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TWO-WAY ANALYSIS OF VARIANCE

By Wolfgang Terbeck and P. Laurie Davies

University of Essen

The two-way analysis of variance with interactions is a well estab-
lished and integral part of statistics. In spite of its long standing, it is
shown that the standard definition of interactions is counterintuitive and
obfuscates rather than clarifies. A different definition of interaction is given
which among other advantages allows the detection of interactions even
in the case of one observation per cell. A characterization of uncondition-
ally identifiable interaction patterns is given and it is proved that such
patterns can be identified by the L1 functional. The unconditionally iden-
tifiable interaction patterns describe the optimal breakdown behavior of
any equivariant location functional from which it follows that the L1 func-
tional has optimal breakdown behavior. Possible lack of uniqueness of the
L1 functional can be overcome using an M functional with an external
scale derived independently from the observations. The resulting proce-
dures are applied to some data sets including one describing the results of
an interlaboratory test.

1. Introduction.

1.1. A simple example. The standard model of the two-way layout with
interactions is often written in the form

Xijk = µ+ ai + bj + cij + εijk� 1 ≤ k ≤Kij� 1 ≤ i ≤ I� 1 ≤ j ≤ J�(1)

The model (1) is overparameterized and to avoid this, the following restrictions
are conventionally placed on the row and column effects and the interactions,
respectively: ∑

i

ai =
∑
j

bj = 0(2)

and ∑
i

cij =∑
j

cij = 0(3)

There is no reason to accept any of these restrictions. In this paper, the restric-
tions (2) play no role. Only (3) is of interest and we claim it is counterintuitive
as may be seen in the following example. For the sake of simplicity, we set
Kij = 1 and the noise ε to zero. Three different therapies are given to three
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different groups of patients. Therapy A causes an improvement in Group 1,
but there are no other effects. The results are summarized by the table


1 0 0

0 0 0

0 0 0


 �(4)

The obvious interpretation of these results is that there is an interaction be-
tween Therapy A and Group 1 and that is all. However, if we write (4) in the
form (1) subject to (2) and (3), we obtain a main effect, row and column effects
and the interaction pattern


4/9 −2/9 −2/9

−2/9 1/9 1/9

−2/9 1/9 1/9


 �(5)

We now have interactions everywhere and the original clear and simple in-
terpretation has been lost. This example was also known to Daniel [7] and
is of itself sufficient to discredit the usual definition of interaction. It is also
discussed in [20], pages 178–180. A practical example with the same struc-
ture is Table 5.6 of Cochran and Cox ([6], page 164). It has been analyzed
by Daniel ([7], Sections 4.3 and 4.7) and Hampel, Ronchetti, Rousseeuw and
Stahel ([18], Section 1.1d).

We note that in the context of this paper there is no difference between
an interaction and an outlier, and we shall use both terminologies. Tukey
[36] calls such observations exotic. Failure to detect interactions is equiva-
lent to failure to detect outliers, and in the context of outliers, such a failure
is referred to as breakdown. When we therefore refer to optimal breakdown
behavior, we also mean optimal detection of interactions.

We restrict attention throughout to the case of one observation per cell, that
is, Kij = 1. The reason for this is that it is the most difficult case and that
the general case can be reduced to it by the simple expedient of replacing the
observations in each cell by their median.

The example (4) is given in [11] as are (without proof) Corollary 2.4 and
Theorem 2.11.

1.2. Group invariance and equivariance. The model (1) is clearly invariant
with respect to the following group of operations:

PR permute the rows
PC permute the columns
AR add fixed numbers to the rows
AC add fixed numbers to the columns
IRC interchange rows and columns
M multiply all observations by a nonzero number
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It seems reasonable to demand that any method of analyzing a two-way table
should be equivariant with respect to these group operations. Most but not all
methods suggested in the literature are equivariant. An exception is Tukey’s
median Polish [35, 20], which is not equivariant with respect to AR, AC and
IRC. Terbeck [34] contains more information on this topic.

1.3. Previous work. The definition of interaction we give in Section 2.1
is not new and may be found in [8]. Daniel showed how the least-squares
residuals may be used to detect certain patterns of outliers. In many cases
Tukey’s median polish correctly identifies outliers in the two-way table, but
it cannot always be relied upon to do this [20]. Tukey [36] pointed out the
questionability of the side conditions (3) and he also considered the problem
of splitting up the residuals into a noise and an interaction part. Tukey’s me-
dian polish can be shown to detect all interaction patterns described by Corol-
lary 2.7, but it does not detect all those described by Corollary 2.8. Methods
based on the differences �kj = medi�xij − xik� for the differences bj − bk,
and δst = medj�xtj − xsj� for the differences at − as have been developed by
Hoaglin, Mosteller and Tukey ([21], page 45). In general, these methods find
all interaction patterns that satisfy either Corollary 2.7 or Corollary 2.8. They
do not, however, find all unconditionally identifiable interaction patterns as
defined below. More detailed information is given in [34]. Bradu [3], Bradu
and Hawkins [5] and Gentleman and Wilk [15, 16] have also considered the
problem of identifying multiple outliers in the two-way analysis of variance.
Hubert [24] has treated the corresponding problem for two-way contingency
tables. She shows that in this situation the L1 functional has the highest pos-
sible breakdown point. A discussion of the problem of outliers in the analysis
of variance can be found in [18]. He, Jurečková, Koenker and Portnoy [19],
Bradu [4] and Ellis and Morgenthaler [14] considered the breakdown behav-
ior of the L1 functional for fixed regressors. Their work leads to necessary
and sufficient conditions for a subset of the regressors to be safe for the L1

functional. The condition is not easy to check, but it applies to any linear re-
gression model. In the particular case of the two-way table, we are able to
give a simple necessary and sufficient condition for a subset to be safe (Theo-
rem 2.3) and, moreover, we are able to show that an unsafe subset is unsafe
for any functional which is equivariant with respect to the allowable group of
transformations of a two-way table as described above.

An additive structure is not the only possible structure for the two-way ta-
ble. The results we give may be applied to the multiplicative model by taking
logarithms. Many other structures can be constructed such as the row- and
column-linear models developed by Mandel [26, 27]. They face the same prob-
lems and as yet have not been robustified. The linear model has the great
advantage of simplicity, and even if it is not an adequate model, the resid-
uals from a robust fit provide a good starting point for developing an im-
proved model.

Huber [23] states “Embarrassingly, the robustification of the statistics of
two-way tables is still wide open.” We hope this paper reduces the embarrass-
ment.
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1.4. Contents. In Section 2 we consider the no-noise model and introduce
a different definition of interaction. It is also shown that the L1 functional has
certain optimality properties with respect to breakdown or the identification
of interactions. Noise is included in Section 3, where it is shown that the
L1 functional is no longer in general uniquely defined. This problem can be
overcome by using an M functional which is shown to inherit the optimality
properties of theL1 functional. Section 4 contains some remarks on breakdown
in the two-way table. Section 5 contains several data sets which are analyzed
according to the procedures developed in this paper. Proofs are relegated to
the Appendix.

2. The “no-noise” case.

2.1. Minimizing the interactions. The no-noise model is given by

xij = ai + bj + cij�(6)

The definition of interaction which we propose is the following. Given a data
set X = �xij�, 1 ≤ i ≤ I and 1 ≤ j ≤ J, find effects ai and bj so that

#��i� j�	 cij 
= 0� != min �(7)

Clearly a solution always exists, so the question of interest is that of unique-
ness. An example of nonuniqueness is the following, also known to Hampel: if
we add −1 to the first row and 1 to the second column of the table


1 0 0

0 −1 0

0 0 0


 �(8)

we obtain the table 


0 0 −1

0 0 0

0 1 0




both of which have two interaction terms. It is not possible to reduce the
number of interactions further.

If we replace (8) by 


1 0 0

0 1 0

0 0 0


 �(9)

then any nonzero choice of the main, column and row effects leads to an in-
crease in the number of nonzero interactions. Thus the interactions given by
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(9) represent the unique solution. These two examples show that, in general,
uniqueness depends on the position and the values of the interaction terms.
In some cases, however, the question of uniqueness can be reduced to that of
the position alone. The simplest case is the following. The table


α 0 0

0 0 0

0 0 0


(10)

is clearly the unique solution to our problem regardless of the value of α.
We call such interaction patterns unconditionally identifiable and they are
our main object of study. The reasons for this are that such patterns can be
characterized, they can be detected by the L1 functional, the unconditionally
identifiable interaction patterns are linked to optimal breakdown behavior
and, finally, they form a sufficiently rich class to be of use in practical problems.
Indeed if there are too many interactions, then the additive model may not be
adequate.

2.2. Unconditional identifiability. Given a data set X = �xij�, we call the
set

� �X� = {�cij�	 there exist ai� bj s.t. xij = ai + bj + cij
}

the set of possible residual matrices. For each residual matrix C = �cij� we
write

R�C� = #
{�i� j�	 cij 
= 0

}
�

The minimization problem can be formulated as finding a matrix C ∈ � �X�
with

R�C� = min
{
R�C′�	 C′ ∈ � �X�}�

Definition 2.1. A residual matrix C is called identifiable if there exists
no matrix C′ ∈ � �C� with C 
= C′ and R�C′� ≤ R�C�.

We restrict attention to those interaction matrices which are identifiable for
any choice of the nonzero interactions. The pattern of the nonzero residuals
is described by an �I×J� matrix with entries 0 and 1� where a 1 represents
a nonzero interaction.

Definition 2.2. An interaction pattern P = �pij� is called unconditionally
identifiable if, for every choice cij 
= 0 in the cells with pij = 1 and cij = 0�
whenever pij = 0� we get an identifiable residual matrix C = �cij�.
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2.3. Characterization of unconditionally identifiable interaction patterns.
The main result on unconditionally identifiable interaction patterns is the
following theorem.

Theorem 2.3. An interaction pattern P is not unconditionally identifiable
if and only if either of the following statements holds.

(a) There exists a row or column of P which contains at least as many 1’s
as 0’s.

(b) We can permute the rows and columns of P to obtain a matrix P′

P′ =
(
P′

11 P′
12

P′
21 P′

22

)
�(11)

where none of the matrices is empty and where P′
12 and P′

21 together contain
at least as many 1’s as 0’s.

The proof is presented in the Appendix.

Corollary 2.4. Let P be an interaction pattern and consider the following
operations: to each row or column of P may be added a row or column of
1’s with addition modulus 2, that is, 1 + 1 = 0. Then P is unconditionally
identifiable if and only if there is no such sequence of operations which results
in an interaction pattern P′ 
= P with R�P′� ≤ R�P�.

Corollary 2.5. If P is an unconditionally identifiable interaction pattern
and P′ is another interaction pattern satisfying p′

ij = 0 whenever pij = 0, then
P′ is also unconditionally identifiable.

Corollary 2.6. An I×J unconditionally identifiable interaction pattern
has at most

min
{(
J−

⌊
J− 1

2

⌋)⌊
I− 2

2

⌋
�

(
I−

⌊
I− 1

2

⌋)⌊
J− 2

2

⌋}
+
⌊
I− 1

2

⌋⌊
J− 1

2

⌋
interactions.

The upper bound of Corollary 2.6 is sharp for I = J = 3. If I = J = 5�
then the maximum number of interactions is six whereas Corollary 2.6 gives
seven. We refer to [34] for more information on the number of interactions
in unconditionally identifiable patterns. Using Corollary 2.4 we see that we
require min�J2I−1� I2J−1� operations to check unconditionally identifiability.
The two following special cases are sometimes useful.

Corollary 2.7. If P is an interaction pattern such that the majority of
rows and the majority of columns do not contain any interactions, then P is
unconditionally identifiable.
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Corollary 2.8. If P is an interaction pattern such that in each row and
each column less than a quarter of the cells contain an interaction, then P is
unconditionally identifiable.

The interaction patterns described in Corollary 2.7 are precisely those con-
sidered by Daniel [9], who showed how to detect them on the basis of the
least-squares residuals.

2.4. L1 optimality. It turns out that data arising from unconditionally
identifiable patterns can be correctly analyzed using the L1 functional. On
writing

cij = cij�ai� bj� = xij − �ai + bj��(12)

the L1 or least absolute deviation functional is defined as the arg min of the
function

F�a1� � � � � aI� b1� � � � � bJ� =
∑
i� j

∣∣cij�ai� bj�∣∣�(13)

A characterization of solutions of such a minimization problem was given by
El-Attar, Vidyasagar and Dutta ([13], Lemma 2.1). In our situation all the
functions cij are linear and the gradient of cij is an �I + J� vector with ith
and �I + j�th component −1 and 0 elsewhere. This leads to the following
proposition.

Proposition 2.9. The effects ai and bj minimize (13) if and only if there
exist αij ∈ �−1�1� for every cell �i� j� with cij = 0 such that∑

j	 cij 
=0

sgn cij +
∑

j	 cij=0

αij = 0� 1 ≤ i ≤ I�(14)

∑
i	 cij 
=0

sgn cij +
∑

i	 cij=0

αij = 0� 1 ≤ j ≤ J�(15)

A residual matrix C = �cij� minimizes the least absolute deviation if and
only if we can find an �I×J� matrix A = �αij� for which the following hold:

1. If cij 
= 0� then αij = sgn �cij� 
= 0.
2. If cij = 0� then αij ∈ �−1�1�.
3. All row sums and column sums of A equal 0.

Using this representation of L1 optimality, we can prove the following lemma.

Lemma 2.10. If the residual matrix C has an unconditionally identifi-
able interaction pattern P� then C is a solution of the least absolute deviation
problem.
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In general, solutions to the L1 problem in the two-way layout are not unique
[1]. The following theorem is therefore stronger than Lemma 2.10:

Theorem 2.11. Let X be a matrix and C and let C′ be two residual matri-
ces in � �X� such that C has an unconditionally identifiable interaction pattern
and C′ minimizes the least absolute deviation. Then C = C′.

An adaptation of general simplex methods to the special case of a two-way
table was given by Armstrong and Frome [1, 2].

Theorem 2.11 is no longer valid for a matrix C whose interaction pattern
is not unconditionally identifiable as shown in the example


0 0 1 2 3

0 0 0 0 0

0 0 0 0 0


 �

whose unique L1 solution is

−1 −1 0 1 2

0 0 0 0 0

0 0 0 0 0


 �

2.5. A general solution to the parsimony criterion. An algorithm which
calculates the minimum number of nonzero interactions for any given data
set is described in [34]. It is, however, slow and can only be used for small
data sets. Furthermore, we have not succeeded in extending it to cover the
case of noisy data, so we do not pursue this topic further.

3. Interactions and noise.

3.1. The inclusion of noise. The inclusion of noise leads to the model

xij = ai + bj + cij + εij�(16)

where the εij are usually taken to be independently and identically distributed
random variables. At first sight the noise �εij� and the interactions �cij� are
confounded. However, if we accept that the noise �εij� is small, then we can ten-
tatively identify large residuals as interactions or outliers rather than noise.
This is the path we shall pursue.

3.2. Location functionals and noise. In Section 2 we saw that in the no-
noise case the L1 functional detects all interactions which form an uncon-
ditionally identifiable interaction pattern. We now show that the influence of
such interactions on the values for the row and column effects is bounded even
for noisy data. More generally, we can prove optimal breakdown behavior for a
class of M functionals defined by minimization of a strictly convex ρ function
with a given scale.
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Another possibility is to define location and scale as the 0’s of the ψ and χ
functions (see [22]). Although the empirical evidence is good in that we have
not found any data sets where this fails, there are no proofs of uniqueness or
theoretical results on breakdown behavior. This is worthy of further investi-
gation.

In order to define the M functional, we need an initial or external scale
functional. We construct this in Section 3.3, but for now we assume its exis-
tence, denote it by se and assume it satisfies

sup
{
se�X+C�	 C ∈ �UI

}
<∞(17)

for all matrices X� where �UI is the set of all �I×J� matrices with an uncon-
ditionally identifiable interaction pattern.

The M functional for a data set �xij� is defined as a minimizer of

∑
i� j

ρ

(
xij − �ai + bj�

se�X�
)

(18)

if se�X� > 0 and as an L1 solution if se�X� = 0. By fixing a1 = 0 and choosing
a strictly convex ρ function, we can guarantee that (18) always has a unique
minimum. In the two-way layout we can prove robustness if �ρ�x� − k0�x�� is
bounded for some k0 
= 0.

Theorem 3.1. Let �xij� be an arbitrary matrix, se be a scale functional
satisfying (17) and ρ be a strictly convex function such that �ρ�u� − k0�u�� is
bounded for some constant k0 
= 0. For each C ∈ �UI we minimize∑

i� j

�xij − ai − bj� if se�X+C� = 0�

∑
i� j

ρ

(
xij − ai − bj

se�X+C�
)

if se�X+C� > 0�

If the solutions are ai and bj with a1 = 0� then

sup
{�aCi �	 C ∈ �UI

}
<∞

and

sup
{�bCj �	 C ∈ �UI

}
<∞�

The proof is given in the Appendix.

Theorem 3.1 implies that functionals defined by the theorem have the best
possible breakdown behavior in the two-way layout.

In the examples below we use the ρ function

ρ�u�A� = u2

�1 +A�u��(19)
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for some tuning constant A > 0. For small A� the ρ�u� function behaves like
u2 and for large A� like �u�. Simulations with standard Gaussian noise and
scale functional se = 1 show that for A = 10 the ability to detect outliers
is comparable to that of the L1 functional and larger values of A have no
further advantage. For values of A as low as 5 the ability to detect outliers
is impaired. In the examples below we therefore set A = 10 in (19). Unfortu-
nately this choice of A leads to numerical problems. Steepest descent turns out
to be very unstable because of inaccuracies in the calculation of the gradient.
The Nelder–Meade algorithm [28] does work, but may have to be restarted
several times due to degeneracy of the simplex. The following method proved
satisfactory.

Step 1. Iterate median polish 10 times.
Step 2. Calculate robust scale functional s (see Section 3.3).
Step 3. Calculate direction of steepest descent �a∗� b∗�.
Step 4. Minimize in direction �a∗� b∗�.
Step 5. Repeat Steps 3 and 4 to convergence.

Step 1 is included because median polish is very fast and the final result
is often very close to the solution of the minimization problem [20]. A robust
scale functional as in Step 2 is described in the next section. This is calculated
only once. The calculation of �a∗� b∗� in Step 3 is simple. The minimization
problem in Step 4 is now a one-dimensional problem which may be solved by
bisection.

3.3. Initial robust scale functionals. In order to calculate the M functional
of the last section we require an initial scale functional se which satisfies (17).
If the scale is “known,” then s can simply be taken to be this known value.
If there is more than one observation per cell, one simple method is to take
the median of the cells’ MADs. This is a case of “borrowing strength” (Tukey).
The most difficult situation is that of one observation per cell, where the scale
itself has to be based on the observations while allowing for the possibility of
interactions. We address this problem.

One possibility is to calculate the “tetrad differences” �xij+xkl�−�xil+xkj�
because these terms do not depend on the row and column effects ([5]; [18],
Section 8.4). Using Theorem 3.2 below, it can be shown that in the case of an
unconditionally identifiable interaction pattern the proportion of tetrad differ-
ences not effected by interactions is at least 1/�16�I− 1��� where, without loss
of generality, we assume I ≤ J [34]. This is the only universal bound we have,
but it can be very poor. In the case of a 5×5 table it can be shown directly that
at least 16 of the possible 100 tetrad differences are not effected, whereas the
general bound gives only 1. A second attempt is to calculate differences of the
form xi′j − xij, i′ 
= i�1 ≤ j ≤ J. These terms do not depend on any column
effects. It turns out that for unconditionally identifiable interaction patterns
a sufficient number of them do not contain any interaction terms for it to be
possible to make use of them.
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Theorem 3.2. LetP be an unconditionally identifiable interaction pattern.
Then for each row i there exists another row i′ 
= i such that

#
{
j	 pij = 0 = pi′j

}
>
J+ 1

4
�

The proof is given in the Appendix.
For each pair i� i′ of rows, calculate the length of the shortest interval con-

taining more than �J+ 1�/4 of the differences xij−xi′j and denote it by s�i� i′�.
For each row i we set

smin�i� = min
i′ 
=i

s�i� i′�/
√

2�

It follows from the Theorem 3.2 that smin�i� does not explode for patterns of
unconditionally identifiable outliers. If the number of rows is very large, then
smin�i� may be very small. Although this is theoretically of no consequence,
it may in practice lead to considerable numerical problems when minimizing
the ρ function. To avoid this, we set

s∗�i� = exp�A�J� +B�J� log�I��smin�i��(20)

where A�J� and B�J� are as follows. If 3 ≤ J ≤ 6� then B�J� = 1�0 and

A�3� = 0�9� A�4� = 1�6� A�5� = 2�1� A�6� = 2�5�

For J = 7 we set A�7� = 1�1 and B�7� = 0�5. Finally if J ≥ 8� then

A�J� = 2�7J−0�3� B�J� = 2�8J−0�8� mod�J�4� = 0�

A�J� = 4�0J−0�4� B�J� = 3�0J−0�8� mod�J�4� = 1�

A�J� = 4�3J−0�4� B�J� = 3�1J−0�8� mod�J�4� = 2�

A�J� = 2�1J−0�2� B�J� = 1�5J−0�6� mod�J�4� = 3�

The constants given above were determined by simulation and make the s∗�i�
approximately median consistent for Gaussian noise. We repeat the process
for the columns to obtain s∗�j� and define the initial robust scale functional
se by

se =
1

I+J

( I∑
i=1

s∗�i� +
J∑
j=1

s∗�j�
)
�(21)

3.4. Final robust scale functionals. Simulations show that the functional
se has both a large variability and a large bias in the presence of interac-
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tions [34]. This has little effect on the result of the minimization problem,
where scale is effectively a nuisance parameter. It does, however, make se un-
suitable as a measure of the scale of the noise. An improved scale functional
for the noise may be obtained from the residuals as described in Theorem 3.3.
For the statement of the theorem, we require the definition of the finite sample
breakdown point [12]. Given a scale functional S and a data set X we define

ε∗�S�X� = min
{
k

IJ
	 sup
Y∈�k

{
S�Y�} = ∞

}
�

where

�k = {�yij�	 #
{�i� j�	 yij 
= xij

} = k
}
�

Theorem 3.3. For a given data set X and for each C ∈ �UI define RC =
�rCij� by

xij + cij = aCi + bCj + rCij�

where aC1 = 0 and

sup
i� j�C∈�UI

{�aCi �� �bCj �} <∞�

Let S be a Lipschitz-continuous (with respect to the L1 norm) scale functional
such that

ε∗�S�X′�>
(
min

{(
J−

⌊
J−1

2

⌋)⌊
I−2

2

⌋
�

(
I−

⌊
I−1

2

⌋)⌊
J−2

2

⌋}

+
⌊
I− 1

2

⌋⌊
J− 1

2

⌋)/
IJ

(22)

for all X′ = �x′
ij�. Then

sup
{
S�RC�	 C ∈ �UI

}
<∞�

The term in (22) comes from Corollary 2.6. It is always less than 1
2 and

thus the MAD satisfies the conditions of Theorem 3.3. The functional we shall
adopt here is the following M functional for scale. If the residuals are rij� then
we define the scale functional s0 to be the unique solution of

∑
ij

χ

(
rij

s0

)
= 1 − 2ε�(23)

where

χ�u� = u4 − 1
u4 + 1

(24)
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and

ε = min
{(
J−

⌊
J− 1

2

⌋)⌊
I− 2

2

⌋
�

(
I−

⌊
I− 1

2

⌋)⌊
J− 2

2

⌋}

+
⌊
I− 1

2

⌋⌊
J− 1

2

⌋/
IJ�

(25)

The scale functional s0 can be made median consistent (for Gaussian noise)
as follows. Without loss of generality, we assume that I ≤ J and set

s = s0

E�I� −F�I�J�J−1
�(26)

where

I 3 4 5 6 7 8 9 10 11 ≥≥≥ 12

E�I� 1�27 1�00 0�90 0�85 0�80 0�78 0�77 0�75 0�74 0�65 + 0�90I−1

F�I� even� −1�24 0�84 0�25 0�84 0�50 0�84 0�60 0�84 0�60 0�78
F�I� odd� −0�12 0�84 0�56 0�84 0�70 0�84 0�70 0�84 0�70 0�78

3.5. Identifying interactions or outliers. To identify outliers in the two-way
table, we propose the following procedure. The row and column effects are
calculated using the ρ function defined by (19) with tuning constant A = 10.
The initial scale functional s0 we use is that defined by (20). The residuals rij
are then calculated and divided by the scale function (26) to give standardized
residuals r∗ij = rij/s. All cells �i� j� for which

�r∗ij� > OF�I�J�(27)

are identified as outliers. The factor OF�I�J� is chosen so that the probability
of identifying some cell as an outlier is 0�05 under Gaussian noise, that is,

P
(
max
ij

��r∗ij�� > OF�I�J�
)
= 0�05�

Simulations give the following approximation for OF�I�J�. We set

z�I�J� = .−1�αN��
where . denotes the distribution function of the standard normal distribution,
N = IJ and

αN = �1 + 0�951/N�/2�
Without loss of generality we may suppose that I ≤ J. For I = 3 we have

OF�3�3� = 2�7 OF�3�4� = 2�7 OF�3�J� = z�3�J� + 0�45� J ≥ 5�

For 4 ≤ I ≤ 8 we set

O�I�J� = z�I�J� +G�I� +H�I�/J�
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where

I 4 5 6 7 8

G�I� 0�25 0�30 0�20 0�20 0�20
H�I� 2�8 2�5 2�8 2�4 2�7

Finally for I ≥ 9 we set

OF�I�J� = z�I�J� exp�exp�0�5 − 0�02I�/J��
The following approximation for z�I�J� may be used:

z�I�J� =
√

2 logN− ( 1
2 log�logN� − 2�4

)/√
2 logN− 1�48/ logN�(28)

4. Breakdown patterns. In this section we shall interpret interactions
as outliers to conform with the usage in robust statistics. We distinguish be-
tween breakdown points and breakdown behavior. The breakdown point of
a functional represents the minimum number of outliers which can cause
functionals to break down. In the two-way table the minimum number is
min���I+ 1�/2�� ��J+ 1�/2�� and occurs when all the outliers are in one row
or one column. As we have seen, it is possible for a functional to withstand
more outliers than this if they are spread out over the table. The best we
can hope for is the identification of arbitrary outliers which form an uncondi-
tionally identifiable pattern. If the pattern is not unconditionally identifiable,
then there is a choice of outliers such that there is another pattern with at
most the same number of outliers and which is, in the context of the model,
indistinguishable from the first. Furthermore, the outliers may be chosen to
be arbitrarily large with the result that any procedure which is equivariant
with respect to the group of allowable transformations (Section 1.2) will break
down. From this it follows that any method which eventually detects arbi-
trarily large outliers forming an unconditionally identifiable pattern has the
optimal breakdown behavior. Theorem 3.1 shows that the L1 functional has
the optimal breakdown behavior.

Let us examine the breakdown behavior of the Hampel–Rousseeuw least
median of squares [17, 30]. First, we note that the optimal breakdown point is
not obtained by minimizing the median of the absolute residuals, but rather
by minimizing the hth order statistic where h = �n/2� + ��p+ 1�/2� and p− 1
denotes the maximum number of points on a lower dimensional plane. We
refer to [33], page 125, and [10], page 1851, with the correction that the max-
imum number of points on a lower dimensional plane is p − 1 and not p. In
the case of the 5 × 5 table “least median of squares,” therefore, has the high-
est breakdown point if we minimize the size of the 23rd order statistic of the
absolute residuals. Furthermore, if we minimize any smaller order statistic,
it is clear that we may then fail to identify two outliers in any row or column.
The following modification gives optimal breakdown behavior. Let k be such
that the pattern formed by the largest k absolute residuals is unconditionally
identifiable, but that formed by the largest k + 1 absolute residuals is not.
Choose the row and column effects to minimize the �IJ− k�th absolute resid-
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ual. Note that k is not constant, but depends on the data. This modification
is not trivial because it requires the concept of unconditionally identifiable
patterns.

5. Examples.

5.1. A constructed example. The first example is one we have constructed
so that the size and position of each interaction is known. The data are




24�12 −4�17 −2�69 11�73 19�85 40�54 5�96 13�61 14�88

−8�82 −12�16 −24�99 3�16 20�19 19�16 9�58 3�43 3�15

0�12 10�13 −0�58 25�05 33�35 30�60 7�02 15�29 15�95

26�45 9�57 10�40 27�92 46�07 43�49 21�01 28�52 29�42

−12�19 −15�05 −14�62 −13�41 6�67 6�15 −18�06 −10�36 −10�31

22�03 20�62 7�29 13�31 41�76 38�66 16�03 24�06 23�38

10�35 7�62 −4�43 10�51 28�12 28�25 15�18 26�76 23�11

0�79 −1�22 −10�94 3�39 20�48 19�80 9�27 −8�89 16�67

3�16 0�75 4�05 19�39 34�13 31�00 −2�86 4�52 6�86




and were generated as follows. The matrix

C =




12�3 −13�1 0�0 0�0 −12�9 11�8 0�0 0�0 0�0

−11�9 −12�0 −14�2 0�0 0�0 0�0 13�9 0�0 0�0

−13�9 0�0 0�0 10�0 0�0 0�0 0�0 0�0 0�0

0�0 −13�8 0�0 0�0 0�0 0�0 0�0 0�0 0�0

0�0 0�0 10�9 0�0 0�0 0�0 0�0 0�0 0�0

0�0 0�0 0�0 −10�3 0�0 0�0 0�0 0�0 0�0

0�0 0�0 0�0 0�0 0�0 0�0 12�9 14�2 12�0

0�0 0�0 0�0 0�0 0�0 0�0 13�7 −12�9 12�9

0�0 0�0 14�2 15�1 12�9 11�1 0�0 0�0 0�0




�

has an unconditionally identifiable interaction pattern. To it were added the
row effects 12.0, 2.0, 13.2, 26.8, −12�9, 22.1, 9.8, 2.1, 3.4 and the column effects
1.0, −2�9, −13�8, 0.9, 18.5, 17.2, −6�5, 2.1, 2.1. Finally, using a pseudo-random
number generator Gaussian white noise with 0 mean and unit variance was
added to all cells.
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The standardized (division by the standard deviation) least-squares resid-
uals are


2�59 −1�44 −0�14 −0�30 −1�81 1�73 −0�57 0�12 −0�17

−1�06 −0�67 −1�91 0�37 0�45 0�12 2�26 0�50 −0�06

−1�92 0�84 −0�03 1�81 0�33 −0�30 −0�64 0�16 −0�24

0�66 −1�35 −0�17 0�23 0�50 −0�10 −0�25 0�42 0�06

0�19 0�67 1�78 −0�72 −0�10 −0�33 −0�79 −0�09 −0�60

0�58 1�31 −0�02 −1�66 0�44 −0�25 −0�43 0�33 −0�31

−0�28 0�22 −0�88 −0�94 −0�76 −0�88 0�64 2�02 0�86

−0�08 0�55 −0�14 −0�31 −0�22 −0�48 1�48 −2�41 1�61

−0�68 −0�12 1�50 1�51 1�18 0�49 −1�69 −1�05 −1�16




�

and give no hint of any interaction. Indeed, the largest absolute standardized
residual is 2.59 in cell �1�1�. Simulations with the Gaussian model give a 0.95
quantile of 3.276 for the largest absolute standardized residual.

The M functional described in Section 3.2 gives s1 = 2�09 and the following
standardized residuals:


6�37 −5�77 −0�01 −0�39 −5�22 5�45 −0�02 0�04 0�34

−4�31 −4�52 −5�60 0�59 0�02 0�30 6�79 0�25 −0�19

−5�99 0�19 0�11 5�10 0�35 −0�19 −0�39 −0�04 −0�03

0�30 −6�37 −0�93 0�18 0�14 −0�31 0�00 −0�01 0�12

0�37 0�39 5�65 −1�04 −0�16 0�37 −0�14 −0�06 −0�34

0�53 1�25 −0�08 −4�47 0�42 −0�29 −0�04 0�19 −0�43

0�01 0�10 −0�62 −0�74 −1�04 −0�20 4�62 6�55 4�51

0�40 0�03 0�43 0�02 −0�53 −0�08 5�96 −6�33 5�59

−0�32 −0�07 6�55 6�62 4�95 4�23 −0�89 −0�97 −0�15




�

The 0.95 quantile is 3.98 and all interactions are correctly identified. The large
value of s1 is a bias effect caused by the outliers.

5.2. Daniel’s example. The second example is taken from [9]. The data
are the results of ear tests and were originally published by Roberts and
Corssen [29]. They have also been analyzed by Bradu [3] and by Bradu and
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Hawkins [5]. The rows correspond to sound frequencies and the columns rep-
resent different occupational groups. The data are




2�1 6�8 8�4 1�4 14�6 7�9 4�8

1�7 8�1 8�4 1�4 12�0 3�7 4�5

14�4 14�8 27�0 30�9 36�5 36�4 31�4

57�4 62�4 37�4 63�3 65�5 65�6 59�8

66�2 81�7 53�3 80�7 79�7 80�8 82�4

75�2 94�0 74�3 87�9 93�3 87�8 80�5

4�1 10�2 10�7 5�5 18�1 11�4 6�1



�

Using the M-functional procedure, we obtain a scale value of s1 = 5�08 and
the standardized residuals are



0�13 −0�18 0�99 −1�14 0�34 −0�19 −0�00

0�12 0�14 1�06 −1�08 −0�11 −0�96 0�00

−2�10 −3�26 0�00 0�01 −0�01 0�76 0�58

0�19 −0�07 −4�13 0�21 −0�47 0�33 −0�01

−1�40 0�41 −4�32 0�31 −1�00 0�00 1�12

−1�01 1�46 −1�56 0�35 0�30 0�00 −0�63

0�02 −0�01 0�94 −0�84 0�52 −0�01 −0�25



�

The 0.95 quantile under the Gaussian model is 3.85, leading to interactions
in the cells �4�3� and �5�3�. Bradu [3] finds the following six interactions or
outliers: �3�1�, �3�2�, �3�3�, �4�3�, �5�3� and �6�3�. Daniel [9] finds five of
these, but not �3�3�. Bradu and Hawkins [5] identify the cells �3�2�, �4�3�
and �5�3�.

5.3. An interlaboratory test. We indicate briefly how the above method
may be used to analyze a certain form of interlaboratory test. The rows now
represent laboratories and the columns represent samples whose concentra-
tions are to be determined. Such tests often have to be analyzed in a routine
manner for data sets with up to 300 laboratories. The challenge is to provide
an automatic analysis which can withstand and identify outlying observations
and laboratories. For this purpose we prefer to use a simple model, such as
a multiplicative one, rather than more complicated ones, such as row-linear
models [26, 27], which attempt to force an additional and possibly unjustified
structure on the data. For example, for the two data sets considered in Chap-
ter 10 and Section 13.4 of [26], a row-linear relationship without outliers is the
exception and there is no strategy for coping with nonlinearities or outliers.
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To account for laboratory variability a random effects model may be used,
but there are often additional sources of variation such as the error scale
being dependent on the level of concentration. More work remains to be done
on this topic and so we do not attempt to give a full analysis of the data below.
It consists of 10 samples of sewage sludge which were sent to 21 laboratories,
each of which had to report the lead concentration of each sample. The data
were first analyzed by Lischer [25]. The data are



151 300 259 164 146 223 279 232 218 146

136 283 240 146 114 211 270 204 196 132

130 280 230 140 110 200 250 200 200 133

149 263 249 147 120 213 251 210 198 149

147 291 254 160 127 221 276 223 212 152

145 281 261 155 130 210 284 238 249 116

138 282 233 160 125 209 257 215 200 111

158 310 263 174 135 235 282 239 220 153

141 292 246 159 116 219 272 221 207 136

165 285 236 181 135 243 308 251 216 172

145 301 359 195 175 257 315 268 242 139

115 275 181 136 115 210 254 214 215 122

120 260 226 132 105 186 238 197 182 117

143 285 248 166 127 187 260 224 208 116

142 271 227 154 116 201 258 230 207 121

132 287 245 140 106 209 266 210 202 124

142 304 249 171 141 269 287 199 240 130

127 274 233 150 122 201 244 206 195 130

110 240 200 120 110 180 200 210 150 120

168 290 261 172 143 225 270 230 217 162

242 333 152 121 192 240 308 274 155 142




�

To facilitate comparison with the analysis given by Lischer [25], we use an
additive model and report the residuals from the model. It could be argued
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that the deviations of each laboratory reading from the estimated sample con-
centrations may be more appropriate, but this requires more work based on
a random effects model. The normalized residuals based on the M functional
(s1 = 9�04) are as follows:



−0�23 0�25 0�22 −0�30 0�86 −0�41 0�01 −0�00 0�07 −0�05

0�00 0�25 0�01 −0�40 −0�79 0�15 0�90 −1�21 −0�48 0�29

0�39 0�97 −0�05 −0�02 −0�18 −0�02 −0�26 −0�61 1�01 1�45

1�61 −1�79 1�17 −0�12 0�04 0�54 −1�03 −0�38 −0�09 2�34

−0�02 −0�10 0�32 −0�09 −0�59 0�02 0�32 −0�35 0�05 1�26

0�01 −0�96 1�34 −0�40 −0�01 −0�95 1�45 1�56 4�39 −2�47

0�23 0�15 −0�76 1�16 0�44 −0�06 −0�53 0�01 −0�03 −2�02

−0�13 0�67 −0�02 0�13 −1�04 0�24 −0�34 0�09 −0�40 0�04

−0�19 0�50 −0�08 0�29 −1�32 0�29 0�37 −0�08 −0�01 −0�02

−0�12 −2�85 −3�76 0�14 −1�79 0�37 1�78 0�66 −1�60 1�39

−4�13 −2�88 8�04 −0�11 0�83 0�11 0�75 0�74 −0�52 −4�07

−1�57 0�12 −5�77 −0�76 0�07 0�79 −0�12 0�64 2�37 −0�07

0�19 −0�33 0�42 0�01 0�18 −0�65 −0�68 −0�02 −0�07 0�59

0�08 −0�22 0�20 1�12 −0�04 −3�20 −0�90 0�31 0�15 −2�17

1�16 −0�58 −0�94 0�97 −0�08 −0�46 0�06 2�15 1�23 −0�44

−0�21 0�92 0�79 −0�84 −1�45 0�16 0�68 −0�32 0�41 −0�37

−1�61 0�31 −1�27 0�09 −0�07 4�30 0�51 −4�04 2�12 −2�20

−0�24 0�01 −0�02 0�79 0�85 −0�20 −1�23 −0�24 0�15 0�82

0�40 −1�23 −1�14 −0�00 2�05 0�00 −3�57 2�73 −2�29 2�24

1�45 −1�06 0�24 0�39 0�33 −0�39 −1�19 −0�42 −0�25 1�52

7�47 1�53 −13�98 −7�42 3�58 −0�89 0�85 2�28 −9�27 −2�86




�

All standardized residuals larger than 3.91 are declared as outlying.

APPENDIX

Proof of Theorem 2.3. We start with a matrix C of interactions whose
locations are given by an interaction pattern P. If P is not unconditionally
identifiable, then we can find row effects ai and column effects bj and nonzero
values of the interactions with the following property. When we add the row
and column effects to C to obtain a matrix C′� then C′ either has fewer nonzero
elements or the the same number of nonzero elements, but at other locations.
By permuting rows and columns if necessary, we obtain a matrix T of the
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square block form

T = (
Tkl

)
1≤k≤�r+1�
1≤l≤�r+1�

=




0 1 · · · 1 1

1 0
� � �

���
���

���
� � �

� � � 1
���

1 · · · 1 0 1

1 · · · · · · 1 1



�(29)

The 0 denotes that the corresponding row and column effects sum to zero
and 1 denotes that the sum is nonzero. We call such a matrix an addition
matrix. We can reduce the number of nonzero elements of the matrix C′ by
choosing those interactions located at the 1’s of the matrix T to be cij =
−ai − bj 
= 0. The number of nonzero interactions is therefore minimized by
choosing T to maximize the number of interactions minus the number of 0’s
of C at these locations. From this it follows that an interaction pattern is not
unconditionally identifiable if and only if the number of interactions located at
the 1’s is at least equal to the number of 0’s of C located at the 1’s. If the last
row of blocks is present, then replacing a block T�r+1�l = 1 by T�r+1�l = 0 gives
another addition matrix. From the definition of T it follows that this block
contains at least as many interactions as 0’s. Summing over the last row of
blocks of T� we see that there must be at least one row of C which contains
as many interactions as 0’s. The same argument applies to the last column of
blocks if present.

Suppose now that the last row and column of blocks are not present. If
we replace two nondiagonal blocks Tij = 1 and Tji = 1 by Tij = 0 and
Tji = 0� then we obtain another addition matrix. Again we can conclude that
the number of interactions in the two blocks together is at least equal to the
number of 0’s of C. From this it follows that the partition

P =




P11 P12 · · · P1r

P21 P22 · · · P2r

���
���

� � �
���

Pr1 Pr2 · · · Prr




leads to a representation of P as given in the theorem. We have therefore
proved the “only if” part of the theorem. The “if” part is obvious. ✷

Proof of Corollaries 2.7 and 2.8. Under the conditions of each corol-
lary, P is not unconditionally identifiable if and only if we can find a per-
mutation of rows and columns leading to a partition of the form (11). We can
assume that P12 is a �k×l� submatrix and P21 is a ��I−k�×�J−l�� submatrix.

If k ≤ I/2 and l ≤ J/2� then P12 and P21 contain at least IJ/2 cells. Each
of the conditions in Corollary 2.7 and 2.8 guarantees that less than a quarter
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of all cells of P contains an interaction, implying that the majority of the cells
of P12 and P21 have to be 0.

If k ≥ I/2 and l ≥ J/2 the same arguments hold by symmetry, so without
loss of generality we need only consider the case k ≤ I/2 and l > J/2. If P
satisfies the condition of Corollary 2.8, then clearly the majority of cells in
these two submatrices is 0 as required. To prove Corollary 2.7, we can (after
an appropriate permutation of rows and columns) partition each submatrix
Pij into four subsubmatrices

P′ =
(
P11 P12

P21 P22

)
=



A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44




such that:

(a) The rows which do not contain any interaction are divided into the
submatrices A2j and A3j, 1 ≤ j ≤ 4.

(b) The columns which do not contain any interaction are divided into the
submatrices Ai2 and Ai3, 1 ≤ i ≤ 4.

If we compare this partition with

P′ =
(
Q11 Q12

Q21 Q22

)
=



A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44


 �

we see that the total number of interactions contained in submatrices Q12 and
Q21 equals that of P12 and P21 (as the submatrices A2j, A3j, Ai2 and Ai3 do
not contain any interactions). However, from the choice of k and l it follows
that the submatrices A12 and A21 together contain no more cells than the
submatrices A23, A24, A32 and A42. Thus the number of 0’s contained in the
submatrices Q12 and Q21 can be at most as large as that of submatrices P12
and P21. Therefore, in order to prove that the majority of the cells of P12 and
P21 are 0, it suffices to prove this for Q12 and Q21. This follows, however, from
the condition of Corollary 2.7 because each column of submatrix Q21 and each
row of submatrix Q12 contains more exact values 0 than interactions 1. ✷

Proofs of Lemma 2.10. Suppose there exists a residual matrix C with
an unconditionally identifiable interaction pattern P which is not L1 optimal.
From the arguments of Section 2.4 it follows that each �I×J� matrix A = �αij�
satisfying αij ∈ �−1�1� for all �i� j� and αij = sgn cij whenever cij 
= 0 contains
a row or column which does not sum up to zero. We define a function

T�A� =∑
i

∣∣∣∣∑
j

αij

∣∣∣∣+∑
j

∣∣∣∣∑
i

αij

∣∣∣∣
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for all matricesAwhich satisfy the given conditions. Among all matrices which
minimize T� we select one with the minimum number of rows and columns
summing up to 0. After sorting the rows of A by descending row sum and the
columns by ascending column sum we can divide A into nine submatrices:

A11 � A12 � A13

} ∑
j αij > 0

−−−−− + −−−−− + −−−−−
A21 � A22 � A23

} ∑
j αij = 0

−−−−− + −−−−− + −−−−−
A31 � A32 � A33

} ∑
j αij < 0

︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸∑
i αij < 0

∑
i αij = 0

∑
i αij > 0

(30)

As A minimizes T� it follows that for all cells in A13� αij = −1 whenever cij =
0. Similarly αij = 1 for all cells of A31 with cij = 1. Moreover, the definition
of A implies that αij = −1 for the submatrices A12 and A23 whenever cij = 0.
Similarly, αij = 1 in the submatrices A21 and A32 whenever cij = 0.

If in the representation (30) the submatrix A11 is empty, then either∑
j αij ≤ 0 for all i or

∑
i αij ≥ 0 for all j. Both cases cannot occur simultane-

ously, because otherwise all row and column sums would be 0, contradicting
the fact that C is not an L1 solution. Hence, either there exists a row i of
A with strictly positive row sum such that αij′ = −1 whenever cij′ = 0 or
there exists a column j with strictly negative column sum such that αi′j = 1
whenever ci′j = 0. In this case there exists either a row i or a column j of C
which contains more interactions than exact values 0. As this contradicts the
unconditional identifiability of P� A11 cannot be empty. Similarly A33 cannot
be empty.

We have shown that

A =



A11 A12 A13

A21 A22 A23

A31 A32 A33


 =

(
B11 B12

B21 B22

)

is a decomposition of A into four nonempty matrices. If we decompose the
unconditionally identifiable interaction pattern P in the same manner, we see
that in B12 and B21 together more than half of all αij can be chosen. The
restrictions on these “free” αij imply∑

�i� j�∈B21

αij −
∑

�i� j�∈B12

αij > 0�

On the other hand, we have∑
�i� j�∈B11∪B21

αij −
∑

�i� j�∈B11∪B12

αij < 0

because of (30). These two inequalities contradict each other. ✷
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Proof of Theorem 2.11 and Corollary 2.6. We assume there exists a
residual matrix C with an unconditionally identifiable interaction pattern
and an L1 solution C′ ∈ � �C� with C 
= C′ and c′ij = cij + ai + bj for all
�i� j�. After permuting the rows and columns, we can assume the the ai are
increasing and that the bj are decreasing. This implies that a1 + b1 = 0�

Next we show that not all ai are equal. If they all are equal, then not all
the bj can be equal as C′ 
= C. This implies ai + bJ < 0 for all i and hence
0 is not a median of the last column of C′� contradicting the L1 optimality.
Similarly, not all the bj are equal.

The corresponding addition matrix S therefore has the decomposition

S =
(
S11 S12

S21 S22

)
=
(
ai + bj = 0 ai + bj > 0

ai + bj < 0 ai + bj = �

)
�(31)

where no submatrix Sij is empty.
As the set of all L1 solutions is convex, it follows that

D�λ� = �1 − λ�C+ λC′ = C+ λS

is L1 optimal. We define

λ0 	= min
{∣∣∣∣ cij

ai + bj

∣∣∣∣	 �i� j� such that cij 
= 0 and ai + bj 
= 0
}
�(32)

where the minimum of the empty set is ∞. For all λ ∈ �0� min�λ0�1�� we
know

0 =∑
i� j

∣∣dij�λ�∣∣−∑
i� j

∣∣cij∣∣
= λ

( ∑
i� j	 cij 
=0

sgn �cij� · �ai + bj� +
∑

i� j	 cij=0

�ai + bj�
)
�

(33)

As C is an L1 solution, there exists a matrix A = �αij� with coefficients αij ∈
�−1�1� and αij = sgn cij whenever cij 
= 0 and such that all row and column
sums are 0. Using A we can write (33) as

0 = ∑
i� j	 cij=0

(�ai + bj� − αij�ai + bj�
)
�

Thus whenever cij = 0 
= ai + bj we have αij = sgn �ai + bj�.
If we decompose C and A in the same manner into four submatrices as in

S [see (31)], it follows from the unconditional identifiablity of C that

0 <
∑

�i� j�∈A12

αij −
∑

�i� j�∈A21

αij

=
( ∑

�i� j�∈A11

αij +
∑

�i� j�∈A12

αij

)
−
( ∑

�i� j�∈A11

αij +
∑

�i� j�∈A21

αij

)
�

This contradicts the fact that all row and column sums of A are 0. ✷
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From (33) we obtain the following lemma which will be useful for the proof
of Lemma A.2.

Lemma A.1. LetC be a residual matrix with an unconditionally identifiable
interaction pattern and let a1� � � � � aI and b1� � � � � bJ be such that ai + bj 
= 0
for at least one cell �i� j�. Then we have∑

i� j	 cij 
=0

sgn �cij��ai + bj� +
∑

i� j	 cij=0

�ai + bj� > 0�

Proof of Theorem 3.1. The key to the proof of Theorem 3.1 is the follow-
ing lemma.

Lemma A.2. Let S ⊂ R and k0, K > 0. For each s ∈ S let ρs	 R → R be a
function such that �ρs�x� − k0�x�� < K for all x. Consider a fixed data matrix
X = �xij�. For all C ∈ �UI and s ∈ S define

rij�C� s� = arg min
{∑
i� j

ρs�tij�	 �tij� ∈ � �X+C�
}

and let ai�C� s� and bj�C� s� be the row and column effects, respectively, with
a1�C� s� = 0 and satisfying

xij + cij = ai�C� s� + bj�C� s� + rij�C� s��
Then we have

sup
{∣∣ai�C� s�∣∣	 C ∈ �UI and s ∈ S} <∞

and

sup
{∣∣bj�C� s�∣∣	 C ∈ �UI and s ∈ S} <∞�

Proof. Consider a matrix X and sequences �Ck�k ⊂ �UI, �sk�k ⊂ S. We
write aki = ai�Ck� sk�, bkj = bj�Ck� sk� and rkij = rij�Ck� sk�. Define λk by

λk = max
ij

{�aki�� �bkj�}�
If the lemma is false, then there exists a subsequence of �λk�k which tends
to infinity. Without loss of generality we may assume that the sequence �λk�
itself tends to infinity and that the following limits exist:

(a) αi = limk→∞�aki/λk� ∈ �−1�1� exists for all i.
(b) βj = limk→∞�bkj/λk� ∈ �−1�1� exists for all j.
(c) sgn �ckij� = sgn �c1ij� for all �i� j�.
(d) γij = limk→∞�ckij/λk� ∈ �−∞�∞� exists for all �i� j�.
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As C1 ∈ �UI and sgn �γij� = 0 whenever c1ij = 0� it follows that the ma-
trix H = �ηij� defined by ηij = sgn �γij� has an unconditionally identifiable
interaction pattern. From Lemma A.1 we may conclude that∑

�i� j�	 ηij=0

�αi + βj� −
∑

�i� j�	 ηij 
=0

sgn �ηij��αi + βj� > 0�

We have

lim inf
k→∞

1
λk

(∑
i� j

∣∣�xij + ckij� − �aki + bkj�
∣∣−∑

i� j

∣∣xij + ckij
∣∣)

= lim inf
k→∞

∑
i� j

(∣∣∣∣ckij − �aki + bkj�
λk

∣∣∣∣−
∣∣∣∣ckijλk

∣∣∣∣
)

≥ ∑
�i� j�	 ηij=0

�αi + βj� −
∑

�i� j�	 ηij 
=0

sgn �ηij��αi + βj� > 0�

(34)

which implies that the sequence(∑
i� j

�rkij� −
∑
i� j

�xij + ckij�
)
k

is not bounded above. As

0 ≥∑
i� j

ρsk�rkij� −
∑
i� j

ρsk�xij + ckij�

≥ k0 ·
(∑
i� j

�rkij� −
∑
i� j

�xij + ckij�
)
− 2IJK�

this leads to a contradiction. ✷

To prove Theorem 3.1 we define s∗ = sup�s�X+C�	 C ∈ �UI�. Then s∗ <∞
and on defining S = �0� s∗�, we have s�X+C� ∈ S for all C ∈ �UI.

Using the function ρ we define ρs�x� = sρ�x/s� for s > 0 and ρ0�x� = k0 · �x�.
Because of the conditions on ρ,∣∣ρs�x� − k0�x�

∣∣ = s

∣∣∣∣ρ
(
x

s

)
− k0

∣∣∣∣xs
∣∣∣∣
∣∣∣∣ < sK ≤ s∗K <∞�

As the terms
∑

i� j ρ0�tij� and
∑

i� j ρs�tij� have the same minimizers as
∑

i� j �tij�
and

∑
i� j ρ�tij/s�� respectively, Theorem 3.1 follows from Lemma A.2. ✷

Proof of Theorem 3.2. We need only consider the first line. After per-
muting the columns if necessary, we can write C in the form

C =
(∗ · · · ∗ 0 · · ·0
C12 C22

)
�

where ∗ denotes an interaction. Let l ≤ �I− 1�/2 be the number of interactions
in the first line. As C is unconditionally identifiable, the submatrix C22 must
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contain more 0’s than interactions. From this it follows that there exists a line
i > 1 such that ∣∣�j > l	 cij = 0�∣∣ > I− l

2
≥ I+ 1

4
� ✷

Proof of Theorem 3.3. As S is Lipschitz continuous, we can find a con-
stant = such that∣∣S�RC� −S�X+C�∣∣ ≤ =

∑
i� j

∣∣rCij − �xij + cij�
∣∣ = =

∑
i� j

∣∣aCi + bCj
∣∣�

This implies

sup
{
S�RC�	 C ∈ �UI

}
≤ sup

{
S�X+C�	 C ∈ �UI

}+ = sup
{∑
i� j

∣∣aCi + bCj
∣∣	 C ∈ �UI

}
�

The second term on the right-hand side is bounded because of the robustness
of the location estimator. The first term on the right-hand side is also bounded
because in an unconditionally identifiable interaction pattern, each row and
each column contains more 0’s than interactions so the scale functional cannot
break down because of (22). ✷
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