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Many of the popular nonparametric test statistics for censored sur-
vival data used in two-sample, k-sample trend and continuous covariate
situations are special cases of a general statistic, differing only in the
choice of the covariate-based label and the weight function. A weight
function determines the asymptotic efficiency of its corresponding statistic
in this general class. Since the true alternatives are often unknown, we
may not be able to foresee which weight function is the best for a
particular data set. We show in this paper that certain large families of
these statistics form stochastic processes, doubly indexed by both the
weight function and the time scale, which converge weakly to Gaussian
processes also indexed by both the weight function and the time scale.
These asymptotic properties allow development of versatile test proce-
dures which are simultaneously sensitive to a reasonably large collection
of alternatives. Due to the complexity of the Gaussian processes, a Monte
Carlo approach is proposed to obtain the distributional characteristics of
these statistics under the null hypothesis.

1. Introduction. In clinical studies involving time-to-event outcomes,
how to select a statistic sensitive to a variety of treatment effects is of great
concern. Many popular nonparametric two-sample test statistics such as the

Ž . � Ž .�log-rank, Peto and Peto 1972 and Gehan�Wilcoxon Gehan 1965 statistics
have been shown to be special cases of two-sample weighted log-rank statis-

� Ž .tics, differing only in the choice of weight function Tarone and Ware 1977 ,
Ž .�Gill 1980 . A poorly chosen weight function can result in less sensitivity to

the actual observed treatment effects. Consider, for example, the G �, � family
�Ž . �of statistics proposed by Fleming and Harrington 1991 , Definition 7.2.1

ˆ �� Ž .4 �which are weighted log-rank statistics with weights of the form S t � 1p
ˆ � ˆŽ .4 Ž .� S t � , where S t � is the left-continuous Kaplan�Meier estimatep p

Ž .based on the pooled survival data. Kosorok and Lin 1999 observe in the
Ž .�-Blocker Heart Attack Trial BHAT that the beneficial effect of propranolol
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hydrochloride on patients having at least one episode of myocardial infarction
can be detected with the G20, 0 weighted log-rank statistic at a much earlier

Ž 0, 0.calendar time than with the log-rank G statistic, where the log-rank was
�the statistic originally chosen by the investigators �-Blocker Heart Attack

Ž .�Trial Research Group 1982 . To resolve difficulties like this, test procedures
�sensitive to a range of alternatives have been developed Bose and Slud

Ž . Ž .1995 , Fleming and Harrington 1991 , Fleming, Harrington, and O’Sullivan
Ž . Ž . Ž . Ž .�1987 , Gastwirth 1985 , Kosorok 1998 , Tarone 1981 .

Although we usually cannot foresee the true alternative hypothesis, we
may be able to select a collection of possible alternatives of interest. For any
given weight satisfying mild regularity conditions, there exists a contiguous
alternative hypothesis for which the corresponding weighted log-rank statis-

Ž .tic has maximum asymptotic relative efficiency ARE over all other weighted
log-rank tests. Based on this property, we can conversely obtain a collection of
most efficient weights corresponding to any given collection of alternatives.

Ž . �Ž . �Tarone 1981 and Fleming and Harrington 1991 , Chapter 7 suggested
selecting a finite number of relevant contiguous alternatives and then using
the maximum of the corresponding collection of maximum ARE weighted

Ž .log-rank statistics as the test statistic. Gastwirth 1985 proposed a similar
idea; however, instead of taking the maximum, he used the linear combina-
tion of the same collection of statistics which maximized the minimum ARE

Ž .over the set of alternatives. This maximin efficiency-robust test MERT
procedure can be applied to certain infinite collections of alternatives and has
been demonstrated to be the minimax hypothesis test within an action space
of score-test statistics with loss function equivalent to the asymptotic power
� Ž .�Bose and Slud 1995 . For stochastic ordering alternatives with crossing

Ž .hazards, Fleming, Harrington and O’Sullivan 1987 recommended a Renyi-
type statistic which takes the supremum over time of the weighted log-rank
statistics.

Two-sample weighted log-rank statistics can be formulated as integrated,
weighted differences of the estimated intensity processes from the two sam-
ples, with weights composed of nonnegative bounded predictable processes of

Ž .bounded variation. Kosorok 1998 proposed a ‘‘function-indexing’’ scheme
which considers these stochastic processes as being doubly indexed by both
the weight function and the time scale, and then he showed that these
processes jointly converge weakly over time and over all weight functions in a
usefully large compact set. This result allows us to develop more efficient
testing procedures and offers us greater flexibility in selecting the collection
of the weighted log-rank statistics over the Tarone, Fleming and Harrington
or MERT approaches. Kosorok also showed that the MERT and Renyi-type
approaches are special cases of the function-indexing approach.

In the BHAT study mentioned earlier, we may be interested in knowing
the impact of weight, hypertension and�or cigarette smoking on survival
rates after adjusting for treatment effect in order to develop interventions for
prolonging patients’ lives. The previously described class of statistics cannot
let us do this, nor do they permit us to investigate the differences in survival
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Ž .rates for multiple treatment groups. Jones and Crowley 1989, 1990 pro-
posed a class of single-covariate nonparametric tests for right-censored sur-

Ž .vival data that includes the Tarone and Ware 1977 two-sample class, the
Ž . Ž .Cox 1972 score test, the Tarone 1975 k-sample trend statistics, the Brown,

Ž .Hollander, and Korwar 1974 modification of the Kendall rank statistic, the
Ž .Prentice 1978 linear rank statistics and the logit rank statistic of O’Brien

Ž .1978 as special cases. Certain large families of these statistics form stochas-
tic processes doubly indexed by both the weight function and the time scale.
We will in this paper generalize these single-covariate processes to allow for
multiple covariates, and utilize the ‘‘function-indexing’’ scheme proposed in

Ž .Kosorok 1998 to establish their weak convergence over a useful function
space and over the time scale. This class of statistics can be applied to
address the BHAT intervention question raised above. It includes the class of

Ž .Kosorok 1998 as a special case and also shares the merits of the function-
indexing scheme: flexibility in choosing the collection of weight functions and
the potential to develop efficient versatile test procedures.

The formulation of multicovariate nonparametric tests as well as hypothe-
ses of interest are given in Sections 2.1 and 2.2, respectively. In Section 2.3,
we propose two test procedures which are simultaneously sensitive to ordered
hazard and stochastic ordering alternatives for applying to the data analysis
setting. The main weak convergence results for these statistics are then given
in Section 3. In Section 4, we propose a Monte Carlo approach to obtain the
P-values of the newly proposed test procedures. These newly proposed meth-
ods are then applied to analyze the �-Blocker Heart Attack Trial data in
Section 5, and a brief discussion is given in Section 6.

2. Function-indexed stochastic processes. We will introduce the
general class of nonparametric tests mentioned above, describe the hypothe-
ses of interest and propose test statistics for application to data analysis
settings in this section.

2.1. The class of nonparametric tests. For a sample of survival data of size
n, let T and C represent the times to failure and censoring, respectively,j j

Ž .and let Z t be the covariates measured at time t for individual j. Define thej
observed failure counting process

N t � IŽ .j �T � C � t , � �14j j j

and the at-risk process

Y t � I ,Ž .j �T � C � t4j j

where I is the indicator function and j � 1, . . . , n. Let

n n

N t � N t and Y t � Y t .Ž . Ž . Ž . Ž .Ý Ýj j
j�1 j�1
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We will work only under the general random censorship model, that is,

�P T 	 t , t 
 �t , C 	 t , t 
 �t Z t. . Ž .� 4
� �� P T 	 t , t 
 �t Z t P C 	 t , t 
 �t Z t ,� 4 � 4. Ž . . Ž .

Ž . � Ž . 4where Z t � Z s : 0 � s � t .
Denote the cumulative hazard by � and allow it to depend on n. Through-

out, the covariate is assumed to be well constructed so that the jth individ-
Ž . Ž . Ž � Ž ..ual’s hazard at time t is a function of Z t , that is, d� t � d� t Z t �j j j

Ž � Ž ..d� t Z t . Under the above assumptions and certain regularity conditions,j
Ž .Dolivo 1974 showed that

t
2.1 M t � N t � Y s d� sŽ . Ž . Ž . Ž . Ž .Hj j j j

0

� .are square integrable martingales over 0, � with predictable covariation

t² :2.2 M , M t � I Y s 1 � �� s d� s ,Ž . Ž . Ž . Ž . Ž .Hi j �i�j4 j j j
0

Ž . Ž . Ž .where �� s � � s � � s � .j j j
Ž .Jones and Crowley 1989 proposed a class of single-covariate nonparamet-

ric tests
n

tn �1�22.3 X t � n w s Y s Z s � Z s dN s ,Ž . Ž . Ž . Ž . Ž . Ž . Ž .ÝH j j j
0 j�1

Ž . Ž .where w s is a locally bounded, predictable weight function, and Z s �
�1Ž . Ž . Ž .Y s 	Y s Z s . By ‘‘predictable,’’ we mean predictable with respect to thej j

n � n 4filtration FF � FF , t � 0 , wheret

2.4 FF n � 
 N s , Y s 
 , Z s 
 , j � 1 ��� n , s � t ,Ž . Ž . Ž . Ž .� 4t j j j

� 4are the histories of the study up to and including time t, and where 
 A is
the smallest 
-field making all of A measurable. This statistic requires no
further assumptions on the hazard rates and will be large if the failure
mechanism favors large values of the covariates. They showed that the X n,
specified by particular choices of covariates and weight functions, are equiva-
lent to several well-known test statistics. For example, if the Z are either 0j

Ž . nor 1 group indicator , then the X are two-sample weighted log-rank statis-
nŽ .tics. They also proposed a variance estimator for X t ,

n
2tn �1 2V t � n w s Y s Z s � Z sŽ . Ž . Ž . Ž . Ž .ÝH j j

0 j�1

Y s � � N s dN sŽ . Ž . Ž .
� ,

Y s � 1 Y sŽ . Ž .

2.5Ž .

Ž . Ž . Ž .where � N s � N s � N s � .
We generalize Jones and Crowley’s single-covariate statistics to accommo-

date the multiple-covariate situation. Suppose p covariates are obtained from
Ž .each subject. Let the covariate vector of the jth subject be Z t �j
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� Ž . Ž .4TZ t , . . . , Z t , j � 1, . . . , n, where superscript T denotes transpose, andj1 j p
nŽ . � nŽ . nŽ .4Tdefine statistics X f, t � X f, t , . . . , X f, t with the kth element1 p

n
tn �1�2 n2.6 X f, t � n f b s Y s Z s � Z s dN s ,� 4Ž . Ž . Ž . Ž . Ž . Ž . Ž .ÝHk k j jk k j

0 j�1

�1 TŽ . Ž . Ž . Ž . � �where Z s � Y s 	Y s Z s ; f � f , . . . , f is the ‘‘function-index,’’k j jk 1 p
� � r � �where f : 0, 1 � 0, 1 is an element of a function space having certaink

Žcompactness and continuity properties e.g., having square-integrable deriva-
. � � nŽ . � nŽ . nŽ .4T n � . � �tives ; t 	 0, � , and b s � b s , . . . , b s , where b : 0, � � 0, 1 are1 r i

n � n 4FF -predictable processes, i � 1, . . . , r and r is finite. The sequence b , n � 1
needs to converge in probability to a constant function b. Notice that we allow
the statistics X n, k � 1, . . . , p to have different weight functions since thek
associations between different covariates and survival rates may be different.
Examples of weight function spaces that fit these criteria are:

�� Ž . 4 Ž .1. The Tarone�Ware weights Y s �n , where Y s �n is the pooled at-risk
� 4 � � � �estimator, � 	 0 � � , 
 , 0 � � � 
 � � and s 	 0, � . Note that � � 0

�and � � 1 correspond to the log-rank and the Gehan�Wilcoxon Gehan
Ž .�1965 weights.

�, � ˆ � ˆ �� Ž .4 � Ž .42. The G weights S s � 1 � S s � defined in Fleming and Har-p p
ˆŽ . Ž . � 4rington 1991 , where S s is the pooled Kaplan�Meier estimator, � 	 0p

� � � 4 � �� � , 
 , � 	 0 � � , 
 , and 0 � � � 
 � �, i � 1, 2. When � � 0,1 1 2 2 i i
this family reduces to the G � weights introduced by Harrington and

Ž .Fleming 1982 , and � � 0 and � � 1 correspond to the log-rank and the
� Ž .�Prentice�Wilcoxon Prentice 1978 weights, respectively.

n Ž . nŽ .Denote V s, t to be the estimator of the covariance of X f, s andfg
nŽ .X g, t of the form

n
s�tn �1 n T nV s, t � n f b x g b x Y x Z x � Z x� 4 � 4Ž . Ž . Ž . Ž . Ž . Ž .ÝHfg j j

0 j�1

Y x � � N x dN xŽ . Ž . Ž .T
� Z x � Z x ,Ž . Ž .j Y x � 1 Y xŽ . Ž .

2.7Ž .

� �where s, t 	 0, � . We will show in Section 3 that the function-indexed
n � �process X converges weakly to a Gaussian process over 0, � � H and that

the covariance estimator V n is uniformly consistent.

2.2. Hypotheses of interest. The asymptotic properties of the function-
indexed processes are developed under both the null and the following
alternative hypotheses. Let ZZ represent the space of potential covariate
paths or some subspace of it. All the processes in ZZ are assumed to be
adapted, bounded and left continuous with right-hand limits without loss of
practical generality. Let � denote the cumulative hazard for the path z 	 ZZ.z
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n � .We are interested in testing the null hypothesis H : � � � over 0, � for all0 z
z 	 ZZ, against the proportional odds contiguous alternatives of the form

T 'exp � z t � n g t d� tŽ . Ž . Ž .Ž .n �2.8 d� t z t � ,Ž . Ž .Ž .
T '1 
 exp � z t � n g t � 1 �� tŽ . Ž . Ž .Ž .ž /

� �T Ž .for some finite � � � , . . . , � , some baseline hazard � t and some real1 p
Ž .function g such that g is bounded by G � �. Note that 2.8 becomes the

proportional hazards contiguous alternative model when the baseline hazard
is continuous and becomes the null hypothesis when � � 0.

2.3. Test procedures. The joint weak convergence of the function-indexed
stochastic processes permits us to develop efficient versatile test procedures.
We here propose two test statistics for application to data analysis settings.

Define CC to be collections of standardized statistics

�1�2n n n � �2.9 CC � W f, t � V �, � X f, t , t 	 0, � , f 	 H ,Ž . Ž . Ž . Ž .½ 5ff

where H is a chosen compact index set. We will show in Section 3 that W n

converges weakly to a multivariate Gaussian process. The test procedures we
propose are

T Tn n n n2.10 sup W f, � W f, � and sup sup W f, t W f, t .Ž . Ž . Ž . Ž . Ž .
f	H f	H � �t	 0, �

� 4Note that if f � 1 and H � 1 , the first statistic is the Cox score statistic to
test whether � � 0 in the proportional hazard model,

� t � � t exp ��Z .Ž . Ž . Ž .0

These newly proposed statistics should be sensitive to both the ordered
hazard and the stochastic ordering alternatives since the supremum-over-
function-space statistics give sensitivity to broad ordered hazards alterna-
tives and the supremum-over-time statistics to stochastic ordering alterna-

Ž .tives. Kosorok and Lin 1999 studied the size and power properties of these
two statistics under the two-sample weighted log-rank statistics setting
utilizing G �, �-weights. The performance of these two statistics appeared to be
adequate when there were no differences between the two survival curves.
For ordered hazards alternatives with early differences, the first statistic

Ž . � � � �with index set �, � 	 0, 4 � 0, 1 performs very well. Both statistics with
the same index set also do well for ordered hazards alternatives with either
early or late difference, for stochastic ordering alternatives and for stochastic

Ž .crossing alternatives. See Kosorok and Lin 1999 for details.
Because of the complexity of the Gaussian processes, we generally are not

able to obtain the P-values of these statistics through analytical means.
Therefore, a Monte Carlo approach is proposed in Section 4 to simulate the
null distribution of the processes W n and thereby estimate the P-values of
these statistics.
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3. Main weak convergence results. Before giving the main result, we
need to introduce several concepts and definitions.

n Ž � �. p � �Clearly, X is a stochastic process on H � D 0, � , where D 0, � is the
� �space of all right-continuous real functions on 0, � with left-hand limits such

that their limits at � exist. In order to resolve measurability problems in the
Ž � �. pnonseparable metric space on D 0, � endowed with the uniform metric, we

Ž .will utilize Hoffman�Jørgensen�Dudley HJD weak convergence theory as
Ž .described in van der Vaart and Wellner 1996 . The corresponding theorems

for stochastic processes defined on the complete, Borel measurable metric
Ž � �. pspace on D 0, � endowed with the Skorohod metric are given in Lin

Ž . n1998 . For the weak convergence of X , we will use the uniform topology on
Ž Ž � �. p. � 4 � 4 Ž .the space A H, D 0, � ; where for metric spaces H, � and G, � , A H, G

is the metric space of continuous mappings H � G endowed with the metric

a x , y � sup � x f , y f ,Ž . Ž . Ž .Ž .
f	H

� 4where A, a denotes the metric space defined on A endowed with the metric
Ž � �. pa. In our setting, H � H, G � D 0, � , h � �, where � is the uniform

� 4metric on H, and � � d, where d is defined as follows: for u � u , . . . , u1 p
� 4 Ž � �. p Ž . Ž .and v � v , . . . , v in D 0, � , d u, v � max d u , v , where d1 p 1� k � p u k k u

� �is a bounded version of the uniform metric on D 0, � . Also define DD to be the
�Ž � �. p 4Borel 
-field of D 0, � , d and let DD* be the Borel 
-field of the product

� � � 4 pmetric space D 0, � , d , where d is a complete and bounded version of thes s
� �Skorohod metric on D 0, � .

We also require that the function space H of weight indices to be the
Cartesian product of p sets which are either equal to or closed subsets of


Ž . Ž . 
Ž .G K defined below for some K � �. Before defining G K , we need tor r
introduce some additional notation. Let N r be the set of all multiindexes1

� 4� � � , . . . , � , where � is either 0 or 1, l � 1, . . . , r and define the first1 r l
cross-partial derivative linear operator

� lr �
�D � ,Ł0 ž /� xl�1 l

� 4T � � revaluated at y � y , . . . , y , where y � � x , l � 1 . . . r. For each f : 0, 11 r l l l
� �� 0, 1 , also define

1�2
2r �� �f � � D f s ds ,Ž .Ý H 0ž /� �r 0, 1�	N1

� � � � r � 4Twhere 0, 1 � 0, 1 and s � s , . . . , s .1 r


Ž .DEFINITION 1. Let G K denote the space of bounded, absolutely contin-r
� � r � �uous functions f mapping from 0, 1 to 0, 1 for which all first cross-partial

derivatives are square integrable and their total L -norms are bounded by K,2
� Ž .� rin the sense that f � f 0 � � K.
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Now we present the main result.

n Ž .THEOREM 1. Assume the statistic X has the form given in 2.6 . Also
assume f is restricted to the set H, where H is the Cartesian product of


Ž .H , . . . , H , and H is either equal to or a closed subset of G K for some1 p k r k
K � �, k � 1, . . . , p. Under the general random censorship model and thek

Ž .‘‘contiguous alternative’’ sequence 2.8 , suppose the following conditions also
hold:

Ž . � . � �i There exists a function � : 0, � � 0, 1 such that

Y tŽ .
sup � � t � 0 as n � �.Ž . Pn� .t	 0, �

Ž .ii The covariate processes are adapted, uniformly bounded and left con-
tinuous with right-hand limits.

Ž . � Ž . 4iii Set II � sup t: � t � 0 and u � sup II. For any t 	 II, there exist0
left-continuous functions v , k, l � 1, . . . , p, with right-hand limits such thatk l
for all t 	 II,

n1
sup Y s Z s � Z s Z s � Z s � v s � 0Ž . Ž . Ž . Ž . Ž . Ž .Ý j jk k jl l k l PY sŽ .� �s	 0, t j�1

Ž .and v s are zero outside of II.k l
Ž . n � . � � niv For i � 1 . . . r, each b : 0, � � 0, 1 is FF -predictable and, for eachi

closed subinterval of II, II * � II, the following holds:

� n �sup b s � b s � 0Ž . Ž .i i P
s	II *

� . � �as n � �, for some deterministic b : 0, � � 0, 1 , where b is left continuousi i

Ž . 
with right-hand limits, and db t , with b being the right-continuousi i

� .version of b , changes sign only a finite number of times over 0, � .i

Then:

Ž . nŽ .a X �, � converges HJD-weakly in the uniform topology on
Ž Ž � �. p. Ž .A H, D 0, � to a multivariate Gaussian process X �, � with mean function

t
3.1 � f, t � diag f b s v s � g s d� s� 4Ž . Ž . Ž . Ž . Ž . Ž .H

0

and covariance function

s�t T3.2 V s, t � f b x g b x v x � x 1 � �� x d� x ,� 4 � 4Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .Hfg
0

� � Ž .for all f, g 	 H and s, t 	 0, � , where v is a p � p matrix with k, l th
element v .k l
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n ˜ nŽ . Ž . Ž . Ž .b The covariance estimators V �, � defined in 2.7 and V �, � definedfg fg
as

n
s�tn �1 n T nṼ s, t � n f b x g b x Y x Z x � Z x� 4 � 4Ž . Ž . Ž . Ž . Ž . Ž .ÝHfg j j

0 j�1

Y x � � N xŽ . Ž .T
� Z x � Z x dN xŽ . Ž . Ž .j jY x � 1Ž .

3.3Ž .

� �are uniformly consistent for V over all f, g 	 H and all s, t 	 0, � .fg

Ž . T Ž . pc Provided that inf c V �, � c � 0 for every nonzero c 	 � , thenf 	 H f, f
� nŽ .��1 �2 nŽ .V �, � X f, t converges HJD-weakly in the uniform topology onff
Ž Ž � �. p. �1�2Ž . Ž .A H, D 0, � to V �, � X f, t .ff

Ž . Ž .REMARK 1. i The unusual changes-of-sign restriction in condition iv
� nŽ .4will be needed later in the proofs to insure that the total variation of f b �


Ž .for any f 	 G K is finite, where K � �. Two commonly used weightr
functions, the left-continuous version of the pooled Kaplan�Meier estimator
ˆ Ž . Ž . Ž .S t � and the pooled at-risk estimator � t � Y t �n, satisfy this condi-ˆp p
tion.

Ž . Ž .ii Result c and the continuous mapping theorem establish weak conver-
gence in the uniform topology of the test procedures described in Section 2.3
and give us confidence that we will not lose too much power while using these
supreme-type statistics over a reasonable large function space H.

n ˜ nŽ .iii Although both V and V are uniformly consistent for V , for smallfg fg fg
n Ž . nŽ .or moderate sample size, V s, t tends to estimate the covariance of X f, sfg

nŽ . � �and X g, t more accurately, for all f, g 	 H and s, t 	 0, � .

Under some regularity conditions, the above results can be generalized to
Ž .the contiguous alternative sequences discussed in Jones and Crowley 1990 :

� n � �3.4 sup sup d� t z t � d� t � 0 as n � �.Ž . Ž . Ž .Ž .
z � .t	 0, �

Ž .COROLLARY 1. Under the contiguous alternative submodel 3.4 , suppose
Ž . Ž . nconditions i � iv of Theorem 1 obtain and for any predictable process h

� n �with h � c, c � �,

2n
t�1�2 n nsup E n h s Y s Z s � Z s d� � C ,Ž . Ž . Ž . Ž .ÝH j jk k j½ 501�k�p j�1

� � Ž . Ž .for all n � 1, t 	 0, � , and some C � �. Then, results a � c of Theorem 1
nŽ .apply to X �, � except that the mean function of the limiting process X is of a

different form which depends on �n.j
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The proof of this corollary, which will not be given here, follows along the
lines of the proof of Theorem 1 given below.

Before giving the proof of Theorem 1, we need an additional theorem and
Ž .two lemmas. The following theorem of Kosorok 1998 establishes weak

Ž . Ž .convergence of stochastic processes in A H, G defined above .

� nŽ .4 Ž .THEOREM 2. Suppose a sequence of stochastic processes X � in A H, G ,
� 4 � 4where H, � is compact and G, � is complete with Borel 
-field GG, satisfies

the following conditions:

Ž . nŽ .i X f is a GG*-measurable random variable for all f 	 H and all
n � 1, where the 
-field GG* � GG, and all finite-dimensional distributions of

� nŽ . nŽ .4 Ž� 4.mthe form X f , . . . , X f , for m � �, converge HJD-weakly on G, �1 m
� Ž . Ž .4to some tight X f , . . . , X f as n � �.1 m

Ž .ii � f , g 	 H,
� X n f , X n g � q h f , g Q ,Ž . Ž . Ž .Ž . Ž . n

where
Ž .a � is a bounded, continuous, GG* � GG*-measurable mapping from

� .G � G to 0, � ;
Ž . Ž .b q is continuous and nondecreasing with q 0 � 0 and
Ž . � 4c Q is a stochastically bounded sequence of real random variables,n

� 4that is, for any � � 0, there exists a 
 � � such that P Q � 
 � 1 � � , �n
n � 1.

nŽ . � Ž . 4 Ž .Then X � converges HJD-weakly on A H, G , a to tight X � as n � �.

Ž .The proof is given in Kosorok 1998 .
Ž .The following lemma establishes Condition i of Theorem 2 for the statis-

tic X n.

nŽ .LEMMA 1. Under the conditions of Theorem 1, X f is DD*-measurable for
all f 	 H and all n � 1, and all finite-dimensional distributions of the form
� nŽ . nŽ .4X f , . . . , X f , for m � �, converge HJD-weakly in the uniform topology1 m

Ž � �. pm � Ž . Ž .4on D 0, � to X f , . . . , X f as n � �, where X is the limiting Gauss-1 m
Ž .ian process defined in result a of Theorem 1.

The proof is given in the Appendix.
Ž .The following lemma is helpful in establishing Condition ii of Theorem 2

for the statistic X n.

LEMMA 2. For each f 	 H, where H is the Cartesian product of H , . . . , H1 p

Ž .and H is either equal to or a closed subset of G K for some K � �,k r k k

nŽ .k � 1, . . . , p, let X f be a p-dimensional vector of stochastic processes with
kth element

Ž .�n n n n3.5 X f � X f, � � f b s dU s ,� 4Ž . Ž . Ž . Ž . Ž .Hk k k k
0
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n � n n4Twhere b � b , . . . , b and r is finite. Suppose we have the following1 r
˜n ˜n� 4conditions for each n � 1, where FF � FF , t � 0 is a filtration:t

n ˜nŽ . � �i For each k � 1, . . . , p, U is an FF -adapted process on 0, � and isk t
right continuous with left-hand limits such that:

Ž . n � � nŽ .a U is locally of bounded variation on 0, � and �U 0 � 0, �k k
n � 1, and

˜n n nŽ . � �b �C � � such that for any FF -predictable h , with h � c, therek t
˜n n nŽ .exists a nonnegative FF -adapted right-continuous submartingale G h , tt k

such that
2

t n n n nh s dU s � G h , tŽ . Ž . Ž .H k k½ 5
0

� � � nŽ n .� 2� t 	 0, � and E G h , u � c C , � n � 1.k k
n ˜nŽ .ii �n � 1, each b , for 1 � j � r, is an FF -predictable process mappingj t

� . � �from 0, � to 0, 1 .
Ž . nŽ . Ž � �. piii X f is measurable with respect to the Skorohod topology on D 0, �

for all f 	 H and all n � 1.
Then �f, g 	 H,

d X n f , X n g � q � f, g Q ,Ž . Ž . Ž .Ž . Ž . n

Ž .where d, q and Q satisfy condition ii of Theorem 2 with h � �, � � d,n
GG � DD and GG* � DD*.

Ž .PROOF. Lemma 2 of Kosorok 1998 establishes for each k � 1, . . . , p, that

Ž .if G K is compact in the uniform metric, so is its closed subset H .r k k

Ž .Therefore, the product space H is compact in the uniform metric � f, g �
� Ž . Ž . � Ž .max sup f x � g x . Theorem 2 of Kosorok 1998 demon-1� k � p x 	�0, 1� k k

Ž .strates that for each k � 1, . . . , p, there exists a sequence in n of stochasti-
� 4 � 4 Ž �cally bounded random variables Q such that �f, g 	 H � 0 and t 	 0, � ,k n

1�4n n3.6 d X f , X g � � f, g Q � n � 1.Ž . Ž . Ž . Ž .Ž .u k k k n

Let Q � max Q . Then,n 1� k � p k n
1�4n n3.7 d X f , X g � � f, g Q � n � 1,Ž . Ž . Ž . Ž .Ž . n

� 4and Q is also a sequence of stochastically bounded random variables. �n

PROOF OF THEOREM 1. Theorem 2 will be employed to prove this theorem.
Ž . nCondition i of Theorem 2 for X follows by Lemma 1. Now let

nŽ .�n �1�2U � � n Y s Z s � Z s dN s ;Ž . Ž . Ž . Ž . Ž .ÝHk j jk k j
0 j�1

then
Ž .�n n nX f, � � f b s dU s .� 4Ž . Ž . Ž .Hk k k

0

Ž .For each k � 1, . . . , p, the processes Y Z � Z , j � 1, . . . , n, are adapted,j jk k
bounded and left continuous with right-hand limits; so is U n and U n is ofk k

� � nŽ .bounded variation on 0, � . In addition, �U 0 � 0, � n � 1 and � k.k
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Since

n
tn �1�2U t � n Y s Z s � Z s dM sŽ . Ž . Ž . Ž . Ž .ÝHk j jk k j

0 j�1

n
t�1�2 n
 n Y s Z s � Z s d� s ,Ž . Ž . Ž . Ž .ÝH j jk k j

0 j�1

n � n �for any predictable h with h � c, where c � �,

2
t n nh dUH k½ 5

0

2n
t�1�2 n� 2 n h Y Z � Z dMÝH ž /j jk k j½ 50 j�1

2n
t�1�2 n n
 2 n h Y Z � Z d� ,ÝH ž /j jk k j½ 50 j�1

n n � �� G h , t � t 	 0, � ,Ž .k

nŽ n . nwhere G h , t is a nonnegative right-continuous FF -submartingale, fork t
nŽ n .k � 1, . . . , p. For the first term of G h , t ,k

2n
t�1�2 nExp n h Y Z � Z dMÝH ž /j jk k j

0 j�1

n 2t2 �1 n� c Exp n Y Z � Z d�ÝH ž /j jk k j
0 j�1

n 2t 22 �1 2� c Exp n Z � Z dN � c 2 M ,Ž .ÝH ž /jk k j
0 j�1

� � � Ž . �for all t 	 0, � , where sup sup Z t � M � �.j, k t 	�0, �. jk
n nŽ n .Observe that if � � �, the second term of G h , t ,j k

n
t�1�2 n � �n h Y Z � Z d� � 0 � t 	 0, � .ÝH ž /j jk k

0 j�1

Ž .Therefore, condition i of Lemma 2 holds under the null hypothesis. Now,

n
t�1�2 n nn h Y Z � Z d�ÝH j jk k j

0 j�1

n
t�1 n n'� n h Y Z � Z n d� � d� .ÝH j jk k j

0 j�1
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�1 � a x � � � � a � Ž �Note that x e � 1 � a e , � x 	 0, 1 and any real a. Hence,

n' � �n d� s � d� sŽ . Ž .j

T� z s g sŽ . Ž .'� n exp � 1'n

T 'exp � z s g s � n �� sŽ . Ž . Ž .
� 1 � d� sŽ .T '1 � �� s 
 exp � z s g s � n �� sŽ . Ž . Ž . Ž .

p p

� � � �� 2 MG � exp MG � d� s ,Ž .Ý Ýl lž /
l�1 l�1

� �where G is an upper bound of the function g . Thus
2 2n n

t t�1�2 n n �1Exp n h Y Z � Z d� � c* Exp n Y d�Ý ÝH Hj j j j
0 0j�1 j�1

2n�
�1 n� c** Exp n Y d�ÝH j j

0 j�1

2n nÝ � TŽ .j�1 j j� c** Exp
n

3.8Ž .

2n nÝ � T� 4Ž .j�1 j j� c** Exp ,
n

Ž .for some finite c* and c**. The third inequality follows by 2.8 and the last by
the Cauchy inequality. For any failure time distribution F with correspond-

�ing survival function S � 1 � F and cumulative hazard � defined by inte-
Ž . Ž . Ž .� � .grating d� t � dF t �S t � and any t 	 0, � , we can show that

t 2Ž . Ž . t Ž . Ž . t Ž . Ž .H � s dF s � 2H � s dF s and H � s dF s � 1 by the integration by0 0 0
Ž .parts technique and by the relationship between F, S and �. Thus, 3.8 is
Ž .bounded above by 2c** and Lemma 2 now yields that condition ii of

Ž .Theorem 2 is established and part a of Theorem 1 now follows by Theorem
2. Arguments for establishing that

nsup V s, t � V s, t � 0,Ž . Ž .fg fg P
� �s , t	 0, �

Ž .can be found on pages 31 and 32 of Lin 1998 . Let
n

tn �1U t � n Y s Z s � Z sŽ . Ž . Ž . Ž .ÝHk l j jk k
0 j�1

Y s � � N s dN sŽ . Ž . Ž .
� Z s � Z s .Ž . Ž .jl l Y s � 1 Y sŽ . Ž .
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Ž .Following the same argument used above to prove part a of Theorem 1, for
n � n �any predictable process h with h � c, we can show that

2
tn n n nE G h , t � E h s dU s � c*Ž . Ž . Ž .Hk l k l

0

for some c* � �. Reapplication of Theorem 2 via Lemma 2 gives us the
desired uniform convergence in probability of V n to V. Similar arguments can

˜ n Ž .be used to obtain the uniform consistency of V , and part b of Theorem 1 is
Ž .established. Part c follows from the version of Slutsky’s lemma given in

Ž .Example 1.4.7 of van der Vaart and Weller 1996 . �

4. Monte Carlo estimation of P-values. Due to the complexity of the
Ž .limiting distribution of the statistics in 2.10 proposed for use in data

analysis, we generally are not able to obtain the P-values through analytical
means. Therefore, a Monte Carlo approach is now proposed to simulate the
null distribution of the processes W and to estimate the P-values of these
statistics.

˜ n nLet X , q � 1, . . . , Q, be Q ‘‘artificial’’ realizations of X generated asq
follows. Obtain nQ independent standard normal random deviates, � ,jq
j � 1 . . . n, q � 1 . . . Q, and construct the corresponding artificial realization

n ˜ nof X , X , with the kth elementq

nŽ .�n �1�2 n n˜ ˜4.1 X f, � � n f b s Y s Z s � Z s dM s ,� 4Ž . Ž . Ž . Ž . Ž . Ž . Ž .ÝHk q k j jk k jq
0 j�1

where
1�2

Y s � � N sŽ . Ž .tn˜4.2 M t � � dN s .Ž . Ž . Ž .Hjq jq j½ 5Y s � 1Ž .0

Define

˜n n ˜ nFF � 
 FF , M s , s � t , j � 1 ��� n , q � 1, . . . , Q .Ž .½ 5t t jq

˜ ˜nREMARK 2. M are FF -martingales sincejq t

1�2
Y t � � N tŽ . Ž .

n n n n˜ ˜ ˜ ˜� �E M t FF � M t � 
 E � � N t FFŽ . Ž . Ž .jq t� jq jq j t�½ 5Y t � 1Ž .

˜ n� M t � .Ž .jq

THEOREM 3. Suppose that the conditions of Theorem 1 hold. Then:

˜ n ˜ nŽ . � Ž . 4 Ž .a The collection X �, � , q � 1, . . . , Q , where X f, � are as given inq q
Ž . � Ž � �. p. 4Q4.1 , converges HJD-weakly in the uniform topology on A H, D 0, � , a

� Ž .to a collection of Q independent multivariate Gaussian processes, X �, � , qq
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4� 1, . . . , Q , such that each X has mean 0 and covariance function V , forq fg
Ž .all f, g 	 H, where V is as defined in 3.2 , andfg

˜ n ˜ n �1�2 ˜ n n �1�2 ˜nŽ . � Ž .� � Ž .�b Let W � V �, � X and W � V �, � X , where V isq ff q q ff q ff
˜ nŽ . � Ž . 4as defined in 3.3 . Then the collection W �, � , q � 1 ��� Q converges HJD-q

� Ž Ž � �. p. 4Qweakly in the uniform topology on A H, D 0, � , a to the collection
� Ž . 4W �, � , q � 1 ��� Q .q

˜ �PROOF. For q � 1, . . . , Q, define p-dimensional processes X with kthq
element

nŽ .�� �1�2 n �˜ ˜X f, � � n f b s Y s Z s � Z s dM s ,� 4Ž . Ž . Ž . Ž . Ž . Ž .ÝHk q k j jk k jq
0 j�1

where
t 1�2�M̃ t � � 1 � �� s dN s .� 4Ž . Ž . Ž .Hjq jq j

0

˜� Ž .It is not difficult to see that M t , j � 1 ��� n, q � 1 ��� Q, are uncorrelatedjq
˜nsquare-integrable FF -martingales. By Theorem 1.5.1 of Fleming and Harring-t

˜n ˜� ˜n ˜�Ž .ton 1991 , X , X and X � X are also martingales. We can then showk q k q k q k q
˜ n� 4that the supremum norm of the difference between X , q � 1, . . . , Q andq

˜ �� 4X , q � 1, . . . , Q converges to 0 in outer probability, so that weak conver-q
˜ n ˜ �� 4 �gence of X , q � 1, . . . , Q can be established by verifying that of X ,q q
4q � 1, . . . , Q . We can employ the same techniques used in the proof of

Ž . Ž .Theorem 1 to show a and b . The verification of the asymptotic equivalence
˜ n ˜ �� 4 � 4of X , q � 1, . . . , Q and X , q � 1, . . . , Q as well as the main differences inq q

proof between Theorem 1 and Theorem 3 are outlined in pages 41�44 of Lin
Ž .1998 . After establishing convergence of finite-dimensional distributions, the
remainder of the proof follows along the lines of the proof of Theorem 1. �

Ž .REMARK 3. i The continuous mapping theorem applied to Theorem 3
implies that the limiting distribution, under the null hypothesis of no covari-
ate effect, for the supremum statistics given in Section 2.3 can be accurately
estimated by the sample distribution of a collection of the proposed Monte
Carlo replicates conditional on the data.

˜ nŽ . Ž .ii In contrast to Remark iii , V tends to estimate the variance of thefg
˜ q nMonte Carlo realizations X more accurately than V for small or moderatefg

sample sizes; thus it will be the estimator of choice for the Monte Carlo
simulations used to obtain the null distribution of W n.

5. Example: �-Blocker Heart Attack Trial. The �-Blocker Heart At-
Ž .tack Trial BHAT mentioned in the Introduction was a randomized, double-

blind, placebo-controlled clinical trial designed to test whether the �-blocker
propranolol hydrochloride would reduce total mortality among people who
had experienced at least one episode of myocardial infarction. By the time the

Žstudy was stopped in 1980, a total of 3,837 patients 1,916 in the propranolol
. Žgroup and 1,921 in the placebo group had been accrued, and 337 142

. Žpropranolol, 195 placebo of them had died. Eleven patients 4 propranolol, 7
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.placebo had unknown mortality status and were omitted from the analyses
presented here.

The test procedures proposed in Section 2.3, for the special case involving
Ž .treatment indicator covariates, were utilized by Kosorok and Lin 1999 to

assess difference in survival rates between the two treatment groups. We now
present an extension of this analysis which uses the more general version of
the newly proposed statistics to assess the risk factors: age, systolic blood

Ž . Ž .pressure SBP and history of hypertension DH with survival rates for
patients in the placebo group at the final analysis time. The two function-
indexed test procedures described in the previous section with G �, � weights
were used in this analysis and are denoted G and GS, respectively. We

Ž .employed these two tests with several weight index sets including �, � 	
�Ž .4 Ž . �Ž .4 � � � 4 � � � 4 � � � 4 � �0, 0 log-rank weight , 1, 0 , 0, 1 � 0 , 0, 4 � 0 , 0, 20 � 0 , 0, 4 �
� � � � � �0, 1 , and 0, 20 � 0, 1 . The first three are commonly used in practice;
� � � �0, 4 � 0, 1 was suggested by the simulation studies in Kosorok and Lin
Ž . � � � �1999 and 0, 20 � 0, 1 was used because the optimal weight may be far
afield from what we would expect. To save on computing time, a discrete

� � � �approximation of the intervals 0, � and 0, � , consisting only of the0 0
� � � �numbers k � 1 	 0, � and l � 0.5 	 0, � , where k and l are nonnegative0 0

integers, were used to calculate the function-indexed statistics. P-values were
calculated based on 10,000 Monte Carlo realizations. Analysis results are
presented in Table 5.1.

TABLE 5.1
Ž .Monte Carlo P-values based on 10,000 Monte Carlo replicates of the statistics testing

the effects of risk factors on survival rates for patients in the BHAT placebo group

Test Index Overall
2procedure set test Age Age DH SBP

�Ž .4G 0, 0 0.0169 0.0258 0.0261 0.0168 0.0637
�Ž .41, 0 0.0180 0.0281 0.0281 0.0151 0.0690
�Ž .416, 1 0.0120 0.0200 0.0180 0.0348 0.0250
� � � 40, 1 � 0 0.0179 0.0269 0.0267 0.0160 0.0651
� � � 40, 4 � 0 0.0192 0.0286 0.0290 0.0135 0.0693
� � � 40, 20 � 0 0.0267 0.0371 0.0378 0.0131 0.0879
� � � �0, 4 � 0, 1 0.0271 0.0285 0.0251 0.0242 0.0507
� � � �0, 20 � 0, 1 0.0334 0.0377 0.0330 0.0223 0.0547

�Ž .4GS 0, 0 0.0268 0.0415 0.0414 0.0151 0.1186
�Ž .41, 0 0.0285 0.0455 0.0451 0.0138 0.1284
�Ž .416, 1 0.0181 0.0327 0.0302 0.0262 0.0421
� � � 40, 1 � 0 0.0279 0.0428 0.0425 0.0141 0.1216
� � � 40, 4 � 0 0.0305 0.0461 0.0461 0.0127 0.1283
� � � 40, 20 � 0 0.0408 0.0651 0.0663 0.0135 0.1588
� � � �0, 4 � 0, 1 0.0396 0.0460 0.0401 0.0210 0.0947
� � � �0, 20 � 0, 1 0.0507 0.0635 0.0547 0.0209 0.1011

DH � 1 if diagnosed with hypertension, � 0 otherwise.
SBP � systolic blood pressure.
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The Renyi-type statistics GS are less sensitive than G in testing all risk
factors except the history of hypertension. G statistics yield a strong associa-
tion of survival rates with age and history of hypertension regardless of the
index sets chosen, but indicate only a borderline significant association with
systolic blood pressure. Systolic blood pressure is significantly related to
survival when we analyzed it with the whole sample after adjusting for
treatment effect. Its insignificance in this analysis may result from an
improper choice of index sets or insufficient sample size. We examined the
P-values of the corresponding G statistics for all values of � in the interval
� � � �0, 40 and � in the interval 0, 10 , in an increment of size 1 and obtained the

Ž . Ž . Ž .minimum P-value of 0.0250 attained at �, � � 16, 1 . Although 16, 1 is in
� � � �0, 20 � 0, 1 , the increase in variability with the latter index set demerits
its achievement of the largest noncentrality parameter. For testing the effect

� � � �of systolic blood pressure, the G statistic with index set 0, 4 � 0, 1 appears
to be a good choice and is more sensitive than the G with the log-rank weight.

We also calculated the P-values of the same function-indexed tests with a
finer increment in � and � . They turn out to be fairly close to the ones we
reported here. The sensitivity of the function-indexed tests seem to depend
more on the extreme weights incorporated in the index set. Another impor-
tant observation is that enlarging the index set too much for testing the effect
of a continuous covariate can result in a substantial reduction in sensitivity.

�Ž .4For example, when we enlarge the index set from the log-rank weight 0, 0
� � � �to 0, 20 � 0, 1 , the P-values of the GS statistics testing the overall associa-

tions of age, history of hypertension, and systolic blood pressure with survival
rates changed from 0.0268 to 0.0507.

Ž .Kosorok and Lin 1999 showed that the variability of the two-sample
function-indexed tests does not increase dramatically with an enlargement of
the weight index set. However, this may not be true in testing the associa-
tions of continuous covariates with survival rates. In this example, the G

� � � �statistic with the index set 0, 20 � 0, 1 which incorporates the optimal
Ž . � � � �weight 16, 1 is less sensitive than G with 0, 4 � 0, 1 in detecting the

effect of systolic blood pressure due to the increase in variability. However,
they are both more sensitive than G with the log-rank weight. Other weight
functions such as G � with � varying from negative to positive may be a good
alternative to the G �, � weight. Further studies are needed to obtain appro-
priate index sets under various alternative settings.

6. Discussion. We generalized the class of single-covariate nonparamet-
Ž .ric test procedures proposed by Jones and Crowley 1989 to multicovariate

situations. These statistics can, in clinical trials, be applied to investigate the
treatment effects or k-sample trend after adjusting for possible confounding
factors, as well as to explore the potential interventions after influential
factors are controlled for. Considering these stochastic processes indexed by
both the time scale and the weight function, we showed that certain large
families of these processes converge HJD-weakly in the uniform topology to
multivariate Gaussian processes also doubly indexed by both time and weight
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function. This result permits us to develop more powerful test procedures
than the current ones for versatile alternatives. Via simulation studies for the

Ž .two-sample problems in Kosorok and Lin 1999 , we have shown that our
�, � � �newly proposed statistics using G weight functions with � 	 0, 4 and

� �� 	 0, 1 can increase power under ordered hazards alternatives and
stochastic ordering alternatives as well as stochastic crossing alternatives.
However, the general behavior of these statistics with covariates present and
the criterion for an appropriate choice of weight functions in practice have
not been fully explored. Further studies need to be performed for a better
understanding of these issues.

The simulation study in Kosorok and Lin also evaluates the performance of
a Monte Carlo approach closely related to the one proposed in the present
paper. This approach seems quite effective for moderate sample sizes. There
are other martingale-type statistics, such as the weighted Kaplan�Meier

Ž .statistics of Pepe and Fleming 1989 , to which the theory in the present
paper could potentially be applied. Further research on the relative efficien-
cies of these martingale-type statistics can give us guidelines on the choice of
the type of statistics to use in different situations and would thus be very
beneficial in practice.

APPENDIX

nŽ .Proof of Lemma 1. The kth element of X f, t can be written as the
sum of a martingale and a mean process

n
tn �1�2 nX f, t � n f b s Y s Z s � Z s dM s� 4Ž . Ž . Ž . Ž . Ž . Ž .ÝHk k j jk k j

0 j�1

n
t�1�2 n n
 n f b s Y s Z s � Z s d� s� 4Ž . Ž . Ž . Ž . Ž .ÝH k j jk k j

0 j�1

A.1Ž .

� X n f, t 
 �n f, t .Ž . Ž .�k k

Note that

n
tn �1�2 n n� f, t � n f b s Y s Z s � Z s d� s � d� s� 4Ž . Ž . Ž . Ž . Ž . Ž . Ž .ÝHk k j jk k j

0 j�1

and

d�n s � d� sŽ . Ž .j

T 'exp � Z s g s � n � 1Ž . Ž .½ 5j� 1 � �� s d� s .Ž . Ž .
T '1 
 exp � Z s g s � n � 1 �� sŽ . Ž . Ž .½ 5ž /j
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� n 4 Ž .Since each b : n � 1 , i � 1, . . . , r, satisfies Condition iv of Theorem 1 andi
� � rsince f is continuous on 0, 1 ,k

� n �A.2 max sup f b s � f b s � 0,� 4 � 4Ž . Ž . Ž .k k P
1�k�p � �s	 0, t

for all t 	 II. The boundedness of Z , � , k � 1, . . . , p and g yieldsjk k

1�2 n Tlim sup n d� s �d� s �� Z s g s 1��� s d� s �0.Ž . Ž . Ž . Ž . Ž . Ž .j j
n�� � .s	 0, �

nŽ . � � Ž .Therefore � f, t converges uniformly on 0, � in probability to � f, t , sincek k

n n

Y Z � Z Z � Y Z � Z Z � ZÝ Ýj jk k jl j jk k jl l
j�1 j�1

converges uniformly to v , k, l � 1, . . . , p. The finite-dimensional conver-k l
gence of X n can be established by verifying the finite-dimensional weak

n � n n �T n Ž .convergence of X � X , . . . , X , where X are as given in A.1 , to a� �1 � p �k
Gaussian process with mean 0 and covariance function V , where f, g 	 H.fg
Because the distribution of failure times may not be absolutely continuous as
a result of possible ties in the failure times, an adaption of the time-trans-

Ž .formed method used in the proof of Theorem 4.2.1 in Gill 1980 will be
employed in this proof.

� �For any collection of m-bounded left-continuous step functions on 0, � ,
� 4 � �c , h � 1, . . . , m and h � f , . . . , f � H, m � �, leth 1 m

m m
n nC t � c t f b t and C t � c t f b t ,� 4 � 4Ž . Ž . Ž . Ž . Ž . Ž .Ý Ýk h hk k h hk

h�1 h�1

Ž .k � 1, . . . , p. By A.2 , for all t 	 II,

� n �A.3 max sup C s � C s � 0.Ž . Ž . Ž .k k P
1�k�p � �s	 0, t

˜ nDefine a p-dimensional process U with the kth element
n

tn �1�2 nŨ t � n C s Y s Z s � Z s dM s ,Ž . Ž . Ž . Ž . Ž . Ž .ÝHk k j jk k j
0 j�1

Žn. �1�2 nŽ . Ž . Ž .� Ž . Ž .�and H s � n C s Y s Z s � Z s , for k � 1, . . . , p and j �jk k j jk k
1, . . . , n.

We can enumerate all the discontinuities of �n and �, for all n � 1, in aj
single sequence t , t , . . . , say. Choose � � 0, h � 1, 2, . . . , such that Ý� �1 2 h h�1 h

� � � �� �. Define the time transformation �*: 0, � � 0, � by

�* t � t 
 � .Ž . Ý h
h: t �th

� Ž .. � Ž .�Let II * � 0, �* u � if u � II and II * � 0, �* u � if u 	 II.0 0 0 0
� � � � Žn. Ž .The processes N , Y , N , H are defined as follows. First, if t* � �* tj j j jk

� Ž . Ž . � Ž . Ž . � Žn.Ž . Žn.Ž .for some t, we let N t* � N t , Y t* � Y t and H t* � H t .j j j j jk jk
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� � Ž . Ž .. �Next, we define N on the intervals �* t � , �* t by letting N , condi-j h h j
Ž .tional on Y t , make a single jump at the point R with probabilityj h jh

Ž . nŽ .Y t �� t , where R is an independent variable uniformly distributed onj h j h jh
Ž Ž . Ž .. � Ž . Ž ..�* t � , �* t . Also, for t* 	 �* t � , �* t , h � 1, 2, . . . , we defineh h h h

� Ž . Ž . � Žn.Ž . Žn.Ž .Y t* � Y t , H t* � H t andj j h jk jk h

M� t* � M t � 
 N� t* � N t � � Y t I ��n t .Ž . Ž . Ž . Ž . Ž . Ž .j j h j j h j h �R � t*4 j hjh

Let

EE
� n � 
 R for all h: �* t � � t*; N� s* , s* � t*; j � 1 . . . nŽ . Ž .� 4t* jh h j

and


 FF n , EE
� n , if t* � �* t ,� 4 Ž .t t*� n

FF �t* � nn½ 
 FF , EE , if �* t � � t* � �* t .� 4 Ž . Ž .t� t*

� Ž . � nWe can see that M t* , j � 1 . . . n, are square integrable FF -martingales,j t*
� Žn.Ž . � Ž . � nwith H t* and Y t* being FF -predictable.jk j t*

Define
n

t*� n � Žn. �Ũ t* � H s dM sŽ . Ž . Ž .ÝHk jk j
0 j�1

² � �:Ž .and obtain the predictable covariations M , M � � 0, for j 	 j�,j j�
² � �:Ž . ² :Ž . Ž .M , M t* � M , M t , for t* � �* t andj j j j

� � n n² : ² :M , M t* � M , M t � 
 Y t I 1 � �� t �� t ,Ž . Ž . Ž . Ž . Ž .j j j j h j h �R � t*4 j h j hjh

˜� nŽ . Ž .for �* t � � t* � �* t . Then U is a square integrable FF * -martingaleh h k
with predictable covariation

n
 t Žn. Žn. ² :H s H s d M , M s , if t* � �* t ,Ž . Ž . Ž . Ž .ÝH jk jk � j j
0 j�1

n
0 Žn. Žn. ² :H s H s d M , M sŽ . Ž . Ž .ÝH jk jk � j j

t �h j�1
� n � n �˜ ˜² :U , U t* �Ž . nk k �

Žn. Žn.
 H t H t Y t IŽ . Ž . Ž .Ý jk h jk � h j h �t*� R 4jh
j�1

n n� 1 � �� t �� t ,Ž . Ž .j h j h� if �* t � � t* � �* t .Ž . Ž .h h

Ž . Ž .By A.3 and condition iii , we have
n

Žn. Žn.A.4 sup H s H s � h s � 0,Ž . Ž . Ž . Ž .Ý jk jk � k k � P
� �s	 0, t j�1

Ž . Ž . Ž . Ž . Ž .for all k, k� � 1, . . . , p, and t 	 II, where h s � C s C s � s v s ; byk k � k k � k k �

Ž .Definition 1 and condition iv , h is left continuous with right-hand limitsk k �
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Ž .and h s 
 has bounded variation on all closed subintervals of II. There-k k �

fore, for every t* 	 II *,

˜� n ˜� n² :U , U t*Ž .k k �

t

h s 1 � �� s d� s , if t* � �* t ,Ž . Ž . Ž . Ž .H k k �

0

t �h h s 1 � �� s d� sŽ . Ž . Ž .H k k �� 0�P
t* � �* t �Ž .h
h t 1 � �� t �� t ,Ž . Ž . Ž .k k � h h h�h� if �* t � � t* � �* t .Ž . Ž .h h

A.5Ž .

Ž .Using techniques outlined on pages 28 and 29 of Lin 1998 , we can obtain
Ž .that the convergence in A.5 is uniform over II * and that

˜� n ˜� n² :U , U t* � 0Ž .k k � P

uniformly over the complement of II *.
�Thus Rebolledo’s theorem Theorem II.5.1 of Anderson, Borgan, Gill and

Ž .�Keiding 1993 combined with the Cramer�Wold device for stochastic pro-´
� Ž .�cesses Lemma C.3.1 of Fleming and Harrington 1991 now yields weak

Ž � �.m pconvergence in the Skorohod topology on D 0, � of finite-dimensional
� � nŽ . 4 � 4collections X f , f 	 h , where h � f , . . . , f and the kth element of� 1 m

� nŽ .X f is�

nŽ .� � � � � ��1�2 nn f b s Y s Z s � Z s dM s ,� 4Ž . Ž . Ž . Ž . Ž .ÝH k j jk k j
0 j�1

� � �where f and Z are the time-transformed versions of f and Z as wask jk k jk
� Žn.�done for H to m-tight Gaussian processes with mean 0 and covariancejk

function


V t , if �* t � t*,Ž . Ž .fg

� � t* � �* t �Ž .V t* �Ž . hf g V t � 
 �V t , if �* t � �t*��* t ,Ž . Ž . Ž . Ž .fg h fg h h h� �h

for f, g 	 h.
Since we have weak convergence to a continuous limit, there exists a new

probability space where the above convergence can be replaced with outer
almost sure convergence in the uniform topology. This implies HJD-weak
convergence in the uniform topology for the original probability space. Since
the mapping of a process back on the original time scale is continuous in the
uniform topology, the continuous mapping theorem yields our desired HJD-
weak convergence. �
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