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TARGET ESTIMATION FOR BIAS AND MEAN SQUARE
ERROR REDUCTION

BY JAVIER CABRERA AND LUISA TURRIN FERNHOLZ

Rutgers University and Temple University

Given a statistical functional T and a parametric family of distribu-�
tions, a bias reduced functional T is defined by setting the expected value
of the statistic equal to the observed value. Under certain regularity
conditions this new statistic, called the target estimator, will have smaller
bias and mean square error than the original estimator. The theoretical
aspects are analyzed by using higher order von Mises expansions. Several
examples are given, including M-estimates of location and scale. The
procedure is applied to an autoregressive model, the errors-in-variables
model and the logistic regression model. A comparison with the jackknife
and the bootstrap estimators is also included.

1. Introduction. Statistical procedures for reducing the bias and the
variance of estimators have always been of interest for their broad applicabil-
ity. The well-known methods for bias reduction based on the jackknife,

Ž .bootstrap and other resampling plans, presented by Efron 1982 and Efron
Ž .and Tibshirani 1993 have proved to be quite useful, especially in nonpara-

metric settings. However, these methods may not be effective in complex
situations when the sampling distribution of the statistic changes too abruptly
with the parameter, or when this distribution is very skewed and has heavy
tails. In these situations it seems appropriate to consider the median bias of
the estimator as well as the mean bias. Results in this direction were studied

Ž .in Cabrera and Watson 1997 where certain mean and median bias proce-
dures for bias reduction were introduced. The works of Debiche and Watson
Ž . Ž .1996 and Cabrera and Meer 1996 show some practical applications of
these bias reduction procedures. However, most of the results by these
authors consisted of practical applications of the median bias procedure,
leaving all the theoretical questions and applications for mean bias reduction
unanswered.

In this paper we address these unanswered questions. We introduce the
definition of target estimators; given a statistic with finite expectation, the
corresponding target estimator is defined as a function of the original estima-
tor. We show that, under some regularity conditions, the target estimator will
have a smaller bias than the original estimator. Moreover, we show that the
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Ž .mean square error MSE of the target estimator will also be reduced under
less restrictive conditions.

Target estimation is a computer intensive procedure that is aimed at
improving and optimizing the finite sample properties of a statistic. We
present some examples showing this improvement and give some theoretical
results using the second-order von Mises expansion of the corresponding
functional. Expansions of this kind, with second-order kernels for the func-

Ž .tional derivatives, have been recently used by Gatto and Ronchetti 1996 to
obtain saddlepoint approximations.

The paper is organized as follows: in Section 2 we define the target
estimator and present some of its basic properties and also consider von
Mises expansions to identify and study the bias of a statistic and give
sufficient conditions for the MSE reduction based on the von Mises remain-
der. Targeting M-estimates is treated in Section 3. In Section 4 we present
some examples and applications as well as a comparison study of target
estimators with the jackknife and the bootstrap estimators.

Throughout this paper we shall assume that T is a statistical functional
Ž . Ž .and the statistic T F estimates the parameter T F , where F is then � n

empirical d.f. corresponding to the sample X , . . . , X of i.i.d. random vari-1 n
ables with common d.f. F , with � � �, for an open subset of real numbers �.�

Ž .When a statistical functional T satisfies T F � � , the functional is said to�

be ‘‘Fisher consistent.’’
Ž . Ž . Ž Ž ..We shall also assume that the expectation of T F , g � � E T F ,n � n

exists for all � � �, where E indicates the expectation with respect to F .� �

Moreover, the function g will be assumed to be one-to-one and differentiable.

2. Target estimators.

Ž . Ž Ž ..DEFINITION. Let g � � E T F be a one-to-one function. The func-� n�
tional T induced by T from the relation

�
�11 g T � TŽ . Ž .

�
Ž .will be called the target functional of T. The statistic T F will be the targetn

estimator.

REMARK 1. The target estimate of � corresponds to choosing the value� ˆŽ .� � T F , which solves the equationn

ˆE T F � T F ,Ž .Ž . Ž .� n n

ˆwhere F is the observed value of F . That is, we set the expectation of an n
statistic equal to its observed value and we solve for � .

�
Ž .REMARK 2. Since g depends on n, the basic defining condition g T � T�

�1Ž .or equivalently g T � T depends on the sample size n. The target estima-� �
tor of some T will be different for different sample sizes. Although T� Tn
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would be a more precise notation, we shall omit the subscript n for simplicity
since the sample size will always be assumed to be fixed.

Ž .It should be noted that Rousseeuw and Ronchetti 1981 used the function
�1Ž .g in an entirely different context to generate functionals g T for studying

the influence curve of statistics in testing hypotheses.
Let the variance and the bias of a functional T at � be denoted by V andT
Ž .B � , respectively. The following lemma is a direct consequence of the aboveT

definition.

Ž .LEMMA 1. If T is a statistical functional with g � � a� � b for a � 0,
then the corresponding target estimator will be unbiased. The variance of�
T will satisfy

� 22 V � 1�a VŽ . Ž .T T

and the variance of the target estimator will be reduced if and only if a2 � 1,
and it will remain unchanged when a � 1.

Ž . Ž .PROOF. By solving 1 when g � � a� � b, we obtain the target func-�
Ž . Ž .tional T� T � b �a which directly implies 2 .� �

Ž Ž .. Ž Ž . .For the bias of T, note that E T F � g � � b �a � � and the corre-� n
sponding target estimator is unbiased. �

For general estimators, the next two theorems give conditions under which
Ž .the bias and the mean square error MSE are reduced after targeting. In

� Ž . ��particular, Theorem 2 gives several upper bounds for B � , the absolute
T

value of the bias of the target estimator. For the study of this bias, the ratio
�Ž . �Ž . � �Ž . �H � � E T � � I �E � � T I plays an important role and� �T � � 4 � �T � � 4

Ž . �Ž .will be needed. Note that when g � � � then H � � 1. We shall denote
� Ž . � Ž Ž ..�the mean absolute deviation of T by M � E T � g � � 2 E T � g � .� �

Ž .THEOREM 2. Suppose T is a statistical functional and the function g � �
Ž Ž ..E T F is increasing for all � in �. Then the following will all hold:� n

� �
Ž . Ž . Ž .a If g is convex then E T 	 � ; if �g is convex then � 	 E T .� �

Ž . �Ž . �Ž Ž .. � Ž . � Ž . ��b If 0 � a � g � then B � � 1�a E T � g � .�T
Ž . �Ž . �Ž Ž .. � Ž .�c If 0 � a � g � 	 b then B � � b � a M�2ab.

T
Ž . Ž . �Ž . �Ž .d If g is convex, g � � � , with 1 � g � 	 b and H � � b then

�B � � B � .Ž . Ž .Ž . Ž .T T

Ž . Ž . �Ž . �Ž .e If �g is convex, g � � � , with 1�2 � a 	 g � 	 1 and H � 	 2 �
1�a, then

�B � � B � .Ž . Ž .Ž . Ž .T T

Ž .PROOF. Part a follows immediately from Jensen’s inequality since
�

�1 �1 �1� � g g � � g E T � g E g TŽ . Ž .Ž . Ž .Ž . Ž .ž /� �
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�
Ž .and this last expression is greater than E T when g is convex, but is less��

Ž .than E T when �g is convex.�

Ž . �1For part b use the mean value theorem for g and note that the bias of
the target estimator satisfies

��B � � E � � TŽ . Ž .T �

�1 �1� E g g � � g TŽ . Ž .Ž .Ž .�

�� E 1�g � g � � TŽ . Ž .Ž .Ž .�

� 1�a E g � � TŽ . Ž .Ž .�

�Ž .since 1�g � � 1�a. �
Ž .For part c , consider again the absolute value of the bias of T,

��B � � E � � TŽ . Ž .T �

�1 �1� E g g � � g TŽ . Ž .Ž .Ž .�

�� E 1�g � g � � TŽ . Ž .Ž .Ž .�

� �� �� E 1�g � g � � T � E 1�g � g � � TŽ . Ž . Ž . Ž .Ž . Ž .Ž . Ž .� �

� �
� 1�a E g � � T � 1�b E g � � TŽ . Ž . Ž . Ž .Ž . Ž .Ž . Ž .� �

� 1�a � 1�b E T � g � �2Ž . Ž .�

� b � a M�2abŽ .

since g� is bounded below and above. �
Ž .For part d we have g convex so the absolute value of the bias of T is

��B � � E � � TŽ . Ž .T �

� E g�1 g � � g�1 TŽ . Ž .Ž .Ž .�

�� E 1�g � g � � TŽ . Ž .Ž .Ž .�

� �� E 1�g � g � � � � E 1�g � � � TŽ . Ž . Ž . Ž .Ž . Ž .Ž .� �

�	 g � � � � E 1�g � � � T IŽ . Ž . Ž .Ž .� �T � � 4

�� E 1�g � � � T IŽ . Ž .Ž .� �T � � 4

	 g � � � � 1�b E � � T I � E � � T IŽ . Ž . Ž . Ž .Ž . Ž .� �T � � 4 � �T � � 4

� g � � �Ž .
� B �Ž .T

since 1�H�� 1�b.
Ž .Finally, for part e we have that the absolute value of the bias of T is

Ž .� � g � , whereas the convexity of �g implies that the absolute value for the
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�
bias of T is

��B � � E T � �Ž . Ž .T �

� E g�1 T � g�1 g �Ž . Ž .Ž .Ž .�

�� E 1�g � T � g �Ž . Ž .Ž .Ž .�

� �� E 1�g � � � g � � E 1�g � T � �Ž . Ž . Ž . Ž .Ž . Ž .Ž .� �

1 1
	 � � g � � E T � � I � E T � � IŽ . Ž . Ž .Ž . � �T � � 4 � �T � � 4a a

1
� � � g � � � 1 � � g �Ž . Ž .Ž .ž /a

1
� E T � � I � E T � � IŽ . Ž .� �T � � 4 � �T � � 4a

1 1
� � � g � � 1 � E T � � I � 1 � E T � � IŽ . Ž . Ž .� �T � � 4 � �T � � 4ž / ž /a a

1
� E T � � I � E T � � IŽ . Ž .� �T � � 4 � �T � � 4a

1
� � � g � � E T � � I � 2 � E T � � IŽ . Ž . Ž .� �T � � 4 � �T � � 4ž /a

1 1
	 � � g � � 2 � E � � T I � 2 � E T � � IŽ . Ž . Ž .� �T � � 4 � �T � � 4ž / ž /a a

� B �Ž .T

since H�	 2 � 1�a. �

Ž .Note that the bound in c is sharp in a sense that it is reached in the
Ž . Ž . Ž . Žlimiting case when g � � � � a � � � for � � � and g � � � � b � �0 0 0 0

.� for � � � .0 0
We should also mention that a crucial hypothesis in this last theorem is

the lower bound for g�. In most of the applications that we considered, the
�Ž . �Ž . Ž .fact that either g � � 1 or g � 	 1 when g � � � seemed to be a decisive

factor in determining whether or not the bias was reduced after targeting.�
�1 �1Ž .Intuitively, this is not too surprising since T� g T and g ‘‘shrinks’’ T

�Ž . Ž .when g � � 1. The other regularity conditions of Theorem 2 d insure that
this ‘‘shrinking’’ is not done too abruptly. The example in 4.2 will show that
these conditions are sufficient but not necessary.

It is important at this point to weight the gain in reducing the bias with
the possible increase in the variance. The next theorem will show that a

Ž .condition much less restrictive than condition d in Theorem 2 will insure
smaller mean square error. This suggests that for target estimation the
requirements for bias and variance reduction do not necessarily work against
each other. However, note that there might be bias reduction without the
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assumptions of Theorem 2 being satisfied, but there might not be a reduction
Ž .in the MSE see Section 4.2 below . �

2Ž Ž ..� �Let the mean square error of the target estimator be MSE� V � B � ;
T T�

the following result compares MSE with the variance of the original esti-
mator.

Ž . Ž Ž ..THEOREM 3. If T is a statistical functional and g � � E T F is dif-� n
ferentiable then:

Ž . � �Ž . �a g � � 1 for all � � �, implies
�

3 MSE 	 V .Ž . T
�

�Ž . � Ž . �b g � 	 1 for all � � �, implies MSE � V .T

PROOF. Using the mean value theorem for g we have
� �

�T � g � � g T � g � � T � � g �Ž . Ž . Ž .Ž . Ž .
�

with � between � and T. Hence
2Var T � E T � g �Ž . Ž .Ž .�

� 2 2�� E T � � g �Ž .Ž .Ž .�

Ž . � �Ž . � � �Ž . �and so 3 holds when g � � 1, and when g � 	 1 the MSE of the target
estimator will be larger than or equal to the variance of T. �

This result asserts that the mean square error of an estimator can always
� �Ž . �be reduced by targeting if the corresponding function g satisfies g � � 1

�Ž . Ž .for all � in �. Note that when g � � 1 for all � � � then g � � � � b, and
so the bias can always be removed without changing the variance.

2.1. Von Mises expansions. Consider a parametric family F and a Fisher�

�consistent statistical functional T. Let T have influence function � see1
Ž . Ž .�Hampel 1974 or Hampel, Ronchetti, Rousseeuw and Stahel 1986 . For a

Ž .sample X , . . . , X from F , the first-order von Mises expansion of T F is1 n � n

1
4 T F � � � � X � RemŽ . Ž . Ž .Ýn 1 i 1n i

With Hadamard or Frechet differentiability, under certain regularity condi-
Ž �1�2 . � Ž . Ž .�tions, we have that Rem � o n see Reeds 1976 , Fernholz 1983 .1 P

Ž .Taking expected values in 4 we obtain

5 g � � E T F � � � E Rem ,Ž . Ž . Ž . Ž .Ž .� n � 1
�

so the target functional T is defined by
� �T � T � E Rem .Ž .T 1



J. CABRERA AND L. T. FERNHOLZ1086

Note that the bias of T is

B � � E Rem ,Ž . Ž .T � 1

whereas the bias of the target estimator is
� �B � � E Rem � E Rem ,Ž . Ž .Ž .T � 1 T 1

hence Theorem 4 implies that under certain conditions,

�E Rem � E Rem � E Rem .Ž . Ž .Ž .� 1 T 1 � 1

In the following lemma, the bias of the target estimator is expressed in
terms of the influence function.

LEMMA 4. For a statistical functional T with von Mises expansion as in
Ž .4 , the bias of the target estimator is

� �B � � E E � X .Ž . Ž .Ž .T � T 1 1

PROOF. We have
� �T � T � E RemŽ .T 1

n1�� T � E T F � � � � XŽ . Ž .ÝT n 1 iž /N i�1

�� � � E � XŽ .Ž .T 1 1
�

Ž Ž ..�since E T F � T. Hence the bias of T isnT

� �B � � E E � XŽ . Ž .Ž .T � T 1 1

and the lemma follows. �

An immediate consequence of this lemma is that

�E E � X � E RemŽ . Ž .Ž .� T 1 1 � 1

under the conditions of Theorem 2.
Suppose again that T has a first-order von Mises expansion at F . Then�

Ž .taking derivatives in 5 we obtain

�
�g � � 1 � E Rem ,Ž . Ž .� 1��

so Theorem 3 implies that when

�
6 E Rem � 0,Ž . Ž .� 1��

the MSE of the target estimator will be reduced.
In order to study this last inequality, we look at the remainder term and

Ž .expand it further. For k � 2, the kth-order von Mises expansion of T F atn
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F is�

1 1
T F � T F � � X � � X , XŽ . Ž . Ž . Ž .Ý Ýn 1 i 2 i j2n 2ni i , j

1
� ��� � X , . . . , X � Rem ,Ž .Ý k i i kk 1 kk!n i , . . . , i1 k

7Ž .

where the kernels � , � , . . . , � , have been properly normalized so that1 2 k
Ž . Ž . Ž . Ž . Ž . Ž .H� x dF x � 0, H� x, y dF x � H� y, x dF x � 0 and so on. Note that1 2 2

the remainders Rem and Rem satisfy1 k

1 1
Rem � � X , X � ��� � � X , . . . , X � RemŽ . Ž .Ý Ý1 2 i j k i i k2 k 1 k2n k!ni , j

and under certain conditions the remainder of order k satisfies Rem �k
Ž �k �2 . � Ž . Ž . Ž .�o n see von Mises 1947 , Fillipova 1962 , Reeds 1976 .P
The next two theorems give conditions on the von Mises kernels for bias

and variance reduction. When k � 2, these conditions can be quite useful in
practice since the second-order von Mises expansion gives a reasonable
approximation of the statistic and the computations of the first and second

Ž .kernels are not as intractable as those of higher order. See Fernholz 1996 ,
Ž .Fankhauser 1996 .

Ž .THEOREM 5. When T has a von Mises expansion as in 7 for k � 2, and
Ž . Ž �1 .E Rem � o n , then for a large sample, the variance of the target estima-� 2

tor will be reduced if

� 1
E � X , X � 0.Ž .Ž .� 2ž /�� 2n

PROOF. Suppose that T has a second-order von Mises expansion and
consider the first remainder

1
Rem � � X , X � Rem ,Ž .Ý1 2 i j 222n i , j

Ž .whose expectation is the bias of T F .n
Since

1 1
E � X , X � E � X , X ,Ž .Ž .Ž .Ý 2 i j � 22ž / 2n2n i , j

Ž .the bias of T F isn

1
E Rem � E � X , X � E Rem .Ž . Ž . Ž .Ž .� 1 � 2 � 22n



J. CABRERA AND L. T. FERNHOLZ1088

Taking derivatives with respect to � , we obtain

� 1 � �
E Rem � E � X , X � E Rem .Ž . Ž . Ž .Ž .� 1 � 2 � 2�� 2n �� ��

Ž . Ž . Ž . Ž Ž ..Since by hypothesis E Rem � o 1�n , and ���� E � X, X � 0,� 2 � 2
there is a positive constant C such that

�
E Rem � C�n � o 1�n .Ž . Ž .� 1��

Ž .So, for large n, condition 6 holds and the theorem follows. �

THEOREM 6. Suppose that T has a von Mises expansion of order k for
Ž . Ž �k �2 .k � 2 with E Rem � o n . If� k

� �
8 E � X , X � 0, . . . , E � X , . . . , X � 0,Ž . Ž . Ž .Ž . Ž .� 2 � k�� ��

then
� �k �2 � �k �29 B � � o n and V � V � o n .Ž . Ž . Ž . Ž .T T T

Ž .PROOF. Taking expectations on the von Mises expansion 7 we have

1 1
E � X , X � E � X , X ,Ž .Ž .Ž .Ý� 2 i j � 22ž / 2n2n i , j

1 1
E � X , . . . , X � E � X , . . . , XŽ .Ž .Ž .Ý� k i i � kk k�11 kž /k!n k!ni , . . . , i1 k

and differentiating with respect to � we obtain

g � � � � A � o n�k �2 ,Ž . Ž .
Ž .where A does not depend on � due to condition 8 .�

Ž .By solving g T � T we have
�

�k �2T � T � A � o n ,Ž .
Ž .and the corresponding variances satisfy 9 , whereas taking expectations on

this last equality, we obtain
�

�k �2 �k �2E T � E T � A � o n � � � o n ,Ž . Ž . Ž .Ž .� �

and the theorem is proved. �

3. Targeting M-estimates.

3.1. M-estimates of location. For a parametric family F , let the func-�

Ž .tional T F � � be defined implicitly by a solution of�

� x � � dF x � 0.Ž . Ž .H �
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Ž .The corresponding statistic T F is the well-known M-estimate of locationn
� Ž . Ž .�see Huber 1981 or Hampel, Ronchetti, Rousseeuw and Stahel 1986 .

Ž . Ž .When the parametric family satisfies F x � F x � � for all � and some�

Ž .d.f. F, the corresponding M-estimate is location equivariant, that is T F ��

Ž .� � T F .
The bias of an M-estimate of location will be constant, and an approxima-

tion of this bias can be obtained by using second-order von Mises expansions
as is done in the following.

Ž .LEMMA 7. Let T F be an M-estimate of location for the location familyn
Ž .F . Assume that T has a von Mises expansion of order two as in 7 with�

Ž . Ž .E Rem � o 1�n , then the bias of T is constant and given by� 2

K 1
�2E Rem � � x dF x � � x � x dF x � o 1�n ,Ž . Ž . Ž . Ž . Ž . Ž . Ž .H H� 1 3 22nM nM

�Ž . Ž . �Ž . Ž .with M � H� x dF x and K � H� x dF x . The corresponding target esti-
mate will be unbiased with the same variance as T.

PROOF. If F is the empirical d.f. of the sample X , . . . , X , let G be then 1 n n
empirical d.f. of the sample Y � X � � for i � 1, . . . , n. Since this M-esti-i i

Ž . Ž .mate is location equivariant, it satisfies T F � � � T G , and taking ex-n n
pectations we obtain

g � � E T FŽ . Ž .Ž .� n

� � � E T GŽ .Ž .� n

� � � B

Ž Ž ..with B � E T G a constant bias. Hence, g is linear and by Lemma 1, the� n
target estimator will be unbiased with the same variance as T.

An approximation of this constant bias can be obtained using the second-
order von Mises expansion. Recall that the first kernel of T, the influence
function, is given by

� x � �Ž .
� x �Ž . �1 H� x � � dF xŽ . Ž .�

The second kernel is

� x , y � � x � � yŽ . Ž . Ž .2 1 1

1
�� � x � y � t � � dF t � �Ž . Ž . Ž . Ž .H1 1½M

�� x � � y � � � � y � � x � �Ž . Ž . Ž . Ž .1 1 5
� Ž . Ž .with M as above see Fernholz 1996 , Gatto and Ronchetti 1996 , Fank-

Ž .�hauser 1996 .
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Ž .Now, if a second-order von Mises expansion as in 7 holds, the bias of an
M-estimate of location is

1
E Rem � E � X , X � o 1�nŽ . Ž . Ž .Ž .� 1 � 22n

K
2� � x dF x � �Ž . Ž .H 12nM

1
�� � x � x � � dF x � � � E RemŽ . Ž . Ž . Ž .H 1 � 2nM

K
2� � x dF x � �Ž . Ž .H 12nM

1
�� � x � � � x � � dF x � � � E RemŽ . Ž . Ž . Ž .H � 22nM

K
2� � x dF xŽ . Ž .H32nM

1
�� � x � x dF x � E RemŽ . Ž . Ž . Ž .H � 22nM

K 1
�2� � x dF x � � x � x dF x � o 1�n ,Ž . Ž . Ž . Ž . Ž . Ž .H H3 22nM nM

where K and M are as above, and the lemma is proved. �

Consider now the particular case of the Huber estimator with
x

� x � xI � b I .Ž . � � x � 	 b4 � � x � � b4� �x

For this case we have

M � � � x � � dF x � � � F b � F �bŽ . Ž . Ž . Ž .H
and

K � � � x � � dF x � � � F� �b � F� b .Ž . Ž . Ž . Ž .H
Therefore, the first and second kernels of the Huber estimate are given by

� x � �Ž .
� x �Ž .1 F b � F �bŽ . Ž .

and
� �F �b � F bŽ . Ž .

� x , y � � x � � y � � x � yŽ . Ž . Ž . Ž . Ž .2 1 1 1 1 F b � F �bŽ . Ž .
1

� �� � x � y � � � � y � x � � .Ž . Ž . Ž . Ž .1 1F b � F �bŽ . Ž .
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Hence, the bias of the Huber estimate is given by

1
E Rem � E � X , X � E RemŽ . Ž . Ž .Ž .� 1 � 2 � 22n

� �1 F �b � F bŽ . Ž .2� E � XŽ .Ž .� 12n F �b � F bŽ . Ž .
1

� x dF x � E Rem .Ž . Ž .H � 22nM � �x �b

Ž . Ž .Note that the bias of the Huber estimator is E Rem � E Rem when� 1 � 2
�Ž . �Ž . Ž .F satisfies F �b � F b and H x dF x � 0.� x � � b

3.2. Simultaneous M-estimates of location and scale. Consider a family
Ž . Ž .of d.f.’s F with � � 	, 
 and the two-dimensional functional T F �� �

Ž Ž . Ž ..T F , T F defined implicitly by1 � 2 �

x � T FŽ .1 �
� dF x � 0,Ž .H �ž /T FŽ .2 �

Ž . Ž . Ž Ž . Ž ..where � � � , � . The corresponding statistic T F � T F , T F sat-1 2 n 1 n 2 n
isfies the system of equations

n X � T FŽ .i 1 n
� � 0,Ý 1 ž /T FŽ .2 ni�1

n X � T FŽ .i 1 n
� � 0Ý 2 ž /T FŽ .2 ni�1

Ž .and is called an M-estimate of location and scale. See Huber 1981 and
Ž .Hampel, Ronchetti, Rousseeuw and Stahel 1986 .

Ž . ŽŽ . .When the family of distributions is such that F x � F x � 	 �
 for�

Ž . Ž Ž . Ž ..some fixed d.f. F, the functional T satisfies T F � 	 � 
 T F , 
 T F	, 
 1 2

�and is said to be location-scale equivariant see Hampel, Ronchetti, Rousseeuw
Ž .�and Stahel 1986 .

Ž .LEMMA 8. Let T � T , T be the simultaneous M-estimates of location1 2
and scale for the family F as above. Then	, 


E T F , T F � 	 � 
 C , 
 CŽ . Ž . Ž .Ž .	 , 
 1 n 2 n 1 2

with C and C constants independent of 	 and 
 . The corresponding target1 2
estimators will be unbiased and their variances will satisfy

� 2 �V � V � C V � 2
 C ,Ž .Ž .T T 1 T 12 11 21

� 2V � 1�C V ,Ž .T 2 T2 2

Ž .where 
 is the covariance of T , T and C , C , are constants.12 1 2 1 2
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PROOF. Since T is location-scale equivariant,

T F � 	 � 
 T G , 
 T GŽ . Ž . Ž .Ž .n 1 n 2 n

where F is the empirical d.f. of X , . . . , X and G is the empirical d.f. ofn 1 n n
Ž . Ž .Y � X � 	 �
 , for i � 1, . . . , n. When we take the expectation of T F , wei i n

obtain

E T F , T F � g 	 , 
Ž . Ž . Ž .Ž .	 , 
 1 n 2 n

� 	 � 
 E T G , 
 E T GŽ . Ž .Ž . Ž .Ž .1 n 2 n

� 	 � 
 C , 
 CŽ .1 2

Ž Ž ..with C � E T G constant for i � 1, 2.i i n� � �
Ž .Now, T� T , T is obtained by solving1 2

� �
1 2g T , T � T , T ,Ž .Ž .Ž . 1 2

which gives
� �

1 2T � T C � T ,1 1
�

2T C � T .2 2

Hence, the target functionals are
�

1T � T � C �C T ,Ž .1 1 2 2
�

2T � 1�C TŽ .2 2

with variances satisfying
2�V � V � C �C V � 2C 
 ,Ž .T T 1 2 T 1 121 1 2

2�V � 1�C V ,Ž .T 2 T2 2

Ž .where 
 is the covariance of T , T , and C , i � 1, 2, are constant.12 1 2 i
Since

�
2E T F � 1�C 
 C � 
 ,Ž . Ž .Ž .	 , 
 n 2 2

and
� �

1 2E T F � E T F � C E T FŽ . Ž . Ž .Ž .Ž . Ž .	 , 
 n 1 n 1 n

� 	 � 
 C � C 
1 1

� 	 ,
�
Ž .the target estimator T F is unbiased and the lemma is proved. �n

4. Some applications and examples.

4.1. The sample variance. Let F be a d.f. with finite second moment.
Consider the statistical functional corresponding to its variance 
 2, defined
by

2T F � x � � F dF x ,Ž . Ž . Ž .Ž .H
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Ž .where � F � 	 is the mean of F. The corresponding estimator,
2

X � XŽ .i
T F � ,Ž . Ýn n

is well known to be biased.
Ž Ž .. Ž 2 . 2Ž .Taking expectations, we obtain E T F � g 
 � 
 1 � 1�n , a lin-
 n

ear function of 
 2. So the target estimator is
2

Ý X � X� Ž .i
T F � ,Ž .n n � 1

which is the usual unbiased estimator of 
 2. In this case the variance of the
�Ž 2 .target estimator will not be reduced since g 
 � 1 � 1�n � 1.

4.2. The distance between two means. Suppose that we have two indepen-
dent populations F and G with means 	 and 	 , respectively. The parame-1 2

� �ter to be estimated is � � 	 � 	 , which corresponds to the statistical1 2
functional

T F , G � � F � � G ,Ž . Ž . Ž .
Ž .where � is the linear functional corresponding to the sample mean � F �

Ž .Hx dF x . Given two independent samples with corresponding empirical d.f.’s
F and G , we obtain the statistic that estimates � ,n m

� �� F � � G � x � y .Ž . Ž .n m

� Ž .�Using the derivatives of a functional of two variables see Fernholz 1996 we
Ž .obtain the von Mises expansion of T at F, G ,

	 � 	Ž .1 2
� � � �x � y � 	 � 	 � x � 	 � y � 	 � Rem ,Ž .1 2 1 2 1� �	 � 	1 2

where the remainder term is

2 y � x I , if 	 � 	 ,Ž . � y � x � 1 2
10 Rem �Ž . 1 ½ 2 x � y I , if 	 � 	 .Ž . � x � y � 2 1

In this case the higher order derivatives for T are all zero so that
Rem � Rem for any k � 1. Note however that the remainder is not zero1 k
but is of a smaller order than 1�nk for all k � 1.

Ž .Taking expectations in 10 , we obtain
� �g 	 � 	 � E x � yŽ .Ž .1 2 � 	 �	 �1 2

� �� 	 � 	 � 2 E y � x I if 	 � 	Ž .� 41 2 � y�x � 1 2

� �analogously for the case when 	 � 	 . Note that when 	 � 	 � � we2 1 1 2
Ž � �. � �have g 	 � 	 � 	 � 	 .1 2 1 2

If the two populations are normal with variances 
 2 and 
 2, respectively,1 2
� � 2 2 2then putting � � 	 � 	 and 
 � 
 �n � 
 �m, we have1 2 1 2

g � � � �  0 �  0 � K ,Ž . Ž . Ž .Ž .� �
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where K is given by

K � c
 exp �� 2�
 2Ž .
with c a positive constant, and where  and  are the normal d.f.’s� �

� � � �centered at � 	 � 	 and 	 � 	 , respectively.1 2 1 2
Ž . Ž .When � � 0, then g � � c
 � 0, whereas g � � � � 0 as � � 0. For

�Ž .this example, g � � 1 and the variance of the target estimator will not
decrease. However, the bias is reduced, and so this example shows that the
conditions of Theorem 2 for bias reduction are sufficient but not necessary.
This example also shows that there can be bias reduction without MSE
reduction. Figure 1 gives the graph of g for normal populations, when 200
simulations of size n � 20 were performed. Figure 2 has the boxplots of both

� �estimators when 	 � 	 � 5.1 2

4.3. M-estimates for the lognormal distribution. In this example, we sim-
ulated data from the lognormal distribution

Y � e X with X � N 	 , 
 2 .Ž .
�The statistical functional was T , the Huber estimator ‘‘proposal-2’’ seeH

Ž .�Huber 1981 . If F is the d.f. of Y, the parameters	, 


� , � � T F ,Ž . Ž .1 2 H 	 , 


Ž . Ž Ž . Ž ..are estimated by the corresponding statistic T F � T F , T F WeH n 1 n 2 n
shall call � the location parameter and � the scale parameter. Note that1 2
F is not a location-scale family of distributions and so the Huber estimator	,

is not location-scale equivariant for this family. Consequently, Lemma 8
cannot be applied here.

Ž Ž ..Tables 1 and 2 show the values of � and E T F , i � 1, 2, for locationi i n
and scale, respectively, for the grid of values 	 � �2, �1.56, �1.11, �0.67,

Ž .FIG. 1. Graph of the function g � .
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FIG. 2. Boxplots of the estimator and the corresponding target.

TABLE 1
Ž .The Huber estimator for the lognormal location . First line: Values of � .1

Ž Ž ..Second line: Values of E T F1 n

Sigma

Mu 0.50 0.89 1.28 1.67 2.06 2.44 2.83 3.22 3.61 4.00

� 2.00 0.14 0.16 0.19 0.23 0.29 0.36 0.45 0.56 0.70 0.90
0.15 0.18 0.22 0.29 0.41 0.66 1.07 1.23 2.30 4.46

�1.56 0.23 0.26 0.30 0.37 0.45 0.56 0.69 0.89 1.14 1.43
0.23 0.26 0.34 0.46 0.63 0.85 1.26 2.02 4.18 7.19

�1.11 0.35 0.40 0.47 0.57 0.70 0.88 1.10 1.38 1.73 2.22
0.35 0.42 0.53 0.71 1.01 1.46 2.09 3.61 6.59 11.14

�0.67 0.55 0.62 0.73 0.89 1.10 1.37 1.72 2.15 2.68 3.37
0.56 0.66 0.85 1.12 1.60 2.31 3.14 5.41 9.56 11.02

�0.22 0.86 0.97 1.14 1.39 1.71 2.13 2.64 3.31 4.21 5.36
0.86 1.02 1.27 1.74 2.36 3.45 5.14 7.76 14.53 22.13

0.22 1.33 1.51 1.78 2.15 2.64 3.27 4.12 5.20 6.68 8.37
1.40 1.62 1.99 2.83 3.68 5.00 8.82 10.79 24.65 30.40

0.67 2.08 2.36 2.77 3.35 4.13 5.07 6.44 8.09 10.30 13.12
2.14 2.58 3.17 4.41 5.94 8.67 11.34 20.88 33.06 55.63

1.11 3.24 3.68 4.32 5.24 6.48 8.05 10.09 12.76 16.10 20.31
3.32 3.85 5.07 6.68 8.51 13.85 22.96 30.13 64.59 64.50

1.56 5.06 5.75 6.75 8.14 10.06 12.44 15.66 19.80 25.00 32.07
5.13 6.07 7.58 10.57 14.57 21.50 31.80 58.80 83.66 115.29

2.00 7.91 9.01 10.60 12.80 15.74 19.61 24.45 30.75 38.74 49.54
8.07 9.70 12.15 16.70 23.06 33.44 48.73 61.75 126.91 160.45
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TABLE 2
Ž .The Huber estimator for the lognormal scale . First line. Values of � .2

Ž Ž ..Second line: Values of E T F2 n

Sigma

Mu 0.50 0.89 1.28 1.67 2.06 2.44 2.83 3.22 3.61 4.00

� 2.00 0.07 0.12 0.18 0.25 0.35 0.47 0.62 0.80 1.05 1.37
0.07 0.14 0.22 0.34 0.53 0.93 1.63 1.95 3.77 7.83

-1.56 0.10 0.19 0.28 0.40 0.55 0.73 0.95 1.28 1.69 2.18
0.11 0.20 0.34 0.54 0.83 1.19 1.92 3.15 7.11 13.27

�1.11 0.16 0.29 0.44 0.62 0.85 1.15 1.51 1.98 2.57 3.39
0.17 0.32 0.54 0.83 1.34 2.06 3.23 5.78 11.12 19.64

�0.67 0.26 0.46 0.69 0.98 1.33 1.79 2.37 3.09 3.97 5.13
0.26 0.52 0.87 1.33 2.10 3.24 4.70 8.42 15.20 18.12

�0.22 0.40 0.72 1.08 1.52 2.06 2.77 3.63 4.74 6.25 8.17
0.40 0.79 1.26 2.07 3.11 4.89 7.69 12.12 23.61 36.42

0.22 0.62 1.11 1.67 2.35 3.19 4.25 5.66 7.46 9.91 12.74
0.68 1.27 2.00 3.47 4.82 6.91 13.29 16.94 43.15 49.01

0.67 0.97 1.74 2.60 3.65 5.00 6.60 8.85 11.60 15.27 19.96
1.03 2.02 3.16 5.25 7.73 12.31 16.88 32.83 53.75 95.10

1.11 1.51 2.71 4.05 5.72 7.83 10.47 13.87 18.29 23.85 30.92
1.59 2.96 5.14 7.86 11.27 19.61 35.03 46.95 114.80 105.68

1.56 2.36 4.23 6.33 8.88 12.18 16.18 21.52 28.42 37.11 48.85
2.43 4.68 7.50 12.44 19.21 30.52 47.95 93.06 137.37 192.52

2.00 3.69 6.65 9.97 13.99 19.06 25.58 33.62 44.05 57.38 75.32
3.93 7.66 12.02 19.72 30.34 47.77 73.08 95.96 205.74 257.87

�0.22 and 
 � 0.5, 0.89, 1.28, 1.67, 2.06, 2.44, 2.83, 3.22, 3.61, 4, used to gener-
ate the models. Graphs for each component of the function g are shown in

� Ž Ž .. � � Ž Ž .. �Figure 3 E T F , for location and Figure 4 E T F , for scale . Figures1 n 2 n
5 and 6 show the boxplots of the original Huber estimator and the corre-
sponding target estimator, for location with � � 0.95, and for scale with1
� � 1.04.2

Ž Ž ..FIG. 3. Location. Huber estimator for the lognormal. Graph of the expectation E T F , n � 10.1 n
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Ž Ž ..FIG. 4. Scale. Huber estimator for the lognormal. Graph of the expectation E T F , n � 10.2 n

Huber estimates can be heavily biased when the model is not symmetric as
in this case. This example illustrates that targeting Huber estimators is quite
effective in reducing both the bias and the variance. Moreover, the robust
properties of the Huber estimator seem to be preserved after targeting.

4.4. An autoregressive model. In this example we considered an autore-
Ž .gressive model AR 1 of the form

X � � X � � ,t�1 t t

where the error term � is Gaussian with 	 � 0 and 
 � 1. We want tot
estimate the parameter � . Simulations were performed for samples of size 10,
20, 50 and 100 in each one of the five cases when � � 0.5, 0.6, 0.7, 0.8, 0.9.

Ž .Table 3 shows the mean square error MSE and the bias for each simulation
and for the maximum likelihood estimator as compared to the target estima-
tor. These simulations show the dramatic reduction in the bias of the target

FIG. 5. Boxplots of Huber and Target Huber for location.
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FIG. 6. Boxplots of Huber and Target Huber for scale.

estimator as compared to the bias of the MLE in every case. Note also that,
except for the two cases when � � 0.5 and n � 10, 20, the MSE is always
lower for the target estimator.

4.5. Applications to semiparametric models. Consider the usual linear
regression model

Y � X� � �

when the distribution of the error vector � is some unknown d.f. G, indepen-
ˆ ˆdent of � . When the estimated vector � is not the least squares estimator, �

may have a bias which will depend on the error distribution G. Target
estimation to reduce this bias can still be implemented by using the defining

Ž .condition 1 with the function

ˆg � � E � ,Ž . Ž .� , G n

with G the empirical d.f. of the residuals or any other nonparametricn
estimator of G.

Median bias reduction using target estimates in the setting of semipara-
metric models was used for ellipse estimation problems in computer vision
� Ž .�see Cabrera and Meer 1996 but no theoretical issues were addressed there.

Target estimation can also be extended to nonlinear regression and to the
general errors-in-variables model

X � U � � , f U, � � 0Ž .

by using the expectation function g as above. In these situations, since the
d.f. G must be estimated, there will be an additional error on the target
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TABLE 3
Ž .Estimation of the parameter of an autoregressive model AR 1 . MSE and bias of two estimators:

MLE and Target

MSE Bias

n � 10
Theta MLE Target Theta MLE Target

0.5 0.1635 0.1789 0.5 �0.288 0.008
0.6 0.1931 0.1703 0.6 �0.329 �0.009
0.7 0.2279 0.1609 0.7 �0.392 �0.050
0.8 0.2673 0.1517 0.8 �0.431 �0.078
0.9 0.3096 0.1431 0.9 �0.506 �0.149

n � 20
Theta MLE Target Theta MLE Target

0.5 0.0643 0.0671 0.5 �0.160 �0.001
0.6 0.0717 0.0641 0.6 �0.175 0.012
0.7 0.0805 0.0595 0.7 �0.203 0.004
0.8 0.0907 0.0536 0.8 �0.213 0.014
0.9 0.1019 0.0470 0.9 �0.267 �0.044

n � 50
Theta MLE Target Theta MLE Target

0.5 0.0197 0.0193 0.5 �0.059 0.000
0.6 0.0196 0.0177 0.6 �0.068 0.001
0.7 0.0197 0.0158 0.7 �0.080 0.001
0.8 0.0200 0.0136 0.8 �0.093 0.001
0.9 0.0203 0.0112 0.9 �0.103 0.001

n � 100
Theta MLE Target Theta MLE Target

0.5 0.0087 0.0085 0.5 �0.026 0.004
0.6 0.0081 0.0075 0.6 �0.039 �0.005
0.7 0.0075 0.0064 0.7 �0.040 0.000
0.8 0.0068 0.0052 0.8 �0.042 0.005
0.9 0.0061 0.0038 0.9 �0.048 0.005

estimator of � , but our initial results suggest a definite gain in spite of this
new error.

In particular, we present here an example of the classical errors-in-varia-
bles model where the observable variables are

X � U � �
and the model is

Y � a � bU � � ,
where � and � are independent Normal errors with mean 	 � 0 and stan-
dard deviation 
 .

Simulations for a � 0, b � 1 and b � 10, were performed for sample sizes
10, 20 and 50. For these simulations, the U ’s were chosen to be the n
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TABLE 4
The errors-in-variables model. The MSE and the bias for two estimators: MLE and Target

MSE Bias

n � 10
s b MLE Target MLE Target

0.5 1 1.007 0.890 0.044 0.008
0.5 10 4.726 4.238 0.402 �0.104

0.4 1 0.053 0.049 0.024 �0.001
0.4 10 2.596 0.244 0.218 �0.038

0.3 1 0.027 0.025 0.012 �0.000
0.3 10 1.321 1.281 0.119 �0.000

n � 20
s b MLE Target MLE Target

0.5 1 0.036 0.034 0.018 0.000
0.5 10 1.687 1.607 0.163 �0.021

0.4 1 0.021 0.020 0.012 0.000
0.4 10 1.021 0.996 0.097 �0.009

0.3 1 0.011 0.010 0.006 0.000
0.3 10 0.558 0.547 0.055 0.005

n � 50
s b MLE Target MLE Target

0.7 1 0.029 0.028 0.013 0.000
0.7 10 1.186 1.143 0.111 �0.024

0.5 1 0.0127 0.0124 0.007 0.000
0.5 10 0.571 0.561 0.051 �0.010

0.4 1 0.0076 0.0757 0.004 0.000
0.4 10 0.359 0.353 0.035 �0.006

quantiles of a standard normal distribution. The errors were added with

 � 0.3, 0.4, 0.5. The results are given in Table 4, where we can see that in all
cases the bias of the target estimator has been substantially reduced when
compared to the bias of the MLE. Moreover, note that in all cases the MSE of
the target estimator is smaller than that of the MLE.

4.6. The logistic regression model. The logistic regression model gives the
probability that a binary response Y takes the value one, as a function of X.
The formula is

logit P Y � 1 � � � � X .Ž .Ž .
The parameter of interest here is the slope �, which is initially estimated by
maximum likelihood. Simulations were performed for sample sizes n �
10, 20, 50, 100. The values for the predictor X where chosen equally spaced
from X � �1 to X � 2.1 n
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TABLE 5
The logistic regression model

n � 10
Beta � 50 Beta � 1.0 Beta � 2.0

MLE Target MLE Target MLE Target

MSE 4.317 1.116 1.367 1.785 1.308 2.822
Bias 0.169 0.067 0.359 0.118 0.237 0.083

n � 20
Beta � 0.5 Beta � 1.0 Beta � 2.0

MLE Target MLE Target MLE Target

MSE 0.40 0.231 1.111 0.451 2.678 0.888
Bias 0.09 �0.034 0.294 �0.020 0.648 �0.115

n � 50
Beta � 0.5 Beta � 1.0 Beta � 2.0

MLE Target MLE Target MLE Target

MSE 0.134 0.115 0.204 0.158 0.618 0.339
Bias 0.022 �0.014 0.094 0.010 0.251 0.000

n � 100
Beta � 0.5 Beta � 1.0 Beta � 2.0

MLE Target MLE Target MLE Target

MSE 0.064 0.058 0.085 0.075 0.218 0.171
Bias 0.031 0.012 0.043 0.002 0.111 �0.001

This is an example where the function g, the expectation of the MLE has
slope greater than one and so Theorems 2 and 3 can be applied and the MSE
of the target estimator is reduced.

Table 5 shows the excellent performance of the target estimator compared
to the MLE.

4.7. The jackknife, the bootstrap and the target estimators. Target estima-
tion requires certain expectation computations that are not needed by either
the jackknife or the bootstrap. However, targeting can provide substantial
improvement over both the jackknife and the bootstrap in lowering bias and
MSE, at least for larger values of the parameter, as can be seen in the
following example.

Figures 7 and 8 present plots for the bias and the MSE of the MLE for the
one-parameter logistic regression model compared to three different bias
corrected estimators: the jackknife, the bootstrap and the target estimator.
The simulations were performed for samples of size 20 where design points
were fixed to equally spaced points between �1 and 2. The response values
were generated from the logistic model with one slope parameter � and no
intercept. A total of 84 values of � were chosen between 0 and 2.2 and the
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FIG. 7. The bias of four estimators for the one-parameter logistic regression model.

average of 30 estimates was obtained for each value of � and for each
Ž .estimator MLE, target, bootstrap and jackknife . This resulted in 84 bias

estimates for the 84 values of � and for each one of the four estimators
considered. The bias curves were obtained by fitting a smoothing spline with
six degrees of freedom to the bias points.

In this example we notice a net gain in both bias and MSE reduction for
the target estimator, especially for larger values of the parameter when the
bias is not negligible. For small values of �, Figure 7 shows that the
bootstrap and the jackknife estimators seem to be as effective as the target
estimator in correcting the bias. For the bootstrap this can be explained by
the fact that for small values of the parameter the bias is small and almost
constant; that is, the function g is almost linear with derivative almost equal
to one. But for larger � the function g is indeed not linear and the paramet-

	 	 Ž 	 .ric bootstrap bias corrected estimator, T � 2T � g T , fails to correctB, n
the bias effectively. In fact, the more nonlinear g is, the worse the bootstrap
estimator will perform.

In comparing targeting to the jackknife, we see that for many common
statistics, in particular most maximum likelihood estimators, the biased-cor-

Ž 2 .rected jackknife estimator of these statistics will have a bias of order O 1�n
Ž Ž ..see Schucany, Gray and Owen 1971 . For the target estimators the bias

Ž �k �2 .could be reduced to a much smaller order such as o n for k � 3 and
sometimes eliminated as shown by the examples in Section 4.
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FIG. 8. The MSE of four estimators for the one-parameter logistic regression model.
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