants in the expansion. The procedure is therefore called an empirical
Edgeworth expansion.

As an estimate S2 of � 2, we shall use the jackknife estimator of variance,N N
Ž . Ž .introduced by Quenouille 1949, 1956 and Tukey 1958 . Let us suppose that

we have one additional observation X at our disposal, and define forN�1
i � 1, . . . , N,

1.4 T Ž i. � t X , . . . , X , X , . . . , X ; P , T ŽN�1. � TŽ . Ž .N N 1 i�1 i�1 N�1 N N

and
N�11

Ž i.1.5 T � T .Ž . ÝN NN � 1 i�1

The jackknife estimator of variance S2 is then defined asN

N�1
22 Ž i.1.6 S � T � T .Ž . Ž .ÝN N N

i�1

We shall make extensive use of the properties of Hoeffding’s decomposition
� Ž .�Hoeffding 1948 . For k � 1, 2, . . . , let � denote the set of integers from 1k
up to k and define for a set A 	 � ,N

� �1.7 E T A � E T X , i � A .Ž . Ž . Ž .N N i

Next, for D 	 � , defineN

� � � �D � A �1.8 T � �1 E T A .Ž . Ž . Ž .ÝN , D N
A	D

� � Ž .Here A denotes the cardinality of a set A and the summation in 1.8 is over
all subsets A of D including the empty set. In this way we obtain for instance

T � ET ,N , � N

�T � T � E T X � ET ,Ž .N , i N , �i4 N i N1.9Ž .
� � �T � E T X , X � E T X � E T X � ET .Ž .Ž . Ž .N , �i , j4 N i j N i N j N

The Hoeffding decomposition of T is given byN

N

T � T � T � T � T � ��� .Ý Ý ÝÝ ÝÝÝN N , D N , �i4 N , �i , j4 N , �i , j , k4
D	� i�1 1�i�j�N 1�i�j�k�NN

For notational convenience we shall write T instead of T and TN i N , �i4 N i j
instead of T . Define two real numbers � and � asN , �i, j4 1 2

1.10 � � N 3�2��3ET 3 , � � N 5�2��3ET T T .Ž . 1 N N 1 2 N N 1 N 2 N 12

Then the Edgeworth expansion for the distribution function of T �� isN N
given by

� � 3�1 2 21.11 G x � � x � x � 1 	 x .Ž . Ž . Ž . Ž . Ž .N '6 N
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Ž . �1�2Note that � � 3� N serves as an approximation to the third cumulant1 2
of T �� . The Edgeworth expansion to the distribution function of T �S isN N N N
given by

	 xŽ .
2 21.12 H x � � x � 2 x � 1 � � 3 x � 1 � .Ž . Ž . Ž . Ž . Ž .Ž .N 1 2'6 N

We shall prove the following results:

THEOREM 1.1. Suppose that there exist real numbers c � 0, C � 0, p � 3,
� 4� � 4r � 2, sequences 
 with 
 � 0, � with � � � and a positive contin-N N�1 N N N

Ž . Ž . Ž .uous function � on 0, � , such that 1.2 and 1.3 are satisfied and

� 1�2 � p1.13 E N T � C ,Ž . N 1

� 3�2 � r1.14 E N T � C ,Ž . N 12

N
N 2 �3�21.15 ET � 
 NŽ . Ý N � Nkž /k

k�3

and

� i tN 1�2TN 1 �1.16 Ee � 1 � � t � 1  t � 0, � for N � 1, 2, . . . .Ž . Ž . Ž .N

� 4 � 4Then there exists a sequence � � 0, depending only on c, C, p, r, 
 , �N N N
and � , such that for N � 2, 3, . . . ,

�1�21.17 sup P T �� � x � G x � � N .Ž . Ž . Ž .N N N N
x��

THEOREM 1.2. Suppose that there exist real numbers c � 0, C � 0, p � 3,
� 4r � 2, a sequence � with � � � and a positive continuous function � onN N

Ž . Ž . Ž . Ž . Ž . Ž .0, � such that 1.2 , 1.3 , 1.13 , 1.14 and 1.16 are satisfied and

N
N � 1 2 �3ET � CN ,Ý N � kž /k � 1

k�3

N
N � 2 2 �7�2ET � CN .Ý N � kž /k � 2

k�3

1.18Ž .

� 4Then there exists a sequence � � 0, depending only on c, C, p, r, � and � ,N N
such that for N � 2, 3, . . . ,

�1�21.19 sup P T �S � x � H x � � N .Ž . Ž . Ž .N N N N
x��

The empirical Edgeworth expansions are obtained by replacing the con-
Ž . Ž .stants � and � in 1.11 and 1.12 by estimates. The estimation of � is1 2 1

2Ž .straightforward and very similar to the estimation of � T . Recall that,N
Ž i.with one additional observation X from P, T and T are defined as inN�1 N N

Ž . Ž .1.4 and 1.5 .
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To estimate � we assume that we have two additional observations from2
Ž .P: X and X . Let T be as in 1.1 . Define, for 1 � i � j � N � 2,N�1 N�2 N

1.20 T Ž i , j.�T Ž j , i.�t X , . . . , X , X , . . . , X , X , . . . , X ; P ,Ž . Ž .N N N 1 i�1 i�1 j�1 j�1 N�2

with X and X replaced by X and X . Furthermore, leti j N�1 N�2

N�21
Ž i. Ž i , j.1.21 T � T ,Ž . ÝN NN � 1 j�1

j�i

�1N�21 N � 2Ž i. Ž i , j.1.22 T � T � T .Ž . Ý ÝÝN N Nž /2N � 2 i�1 1�i�j�N�2

We propose the following jackknife estimates for � and � :1 2

N�1
3Ž i. 3ˆ '1.23 � � N T � T SŽ . Ž .Ý1 N N N

i�1

and

Ž i. Ž j. Ž i , j.ˆ '� � 2 N T � T � T � TÝÝ2 N N N Nž /
1�i�j�N�21.24Ž .

Ž i. Ž j. 3� T � T T � T S .Ž . Ž .N N N N N

ˆ ˆBy substituting the estimators � and � for � and � in the Edgeworth1 2 1 2
Ž . Ž .expansions G and H , defined in 1.11 and 1.12 , we obtain the empiricalN N

Edgeworth expansions

ˆ ˆ� � 3�1 2 2ˆ1.25 G x � � x � x � 1 	 xŽ . Ž . Ž . Ž . Ž .N '6 N

and

	 xŽ .
2 2ˆ ˆ ˆ1.26 H x � � x � 2 x � 1 � � 3 x � 1 � .Ž . Ž . Ž . Ž . Ž .Ž .N 1 2'6 N

The following result asserts the validity of the empirical Edgeworth expan-
sion.

THEOREM 1.3. Let X , . . . , X be an i.i.d. sample from P, let T be a1 N N
Ž .symmetric random variable, defined as in 1.1 . Let the jackknife estimator of

2 ˆ ˆ ˆŽ . Ž . Ž .variance S be defined as in 1.6 , � and � as in 1.23 and 1.24 , and GN 1 2 N
ˆ Ž . Ž .and H as in 1.25 and 1.26 . Suppose that there exist real numbers c � 0,N

Ž .C � 0, p � 3, r � 2, a positive continuous function � on 0, � and a sequence
Ž . Ž . Ž . Ž . Ž .� � �, such that 1.2 , 1.3 , 1.13 , 1.14 and 1.16 are satisfied andN

N
N � 2 2 �41.27 ET � CN .Ž . Ý N � kž /k � 2

k�3
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Then there exist sequences 
 � 0 and � � 0, which depend only on c, C, p,N N
� 4r, � and the sequence � , such that for N � 2, 3, . . . ,N

�1�2ˆ1.28 P sup P T �� � x � G x 
 � N � 
 ,Ž . Ž . Ž .N N N N Nž /
x��

�1�2ˆ1.29 P sup P T �S � x � H x 
 � N � 
 .Ž . Ž . Ž .N N N N Nž /
x��

The typical situation to which these empirical Edgeworth expansions may
Ž .be applied is the following: let � � � P be a parameter of interest and

Ž .suppose that U � u X , . . . , X is an unbiased estimator of � . As XN N 1 N 1
, . . . , X are i.i.d., we may safely restrict attention to symmetric functions u .N N
Let

'1.30 T � N U � �Ž . Ž .N N

2 2Ž . DD Ž .and suppose that with � � � T , T �� � NN 0, 1 . We wish to obtain aN N N N
second-order correct confidence interval for � . For the special case of the
sample mean it is well known that it is important to base inference on a
pivotal random variable, that is, on a random variable whose limiting distri-
bution does not depend on any unknown quantities. If � 2 is known, weN
might take T �� ; if � 2 is unknown, we have to use T �S , with S2 anN N N N N N
appropriate estimator of � 2. The confidence interval for � may then be basedN
on the quantiles of the empirical Edgeworth expansion of the distribution
function of T �� or T �S .N N N N

Results similar to Theorem 1.2 were obtained earlier in a paper by
Ž .Helmers 1991 in the special case of Studentized U-statistics of degree two.

The results of this paper may be used to prove Helmers’ result under weaker
moment conditions, but more importantly, the class of statistics for which the
Edgeworth expansions are established is considerably larger and includes, for
instance, L-statistics, smooth functions of the sample mean and smooth
functionals of the empirical distribution function.

All the results in this section are formulated as inequalities for fixed, but
arbitrary, N. Since the constants in the conclusions are not specified, how-
ever, they should be viewed as purely asymptotic results. The reason for
phrasing the assumptions and conclusions in these results in such a laborious
way is that we want to define uniformity classes. The constants and se-
quences appearing in the conclusions of the results depend only on the
constants and sequences appearing in the assumptions and in particular not
on N. This allows us to consider a sequence of problems, indexed by N, where
for every N the random variables X may be different, as well as theiri

Ž .distributions P, the functions T � t X , . . . , X ; P and so on, as long asN N 1 N
the conditions continue to be satisfied for the same fixed constants and
sequences for every N. The conclusions of the theorems are then also true for

� 4every N and the asymptotic assertion follows, uniformly in P and T .N
Ž . Ž .The jackknife estimator of variance as we have defined it in 1.4 � 1.6 may

seem somewhat awkward, since with N � 1 observations from P, for practi-
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cal purposes we would then wish to approximate the distribution of TN�1
instead of T , and the variance of T would be the object of interest. In ourN N�1
notation, the familiar delete-one jackknife would coincide with S2 . AN�1

Ž .comparison of 4.13 with the same expression for N � 1 yields that the
delete-one jackknife S2 can also be used in Theorem 1.2 if for sequencesN� 1

 � 0 and � � 0,N N

T TN N �1�2 �1�2P � 
 � N � 
 N .N Nž /� �N N�1

Ž . � 2 2 �In view of 1.3 this is easily seen to be true, provided that � � � �N N�1
� N�3�4 for a sequence � � 0.˜ ˜N N

Ž .In 1.2 it is assumed that ET � 0 for all N. This condition excludesN
interesting standardized statistics, such as many L-statistics and smooth

Ž �1�2 .functionals of the empirical, for which typically ET � OO N . SupposeN
˜ Žthat ET � � and write T � T � � . Then, apart from the first con-N N N N N

˜.stant term, the Hoeffding decompositions of T and T coincide. An inspec-N N
� � �1�4tion of the proofs of Theorems 1.1 and 1.2 shows that if � � � N for aN N

sequence � � 0, then the Edgeworth expansions of T �� and T �SN N N N N
Ž . Ž .require an additional term of � � �� 	 x . Thus, for instance, the Edge-N N

worth expansion of T �S becomesN N

	 x �Ž . N2 2 '� x � 2 x � 1 � � 3 x � 1 � � 6 N .Ž . Ž . Ž .1 2ž /' �6 N N

Of course, to obtain an empirical Edgeworth expansion, one would proceed to
estimate � .N

The class of jackknife-type estimators that we consider in this paper has
the desirable property that every evaluation needed to compute it, such as
T Ž i. and T Ž i, j., is based on exactly N observations. This avoids the problem ofN N
relating the Hoeffding decompositions of T and T . Unfortunately, Que-N N�1

Ž .nouille’s 1956 jackknife estimator of bias is essentially based on this differ-
ence between the Hoeffding decomposition of T and T . It is not surpris-N N�1
ing, therefore, that the type of estimators that we consider in this paper are
not suited to estimate bias. We shall therefore not address bias estimation
here and insist that ET � 0.N

The remainder of this paper is organized as follows. In Section 2 we
discuss some important examples. In Section 3 we show how Theorem 1.2 can
be applied to prove second-order correctness for bootstrapping Studentized
U-statistics of degree two. Section 4 contains the proof of Theorem 1.2. In
Section 5 we prove the consistency of the jackknife estimators of the quanti-
ties appearing in the Edgeworth expansions. Finally, Section 6 contains a
technical lemma.

2. Applications. We shall consider some important applications of The-
orem 1.3: U-statistics, L-statistics, smooth functions of the sample mean and
smooth functionals of the empirical distribution function. Berry�Esseen
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Ž .bounds for U- and L-statistics were established in van Zwet 1984 and in the
second example we shall make use of the results in that paper. Recall that

2 ˆ ˆŽ .the jackknife estimator of variance S is defined as in 1.6 , � and � as inN 1 2
ˆ ˆŽ . Ž . Ž . Ž .1.23 and 1.24 and G and H as in 1.25 and 1.26 .N N

Ž .APPLICATION 1 U-statistics . Let X , . . . , X be i.i.d. random variables1 N
Ž .assuming values in a measurable space XX , AA with common distribution P,

and let h: XX m � � be a measurable function which is symmetric in its
arguments, with

Eh X , . . . , X � � and Eh2 X , . . . , X � �.Ž . Ž .1 m 1 m

Let
�1

NU � ��� h X , . . . , XŽ .Ý ÝN i iž / 1 mm
1�i � ��� �i �N1 m

be a U-statistic of degree m and put

'T � N U � � .Ž .N N

Define

�2.1 g x � E h X , . . . , X X � x � � ,Ž . Ž . Ž .Ž .1 m 1

2.2Ž .
�� x , y � E h X , . . . , X X � x , X � y � g x � g y � � .Ž . Ž . Ž . Ž .Ž .1 m 1 2

Theorem 1.3 implies the following corollary.

Ž .COROLLARY 2.1. Suppose that the distribution of g X is nonlattice and1
� Ž . � psuppose that there exist p � 3 and r � 2 such that E g X � � and1

� Ž . � rE � X , X � �. Then1 2

ˆ'2.3 N sup P T �� � x � G x � 0,Ž . Ž . Ž .N N N P
x��

ˆ'2.4 N sup P T �S � x � H x � 0.Ž . Ž . Ž .N N N P
x��

The proof is quite straightforward, following the proof of Corollary 4.1 of
Ž .van Zwet 1984 , and is therefore omitted.

Ž .APPLICATION 2 L-statistics . Let X , . . . , X be i.i.d. random variables1 N
with common distribution function F. Let c , . . . , c be a sequence of real1 N
numbers, let X , . . . , X denote the order statistics of X , . . . , X , and1 : N N : N 1 N
define the L-statistic

N
�1L � N c X .ÝN i i : N

i�1

Suppose that L is an unbiased estimate of � and defineN

'T � N L � � .Ž .N N
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Suppose that there exist real numbers a, b and c such that
� � � �max c � a, N max c � c � b ,i i i�1

1�i�N 2�i�N2.5Ž .
2 � �N max c � 2c � c � c.i i�1 i�2

3�i�N

Ž .This corresponds to the case of smooth weights. Assumption 2.5 is fulfilled if
Ž .there exists a function J: 0, 1 � � with bounded second derivative such

Ž Ž ..that c � J i� N � 1 . Theorem 1.3 implies the following corollary.i

Ž . � � pCOROLLARY 2.2. Suppose that 2.5 is satisfied, E X � � for some p � 3,1
2Ž . Ž 1�2 � . Ž .� T 
 c� for some c� � 0 and all N and E N T X satisfies 1.16 .N N 1

Ž . Ž .Then 2.3 and 2.4 hold.

To prove Corollary 2.2 we start by deriving a representation for the terms
in the Hoeffding decomposition of T which is of interest in its own right.N

�1Ž .Define i.i.d. uniform random variables U , . . . , U and take X � F U ,1 N i i
�1Ž . � Ž . 4where F t � inf x: F x 
 t denotes the left-continuous version of the

inverse of F. We let U , . . . , U denote the order statistics of U , . . . , U .1 : N N : N 1 N
Then we have the relation

1 �12.6 X � X � 1 t 1 t dF t .Ž . Ž . Ž . Ž .Ž . Ž .Ý Ł ŁHj�1 : N j : N �U , 1. Ž0 , U .i ic0 i�A i�AA	� N
� �A �j

To see why this relation holds, note that the integrand is zero for a fixed t
unless t is between the largest of the U ’s with i in A and the smallest ofi
the U ’s with i not in A, and this can only occur if the U ’s with i in A hap-i i
pen to be the j smallest among U , . . . , U . For the only A for which the inte-1 N

�1Ž .grand is not identically equal to zero, the integral yields H dF t ��U , U .j : N j�1 : N

X � X . Now we obtainj�1 : N j : N

X � Xj�1 : N j : N D

1 c� A� D �� 1 t � t tŽ .Ž .Ý ŁH �U , 1.i
0 i�A�DA	� N

� �A �j

� c c �A �D �1� 1 t � 1 � t 1 � t dF tŽ . Ž . Ž . Ž .Ž .Ł Ž0, U .ici�A �D

2.7Ž .

1 c c cc� � � �A �D A �D� A� D � �1� 1 t � t �1 t 1 � t dF t .Ž . Ž . Ž . Ž .Ž .Ý ŁH �U , 1.i
0 i�DA	� N

� �A �j

Next, write
N N N

c X � c X � c � c XŽ .Ý Ý Ýi i : N i i i : N
i�1 i�1 i�1

N�1 N

� a X � X � c X ,Ž .Ý Ýj j�1 : N j : N i
j�1 i�1

2.8Ž .
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j Ž .where a � �Ý c � c , for j � 1, . . . , N � 1, and 0 otherwise. Writej i�1 i
� c � � �A � D � l and A � D � m, with j � l � m. For the first term on the

Ž . Ž .right in 2.8 , 2.7 yields
N�1

a X � XŽ .Ý j j�1 : N j : N
j�1 D

� �N� D
1 � � � �N � D N� D �ll� 1 t � t t 1 � tŽ . Ž .Ž .Ł ÝH �U , 1.i ž /l0 i�D l�02.9Ž .

� �D
� �� � D �mD �1� �1 a dF tŽ . Ž .Ý l�mž /m

m�0

� �N� D
1 � D � �1� �� 1 t � t BB l ; N � D , t � a dF t ,Ž . Ž . Ž . Ž .Ž .Ł ÝH �U , 1. li

0 i�D l�0

Ž � � .where BB l; N � D , t denotes the probability that a binomial random
� � � D �Ž . � �variable with parameters N � D and t equals l and � a is the D thl

difference of a , defined recursively byl

� a � a � a , �� a � � ���1 a .Ž . Ž . Ž .Ž .l l�1 l l l

� 4 � 4 Ž .Taking D � i and D � i, j and using 2.8 we find that
N

1�1�2T � �N c 1 t � tŽ .Ž .Ý HN i l �U , 1.i
0l�12.10Ž .

N� lN � 1 l�1 �1� t 1 � t dF t ,Ž . Ž .ž /l � 1

N
1�1�2T � �N c � c 1 t � t 1 t � tŽ . Ž . Ž .Ž .Ý H Ž .N i j l l�1 �U , 1. �U , 1.i j

0l�22.11Ž .
N� lN � 2 l�2 �1� t 1 � t dF t .Ž . Ž .ž /l � 2

Ž .Arguing as in van Zwet 1984 we find

� � p p p�1 � � p �Ž1�2. p2.12 E T � a 2 E X N ,Ž . N 1 1

� � r r 2 r � � r �Ž3�2.r2.13 E T � b 2 E X N .Ž . N 12 1

Ž .In Putter 1994 it is shown that
N

N � 2 2 2 �4 22.14 ET � 45c N EX .Ž . Ý N � 1kž /k � 2
k�3

Ž . Ž . Ž . 2Ž .Since by 2.12 , 2.13 and 2.14 , � T is bounded, application of TheoremN
1.3 completes the proof of the corollary. �

Ž .APPLICATION 3 Smooth functions of the sample mean . Let X , . . . , X be1 N
i.i.d. mean zero random variables taking values in a real separable Banach
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space B. Let H: B � � and define

'T � N H X � EH X .Ž . Ž .Ž .N N N

Ž s.Ž .Let H x denote the sth Frechet derivative of H at the point x � B, where´
Ž s.Ž .H x h ��� h is the s-linear continuous symmetric form with arguments1 s

� Ž s.Ž .� Ž s.Ž .h , . . . , h � B. Define H x to be the supremum of H x h ��� h over1 s 1 s
� �all h , . . . , h � B with h � 1 and let1 s i

Ž s. Ž s.� �2.15 H � sup H x .Ž . Ž .�

x�B

N N � 3 2 �5 N N � 2 2 �4Since Ý ET � CN implies Ý ET � CN , the fol-ž / ž /k�3 N � k�3 N �k � 3 k � 2k k

Ž .lowing is a consequence of the results in Bentkus, Gotze and van Zwet 1997¨
and Theorem 1.3.

Ž .COROLLARY 2.3. Suppose that H� 0 X satisfies Cramer ’s condition´1

2.16 lim sup E exp itH� 0 X � 1� 4Ž . Ž . 1
� �t ��

� � pand suppose that E X � � for some p � 3. Suppose furthermore that H is1
3 � Ž i. � Ž . Ž .three times Frechet differentiable with Ý H finite. Then 2.3 and 2.4´ �i�1

hold.

Ž .APPLICATION 4 Smooth functionals of the empirical distribution function .
Let X , . . . , X be real-valued i.i.d. random variables with common distribu-1 N

Ž . �1 Ntion function F. Let F x � N Ý I denote the empirical distribu-N i�1 �X � x4i

tion function of X , . . . , X . Let B be the space of cadlag functions from � to1 N
�, let H be a map from B to � and define

'T � N H F � EH F .Ž . Ž .Ž .N N N

Ž s.Ž .Let H F denote the sth Frechet derivative of H at the point F � B with´
Ž s.Ž .s-linear continuous symmetric form H F h ��� h for h , . . . , h � B. De-1 s 1 s

� Ž s.Ž .� Ž s.Ž .fine H F to be the supremum of H F h ��� h over all h , . . . , h � B1 s 1 s
� � � Ž s. � � Ž s.Ž .� Ž .with h � 1 and define H � sup H F as in 2.15 . The results�i F � B

Ž .in Bentkus, Gotze and van Zwet 1994 and Theorem 1.3 imply the following¨
corollary.

Ž .Ž Ž ..COROLLARY 2.4. Suppose that H� F I � F x satisfies Cramer ’s´�X � x4i
Ž .condition as in 2.16 . Suppose furthermore that H is three times Frechet´

3 � Ž i. � Ž . Ž .differentiable with Ý H finite. Then 2.3 and 2.4 hold.�i�1

3. The bootstrap. The results in Section 1 have been formulated in such
a way that the conclusions hold uniformly for all T and P satisfying theN

Žassumptions of the theorems for fixed constants and sequences cf. the
.discussion following Theorem 1.3 . This allows an application to the boot-

strap. For every N, we take as our underlying distribution the empirical
distribution P based on the observed sample X , . . . , X . Then we need toN 1 N
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check the moment assumptions of the various terms in the Hoeffding decom-
position under P . When the structure of T is not too complicated, it isN N
possible to relate these moment assumptions under P to moment assump-N
tions of the corresponding terms in the Hoeffding decomposition of T underN
P. We shall illustrate this for a U-statistic of degree two. This case has been

Ž .studied earlier by Helmers 1991 . For more complicated statistics, verifica-
Ž .tion of the nonlattice condition 3.2 for the linear part in the Hoeffding

decomposition of the bootstrap statistic may pose considerable problems.
Let X , . . . , X be a sequence of i.i.d. random variables with common1 N

2 Ž .distribution P, let h: � � � be a symmetric kernel with Eh X , X � �1 2
2Ž .and Eh X , X � � and define the U-statistic1 2

�1
NU � h X , X .Ž .ÝÝN i jž /2 1�i�j�N

' Ž .Let T � N U � � and defineN N

�g x � E h X , X X � x � � ,Ž . Ž .Ž .1 2 13.1Ž .
� x , y � h x , y � g x � g y � � .Ž . Ž . Ž . Ž .

Hoeffding’s decomposition of T is then given byN

N1 2
T � g X � � X , X .Ž . Ž .Ý ÝÝN i i j' 'N N N � 1Ž .i�1 1�i�j�N

2 Ž .Let S be the jackknife estimator of variance of T and define F x �N N N
Ž . � �P T �S � x . To define the bootstrap approximation to F , let X , . . . , XN N N 1 N

be an i.i.d. sample from the empirical distribution P and defineN

�1
N� � �U � h X , X ,Ž .ÝÝN i jž /2 1�i�j�N

N N1
� � �� � E U X , . . . , X � h X , X ,Ž . Ž .Ý ÝN N 1 N i j2N i�1 j�1

� � � � � �' �T � N U � � , F x � P T �S � x X , . . . , X ,Ž . Ž . Ž .N N N N N N 1 N

where S� 2 is given byN

�1
N � � �Ž i.* Ž i.* Ž i.*'U � h X , X , T � N U � � ,Ž . Ž .ÝÝN j k N N Nž /2 1�j�k�N�1

j , k�i

N�1 N�11 2� � 2 �Ž i.* Ž i.*T � T , S � T � T .Ž .Ý ÝN N N N NN � 1 i�1 i�1

The Hoeffding decomposition of T� can be expressed asN

N1 2
� � � �T � g X � � X , X ,Ž . Ž .Ý ÝÝN N i N i j' 'N N N � 1Ž .i�1 1�i�j�N
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where the functions g and � are defined byN N

� � � � � �g X � E* h X , X X � � ,Ž . Ž .Ž .N 1 1 2 1 N

� X� , X� � h X� , X� � g X� � g X� � � � .Ž . Ž . Ž . Ž .N 1 2 1 2 N 1 N 2 N

Here E* denotes expectation under P , conditionally given X , . . . , X . It isN 1 N
easily seen that the functions g and � may be expressed in terms of theN N
functions g and � as follows:

� � �g X � g X � g � � X � � ,Ž . Ž . Ž .N 1 1 1

� � � � � �� X , X � � X , X � � X � � X � � ,Ž . Ž . Ž . Ž .N 1 2 1 2 1 2

where
N N N

�1 �1 �1g � N g X , � x � N � x , X , � � N � X .Ž . Ž . Ž . Ž .Ý Ý Ýi i j
i�1 i�1 j�1

Ž .COROLLARY 3.1. Suppose that the distribution of g X is nonlattice and1
� Ž . � psuppose that there exist p � 3 and r � 2 such that E g X � �,1

� Ž . � r � Ž . � r�2E � X , X � � and E � X , X � �. Then1 2 1 1

�'N sup F x � F x � 0.Ž . Ž .N N P
x��

Ž .PROOF. It is clear from the proof of Theorem 3 of Helmers 1991 that the
Ž .nonlattice condition on the distribution of g X implies almost surely a1

Ž � .nonlattice condition on the distribution of g X , which is uniform for largeN 1
N; that is, for every 0 � a � A � �, there exists � � 0 such that

�3.2 lim sup sup E* exp itg X � 1 � � a.s.Ž . Ž .Ž .N 1
N � �a� t �A

� Ž � . � pWe proceed to show that E* g X is bounded in probability. Note thatN 1

pp p p p� � �� � � �E* g X � c E* g X � g � E* � X � � .Ž . Ž . Ž .ž /N 1 p 1 1

� Ž . � pSince E g X � �, we have by the law of large numbers,1

p p p� � �E* g X � E g X , g � 0.Ž . Ž .1 P 1 P

Next,
p

N Np p� �1 �1� �E* � X � � � N N � X , XŽ . Ž .Ý Ý1 i j
i�1 j�1

p
N N

�2� N � X , XŽ .Ý Ý i j
i�1 j�1

3.3Ž .

p
N N

�1 �1� 2 N N � X , X .Ž .Ý Ý i j
i�1 j�1
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�1 N � �1 N Ž . � pIt suffices therefore to show that N Ý N Ý � X , X goes to zeroi�1 j�1 i j
in probability. Write

p
N N

�1 �1N N � X , XŽ .Ý Ý i j
i�1 j�1

pN N
pp�1 �p�1 p�1 �1 �1� 2 N � X , X � 2 N N � X , X .Ž . Ž .Ý Ý Ýi i i j

i�1 i�1 j�i

The first of these terms tends to zero almost surely, and a fortiori in
Žprobability, by the Marcinkiewicz strong law of large numbers if

� Ž . � p�Ž p�1. .E � X , X � � . Applying Lemma A.1 we see that there exists 
 � 01 1
˜ ˜Ž . � Ž . �and random variables � X , X , for 1 � i � j � N such that � X , X �i j i j

N 1�
 and

˜P � X , X � � X , X , 1 � i � j � N � 1 � oo 1 .Ž .Ž . Ž .ž /i j i j

It follows that
pN

�1 �1P N N � X , X 
 �Ž .Ý Ý i jž /i�1 j�i

pN
�1 �1 ˜� P N N � X , X 
 � � oo 1Ž .Ž .Ý Ý i jž /i�1 j�i

2N
Ž1�
 .Ž p�2.�3 ˜� P N � X , X 
 � � oo 1Ž .Ž .Ý Ý i jž /ž /i�1 j�i

2N
Ž1�
 .Ž p�2.�3� P N � X , X 
 � � oo 1Ž .Ž .Ý Ý i jž /ž /i�1 j�i

2N
�1 Ž1�
 .Ž p�2.�3� � N E � X , X � oo 1Ž .Ž .Ý Ý i jž /

i�1 j�i

� ��1N Ž1�
 .Ž p�2.�1E� 2 X , X � oo 1 � 0Ž . Ž .1 2

Ž .�1if 3 � p � 2 � 1 � 
 . It follows that there exists p � 3 such that
pp

�3.4 E* � X � � � 0.Ž . Ž .1 P

� Ž � � . � rNext, we show that E* � X , X is bounded in probability. Note thatN 1 2
rr r r� � � � � � �E* � X , X � c E* � X , X � 2 E* � X � � .Ž . Ž . Ž .ž /N 1 2 r 1 2 1

First of all,
N N

rr� � �2E* � X , X � N � X , XŽ . Ž .Ý Ý1 2 i j
i�1 j�1

�1N
rr N�2� N � X , X � � X , X .Ž . Ž .Ý ÝÝi i i jž /2

i�1 1�i�j�N
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The first of these terms tends to zero almost surely by the Marcinkiewicz
� Ž . � rstrong law of large numbers, the second to E � X , X � � by the strong1 2

Ž .law of large numbers for U-statistics. Finally, for r � p, we have by 3.4 ,
r r� � �2 E* � X � � � 0.Ž .1 P

Application of Theorem 1.2 shows that uniformly in x,

	 xŽ .
� � �2 2 �1�2F x � � x � 2 x � 1 � � 3 x � 1 � � � N ,Ž . Ž . Ž . Ž . Ž .N 1 2'6 N

where �� and �� are given by1 2

�� � E*g 3 X� , �� � E*g X� g X� � X� , X� .Ž . Ž . Ž . Ž .1 N 1 2 N 1 N 2 N 1 2

� Ž � . � pArguments, similar to the ones employed for the terms E* g XN 1
� Ž � � . � r �and E* � X , X show that � � � for i � 1, 2. Since the functionsN 1 2 i P i

Ž 2 . Ž . Ž 2 . Ž .2 x � 1 	 x and x � 1 	 x are bounded in x, the corollary is proved. �

4. Edgeworth expansions. The proofs of this section rely heavily on a
result on Edgeworth expansions for U-statistics, obtained by Bickel, Gotze¨

Ž .and van Zwet 1986 . Let X , . . . , X be i.i.d. random variables assuming1 N
Ž .values in a measurable space XX , AA with common distribution P, and let

h: XX � XX � � be a measurable function which is symmetric in its two
Ž . 2Ž .arguments, with Eh X , X � � and Eh X , X � �. Let1 2 1 2

�1
NU � h X , XŽ .ÝÝN i jž /2 1�i�j�N

Ž .be a U-statistic of degree two. Define the functions g and � as in 3.1 and

� � ��3Eg 3 X ,Ž .1 g 1

� � ��3Eg X g X � X , X , � � � � 3� .Ž . Ž . Ž .2 g 1 2 1 2 3 1 2

4.1Ž .

Then � N�1�2 serves as an approximation to the third cumulant of3
Ž . Ž .U �� U . The one-term Edgeworth expansion for the distribution functionN N

Ž .of U �� U is given byN N
�3 24.2 G x � � x � x � 1 	 x .Ž . Ž . Ž . Ž . Ž .N '6 N

Ž .The validity of this expansion was first proved by Janssen 1978 and
Ž .Callaert, Janssen and Veraverbeke 1980 . The best result to date has been

Ž .obtained by Bickel, Gotze and van Zwet 1986 , who proved the following¨
theorem.

� Ž .�THEOREM 4.1 Bickel, Gotze and van Zwet 1986 . Suppose that there¨
exist real numbers C � 0, p � 3, r � 2, and a positive continuous function �

Ž .on 0, � , such that
p

4.3 E g X � C ;Ž . Ž .1

r
4.4 E � X , X � C ;Ž . Ž .1 2
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and
4.5 E exp itg X � 1 � � t � 1 t � 0.Ž . Ž . Ž .Ž .1

Then there exists a sequence � � 0, depending only on p, C, r and � , suchN
that for N � 2, 3, . . . ,

�1�24.6 sup P U �� U � x � G x � � N .Ž . Ž . Ž .Ž .N N N N
x��

Ž .Bickel, Gotze and van Zwet 1986 prove this theorem under a slightly¨
� Ž . � 3weaker moment assumption on g, namely E g X I � 0 as t � �.1 � � g Ž X . � 
 t41

Ž .This is implied by 4.3 , since for t � 0 and p � 3,
3�p Ž .p p�3 �p3E g X I � E g X P g X 
 tŽ . Ž . Ž .� 4� 4 Ž .Ž . 41 � g X 
t 1 11

Ž .p�3 �pp p
E g X E g XŽ . Ž .3�pp 1 1� E g X � .Ž .� 41 p p�3½ 5t t

Note that, like the results of Section 1, the present theorem is formulated
Ž .in such a way that the conclusion is valid uniformly for any class h, P for

which the assumptions are satisfied for fixed C, p, r and � . The uniformity is
important when we want to apply this result to symmetric statistics where
the functions g and � in the Hoeffding decomposition of the statistic depend

� 4 � 4 � 4on N. It allows us to consider sequences g , � and P as long asN N N
Ž . Ž .4.3 � 4.5 are satisfied for fixed constants C, p and r, and for a fixed function
� for every N.

Ž . Ž .Assumption 4.5 ensures that the distribution of g X is nonlattice.1
Ž .However, it is clear from the proof of Bickel, Gotze and van Zwet 1986 that¨

the behavior of the characteristic function of g � g is irrelevant for t � � ,N N
Ž .if � � �. Thus, assumption 4.5 can actually be relaxed. Sufficient is theN

Ž .existence of a sequence � � � and a positive continuous function � on 0, � ,N
such that

4.7 E exp itg X � 1 � � t  t � 0, � for all N.Ž . Ž . Ž . Ž .Ž .N 1 N

� 4Of course the sequence � in Theorem 4.1 will then also depend on theN
� 4sequence � . In particular, in Theorem 1.2 we require the less restrictiveN

Ž .assumption 4.7 . This is because the proof employs truncation of the linear
Ž . Ž 1�2 . Ž . Ž .term g X corresponding to N T , which will destroy 4.5 , while 4.7N 1 N 1

Ž .is still fulfilled for the truncated g X if it is fulfilled for the originalN 1
Ž . Ž .g X cf. the discussion after Corollary 4.2 .N 1
Generalization of Theorem 4.1 to symmetric statistics is now straight-

forward.

Ž .PROOF OF THEOREM 1.1. By 1.15 and Chebyshev’s inequality,
�3�2
 NN1�3 �1�2 1�3 �1�2P T 
 
 N � � 
 N ,Ý ND N N2�3 �1ž / 
 NN� �D 
3
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so that this part can be neglected. What remains is a U-statistic of degree two
and we can apply Theorem 4.1 using the correspondence

N 1�2T � g X , N 3�2T � � X , X .Ž . Ž .N i i N i j i j

This proves Theorem 1.1. �

Before we set out to prove Theorem 1.2, some preliminary remarks are in
order. To prove Edgeworth expansions under weak moment conditions, trun-
cation is a well-established technique. Lemma A.1, stated and proved in the
Appendix, is the truncation lemma we shall find useful. First we apply it to
the random variables T . Note that for our purposes events with probabilityN i
Ž �1�2 . � � p �p�2oo N may be neglected. We have E T � CN for some p � 3, byN i

Ž . �Ž p�3.�4 p1.13 . In Lemma A.1 we therefore choose s � p � 3 and � � N to
obtain the following corollary.

� 1�2 � pCOROLLARY 4.2. Suppose that E N T � C for some p � 3. Then thereN 1
� � � Ž .exist i.i.d. T , . . . , T with T � 	 T satisfyingN 1 N , N�1 N i N N i

� � � �Ž p�3.�4 pT � N � oo 1 ;Ž .N i4.8Ž . �P T � T , i � 1, . . . , N � 1Ž .N i N i

N � 1
Ž p�1.�44.9 
 1 � 2C NŽ .

N


 1 � 4CN�Ž p�1.�4 � 1 � oo N�1�2 ;Ž .
4.10 ET � � 0;Ž . N i

t�2 � � � t 2 t�1 �ŽŽ p�3.Ž p�t .�4 p.N E T � T � 2 CNN i N i

oo N�Ž3 Ž p�t .�2 p. , 0 � t � p ,Ž .
4.11 �Ž . ½ OO 1 , t � p.Ž .

Throughout the proofs in the sequel we shall assume that the T haveN i
been replaced by their truncated versions T � . For simplicity we delete theN i

� Ž . Ž . Ž .prime in T , thus in effect assuming that 4.8 , 4.10 and 4.11 are satisfiedN i
for the original T .N i

In the formulation of the theorems, however, both the assumptions and
the conclusions are stated in terms of the original T . We should thereforeN i
make sure in the first place that the assumptions for the original T im-N i
ply the same assumptions for the truncated T . Secondly, having conductedN i
the proof with the truncated random variables, we obtain a conclusion for
the truncated random variables, and hence we also have to check that the
conclusion of the theorem is still true when we replace the truncated T byN i
the original T .N i

To see that all this is justified in Theorem 1.2, we note that the probability
that the substitution affects the values of any of the T , and hence of T orN i N

2 Ž �1�2 . Ž .S , is oo N uniformly in P and T satisfying 1.13 . Exceptional eventsN N
with probabilities of this order of magnitude are allowed in all our results.
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It remains to check that the substitution does not affect the assumptions
Ž .or conclusions of our results in any other way. Clearly, 4.11 guarantees that

Ž . � 1�2 � � p p�1 Ž 2 p�1 .1.13 implies that E N T � 2 C 2 � 1 , so that assumptionN 1
Ž . �1.13 is satisfied for T . In Theorem 1.2 we shall also encounter theN 1
assumption that there exist a sequence � � � and a positive function � onN
Ž . � � 1�2 4 � Ž . Ž .0, � , such that E exp itN T � 1 � � t for all t � 0, � for all N.N 1 N

Ž . Ž .Now 4.9 and 4.11 imply
�1�2 1�2 �Ž p�1.�4E exp itN T � E exp itN T � 8CN� 4 � 4N 1 N 1

� 8CN�1�2 for all t ,
and

2�1�2E N TŽ .N 1� �21�2 2 � �E exp itN T � 1 � 1�3NET t if t � .� 4N 1 N 1 3�1�2� �E N TN 1

Since the remaining assumptions ensure that NET 2 
 � 2 
 c � 0, andN 1 N
Ž .4.11 yields

� �2 2 � �ŽŽ p�3. Ž p�2.�4 p.4.12 N ET � ET � 32CN ,Ž . N 1 N 1

Ž 1�2 � .2 � 1�2 � � 3we find that E N T and E N T are bounded away from zero andN 1 N 1
Ž Ž 1�2 � .2 � 1�2 � � 3.infinity. Hence, for some t � 0 and integer N , E N T �E N T0 0 N 1 N 1


 t for all N 
 N . Now, for 0 � t � � ,0 0 N

�1�2 �1�2E exp itN T � 1 � � t � 8CN � 1 � � t �2,Ž . Ž .� 4N 1

Ž . �1�2if t is such that � t 
 16CN . Since � is a positive continuous function,
� �it has a positive minimum on every closed interval K � t , � , and hence we0

may choose a � � � � � � for sufficiently large N, so that the minimum overN N
Ž . �1�2 �1�2K of � t is still larger than 16CN . The fact that 16CN � 0 as

N � �, allows us to choose � � tending to infinity, as N tends to infinity.N
Defining a function

� t cŽ .
2� t � min , t ,Ž .˜ ž /2 4

it follows that there exists a sequence � � � �, such that for sufficiently largeN
� � 1�2 � 4 � Ž . Ž � .N 
 N , E exp itN T � 1 � � t for all t � 0, � . It is easy to see that˜0 N 1 N

� � 4 � 4the function � , the sequence � and N depend only on P and T through˜ N 0 N
Ž � 4.the various constants and sequences in our assumptions including � andN

this is therefore all we need.
Finally, in the conclusion of Theorem 1.2, the quantities � 2, � �N 1

3�2 �3 3 5�2 �3 Ž .N � ET and � � N � ET T T occur. Application of 4.11N N 1 2 N N 1 N 2 N 12
shows that changing T � into T affects � 2, � and � only to orderN i N i N 1 2
Ž �1�2 . Ž . Ž .oo N , oo 1 and oo 1 , respectively, which does not alter our conclusions.

Summarizing, we conclude that in the proof of Theorem 1.2 we may assume
Ž . Ž . Ž .without loss of generality that 4.8 , 4.10 and 4.11 hold for the original T .N i

ŽWe noted earlier that all results though they should be viewed as asymp-
.totic results are formulated as inequalities for fixed, but arbitrary N. In the

proofs, we should then formally also be working with inequalities that are
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Ž �1 .true for every N. Phrases like oo N are, strictly speaking, not allowed,
because there is no N tending to infinity. To work with inequalities through-
out the proofs would, however, become extremely tedious. To avoid these
laborious formulations from occurring throughout the proofs and the more
informal passages in the text, we shall use oo and OO symbols all the same,
agreeing that they are uniform in everything that satisfies the assumptions

Ž �1 .for fixed constants and sequences. Thus, the statement a � oo N forN
example, should be read as Na � � , for some sequence � tending to zero,N N N
depending only on the constants and sequences in the assumptions. Simi-

Ž �1 .larly, a � OO N will stand for Na � C, for some constant C, dependingN N
only on the constants and sequences in the assumptions.

In order to prove Theorem 1.2 we shall need the following lemma.

LEMMA 4.3. Suppose that there exist numbers p � 3, r � 2, c � 0 and
Ž . Ž . Ž . Ž . Ž .C � 0, such that for N � 2, 3, . . . , 1.2 , 1.3 , 1.13 , 1.14 and 1.18 are

satisfied. Then there exist sequences 
 � 0 and � � 0, depending on T andN N N
P only through p, r, c and C, such that for N � 2, 3, . . . ,

N�1
2 2 �1�2P S � � � K � L � M 
 � NŽ .Ý ÝÝN N N i N i N i j Nž /4.13Ž . i�1 1�i�j�N�1

�1�2� 
 N ,N

where
�4.14 K � f X � 2 NE T T X , j � i ,Ž . Ž . Ž .N i N 1 i N i j N j i

4.15 L � f X � T 2 � ET 2 ,Ž . Ž .N i N 2 i N i N 1

and for i � j,

M � f X , XŽ .N i j N 3 i j
4.16Ž .

� �� 2T T � T � 2 E T T X � 2 E T T X .Ž . Ž . Ž .N i j N i N j N i j N j i N i j N i j

Ž .Lemma 4.3 should be compared for instance with identity A8 in Callaert
Ž . 2and Veraverbeke 1981 . It asserts essentially that the difference between SN

and � 2 can be expressed as a U-statistic plus a remainder term which is ofN
Ž .negligible order for our purposes. For a proof we refer to Putter 1994 .

We are now prepared to prove Theorem 1.2.

� �PROOF OF THEOREM 1.2. In view of Corollary 4.2, we assume that T �N i
a � N�Ž p�3.�4 p. Let V denote the U-statisticN N

N�1

V � K � L � M .Ž .Ý ÝÝN N i N i N i j
i�1 1�i�j�N�1

Under the assumptions of the present theorem, Lemma 4.3 asserts that

� 2 2 � �1�2 �1�24.17 P S � � � V 
 � N � 
 NŽ . Ž .N N N N N

for sequences � � 0 and 
 � 0.N N
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We begin by bounding the moments of the terms in V . We haveN

Ž .p�1 �p 1�pp�Ž p�1. p� � � � � � �K � 2 N E T X E Tž /N i N i j i N j

Ž .p�1 �pp�Ž p�1.1� p 1�2 � � �� 2C N E T X for i � j.ž /N i j i

Ž .Since r p � 1 �p � 1 for r � 2 and p � 3, this implies that

� � r r r� p r�2 � � r r 1�r� p �r4.18 E K � 2 C N E T � 2 C N ,Ž . N 1 N 12

Ž .and in view of an inequality of Dharmadhikari, Fabian and Jogdeo 1968 ,
rN�1

�r �24.19 E K � C�N ,Ž . Ý N i
i�1

for an appropriate constant C�. Similarly,

� � p�2 p�2 � � p p�2 �p�24.20 E L � 2 E T � 2 CN ,Ž . N 1 N 1

� � t t � � 2 t t 2 t�p �p�24.21 E L � 2 E T � 2 Ca N for t � p�2,Ž . N 1 N 1 N

2N�1
4�p �Ž p�2.�24.22 E L � C�a N if p � 4,Ž . Ý N i Nž /

i�1

� � r 3r � � r 3r r �3r�24.23 E M � 2 E T T � 2 Ca N ,Ž . N 12 N 1 N 12 N

r
r �r�24.24 E M � C�a N .Ž . ÝÝ N i j N

1�i�j�N�1

Ž . Ž . Ž . 2 Ž �1�2 . Ž .Now, first, 4.19 , 4.22 and 4.24 imply that EV � oo N , so by 1.2N
Ž .and 4.17 we find that for every � � 0,

2 2S � �N N �1�2P 
 � � oo N .Ž .2ž /�N

Since also

NN 2Ý ETk�3 N � 1kž /k�1�2P T 
 � N � � OO ,Ý ND N 2 �1 2ž / ž /� N � NN N� �D 
3

we find that there exist � � 0, such thatN

T Ý TN � D � � 2 ND �1�2 �1�2P � 
 � N � oo N ,Ž .Nž /S SN N

and

T Ý TN � D � � 2 ND �1�2 �1�2F x � P � x � P � x � oo N � oo N ,Ž . Ž . Ž .N ž / ž /S SN N

T Ý TN � D � � 2 ND �1�2 �1�2F x � P � x 
 P � x � oo N � oo N .Ž . Ž . Ž .N ž / ž /S SN N
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� Ž . Ž . � Ž �1�2 . Ž .We have to show that sup F x � H x � oo N , and as H x hasx N N N
bounded derivative, this is equivalent to showing the same thing with FN
replaced by the distribution function of Ý T �S . Hence T may be� D � � 2 ND N N
replaced by the U-statistic

N

U � T � T ,Ý ÝÝN N i N i j
i�1 1�i�j�N

Ž . Ž .and F x by P U �S � x .N N N
Next we write

U U SN N N
P � x � P � x .ž / ž /S � �N N N

� Ž . Ž Ž Ž �1�2 ... Ž . Ž �1�2 .Because xH x is bounded, H x 1 � oo N � H x � oo N , andN N N
Ž . 2 Ž Ž .. 2in view of 4.17 we may replace S in P U �� � x S �� by � � V .N N N N N N N

Ž .Therefore, we may replace F x byN
1�2 1�22U � � V U VŽ .N N N N N

P � x � P � x 1 � � 1 � x .2½ 5ž /ž / ž /� � � �N N N N

� � Ž . Ž 2 . Ž .1�2For z � 4�5 we have 1 � z�2 � z �4 � 1 � z � 1 � z�2 and hence
Ž �1�2 .we have, with probability 1 � oo N ,

1�22V V V VN N N N� � 1 � � 1 � .2 4 2 2ž /2� 4� � 2�N N N N

As
2 2 2N�1 N�1

2V � 3 K � L � MÝ Ý ÝÝN N i N i N i jž /½ 5ž / ž /
i�1 i�1 1�i�j�N�1

and
2 2N�1

�1�2 �1�2P K � M 
 � N � 
 NÝ ÝÝN i N i j N Nž /ž /ž /i�1 1�i�j�N�1

Ž . Ž .for some � � 0 and 
 � 0 by 4.19 and 4.24 , we see thatN N
2 1�2N�1V Ý L V VŽ .N i�1 N i N N�1�2� 3 � oo N � 1 � � 1 �Ž .2 4 2 2ž /2� 4� � 2�N N N N

Ž �1�2 .with probability 1 � oo N . By the same argument as before, it follows
that we have to show that

U xVN N �1�24.25 sup P � � x � H x � oo NŽ . Ž . Ž .N2ž /� 2�x N N

and
2N�1U xV 3 x Ý LŽ .N N i�1 N i �1�24.26 sup P � � � x � H x � oo N .Ž . Ž . Ž .N2 4ž /� 2� 4�x N N N
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Ž .The first of these is a consequence of Theorem 4.1. Obviously U �� �N N
Ž 2 . �Ž p�3.�4 pxV �2� is a U-statistic of degree two. Moreover, because a � NN N N

Ž .and p � 3, 4.23 implies
rr3�2 r� � � �E N xM � C�a log N � oo 1 if x � log N.Ž . Ž .N 12 N

Ž . � �Because of 4.21 , we find that for x � log N,
pp1�2 p p� �E N xL � 2 Ca log N � oo 1 .Ž . Ž .N 1 N

Ž � .At this point we apply Lemma A.1 again to K � 2 NE T T X . ByN i N i j N j i
Ž . � � r �r4.18 , E K � C�N . In Lemma A.1 we now choose s � r � 2 and � �N 1
N�1�4�ŽŽ r�2.�2 r .. It follows that there exist i.i.d. K � , . . . , K � with K � �N 1 N , N�1 N i

Ž .	 K satisfyingN N i

� � � �1�4�ŽŽ r�2.�2 r .4.27 K � N ;Ž . N i

P K � � K , i � 1, . . . , N � 1Ž .N i N i

N � 1
�r �44.28 
 1 � 2C� NŽ .

N


 1 � 4C�N�r �4 � 1 � oo N�1�2 ;Ž .
4.29 EK � � 0;Ž . N i

t � � � t 2 t�1 �ŽŽ r�4.Ž r�t .�4 r .N E K � K � 2 CNN i N i

oo N�Ž3 Žr�t ..�2 r , 0 � t � r ,Ž .
4.30 �Ž . ½ OO 1 , t � r .Ž .

We shall treat the K as we did the T , that is, we shall delete the primeN i N i
and assume throughout the proof of this theorem that the original KN i

Ž . Ž . Ž .satisfy 4.27 , 4.29 and 4.30 . The probability that this makes any difference
Ž �1�2 .is oo N . The only place where the K occur in the conclusion of theN i

proof is in � � N 5�2ET T T � N 3�2ET K , and we have to check2 N 1 N 2 N 12 N 1 N 1
that

3�2 � � �N ET K � ET K � 0.N 1 N 1 N 1 N 1

Ž . Ž .This is a consequence of 1.13 and 4.30 , since
� �3�2 3�2� �N ET K � ET K � N ET K � KŽ .N 1 N 1 N 1 N 1 N 1 N 1 N 1

1�21�2 2�3�2 2� N ET E K � KŽ .Ž . Ž .N 1 N 1 N 1

� oo N�Ž3 Žr�2..�4 r .Ž .
� 1�2 � p� Ž . � �Now we find that E N xK � oo 1 , for x � log N and any p� � 3r. ItN i

� � Ž . Ž 2 . Ž .follows that for x � log N, U �� � xV �2� satisfies assumptions 4.3N N N N
Ž .and 4.4 of Theorem 4.1.

Ž . Ž Ž . .To check assumption 4.7 for U � x�2� V , we have to considerN N N
1�2 ˜ ˜Ž . � 4the characteristic function � t � E exp itN T , where T � T �N 1 N 1 N 1
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Ž .Ž .x�2� K � L . Of courseN N 1 N 1

21�2 ˜E N T2 Ž .N 11�2 2˜ � �� t � 1 � 1�3E N T t if t � .Ž . Ž .N 1 31�2 ˜� �E N TN 1

� 1�2 Ž . � p � �We have shown above that E N x K � L � 0 uniformly in x �N 1 N 1
Ž 1�2 .2 � 1�2 � 3log N for some p � 3. Also E N T and E N T are bounded awayN 1 N 1

Ž . Ž . Ž .from zero and infinity by 1.2 , 1.13 and 1.18 . Hence there exist t � 0 and0
N such that0

2 � �� t � 1 � c�4t for 0 � t � t and N 
 N .Ž . 0 0

Next we note that

� �t
1�2� t � 1 � � t � E N x K � L .Ž . Ž . Ž .N 1 N 12�N

The expectation on the right tends to zero uniformly for x � log N. Since
Ž . Ž . �� t �t is positive and continuous on 0, � , we find that there exist � � �,N

� � � � , such thatN N

�� �� t � 1 � 1�2 � t for t � t � � and N 
 N .Ž . Ž . 0 N 1

Ž . � �It follows that assumption 4.7 is satisfied uniformly in x � log N. Hence,
by Theorem 4.1,

U xVN N �1�2˜sup P � � x � G x � oo N ,Ž . Ž .N2ž /� 2�� � N Nx �log N

uniformly in all T and P satisfying our assumptions. HereN

x �3 �1�2 2G̃ x � � � N x � 1 	 x ,Ž . Ž . Ž .N ž /� 6x

U xVN N2 2� � � �x 2ž /� 2�N N4.31Ž .
Nx

3 �1�2� 1 � ET � 2 NET T T � oo N ,Ž .Ž .N 1 N 12 N 1 N 23�N

� � ��3 N 3�2ET 3 � 3N 5�2ET T T ,Ž .3 N N 1 N 12 N 1 N 2

˜ Ž .and it follows that G x may be replaced byN

	 xŽ .
2 2H x � � x � � 2 x � 1 � 3� x � 1 ,Ž . Ž . Ž . Ž .N 1 2'6 N

� � N 3�2��3ET 3 , � � N 5�2��3ET T T .1 N N 1 2 N N 12 N 1 N 2

Ž . Ž �c .For x � �log N, H x � OO N , and for x 
 log N, we have that 1 �N
Ž . Ž �c .H x � OO N for every c � 0, so monotonicity of a distribution functionN



H. PUTTER AND W. R. VAN ZWET1562

Ž .implies 4.25

U xVN N �1�2sup P � � x � H x � oo N .Ž . Ž .N2ž /� 2�x N N

Ž .To prove 4.26 we have to show that the presence of the term
Ž N�1 .2 Ž 4. Ž .3 x Ý L � 4� in 4.26 does not influence the expansion. As before, iti�1 N i N

� �is sufficient to consider x � log N. Without loss of generality we assume that
Ž N� 1 .23 � p � 4. Consider Hoeffding’s decomposition of x Ý L :i�1 N i

2N�1 N�1
2 2 2x L � x N � 1 EL � x L � ELŽ . Ž .Ý ÝN i N 1 N i N 1ž /

i�1 i�14.32Ž .
� 2 x L L .ÝÝ N i N j

1�i�j�N�1

Ž .By 4.22 the constant term satisfies

� � 2 4�p �Ž p�2.�2 �1�2x N � 1 EL � OO a N log N � oo N ,Ž . Ž .Ž .N 1 N

Ž .so it does not influence the expansion. By 4.21 ,
p p 2 p1�2 2 2 1�2 � �E N x L � EL � 2 N log N E LŽ .Ž .N 1 N 1 N 14.33Ž .

p3 p 3 p� 2 Ca log N � oo 1Ž . Ž .N

Ž .and for r � � 2 p�3 � 2, 4.21 ensures that
2r �r � r �3�2 3�2� � � �E N 2 xL L � 2 N log N E LŽ . Ž .N 1 N 2 N 1

4.34Ž .
r �2Ž2 r ��p.� OO a log N � oo 1 .Ž . Ž .Ž .N

Ž 2 2 .It follows that the terms x L � EL and 2 xL L in the HoeffdingN i N 1 N i N j
Ž . Ž . Ž .decomposition 4.32 satisfy the same assumptions 1.13 and 1.14 as TN i

Ž 2 2 .and T . Also the presence of a term L � EL cannot affect the boundN i j N 1 N 1
Ž .1.16 on the characteristic function for the same reason that the presence of
K and L cannot. Hence,N 1 N 1

2N�1U xV 3 x Ý LŽ .N N i�1 N i
4.35 � �Ž . 2 4� 2� 4�N N N

Ž �1�2 . � �has an Edgeworth expansion with remainder oo N uniformly for x �
Ž .log N. This Edgeworth expansion is of the same form as the expansion H xN

Ž . Ž . Ž .in 4.25 , and in view of 4.33 and 4.34 , the presence of the term
Ž N�1 .2 Ž 4.3 x Ý L � 4� can only influence the expansion through the variancei�1 N i N

Ž . � Ž .�of the random variable 4.35 cf. 4.31 . However, the term of largest order
that can contribute to this variance is of order

52� � � �x N cov T , L � OO N log N E TŽ .Ž .Ž . Ž .N 1 N 1 N 1

� OO a5�p log N N�Ž p�2.�2 � oo N�1�2 ,Ž . Ž .Ž .N

Ž . Ž .which does not change the expansion H x . This proves 4.26 and theN
theorem. �
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5. Empirical Edgeworth expansions. In this section we prove the
ˆ ˆ � Ž . Ž .�consistency of the jackknife estimates � and � as in 1.23 and 1.24 of1 2

Ž .the quantities � and � appearing in the Edgeworth expansions G x and1 2 N
Ž .H x of the distribution functions of T �� and T �S , respectively, thusN N N N N

validating the empirical Edgeworth expansion.
Ž .For the proofs we again assume that T � t X , . . . , X ; P is a symmet-N N 1 N

2 2Ž .ric random variable with ET � 0, ET � � and 0 � c � � T � C � � forN N N
some positive numbers c and C.

LEMMA 5.1. Suppose that there exist constants p � 3, c � 0 and C � 0
Ž . Ž . � 1�2 � psuch that 1.2 and 1.3 are satisfied, E N T � C, andN 1

N N � 1 2 �2Ý ET � CN . Then there exist sequences 
 � 0 and � � 0,ž /k�2 N � N Nk � 1 k

which depend only on p, c and C, such that for N � 2, 3, . . . ,
N�1

31�2 Ž i. 3P N T � T � NET 
 � � 
 .Ž .Ý N N N 1 N Nž /
i�1

PROOF. Obviously all we have to prove is that for every � � 0,
N�1

31�2 Ž i. 3P N T � T � NET 
 � � 0Ž .Ý N N N 1ž /
i�1

Ž i.uniformly for fixed p, c and C. Write T � T � V � W , withN N N i N i

� �D
V � 1 i � TŽ .ÝN i D NDž /N � 1D	� N�1

� �D �1

and
� �D

W � 1 i � T .Ž .ÝN i D NDž /N � 1D	� N�1
� �D 
2

Ž Ž .. N�1Then V can be expressed as T � 1� N � 1 Ý T � T � � , andN i N i i�1 N i N i N
Ž .an inequality of Dharmadhikari, Fabian and Jogdeo 1968 ensures that

3 �3 N�1 Ž i. 3� � Ž . Ž .E � � OO N . Expansion of Ý T � T yieldsN i�1 N N
N�1 N�1 N�1 N�1 N�1

3Ž i. 3 2 2 3T � T � V � 3 V W � 3 V W � W .Ž .Ý Ý Ý Ý ÝN N N i N i N i N i N i N i
i�1 i�1 i�1 i�1 i�1

First we show that
N�1 N�1

1�2 3 3N V � T � 0.Ý ÝN i N i Pž /
i�1 i�1

This follows easily from the fact that for i � 1, . . . , N � 1,
� 3 3 �E V � TN i N i

� 2 2 3 �� E � 3T � � 3T � � �N i N N i N N

2�3 1�3 1�3 2�33 3 3 3 3� � � � � � � � � �� 3 E T E � � 3 E T E � � E �Ž . Ž . Ž . Ž .N 1 N N 1 N N

� OO N�2 .Ž .
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� 1�2 � 3 3� p � 1�2 � 3Since E N T � C , it also follows that E N V � C for someN 1 N 1 1
C � 0 and all N.1

Next, define
N�1 N�1

1�2 3 1�2 2R � N W , R � N V W ,Ý ÝN 1 N i N 2 N i N i
i�1 i�1

N�1
1�2 2R � N V W .ÝN 3 N i N i

i�1

1�2 3 2 2 N N � 1 2� � Ž .Since E N V � C and E NW � N Ý ET � C, two ap-ž /N 1 1 N 1 k�2 N �k � 1 k

plications of Lemma A.1 yield that for every � � � there exist V � and W �
N N i N i

for i � 1, . . . , N � 1, such that

� � � �1�6 � � � �1�2V � � N , W � � NN i N N i N

and

P V � � V , i � 1, . . . , N � 1 � 1 � oo 1 ,Ž . Ž .N i N i

P W � � W , i � 1, . . . , N � 1 � 1 � oo 1 .Ž . Ž .N i N i

Hence, we may replace V by V � and W by W � in R , R and R .N i N i N i N i N 1 N 2 N 3
For these remainder terms to go to zero in probability, it suffices to show that

� � �E R � 0, for j � 1, 2, 3 withN j

N�1 N�1
� � � �1�2 2 1�2 2R � N W W , R � N V W ,Ý ÝN 1 N i N i N 2 N i N i

i�1 i�1

N�1
� �1�2R � N V V W .ÝN 3 N i N i N i

i�1

Ž 1�6.This is easy, since for � � oo N ,N

� � � 2E R � � NEW � 0,N 1 N N 1

� � � 4�3 2E R � � N EW � 0,N 2 N N 1

1�2 1�2� 4�3 2 2� �E R � � N EV EW � 0.Ž . Ž .N 3 N N 1 N 1

Ž .Finally, using an inequality of von Bahr and Esseen 1965 , we have for every
� � 0, as N tends to infinity,

pN�2 � �C� N � 1 E TŽ . N 11�2 3 3P N T � ET � � � � 0.Ž .Ý N i N 1 p�3�1�2ž / �NŽ .i�1

Since the uniformity of the convergence of the various terms is easily checked,
the lemma is proved. �

LEMMA 5.2. Suppose that there exist constants c � 0 and C � 0, such that
Ž . Ž . � 1�2 � 3 Ž 3�2 .21.2 and 1.3 are satisfied, E N T � C, E N T � C, andN 1 N 12

N N � 2 2 �4Ý ET � CN . Then there exist sequences 
 � 0 and � � 0,ž /k�3 N � N Nk � 2 k
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which depend only on c and C, such that for N � 2, 3, . . . ,

1�2 Ž i. Ž j. Ž i , j.P N T � T � T � TÝÝ N N N N½ ž /ž
1�i�j�N�2

Ž i. Ž j.T � T T � T � ET T T 
 � � 
 .4Ž . Ž .N N N N N 1 N 2 N 12 N N/
PROOF. Write

1
Ž i. Ž j. Ž i , j.T �T �T �T � T � T � T � � ,Ž .N N N N N i j N i N j N i jN � 1

Ž i.T �T � T � Z .N N N i N i

Then

Ž i. Ž j. Ž i , j. Ž i. Ž j.T � T � T � T T � T T � TŽ . Ž .N N N N N N N Nž /
1

� T � T � T T � Z T � ZŽ .Ž . Ž .N i j N i N j N i N i N j N jž /N � 1

� � T � Z T � Z .Ž . Ž .N i j N i N i N j N j

� Ž .�Straightforward calculations show cf. Putter 1994 that under the condi-
2 Ž �4 .tions of the present lemma, E� � OO N . It also follows from the proof ofN i j

2 Ž �2 .Lemma 5.1 that EZ � OO N .N i
First we shall show that

N 1�2 � T � Z T � ZŽ . Ž .ÝÝ N i j N i N i N j N j
i�j

� N 1�2 � T T � T Z � T Z � Z ZŽ .ÝÝ N i j N i N j N i N j N j N i N i N j
i�j

tends to zero in probability. Applying Lemma A.1 we see that there exist T �
N i

� � � �1�8such that T � N andN i

P T � � T for i � 1, . . . , N � 2 � 1 � oo 1 ,Ž . Ž .N i N i

so it suffices to show that

� � �1�2E N � T T � T Z � T Z � Z Z � 0.Ž .ÝÝ N i j N i N j N i N j N j N i N i N j
i�j

This is true, as the above expression is less than or equal to
1 15�2 �1�8 5�2 � �N N E � T � Z � Z � N E � Z ZŽ .N 12 N 1 N 1 N 2 N 12 N 1 N 22 2

1�2 1�2 1�219�8 2 2 2� N E� ET � EZŽ . Ž . Ž .½ 5N 12 N 1 N 1

1�21 5�2 2 2� N E� EZŽ .N 12 N 12

� OO N�1�8 � N�3�2 .Ž .
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It remains to consider
1

1�2N T � T � T T � Z T � ZŽ .Ž . Ž .ÝÝ N i j N i N j N i N i N j N jž /N � 1i�j

1
1�2� N T T T � T � TŽ .ÝÝ N i N j N i j N i N jž /N � 1i�j

1
1�2� N T � T � T T Z � T ZŽ . Ž .ÝÝ N i j N i N j N i N j N j N iž /N � 1i�j

1
1�2� N T � T � T Z Z .Ž .ÝÝ N i j N i N j N i N jž /N � 1i�j

We can deal with the second and third of these terms in a similar way and
see that we have to show that

1
� �1�2E N T � T � T T Z � T Z � 0Ž . Ž .ÝÝ N i j N i N j N i N j N j N iž /N � 1i�j

and
1

�1�2E N T � T � T Z Z � 0,Ž .ÝÝ N i j N i N j N i N jž /N � 1i�j

� � � �1�8 � � � �1�3with T � N and Z � N . The above expectations can be bounded,N i N i
respectively, by

1
5�2 �1�8N N E T � T � T ZŽ .N 12 N 1 N 2 N 1ž /N � 1

1�221 1�219�8 2� N E T � T � T EZŽ . Ž .N 12 N 1 N 2 N 1ž /ž /N � 1

� OO N�1�8Ž .
and

1
1 5�2 �1�3N N E T � T � T ZŽ .N 12 N 1 N 2 N 12 ž /N � 1

1�221 1�21 13�6 2� N E T � T � T EZŽ . Ž .N 12 N 1 N 2 N 12 ½ 5ž /N � 1

� OO N�1�6 .Ž .
Finally, note that under the moment assumptions of the present theorem

2�5 3�56�5 3 2 7�5 �3� � � �E T T T � E T T ET � C N ,Ž .Ž .N 1 N 2 N 12 N 1 N 2 N 12

6�51 6�532 �6�5 6�5 �3� �E T T � N E T � C N .Ž .N 1 N 2 N 1N � 1
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Now define

1
� �L � E T T T X � E T T T � T XŽ .Ž . Ž .N i N i N j N i j i N i N j N i N j iN � 1

� ET T T ,N 1 N 2 N 12

1
M � T T T � T T T � T � L � LŽ .N i j N i N j N i j N i N j N i N j N i N jN � 1

� ET T T .N 1 N 2 N 12

� �6�5 �3 � �6�5 �3Obviously we have E L � C�N and E M � C�N for an ap-N 1 N 12
propriate C�. Now

1
1�2N T T T � T � T � ET T TŽ .ÝÝ N i N j N i j N i N j N 1 N 2 N 12ž /ž /N � 11�i�j�N�2

N�2
1�2 1�2� N N � 1 L � N MŽ . Ý ÝÝN i N i j

i�1 1�i�j�N�2

and
6�5N�2 � �C� N � 2 E LŽ . N 11�2P N N � 1 L � � � � 0,Ž . Ý N i 6�5�1ž / �1�2i�1 � N N � 1Ž .Ž .

N � 2 6�5� �C� E MN 12ž /21�2P N M � � � � 0,ÝÝ N i j 6�5ž / �1�2�NŽ .1�i�j�N�2

Ž .by the inequality of von Bahr and Esseen 1965 . One easily checks the
uniformity of the various convergences and the lemma is proved. �

PROOF OF THEOREM 1.3. The conditions of Theorem 1.3 allow application
of Lemmas 5.1 and 5.2, which together with Lemma 4.3 and Slutsky’s lemma

ˆ ˆimply consistency of the estimators � and � . Combining this with Theorems1 2
1.1 and 1.2 proves the theorem. �

APPENDIX

In this Appendix we prove a truncation lemma that is used several times
in the proofs of Theorem 1.2, Corollary 3.1 and Lemmas 5.1 and 5.2.

� � sLEMMA A.1. Let Y be a random variable with EY � 0 and E Y � � � �s
Ž .for some s 
 1. Then, for every � � 0, there exists Y � � 	 Y such that

� �Y � � � a.s.;
2�s

P Y � � Y � ;Ž . s�



H. PUTTER AND W. R. VAN ZWET1568

EY � � 0;
22 t�1 �st� �E Y � � Y � for every 0 � t � s.s� t�

PROOF. Choose � � 0 and define

�� , if Y � �� ,�Y , if �� � Y � � ,Y � ��� , if Y � � .

� �We have Y � � � a.s.,

�s
� �P Y � � Y � P Y � � �Ž . Ž . s�

and
tt� � � �E Y � � Y � E Y � � IŽ . � �Y � 
�4

t�s 1�t�ss� � � �� E Y P Y 
 � for 0 � t � s.Ž . Ž .

Next we change Y � slightly to make its expectation vanish. By the above we
� � s�1have EY � � � �� because EY � 0. Assume without loss of generalitys

that EY � � 0 and change the value of Y � on a set of probability � � �� s
s

where �� � Y � � 0 to the value �� until the expectation equals zero. This
can actually be done, since otherwise this process would end with a nonnega-
tive random variable with negative expectation. Call the resulting variable

Ž .Y � � 	 Y .
� � Ž . s Ž .Obviously, Y � � � and EY � � 0. Also, P Y � � Y � � � �� so P Y � � Ys

� 2� �� s. Since we have obtained Y � from Y � by changing the value of Y � bys
s � � tat most 2� on a set of probability at most � �� , we have E Y � � Y � �s

Ž s.Ž .t� �� 2� . Hence,s

� � t t�1 � � t � � tE Y � � Y � 2 � 1 E Y � � Y � E Y � � Y� 4Ž .
� �s st t�1 Ž2 t�1.� 1 � 2 2 � 1 � 2 .Ž . Ž .s�t s�t� �

This proves the lemma. �
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