
The Annals of Statistics
1999, Vol. 27, No. 6, 1785�1807

LARGE SAMPLE BAYESIAN ANALYSIS FOR Geo ����� G ����� 1
DISCRETE-TIME QUEUEING MODELS1

BY PIER LUIGI CONTI

Universita di Bologna`
In this paper, a nonparametric Bayesian analysis of queueing models

with geometric input and general service time is performed. In particular,
Ž .statistical inference for the probability generating function p.g.f. of the

equilibrium waiting time distribution is considered. The consistency of the
posterior distribution for such a p.g.f., as well as the weak convergence to
a Gaussian process of a suitable rescaling, are proved. As by-products,
results on statistical inference for queueing characteristics are also ob-
tained. Finally, the problem of estimating the probability of a long delay is
considered.

1. Introduction and preliminaries. Discrete-time queueing models
have recently received considerable attention, mainly because of their appli-
cations to telecommunication systems based on asynchronous transfer mode
Ž .ATM , which is the standard transport vehicle of the broadband integrated

Ž .services digital network B-ISDN . In ATM, information is segmented into
fixed-size transmission units, called cells. The transmission time of a cell is
the cell-time, and it is naturally taken as a time slot. During a time slot,
exactly one cell is transmitted, and 0, 1, 2, . . . cells can simultaneously enter
the system, to have to be transmitted. The system works in discrete time,
which is measured in terms of time slots. Cells that cannot be immediately
transmitted are stored in a buffer and form a queue. Their transmission is

Ž .delayed according to a FIFO rule. Multiple arrivals of cells i.e., batches in a
�time slot are allowed; they form the background process Roberts, Mocci and

Ž .�Virtamo 1996 . Although the transmission time of a single cell is determin-
istic, the time required to transmit a batch of cells is stochastic, because of
the stochastic size of the batches.

Ž .Let T be the r.v. ‘‘number of time slots between i � 1 th and ith batchesi
Ž . Žith interarrival time , and let S be the r.v. ith service time i.e., the size ofi

.the ith batch . The hypotheses on r.v.’s T ’s and S ’s are:i i

Ž � . Ž .k�11. P T � k � � � 1 � � , k � 1, 0 � � � 1.i
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Ž � . Ž . Ž Ž . .2. P S � k P � b k , k � 1 Ý b k � 1 , P being the probability mea-i b k �1 b
Ž .sure concentrated over the positive integers corresponding to the service

time distribution.
Ž � .3. � � E S P � �.i b

Ž . Ž .4. T ; i � 1 and S ; i � 1 are two sequences of i.i.d. r.v’s, conditionally on �i i
and P ; r.v.’s T ’s independent of S ’s, conditionally on � and P .b i i b

The corresponding queueing model, with geometric interarrival times,
general service times and one service point, is referred to as the Geo�G�1
model. It is commonly considered as a realistic model for studying the
performance of ATM systems at the cell level; see Louvion, Boyer and Gravey
Ž . Ž .1988 , Gravey, Louvion and Boyer 1990 , Roberts, Mocci and Virtamo
Ž .1996 .

Ž .Since � and b k ’s are usually unknown, they have to be estimated on the
basis of observed data, consisting in n interarrival times T , . . . , T , and the1 n
corresponding service times S , . . . , S .1 n

Statistical problems for queueing models have been considered by many
authors, mainly from the classical inference perspective. In particular, Gaver

Ž . Ž .and Jacobs 1988 and Pitts 1994 deal with nonparametric problems. The
Bayesian approach has been considered so far only under parametric as-
sumptions on both interarrival and service time distributions. The models
considered are continuous time, with exponentially distributed interarrival

Ž .times and service times; see McGrath and Singpurwalla 1987 , the series of
Ž . Ž .papers by Armero 1985, 1994 and Armero and Bayarri 1994, 1996 , and the

references therein.
This paper is devoted to Bayesian inference for Geo�G�1 models. It differs

from the Bayesian literature on statistical analysis of queues mainly for two
reasons.

1. The queueing model is in discrete time. As mentioned above, this choice is
justified by the need to consider models applicable to telecommunication,
mainly to ATM systems.

2. No special parametric hypotheses are made on the service time distribu-
tion. This makes the methods developed in the present paper suitable for
applications to telecommunication ATM systems.

We consider here a nonparametric approach to the estimation of queueing
characteristics related to the performance of the system. In particular, we
deal with the problem of estimating the probability generating function
Ž .p.g.f. of the equilibrium waiting time distribution. Under the stability
condition � � �� � 1, the p.g.f. of the equilibrium waiting time distribution is
given by

1 � � 1 � zŽ . Ž .
W z � ,Ž .

1 � � � z � �B zŽ .
where

�
kB z � z b kŽ . Ž .Ý

k�1

is the p.g.f. of the service time distribution.
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The approach based on the p.g.f. is supported by several reasons:

1. Generating functions are the only quantities that can be expressed in a
closed form. As a matter of fact, the probability distribution corresponding

Ž .to W z , which is of primary interest, is not known in a closed form.
2. All relevant queueing characteristics used to evaluate the performance of

the system, such as the waiting time distribution function, the mean
waiting time, the variance of the waiting time and many others, can be
expressed as functionals of the p.g.f. of the waiting time. Hence, virtually
all results in the statistical estimation of queueing characteristics can be
obtained as by-products of inference on the p.g.f. of the waiting time
distribution.

3. Among the measures of performance, a fundamental role in ATM systems
is played by the probability of a ‘‘long delay.’’ As specified above, in ATM,

Žbatches of cells enter the system and have to be transmitted one cell per
.time slot . Cells that cannot be immediately transmitted are stored in a

buffer of size K, say, and form a queue. The waiting time is equal to the
number of cells stored in the buffer. Cells that cannot be either transmit-
ted or stored in the buffer are lost. In ATM, the most important measure of

Ž .performance is the loss probability, which is approximately equal to the
� Ž .�overflow probability Roberts, Mocci and Virtamo 1996 , that is, the

probability that the waiting time is greater than K. Statistical problems
related to the overflow probability are dealt with in Section 6. In this case,

Ž .the use of W � is unavoidable.

Ž .The p.g.f. W � can be viewed as a transform of both interarrival and
service time distributions. That is, as a functional that maps the interarrival
and service time distributions onto the equilibrium waiting time distribution.

Ž .The definition of a prior directly for W � , and its update on the basis of
sample data, is a very difficult task. For this reason, it is more natural to

Ž .work in an ‘‘indirect’’ way. More definitely, our approach consists in 1
Ž .constructing priors for interarrival and service time distributions; 2 updat-

Ž .ing them on the basis of sample data; 3 studying the induced posterior
Ž . Ž .distribution W � . Unfortunately, the exact posterior law of W � cannot be

explicitly obtained, and approximations must be used. The attempt to find out
such an approximation is the most delicate part of this program. We consider
in this paper an asymptotic approximation. Asymptotic approximations play
an important role in Bayesian statistics; see, for instance, the discussion in

�Ž . �Schervish 1995 , Section 7.4.2 on the Bernstein�von Mises theorem. As
Section 5 will make clear, we will prove an infinite-dimensional version of the
Bernstein�von Mises theorem, which happens to provide an asymptotic

Ž .approximation for the posterior law of W � . In Section 4 the consistency of
Ž .the posterior law of W � is also studied. Another important motivation for

the ‘‘functional’’ approach pursued in this paper is provided in Section 6,
where the estimate of the probability of a long delay is dealt with.

The functional approach to renewal and queueing processes is fully devel-
Ž . Ž .oped in Grubel 1989 and Grubel and Pitts 1992 . Statistical estimation¨ ¨
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problems, from a non-Bayesian point of view, are considered in Grubel and¨
Ž . Ž .Pitts 1993 and Pitts 1994 .

The results obtained in the present paper are essentially asymptotic
results, which can be practically applied when the sample size is ‘‘large
enough.’’ A discussion of this point is in order. Large samples are sometimes
unavailable. However, in the case of ATM systems, which provide the main
motivation to the use of Geo�G�1 models, measurements of interarrival and
service times are taken for sufficiently long periods, so that the corresponding
sample size is actually ‘‘large’’: see Section 7.

2. Prior assignments. The prior measure for P is assumed to be ab
Ž .Dirichlet process with parameter � � � finite measure with support the set

Ž Ž . Ž ..of positive integer numbers. In other words, b 1 , . . . , b k has Dirichlet
Ž Ž . Ž . Ž . Ž ..distribution DD � 1 , . . . , � k ; � � � 1 � ��� �� k , for every k � 1, where

�

� � � k � �.Ž .Ý
k�1

Ž .We assume further that Ýk� k � �.
As a prior distribution for �, the natural conjugate Beta distribution
Ž .Be � , � is used. Furthermore, the prior laws of � and P are assumed1 2 b

independent.

REMARK 1. The prior distributions specified above are taken mainly for
the sake of simplicity and because they allow us to calculate explicitly their
posterior means. However, as will become clear later, the results we obtain
hold under considerably weaker conditions.

These two priors induce a prior distribution, that is, a stochastic pro-
cess, for the p.g.f. of the waiting time distribution. As remarked before,
because of its complicated expression, we cannot obtain in closed form its

Ž .finite-dimensional distributions i.e., its probability law . Some qualitative
features are studied in the sequel. Define the quantity

�
k	 � sup z � 1: � k z � � .Ž .Ý½ 5

k�1

Then, the following proposition holds true. Its elementary proof is omitted.

THEOREM 1. Denote by z* the greatest positive root of the equation 1 � �
Ž .� z � �B z � 0. Then, z* is equal to 1 iff 	 � 1, and z* � 1 iff 	 � 1.

Furthermore, the random function

1 � � 1 � zŽ . Ž .
W z � IŽ . Ž � �1.1 � � � z � �B zŽ .

Ž . � . Ž� � .is a.s. analytic in 0, z* , and continuous in 0, z* 0, 1 if z* � 1 .

Ž .If the interarrival times T � T , . . . , T and the service times S �n 1 n n
Ž .S , . . . , S are observed, then, as is well known, the posterior distribution of1 n

ˆ ˆŽ Ž . Ž .. Ž Ž . Ž . Ž . Ž .b 1 , . . . , b k , given S , is DD � 1 � nb 1 , . . . , � k � nb k ; n � � �n
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k ˆ� Ž . Ž .4.Ý � j � nb j , wherej�1
n

�1b̂ j � n I S , j � 1, 2, . . . .Ž . Ž .Ý �k4 i
i�1

ˆ�1Ž .The posterior distribution of �, given T is Be n � � , n� � � � n ,n 1 2
where

�1n

�̂ � n T .Ý iž /
i�1

Ž .Finally, the posterior law of the random function W � , given S and T ,n n
possesses the properties specified in Theorem 1.

3. Exact results for the posterior distribution of �. The aim of the
present section is to provide the exact posterior distribution of the traffic
intensity coefficient � � ��. Such a distribution, in principle, makes it possi-

�ble to compute the probability that the system reaches equilibrium Armero
Ž .�and Bayarri 1996 .

In view of assumption 4 in Section 1 and the independence of the prior
laws of � and P , the posterior laws of � and P are independent. Further-b b

Ž .more, from Cifarelli and Regazzini 1990 it follows that the posterior d.f. of
Ž .� � Ýkb k is given by

�P � � x SŽ .n

n���1

2 n���1n��� x � 1 cos y�2Ž . Ž .Ž .H


 0
�n � � � 1

i y ˆ� cos y � arg x � 1 e � j � 1 � j � nb j� 4Ž . Ž . Ž .Ž .Ýž /2 j�1

3.1Ž .

�
i y ˆ� exp � log x � 1 e � j � 1 � j � nb j dyŽ . Ž . Ž .Ž .Ý½ 5

j�1

The posterior distribution of �, given S , T , is absolutely continuous, andn n
� . Ž .its support is the set 0, � . In view of 3.1 , its d.f. is of the form

�P � � t S , TŽ .n n

1 �1 � �� P b � t� S 
 � T d�Ž .Ž .H n n
0

n���1

2 Ž .min 1, t n���1n��� t � � cos y�2Ž . Ž .Ž .H H�1
 B n � � , n� � � � nŽ . 0 01 2

�n � � � 1
�1 i y ˆ� cos y � arg t� � 1 e � j � 1 � j � nb j� 4Ž . Ž . Ž .Ž .Ýž /2 j�1

3.2Ž .

�
�1 i y ˆ� exp � log t� � 1 e � j � 1 � j � nb j dyŽ . Ž . Ž .Ž .Ý½ 5

j�1

ˆn���� �n�1� ���1 21� � 1 � � d�Ž .
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Ž .Finally, from 3.2 it is possible to obtain the posterior probability that the
Ž � .system reaches equilibrium, that is, P � � 1 S , T .n n

4. Posterior consistency results. The goal of this section is to show
Ž .the consistency of W � as the sample size tends to infinity. See Ghosal,

Ž .Ghosh and Ramamoorthi 1997 for a nice discussion on the importance of
consistency as a ‘‘validation of Bayesian methods.’’ In particular, using the

Ž . �same terms as Ghosal, Ghosh and Ramamoorthi 1997 , we obtain here L
consistency.

Ž . Ž .Let � and b k , k � 1, be the ‘‘true values’’ of � and b k , k � 1,0 0
Ž . Ž .respectively, and assume that hypotheses 1 � 4 of Section 1 hold true. Note

Ž .that the b k ’s are in the support of the prior because the support of the0
Ž . Ž .measure � � is the set of all positive integers. Furthermore, let B z �0

Ž . k Ž . � Ž .Ý b k z and � � Ý kb k � B 1 be the ‘‘true’’ p.g.f. and thek �1 0 0 k �1 0 0
‘‘true’’ mean value of the service time distribution, respectively, and denote

Ž .by 	 the radius of convergence of B � . Finally, suppose that the ‘‘true’’0 0
Ž .traffic intensity coefficient � � � � is strictly smaller than 1, so that0 0 0

there exists the equilibrium waiting time distribution whose p.g.f. is given by

1 � � 1 � zŽ . Ž .0
W z � .Ž .0 1 � � � z � � B zŽ .0 0 0

The main result of the present section is to show that the posterior law of
Ž . Ž .W � shrinks towards the true W � as the sample size increases. In order to0

prove this, we need some preliminary lemmas. In the sequel, we denote by
� � ŽP and P the product probability measures generating data sequences S ;b � i0 0

. Ž .i � 1 and T ; i � 1 , respectively.i

Ž . Ž . Ž .LEMMA 1. Let R � min 	 , 	 , and let r be equal i to 1 if R � 1, ii to a0
Ž .real number greater than 1 and strictly smaller than R if R � 1. Then

�lim P sup B z � B z � � S � 0 � � � 0, a.s.-P .Ž . Ž .0 n b0ž /n�� 0�z�r

Ž .LEMMA 2. Suppose that � � � � � 1 and that min 	, 	 � 1. Then0 0 0 0

� � � � �4.1 lim P z* � z � � S , T � 0 � � � 0, a.s.-P � P .Ž . Ž .0 n n b �0 0n��

Ž .REMARK 2. Lemma 1 essentially asserts that the random function B � ,
� �that dwells in the space C 0, r of continuous functions equipped with the

� Ž . � Ž .sup-norm, converges in probability Billingsley 1968 , page 24 to B � as n0
tends to infinity, a.s.-P� .b0

We are now in a position to establish the main result of the present
Ž .section, that is, the posterior consistency of W � .
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THEOREM 2. Suppose that � � � � � 1. Then0 0 0

4.2 lim P sup W z � W z � � S , T � 0 �� � 0Ž . Ž . Ž .0 n nž /n�� 0�z�1

� � Ž .a.s.-P � P . Under the additional hypothesis min 	 , 	 � 	 � 1, we have� b 0 00 0

the stronger result

4.3 lim P sup W z I � W z � � S , T � 0 � � � 0Ž . Ž . Ž .Ž z*�  . 0 n nž /n�� 0�z�

� �for every 1 �  �  , a.s.-P � P .0 � b0 0

COROLLARY 1. Under the hypotheses of Theorem 2, we have:

Ž . � � Ž . � � Ž . � �i lim sup E B z S � B z � 0 a.s.-P .n�� 0 � z � r n 0 b0
Ž . � � Ž . � � Ž . � � �ii lim sup E W z T , S � W z � 0 a.s.-P � P .n�� 0 � z �1 n n 0 � b0 0

� �Ž . � Ž . Ž . �iii lim sup W z � W z � 0 a.s.-P � P ,n�� 0 � z �1 n 0 � b0 0

where

� �1 � E � T E b S 1 � zŽ .Ž .n n
W z �Ž .n � � �1 � E � T � z � E � T E B z SŽ .n n n

and

� ˆn � � � k nb kŽ . Ž .1
� �E � T � , E � S � k � ,Ýn n�1 ½ 5n � � n � �n� � � � �1 2 k�1

� ˆ� k nb kŽ . Ž .
k�E B z S � z � .Ž . Ýn ½ 5n � � n � �k�1

Ž .REMARK 3. Statement ii of Corollary 1 establishes the consistency of the
� Ž . � � Ž .Bayes estimate E W z T , S . More importantly, statement iii provides ann n

� Ž . � �approximation for E W z T , S . This last result is particularly useful, sincen n
� Ž . � � Ž .E W z T , S cannot be analytically calculated, while W z can be. Inn n n

Theorem 4 we will give a more precise evaluation of the goodness of such an
approximation.

REMARK. 4. In order to ensure the validity of Theorem 2, the assump-
Ž .tions made in Section 2 on the prior distributions for � and b k ’s are not

necessary. From the proofs of Lemma 1, Lemma 2 and Theorem 2, it is
Ž .apparent that they still hold provided that i the prior for � satisfy the

Ž . Ž . � Ž . � � kconditions of Theorem 7.80 in Schervish 1995 ; ii the series ÝE b k S rn
� Ž . � Ž . � � kconverges for every n � 1 a.s.-P ; iii the limit lim ÝE b k S r existsb n�� n0

� Ž . � � Ž . Ž . � � �finite a.s.-P and iv lim E b k � b k S � 0 for every k � 1, a.s.-b n�� 0 n0

P� .b0

5. Bernstein–von Mises-type results. As remarked before, the exact
Ž .posterior law of the random function W � is not available. A possible way to
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overcome this problem could consist in resorting to some numerical approxi-
mations. However, it is very hard to find out approximations for all the

Ž .finite-dimensional distributions of W � , that is, for the posterior law of the
Ž .whole random function W � . This fact provides a motivation for studying

some asymptotic approximations that hold true for a large sample size. The
goal of the present section consists in providing a large sample approximation

Ž .for a suitably rescaled version of W � ,

'5.1 n W z � W zŽ . Ž . Ž .Ž .n

In parametric Bayesian statistics, a fundamental role is played by the
� Ž . �Bernstein�von Mises theorem see, e.g., Schervish 1995 , pages 435�444 ,

which establishes the asymptotic normality of the posterior law. This result
provides, in turn, an asymptotic approximation for the posterior law. In the
present section we establish an infinite-dimensional version of the Bern-

Ž .stein�von Mises theorem by showing that the posterior law of 5.1 converges
weakly to a centered Gaussian process. Several authors have investigated the
asymptotic normality of posterior laws in the infinite dimensional case. See,

Ž .among others, the paper by Lo 1983 , and the more recent works by Cox
Ž . Ž .1993 and Diaconis and Freedman 1997 , who obtain some negative results.

We begin with two lemmas that play a basic role in all subsequent
developments.

Ž . Ž . Ž .LEMMA 3. Let R � min 	 , 	 � 	 , and let r be equal i to 1 if R � 1, ii0 0
Ž .to a real number greater than 1 and strictly smaller than R if R � 1.

2 Ž . 2 Ž .If r � 1, assume further that Ýk � k � �, Ýk b k � �. Then, the poste-0
rior law of

' �X z � n B z � E B z SŽ . Ž . Ž .Ž .n n

� �converges weakly in C 0, r , equipped with the sup-norm, to a centered
Gaussian process with covariance kernel

H u , v � B uv � B u B vŽ . Ž . Ž . Ž .0 0 0

as n tends to infinity, a.s.-P� .b0

Ž .LEMMA 4. Suppose that R � min 	 , 	 � 	 and that one of the following0 0
two hypotheses is fulfilled:

Ž .a R � 1.
Ž . � 6 Ž . � 6 Ž .b R � 1, Ý k � k � �, Ý k b k � �.k�1 k�1 0

'Furthermore, let r � 1 if R � 1, and 1 � r � r if R � 1. Then, the sequence
Ž Ž . .of stochastic processes Y � ; n � 1 , wheren

�B z � E B z SŽ . Ž . n'Y z � nŽ .n 1 � z
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� �converges weakly in C 0, r , equipped with the sup-norm, to a centered
Ž .Gaussian process Y � with covariance kernel

B uv � B u B vŽ . Ž . Ž .0 0 0
5.2 K u , v �Ž . Ž .0 1 � u 1 � vŽ . Ž .

as n tends to infinity, a.s.-P� .b0

We are now in a position to prove the main result of the present section.
To be precise, let R be defined as in Lemma 4, and let � � 1 if R � 1, 1 � � �

'Ž .min R , z if R � 1. The following result holds.0

THEOREM 3. Under the hypotheses of Lemma 4, the sequence of stochastic
processes

'T z � n W z I � W zŽ . Ž . Ž .ž /n Ž z*� � . n

� �converges weakly in C 0, � , equipped with the sup-norm, to a centered
Gaussian process with covariance kernel

L u , vŽ .0

�2 2 2 2� 1�� � C u C v �� � W u W vŽ . Ž . Ž . Ž . Ž .�5.3 0 � 0 0 0 B 0 0Ž . 0 0

22 2�� W u W v K u , v �� D u , v �D v , u ,Ž . Ž . Ž . Ž . Ž .Ž . 40 0 0 0 0 0 0

Ž . Ž .where K u, v is given by 5.2 and0

1 2C u � 1 � B u W u � � W u ,Ž . Ž . Ž . Ž .Ž .0 0 0 0 01 � u
2 �W u W v vB v � B vŽ . Ž . Ž . Ž .Ž .0 0 0 0

D u , v � ,Ž .0 1 � v

� 2 � �2 1 � � ,Ž .� 0 00

2� � �2� � B 1 � B 1 � B 1Ž . Ž . Ž .B 0 0 00

as n goes to infinity a.s.-P� � P� .� b0 0

Observing that z* � 1 whenever � � 1, from Theorem 3 we easily obtain
the following corollary.

COROLLARY 2. Under the assumptions of Theorem 3, the sequence of
'Ž Ž Ž . Ž .. . � �stochastic processes n W z � W z ; n � 1 converges weakly in C 0, 1 ,n

equipped with the sup-norm, to a centered Gaussian process with limiting
Ž .covariance kernel 5.3 .

Ž .Theorem 3 clarifies the large sample behavior of the posterior law of W � .
Ž . Ž .The limiting covariance kernel depends on the ‘‘true’’ � , � , B � , W � .0 0 0 0

Ž .However, in view of the results in Section 4, L u, v can be approximated by0
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Ž . Ž . Ž . Ž .L u, v , which is defined as L u, v except that � , b , B � , W � aren 0 0 0 0 0
� � � � � Ž . � Ž .replaced by E � 	 T , E b 	 S , E B � 	 S , W � , respectively. Such ann n n n

approximation works since, as a consequence of the results in Section 4,
� �Ž . Ž .L �, � converges uniformly to L �, � as n tends to infinity, a.s.-P � P .n 0 � b0 0

The technique used to prove Theorem 3 is also useful to show the accuracy of
� Ž . � � Ž .the approximation of the Bayes estimate E W z T , S by W z . Corollaryn n n

Ž . � Ž . � �1 tells us that W z tends uniformly a.s. to E W z T , S . A Taylorn n n
expansion similar to that of Theorem 3 shows that the following stronger
result holds true.

THEOREM 4. Under the assumptions of Theorem 3, we have

� �' ��lim n sup E W z T , S � W z � 0 a.s.-P � P .Ž . Ž .n n n � b0 0n�� 0�z�1

Ž .REMARK 5. Theorem 4 improves considerably statement iii of Corollary
� Ž . �1, since it shows that the difference between the Bayes estimate E W z T ,n

� Ž . Ž .S and its approximation W z tends uniformly, a.s. to 0 at a rate fastern n
than n�1�2.

REMARK 6. Lemmas 3 and 4 still hold under assumptions on the priors
Ž .weaker than those made in Section 2. It is enough to assume that i the r.v.’s

Ž . Ž .b 1 , . . . , b k , for every k � 1 satisfy the conditions of Theorem 3 in Freed-
Ž . Ž . � Ž . � � 2 2 k � Ž .man 1963 , ii the series ÝVar b k S k r converges a.s.-P , iii then b0� Ž . � � 2 2 k �limit lim nÝVar b k S k r exists finite a.s.-P . In order that Theo-n�� n b0

rem 3 hold true, the posterior distribution of � must converge in law to a
normal distribution, a.s.-P� . This follows, for instance, from Fraser and�0

Ž .McDonnough 1984 .

6. Some applications of the previous results. As remarked in Sec-
tion 1, the asymptotic results obtained so far are interesting not only in
themselves, but also because they can be applied to estimating queueing

Ž .characteristics, that is, functionals of W � . We consider here the problem of
estimating the probability that the equilibrium waiting time is greater than
K, K being a nonnegative integer. As a further application, one could
consider the estimate of the moments of the waiting time distribution. Define

WW k � probability that the equilibrium waiting time is equal to kŽ .
kd W zŽ .

� k! .kdz z�0

From Theorems 3 and 4 we derive the following corollary, which provides a
Ž .Bernstein�von Mises-type result for the posterior distribution of WW k .
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COROLLARY 3. Under the assumptions of Theorem 3, we have
d�1 � �'i n � k WW k � WW k � N 0, 1 a.s.-P � PŽ . Ž . Ž . Ž . Ž .Ž .n � b0 0

as n tends to infinity, where
k 2 kd W z dŽ .n 2 2 �WW k � k! , � k � k! L u , vŽ . Ž . Ž . Ž . u�0, v�0n k k kž /dz du dvz�0

� �' ��ii lim n E WW k T , S � WW k � 0 a.s.-P � P .Ž . Ž . Ž .n n n � b0 0n��

Ž . Ž . Ž .To prove claims i � ii , it is enough to take into account that W � is
analytic, and that it can be written as a power series with radius of conver-
gence strictly greater than 1.

In principle, the same kind of result holds also for

G K � WW kŽ . Ž .Ý
k�K

and for the moments of the equilibrium waiting time distribution. In view of
Ž .its importance in ATM applications, where K is the buffer size and G K is

the overflow probability, we give here a few more results on the Bayes
Ž . Ž .estimation of a suitable approximation of G K . In view of Theorem 4, the

� Ž . � �Bayes estimate E G K T , S can be conveniently approximated byn n

kK d
6.1 G K � WW k � 1 � k! W zŽ . Ž . Ž . Ž .Ý Ýn n nkž /dz z�0k�K k�1

so that
� �' ��lim n E G K T , S � G K � 0 a.s.-P � P .Ž . Ž .n n n � b0 0n��

Ž .However, except when K is small, the numerical computation of 6.1 is hard,
or even impossible. Cases of typical interest for ATM applications are K � 100
Ž . Ž .small buffers or K � 500 large buffers .

Ž .The basic idea consists, using an obvious notation, in 1 finding out a
Ž . � Ž .suitable approximation for G K , G K , say, that holds for ‘‘large’’ values of0 0

Ž . � Ž . Ž .K, 2 estimating G K instead of the original G K . This approach was0 0
Ž .first used by Gaver and Jacobs 1988 for estimating the probability of a long

delay in a continuous-time M�G�1 model with known intensity parameter of
Ž .the Poisson input stream. Define

1 � �0� �ŽK�1.G K � z .Ž . �0 0� B z � 1Ž .0 0 0

� Ž .It can be shown see Bruneel and Kim 1993 , or, for a different proof, Conti
Ž .�1997 that the relative error of approximation tends to zero as K increases;
that is,

G K � G� KŽ . Ž .0 0
lim � 0.

G KK�� Ž .0
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Define
1 � � Ž .� K�1G* K � z* IŽ . Ž . Ž � �1.�B� z* � 1Ž .

and
�1 � E � T , Sn n� �ŽK�1.G K � z ,Ž .n �E � T B� z � 1Ž .n

Ž . � Ž . � � Ž . � � � Ž .where B z � E B z S , and 1 z � 1 if E � T , S � 1, 2 z is then n n
Ž .unique solution greater than 1 of the equation W z � 0, otherwise.n

As a consequence of the results in Section 4, we have the following
proposition.

THEOREM 5. Suppose that R, defined as in Theorem 2, is greater than 1
and that � � 1. Then0

� � � � � �lim P G* K � G K � � T , S � 0 � � � 0 a.s.-P � P ,Ž . Ž . .Ž .0 n n � b0 0n��

� � � �lim G K � G K � 0 a.s.-P � P .Ž . Ž .n 0 � b0 0n��

7. Application to ATM teletrafficdata. In this section we apply to real
data the techniques developed so far. The data we are using are a part of the

Žexperimental measurements made in 1996 by Telecom Italia the Italian
. Žtelephone company , as a member of the European JAMES Joint ATM

.Experiment on European Services project. More information on the JAMES
Ž .project and related activities can be found, for instance, in Gnetti 1997 .

The measurements refer to the traffic generated by a video-conference.
Ž .Interarrival times i.e., number of time slots between consecutive cells were

measured by an analyser HP Broadband Series Test-System HP75000. The
time-slot length is 1.247 10�5 sec. Since only one traffic source was consid-
ered, only one cell per time slot can ‘‘arrive,’’ and hence there is no queue. In
this way, there is no buffer occupancy, and no cells are lost. We stress that
interarrival times due to lost cells cannot be either measured or observed, so
that traffic measurements taken in the presence of lost cells tend to be longer
than they really are. In order to observe ‘‘genuine’’ interarrival times, no cell
loss can be allowed.

In order to produce traffic coming from different sources that are simulta-
neously transmitting cells, the traffic generated by our single source was
divided into streams, each of them composed of 85048 time slots. Each stream

Ž .virtually corresponds to a real traffic path generated by a virtual source.
Superposition of streams produces traffic virtually generated by different
sources.

The traffic intensity obviously depends on the number of sources that are
simultaneously connected to the ATM node. In order to evaluate the average
impact of the traffic intensity parameter, �, on the cell loss probability, the
traffic corresponding to 40 streams was superimposed. The prior distributions
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Ž .for � and b k ’s are:

Ž .Prior for �: � � Be 1000, 1000 .
Ž . Ž Ž . Ž .. Ž Ž . Ž . Ž . Ž ..Prior for b � : b 1 , . . . , b k � DD � 1 , . . . , � k ; � � � 1 � ��� �� k ,

Ž . kfor every k � 1, where � k � 7 �k! for every k � 1.

Ž .The measure � � is chosen proportional to a Poisson probability measure
Ž . �� k� k � �e � �k!. This choice is mainly supported by mathematical conve-

Ž . knience, since the radius of convergence of the series Ý� k z is infinite, and
the assumptions of Theorem 2 are fulfilled. This prior choice implies that

� Ž .� �� kE b k � e � �k!. The parameter � was ‘‘estimated’’ by fitting the prior
� Ž .�expected values E b k to the relative frequencies obtained from a ‘‘training

�sample’’ of 2018 measurements made in an experimental network Gnetti
Ž .�1997 . On the basis of this procedure, the value � � 6.97 
 7 was obtained.
Finally, the total mass � was chosen equal to e7 � 1096.6, which is very close
to the sample size 2018 of the training sample. A similar approach was also
used to construct the prior for �.

The total number of time slots is 85048; the number of time slots with
arrivals, that is, the sample size, is n � 34071. The total mass � � e7 is
small if compared to the sample size n, and hence the prior does not have a

ˆgreat influence on the posterior. From the sample data, the values � � 0.40061
ˆ ˆŽ . � Ž .and b k ’s displayed in Table 1 are obtained note that b k � 0 for every

�k � 16 .
Ž . Ž .The posterior means of �, B z , b and �, as well as W z , aren

�E � T � 0.40289269,n

15
7z kˆ�E B z S � 0.00002844 e � 1 � 0.96884453 z b k ,Ž . Ž . Ž .Ýn

k�1

� �E b S � 1.91509682, E � T , S � 0.77157851,n n n

0.22842149 1 � zŽ .
W z � .Ž .n �0.59710731 � z � 0.40289269E B z SŽ . n

Ž .From W z the approximate Bayes estimates of the waiting time probabili-n
Ž .ties WW k , as well as the value z � 0.183938, are obtained. In Table 2 then

�Ž . Ž . Ž . Ž . Ž . Ž . Ž .values WW k a , G k b and G k c , for k � 0, 15 1 , are displayed. Alln n n

TABLE 1
ˆŽ .Sample b k ’s values

k � 1 2 3 4 5
ˆŽ .b k � 0.54938220 0.32115290 0.06292742 0.02568167 0.01455783
k � 6 7 8 9 10
ˆŽ .b k � 0.01039007 0.00736697 0.00369819 0.00120337 0.00111532
k � 11 12 13 14 15
ˆŽ .b k � 0.00137947 0.00044026 0.00049896 0.00014675 0.00005870
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TABLE 2
Approximated Bayes estimates of the waiting time probabilities and cumulative probabilities

� �( ) ( ) ( ) ( ) ( ) ( )k WW k G k G k k WW k G k G kn n n n n n

0 0.38255 0.61745 0.60878 8 0.02865 0.15813 0.15770
1 0.12068 0.49677 0.51420 9 0.02449 0.13363 0.13320
2 0.10784 0.41852 0.43432 10 0.02087 0.11276 0.11251
3 0.06140 0.35712 0.36684 11 0.01760 0.09517 0.09503
4 0.05204 0.30508 0.30985 12 0.01485 0.08031 0.08026
5 0.04531 0.25977 0.26171 13 0.01249 0.06782 0.06780
6 0.03933 0.22044 0.22105 14 0.01053 0.05729 0.05726
7 0.03366 0.18678 0.18671 15 0.00888 0.04842 0.04837

computations were performed by Mathematica. The results show that, even
�Ž . Ž .for small values of k, the approximation G k 
 G k is satisfactory.n n

APPENDIX

PROOF OF LEMMA 1. Take 0 � � � � . Then there exists m such that

� 2 � 2
k kb k r � , � k r � .Ž . Ž .Ý Ý0 2 2k�m k�m

Now we can first write

P sup B z � B z �� SŽ . Ž .0 nž /
0�z�r

k� P sup B z � B z � � , b k � b k r � ��2 SŽ . Ž . Ž . Ž .Ž .Ý0 0 nž /
0�z�r k�m

k�P sup B z � B z �� , b k � b k r ���2 SŽ . Ž . Ž . Ž .Ž .Ý0 0 nž /
0�z�r k�m

k� P b k � b k r ���2 SŽ . Ž .Ž .Ý 0 nž /
k�m

m
k k�P b k � b k r �� � b k � b k r ,Ž . Ž . Ž . Ž .Ž .Ý Ý0 0ž

k�1 k�m

kb k � b k r ���2 SŽ . Ž .Ž .Ý 0 n/
k�m

k� P b k r � � 1 � � �2 SŽ . Ž .Ý nž /
k�m

m
k�P b k � b k r ���2 S .Ž . Ž .Ý 0 nž /

k�1
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In the second place, from Markov’s inequality and the SLLN we obtain

kP b k r �� 1 � � �2 SŽ . Ž .Ý nž /
k�m

2
k�� E b k S rŽ .Ý n� 1 � �Ž . k�m

2 1 n
kˆ� � k � b k rŽ . Ž .Ý ž /� 1 � � n � � n � �Ž . k�mA.1Ž .

2 1 � 2 n
kˆ� � b k rŽ .Ý½ 5� 1 � � n � � 2 n � �Ž . k�m

2
k� b k rŽ .Ý 0� 1 � �Ž . k�m

�
�� � � � 0, � , a.s.-PŽ . b01 � �

as n tends to infinity.
Furthermore, it is easily seen that

m
kP b k � b k r ���2Ž . Ž .Ý 0ž /

k�1

m2
k�� E b k � b k S rŽ . Ž .Ý 0 n� k�1

A.2Ž .

m 1�22 2 k� �� E b k S � b k � Var b k S r � 0Ž . Ž . Ž .Ž .Ý ½ 5n 0 n� k�1

as n tends to infinity, a.s.-P� . The statement of the lemma now follows fromb0
Ž . Ž .A.1 and A.2 . �

Ž .PROOF OF LEMMA 2. For the sake of brevity, define the functions G z � 1
Ž . Ž . Ž . � Ž .� � � z � �B z , G z � 1 � � � z � � B z observe that G z � 00 0 0 0 0

Ž . Ž .� � � Ž .� 0 as z � z z � z . The relationship z* � z � � holds iff G z � �0 0 0 0
Ž . �� 0 and G z � � � 0. Furthermore, from a well-known result see, e.g.,0
Ž . � Ž Ž � � � .Schervish 1995 , page 430 , the probability P � � � � � T tends to zero0 n

as n approaches infinity, for every � � 0, a.s.-P� . Taking � � 0 small, such�0

that

G z � � G z � �Ž . Ž .0 0 0 0
� � max ,ž /2 1 � B z � � 2 1 � B z � �Ž . Ž .Ž . Ž .0 0 0 0
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we get the following chain of inequalities:

� � �P z* � z � � S , TŽ .0 n n

�� P G z � � � G z � � � �G z � � S , TŽ . Ž . Ž .Ž .0 0 0 0 0 n n

�� P G z � � � G z � � � �G z � � S , TŽ . Ž . Ž .Ž .0 0 0 0 0 n n

� P � 1 � B z � � � � 1 � B z � �Ž . Ž .Ž . Ž .Ž 0 0 0 0

� � �� �G z � � , � � � � � S , TŽ . .0 0 0 n n

� P � 1 � B z � � � � 1 � B z � �Ž . Ž .Ž . Ž .Ž 0 0 0 0

� � �� �G z � � , � � � � � S , TŽ . .0 0 0 n n

� � �� 2 P � � � � � S , TŽ .0 n n

�1� � �� P B z � � � B z � � � �G z � � 2 � � � S , TŽ . Ž . Ž . Ž .Ž .ž /0 0 0 0 0 0 n n

�1� � �� P B z � � � B z � � � G z � � 2 � � � S , TŽ . Ž . Ž . Ž .Ž .ž /0 0 0 0 0 0 n n

� � �� 2 P � � � � � S , T .Ž .0 n n

Ž .From Lemma 1, conclusion 4.1 easily follows. �

Ž .PROOF OF THEOREM 2. Relationship 4.2 is a consequence of Lemma 1 and
� Ž . �the continuous mapping theorem Billingsley 1968 , page 30 , since the

Ž Ž .. Ž .Ž . Ž Ž ..mapping f B � � 1 � � 1 � z � 1 � � � z � �B z is continuous w.r.t.
the sup-norm.

Ž .Relationship 4.3 follows from Lemmas 1 and 2 and the continuous
mapping theorem.

Ž .PROOF OF COROLLARY 1. Relationship i is proved by direct inspection of
� Ž . � � Ž .E B z S . To prove relationship ii , note first that the posterior meann
� Ž . � � Ž .E W z S , T does exist, since 0 � W z � 1 if 0 � z � 1. Take now an n

positive � . From the inequality,

�sup E W z S , T � W z � �P sup W z � W z � � S , TŽ . Ž . Ž . Ž .n n 0 0 n nž /
0�z�1 0�z�1

� P sup W z � W z � � S , TŽ . Ž .0 n nž /
0�z�1

Ž .and Theorem 2, relationship ii is easily verified. The proof of relationship
Ž .iii is similar. �

Ž .PROOF OF LEMMA 3. In order to prove the lemma, we have to show that i
Ž . Ž .the posterior finite-dimensional distributions of X � converge in law ton

Ž .multivariate normal distribution, and ii the sequence of random functions
Ž Ž . .X � ; n � 1 is tight. For the sake of clarity, the proof is split into steps.n
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Ž .Step 1 Convergence of finite-dimensional distributions . We confine our-
selves to one-dimensional distributions, since the same reasoning applies also

Ž .to the multidimensional case. From Theorem 3 in Freedman 1963 , it follows
that, a.s.-P� , for every K � 1,b0

K
j' �n b j � E b j S zŽ . Ž .Ž .Ý n

k�1

converges in law, as n tends to infinity, to a normal distribution with mean 0
and variance

2K K
22 2 k k� z � b k z � b k z .Ž . Ž . Ž .Ý ÝK 0 0ž /

k�1 k�1

For every � � 0 and K � 1, we have
�

k' �P n b k � E b k S z �t SŽ . Ž .Ž .Ý n nž /
k�1

K
k' �� P n b k � E b k S z � t � � SŽ . Ž .Ž .Ý n nž /k�1

A.3Ž .

k' ��P n b k � E b k S z �� SŽ . Ž .Ž .Ý n nž /
k�K

'Then, taking a positive � such that � � r � � � R , when K is large
Ž .kenough so that Ý r�� � 1, the following chain of inequalities holdsk � K

true:

k' �P n b k � E b k S z �� SŽ . Ž .Ž .Ý n nž /
k�K

kz
k' �� P n b k � E b k S z � � SŽ . Ž .Ý Ýn nž /�k�K k�K

kz
k' �� P n b k � E b k S z � � SŽ . Ž .� n n½ 5ž /ž /�k�1A.4Ž .

k' � �� P n b k � E b k S � � �Ž . Ž .Ž .Ý n
k�K

ˆ ˆn � k � nb k n � � � nb kŽ . Ž . Ž .Ž . Ž . 2 k� �Ý2 2½ 5� n � � n � � � 1Ž . Ž .k�K

1
�1ˆ� b k � n � kŽ . Ž .Ž .Ý2� k�K

Ž . Ž . Ž Ž .Now, let n go to infinity. Taking with obvious symbols � x � P N 0, 1
. Ž . ŽŽ . Ž .. � Ž .� x , the first term in A.3 tends to � t � � �� z , a.s.-P . The term A.4K b0
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tends to
1

kA.5 b k �Ž . Ž .Ý 02� k�K

a.s.-P� . Henceb0

�
k' �lim P n b k � E b k S z �t SŽ . Ž .Ž .Ý n nž /n�� k�1

1
2 k� � t � � �� z � b k � .Ž . Ž . Ž .Ž . ÝK 0� k�K

Ž .Letting K tend to infinity and � to zero in such fashion that A.5 tends to
zero, we finally obtain

�
k' �lim P n b k � E b k S z �t SŽ . Ž .Ž .Ý n nž /n��A.6 k�1Ž .

�'� � t� H z , z a.s.-P .Ž .ž / b0

To prove the reverse inequality, it is enough to start from
�

k' �P n b k � E b k S z �t SŽ . Ž .Ž .Ý n nž /
k�1

K
k' �� P n b k � E b k S zŽ . Ž .Ž .Ý nž

k�1

k' �� t � n b k � E b k S z ,Ž . Ž .Ž .Ý n
k�K

k' �n b k � E b k S z �� SŽ . Ž .Ž .Ý n n /
k�K

K
k' �A.7 � P n b k � E b k S z �t � � SŽ . Ž . Ž .Ž .Ý n nž /k�1

k' �� P n b k � E b k S z �� S � 1Ž . Ž .Ž .Ý n nž /
k�K

K
k' �� P n b k � E b k S z �t � � SŽ . Ž .Ž .Ý n nž /k�1

k' �� P n b k � E b k S z �� S .Ž . Ž .Ž .Ý n nž /
k�K

As before, it is now easy to prove that
�

k' � 'A.8 lim P n b k � E b k S z � t S � � t� H z , zŽ . Ž . Ž . Ž .Ž .Ý ž /n nž /n�� k�1
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� Ž . Ž .a.s.-P , and from A.7 and A.8 the relationshipb0

�
k' � 'lim P n b k � E b k S z � t S � � t� H z , zŽ . Ž . Ž .Ž .Ý ž /n nž /n�� k�1

a.s.-P� follows. The same technique applies, with small changes, to prove theb0
Ž .convergence of all finite-dimensional distributions of X � , and this concludesn

Step 1.

Ž . Ž .Step 2 Tightness . Taking into account that X 0 � 0 a.s., and usingn
Ž .Theorem 8.3 in Billingsley 1968 , we only have to show that for each positive

Ž� and �, there exists a positive � and an integer n that may depend on the0
.data sequence such that

1
�A.9 P sup X s � X z � � S � � � n � nŽ . Ž . Ž .n n n 0ž /� z�s�z��

a.s.-P� . We develop the proof only in the case R � 1, since the case R � 1 canb0

be dealt with in a similar way, with just minor changes. Taking again a
'positive � such that � � r � � � R , we have first

1
P sup X s � X z �� SŽ . Ž .n n nž /� z�s�z��

�1
k k' �� P sup n b k � E b k S s � z � � SŽ . Ž . Ž .Ž .Ý n nž /� z�s�z�� k�1

�1 k�1' �� P � n b k � E b k S k z � �Ž . Ž . Ž .Ž .Ý nž� k�1

k�1�z � � z � �
A.10 � 1 � � SŽ . Ý nž / ž / /� �k�1

�1
k�1�� P b k � E b k S �Ž . Ž .Ž .Ý nž� k�1

�
�1� 1 � r� SŽ . n /'� k n

2 �n��
2 2Žk�1.�� k Var b k S �Ž .Ý n2

��Ž . k�1

2 � ˆ ˆn�� � k � nb k n � � � nb kŽ . Ž . Ž .Ž . Ž .2 2Žk�1.� k �Ý2 2
�� n � � n � � � 1Ž . Ž . Ž .k�1

2 ��� � kŽ .
2 2Žk�1.ˆ� k � b k � .Ž .Ý2 ž /n��Ž . k�1
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2 �1 ˆ 2Ž k�1.Ž Ž . Ž ..From the SLLN, it is easily seen that the series Ýk n � k � b k �
2 Ž . 2Ž k�1. �converges to Ýk b k � , a.s.-P . Hence, for every positive � , there0 b0� Ž .�exists n depending on S ; i � 1 for which the inequality0 i

� �� kŽ .
2 2Žk�1. 2 2Žk�1.ˆA.11 k � b k � � k b k � � �Ž . Ž . Ž .Ý Ý 0ž /nk�1 k�1

Ž . Ž . Ž 2 2 . �2holds true for every n � n . From A.10 and A.11 , taking � � �� � �0
Ž 2 Ž . 2Ž k�1..�1 Ž .� � Ýk b k � , relationship A.9 is obtained. �0

PROOF OF LEMMA 4. It is enough to observe that, because of the properties
Ž . Ž . Ž . Ž Ž .. Ž .�1 Ž .of B � , under either a or b , the mapping f X � � 1 � z X z isn n

� �continuous in C 0, r w.r.t. the sup-norm, and then to apply the continuous
� Ž . �mapping theorem Billingsley 1968 , page 30 .

PROOF OF THEOREM 3. To begin the proof, observe first that

' �T z � T z � T z � T z � n W z I � I I� 4Ž . Ž . Ž . Ž . Ž .n 1n 2 n 3n n Ž � �1. Ž � �1. Ž z � � .

where

�1 ' �T z � � 1 � � W z n � � E � S I I ,Ž . Ž . Ž . � 4Ž .1n n Ž � �1. Ž z*� � .

1'�T z � 1 � E � T , S 1 � z nŽ . Ž .Ž .2 n n n ž 1 � � � z � �B zŽ .
1

� I I ,Ž � �1. Ž z*� � ./� �1 � E � T � z � E � T B zŽ .n n

1'�T z � 1 � E � T , S 1 � z nŽ . Ž .Ž .3n n n ž � �1 � E � T � z � E � T B zŽ .n n

1
� I I .Ž � �1. Ž z*� � ./� � �1 � E � T � z � E � T E B z SŽ .n n n

Ž .Now, as a consequence of Theorem 7.80 in Schervish 1995 , it is easy to
Ž � .see that P � � 1 S , T converges to zero at an exponential rate, so thatn n

� �' Ž � .n P � � 1 S , T tends to zero as n tends to infinity, a.s.-P � P . On then n � b0 0' Ž � .other hand, from Lemma 2 we derive n P � � 1, z* � � S , Tn n' Ž Ž . � .� n P G � � 0 T , S � 0 as n goes to infinity, a.s.-P � P . Hence,n n � b0 0

using Corollary 1 we have

'A.12 lim n sup W z I � I I � 0� 4Ž . Ž .n Ž � �1. Ž � �1. Ž z*� � .ž /n�� 0�z��
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a.s.-P � P . In the second place, taking into account that � is consistent� b0 0� Ž . .see, e.g., Schervish 1995 , pages 430�432 , and using Theorems 1 and 4.1 in
�Ž . � � � Ž .Billingsley 1968 , page 25 , it follows that, a.s.-P � P , T z possesses� b 1n0 0

the same asymptotic distribution as

�1� ' �T z � � 1 � � W z n � b � E b SŽ . Ž . Ž . � Ž .1n 0 0 0 n
A.13Ž . ' �� n b � � E � T I I .4Ž .0 n Ž � �1. Ž z*� � .

A Taylor expansion of the term T shows that2 n

2
�1 � B z 1 � E � T , S 1 � zŽ . Ž .Ž .n n

T z �Ž .2 n ½ 5�1 � E � T , S 1 � z 1 � �* � z � �*B zŽ . Ž .Ž .n n

' �� n � � E � T I I ,Ž .n Ž � �1. Ž z*� � .

� � �where �* lies in the interval having extremes � and E � T . Using Lemmasn
Ž .2 and 4, Theorems 2 and 4.1 in Billingsley 1968 , it turns out that T2 n

possesses the same asymptotic distribution as

1 � B zŽ .0 2� � �' �A.14 T z � W z n � � E � T a.s.-P � P .Ž . Ž . Ž . Ž .2 n 0 n � b0 01 � � 1 � zŽ . Ž .0

The same technique can be applied to the term T , showing that, as n3n
tends to infinity, it possesses the same asymptotic distribution as

2
� W zŽ .0 0� ' �A.15 T z � � n B z � E B z SŽ . Ž . Ž . Ž .Ž .3n n1 � � 1 � z0

a.s.-P� � P� .� b0 0

ŽFrom the following two results the first one can be easily proved by direct
calculation, taking into account that the posterior distribution of � is a beta
distribution; the second one is a consequence of Theorem 3 in Freedman
Ž .�1963 :

d 2 � �' �n � � E � T � N 0, � a.s.-P � P ,Ž . Ž .n � � b0 0 0

d 2 � �' �n � � E � S � N 0, � a.s.-P � PŽ . Ž .n B � b0 0 0

Ž . Ž .and from 8.21 � 8.24 , Lemmas 3 and 4 and the independence between the
Ž .posterior distributions of � and B � , the theorem is proved. �
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