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Usually, when testing the null hypothesis that a distribution has one
mode against the alternative that it has two, the null hypothesis is
interpreted as entailing that the density of the sampling distribution has
a unique point of zero slope, which is a local maximum. In this paper we
argue that a more appropriate null hypothesis is that the density has two
points of zero slope, of which one is a local maximum and the other is a
shoulder. We show that when a test for a mode-with-shoulder is properly
calibrated, so that it has asymptotically correct level, it is generally
conservative when applied to the case of a mode without a shoulder. We
suggest methods for calibrating both the bandwidth and dip�excess mass
tests in the setting of a mode with a shoulder. We also provide evidence in
support of the converse: a test calibrated for a single mode without a
shoulder tends to be anticonservative when applied to a mode with a
shoulder. The calibration method involves resampling from a ‘‘template’’
density with exactly one mode and one shoulder. It exploits the following
asymptotic factorization property for both the sample and resample forms
of the test statistic: all dependence of these quantities on the sampling
distribution cancels asymptotically from their ratio. In contrast to other
approaches, the method has very good adaptivity properties.

1. Introduction. Testing for modality is one way of finding evidence of
subpopulations in the population from which data are drawn. Early tests

� Ž .�were often based on parametric mixture models e.g., Cox 1966 , but during
the last two decades several nonparametric methods have been developed.
They are generally conservative, however, and increasing interest is being
shown in ways of calibrating them so that their levels are closer to those
prescribed. Heuristically, it is to be expected that improving the level accu-
racy of a conservative test would lead to increased power.

It is usually necessary to have at least an approximate model for densities
f representing the ‘‘null hypothesis’’ that is being tested, since we need to
calibrate the test under the null. For example, in the case of testing for
unimodality against the alternative of multimodality, the null hypothesis is
generally that f has one local maximum, no local minima and no places of
zero gradient that do not correspond to turning points. We shall call this the
‘‘classic null hypothesis,’’ H ; it is tested against the alternative, H , that0, class 1
f has two or more modes.
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Such null hypotheses are generally relatively easy to distinguish from the
alternative, however. We argue that a test of modality will have better
performance if it works well against distributions that are ‘‘marginal,’’ or
‘‘most difficult’’ to tell apart from the null�this is the sense in which we use
the term ‘‘difficult’’ in our paper. The difficult cases are densities that repre-
sent the boundary between one and two modes, that is, those where f has
one local maximum, no local minima and exactly one point x for which
Ž . Ž Ž . Ž . .f � x � 0 but x is a shoulder point defined by f � x � 0 and f � x � 0

rather than a local maximum or local minimum. We term this the boundary
null hypothesis, H . The issue of which null hypothesis is employed0, bound
determines the type of theory which best describes properties of tests for
modality and affects the tests’ level accuracy and power.

Ž . Ž .Figure 1 illustrates some of these issues. Panels a and c depict densities
that are unimodal and bimodal, satisfying H and H , respectively, and0, class 1

Ž .panel b shows a ‘‘shoulder’’ density which in a sense is midway between the
other two and satisfies H . Intuitively, when an empirical test finds it0, bound

Ž . Ž .hard to distinguish between panels a and c , the problem really arises
because the test cannot solve the more difficult problem of deciding between

Ž . Ž .panels b and c . To optimize performance in these difficult cases, the test
should be constructed so that it addresses the harder problem, not the easier
one.

It is helpful to consider the related, parametric problem of testing compos-
ite, one-sided hypotheses, of the form � � � versus � � � , where � denotes0 0
a scalar parameter. There it is common to construct first a test of the simple
null hypothesis, � � � , against the alternative hypothesis � � � , and then0 0
use the same test in the case of the composite one-sided null hypothesis.
When the likelihood ratio is monotone, this approach is optimal and gives

Ž .uniformly most powerful tests; see Kendall and Stuart 1979 , Chapter 23.
The null hypothesis � � � is more difficult than � � � to distinguish from0 0
� � � , and the optimal approach is to construct the test in the more difficult0
case.

In the context of the mode testing problem, H represents the simple0, bound
null hypothesis � � � at the boundary, and H plays the role of the null0 0, class
hypothesis � � � . Following the line suggested in the previous paragraph,0
we argue that the test should be developed for the more difficult null
hypothesis, H . Section 2.4 establishes that, analogously to the conclu-0, bound
sions reached in the previous paragraph for the parametric case, our test is
also appropriate for H ; Figure 4 indicates the conservatism of a test of0, class
H when applied to H and Figure 5 illustrates the anticonser-0, bound 0, class
vatism of a test for H when applied to H .0, class 0, bound

In this paper we suggest methods and develop theory pertaining to this
view of testing for modality. We employ two particular tests as examples, the

Ž .bandwidth test of Silverman 1981 and the dip�excess mass test of Hartigan
Ž . Ž .and Hartigan 1985 and Muller and Sawitzki 1991 . Both involve rejecting¨

the null hypothesis if the test statistic exceeds a certain critical point. For
either test we discuss a bootstrap calibration method that produces the
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Ž . Ž . Ž .FIG. 1. Panels a , b and c , respectively, depict the standard Normal density, densities
Ž . Ž . Ž .represented by the Normal mixture formulas 3.2 and 0.8� N �0.3, 1 � 0.2� N 1.6, 0.16 , giving

a unimodal-without-shoulder, a unimodal-with-shoulder and a bimodal density.

asymptotically correct level under H and is slightly conservative under0, bound
Ž .H . Related methods, inspired by the work of Hartigan 1997 , will also0, class

be noted. Importantly, the level of the test under H does not converge to0, class
zero as sample size increases, and so the bootstrap procedure is relatively
adaptive to both null hypotheses. In comparison, alternative methods for
calibrating tests of H have a level which converges to zero under0, bound
H .0, class

Our theoretical description of mode testing under the boundary null hy-
pothesis is in contradistinction to existing accounts in the literature, which
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FIG. 1. Continued.

seem always to assume the classic null hypothesis. Examples include Silver-
Ž . Ž . Ž .man 1983 , Mammen, Marron and Fisher 1992 and Cheng and Hall 1998 .

The results in the two cases are quite different, with respect to order of
magnitude as well as asymptotic distribution. For example, under H the0, class
critical value for the bandwidth test is of size n�1�5, where n is the number of

� Ž .�data values Mammen, Marron and Fisher 1992 , but under H it is of0, bound
size n�1�7. The analogs for critical points in the case of the dip�excess mass
tests are n�3�5 and n�4�7, respectively. The limiting distributions in the four
cases are all different and non-Normal. These facts alone demonstrate that
calibration methods developed specifically for H can be inappropriate for0, class
H and so can suffer problems when H is only ‘‘just true,’’ unless0, bound 0, class
they have the adaptivity property noted in the previous paragraph.

ŽSpecifically, suppose H is true, but only just true that is, H is0, class 0, bound
.‘‘almost’’ true , and the test is constructed so as to reject the null hypothesis

when the test statistic exceeds a critical point whose asymptotic size is
Ž �1�5appropriate to H . Therefore, the critical point is of size n if the0, class

�3�5 .bandwidth test is used, and of size n for the excess mass test. Then the
test will tend to incorrectly reject the null hypothesis, for the simple reason
that n�1�5 � n�1�7 and n�3�5 � n�4�7. Our adaptive tests based on boot-
strap calibration do not suffer from this problem.

Because of the light which these theoretical results shed on the importance
of distinguishing between the two types of null hypothesis, we shall discuss
our theoretical work first, in Section 2. Section 3 will summarize the results
of a simulation study that assesses the performance of our adaptive tests.
Section 2.1 will describe alternative, nonadaptive approaches. Technical argu-
ments for Section 2 will be placed into Section 4. For simplicity we shall
consider only the case of testing for unimodality. There is no technical
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difficulty in stating and deriving analogs of our theory for testing the hypoth-
esis of m modes against that of m � 1 modes, where m � 1, although
notation becomes rather complex in that case. The versions of our adaptive
tests in that general setting seem prohibitively complex, however. In this

Ž .multimodal setting, recent work of Hartigan 1997 is particularly deserving
Ž .of mention. There, a novel sequential in m approach to using the excess

mass test is suggested.

2. Theoretical properties of test statistics.

2.1. Summary and conclusions. The bandwidth test, which will be intro-
duced and discussed in Section 2.2, involves rejecting the null hypothesis if a

ˆcritical bandwidth, h , is too large; the dip�excess mass test, to be de-crit
scribed in Section 2.3, rejects the null hypothesis if a test statistic � is too
large. When the sampling density f satisfies the null hypothesis H , and0, class

1�5ˆappropriate regularity conditions hold, n h has a proper limiting distri-crit
bution that may be written as that of a random variable C R , where the1 1
nonzero constant C depends only on f , and the distribution of the random1

Ž .variable R does not depend on f. See Mammen, Marron and Fisher 1992 .1
By way of contrast, we shall point out in Section 2.2 that under H and0, bound

1�7ˆ Žappropriate conditions on f , n h � C R in distribution, where herecrit 2 2
.and below C and R have the properties ascribed to C and R above.j j 1 1

Analogous results hold for the dip�excess mass test, where, under H0, class
3�5 �and regularity conditions on f, n � � C R in distribution see Cheng and3 3

Ž .� 4�7Hall 1998 and, under H and regularity conditions, n � � C R in0, bound 4 4
Ž .distribution see Section 2.3 .

The formulas for C , . . . , C are very different from one another, as too are1 4
the distributions of R , . . . , R . However, in each case the principle is the1 4
same: the distribution of the test statistic factorizes, asymptotically, into a
constant that depends only on f and a random variable whose distribution is
continuous and is in principle known. Note particularly that even the order of
magnitude of the critical points, let alone the constants C and the randomj
variables R , depends not only on the type of test but also on the particularj
form of null hypothesis that is chosen.

For both the bandwidth and dip�excess mass tests, the factorization
property may be exploited to construct a test that adapts itself well to either
H or H . It amounts to computing the ratio of the test statistic0, class 0, bound

ˆŽ .either h or � and its bootstrap form and rejecting the null hypothesis ifcrit
the bootstrap distribution of the ratio assumes values that are too large. On
account of the factorization, the unknown constants C cancel from the ratioj

Žin all four cases, and so the bootstrap distribution function of the ratio a
.stochastic process does not depend asymptotically on any unknowns. Unlike

Ž .the case of more standard statistical problems such as percentile-t statistics
where scale parameters cancel, the bootstrap versions of the distributions of
variables R are not particularly close to those of the respective R ’s, and soj j
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the stochastic process noted just above is not degenerate. Nevertheless, its
properties may be determined by Monte Carlo methods, and after suitable
calibration it has asymptotically correct levels under both H and0, bound

ŽH . Adaptive tests will be introduced in Sections 2.2 for the bandwidth0, class
. Ž .method and 2.3 dip�excess mass method , and Section 2.4 will discuss their

properties.
An alternative way to proceed would be to directly estimate that one of the

Žunknown constants C , . . . , C which is appropriate to the context e.g., C if1 4 1
.we were using the excess mass test under H , use Monte Carlo methods0, class

to calculate the distribution of the respective variable R and thereby approx-j
imate the asymptotic distribution of the test statistic under the null hypothe-
sis. If the bootstrap method described in the previous paragraph is likened to
Studentizing so to cancel the effects of scale, then this approach is similar to
using standard asymptotic approximations after ‘‘plugging in’’ an estimate of
scale. However, by its very construction, the latter approach is highly sensi-
tive to choice of null hypothesis, be it H or H , and in particular it0, class 0, bound
does not enjoy the adaptivity of the bootstrap approach. If it is constructed so

�that it gives an asymptotically correct test under H respectively,0, class
� Ž . � �H , then the level of the test under H or H will be 0 or 1 .0, bound 0, bound 0, class

Moreover, even if these problems are overcome, it is likely that the
bootstrap approach captures at least some of the first-order features of the
distribution of the test statistic that a purely asymptotic method misses. In
the context of bootstrap versus asymptotic approximations to critical points

Ž . Ž .for Silverman’s 1981 bandwidth test, York 1998 has demonstrated this
numerically. The bootstrap approach, through taking the resample size equal
to the sample size, n, offers a significantly better approximation than does
taking n � �, even if the template density is not the true density.

� 42.2. Bandwidth test. To introduce the test, let XX � X , . . . , X denote a1 n
random sample drawn from a distribution with unknown density f , and
construct the kernel estimator

n x � Xi�1ˆ2.1 f x � nh K ,Ž . Ž . Ž . Ýh ž /hi�1

Ž .where h is a bandwidth and K a kernel function. As in Silverman 1981 we
take K to be the standard Normal density, for which the number of modes of
ˆ ˆf on the whole line is a nonincreasing function of h. Furthermore, f ish h

ˆunimodal for all sufficiently large h. Let h denote the infimum of band-crit
ˆwidths such that f has only one mode. A test of the null hypothesis ofh

ˆunimodality consists of rejecting unimodality if h is too large.crit
Ž .Mammen, Marron and Fisher 1992 proved that under H , and0, class

ˆ �1�5assuming appropriate regularity conditions on f , h is of size n . Wecrit
show next that it is of size n�1�7 under H . First we state an analog of0, bound
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Ž . �Mammen, Marron and Fisher’s 1992 regularity conditions corresponding
Ž .�also to the conditions of Silverman 1983 in the case of H :0, bound

� �f is supported on a compact interval a, b , and has two
Ž .derivatives there; f � � 0 at distinct points x , x 	 a, b ,0 1

Ž .and f � � 0 at all other points in a, b ; f has, respectively,
2.2Ž . two and three Holder-continuous derivatives in neighbor-¨

Ž . Ž . Ž .hoods of x and x : f � x � 0, f � x � 0, f � x � 0,0 1 0 1 1
Ž . Ž .f � a� � 0, f � b� � 0.

For 0 � r � � and �� � s � �, define

1�4 2Z r , s � r K � s � u W ru du � 1 � s ,Ž . Ž . Ž . Ž .H 2

� Ž . � Ž . � 241�7where W is a standard Wiener process. Put C � f x � f � x , where2 1 1
Ž .x is the shoulder point noted in 2.2 , and let R denote the infimum of all1 2
Ž . Ž . �values of r such that the function Z r, 	 does not change sign on ��, � . In

Ž Ž .. Ž .view of total positivity properties of K � see Schoenberg 1950 , if Z r, 	
Ž . Ž .does not change sign on ��, � then, with probability 1, neither does Z r �, 	

�for any r � � r.

1�7ˆŽ .THEOREM 2.1. Assume condition 2.2 . Then n h � C R in distribu-crit 2 2
tion as n � �.

Ž .We should comment on the nature of condition 2.2 , which asks that f
decrease linearly to zero at the ends of its support. This ensures that the

ˆlikelihood of spurious bumps in the tails of the density estimator f is veryh
ˆsmall. Therefore, the size of h is determined by properties of f at points ofcrit

Ž . Ž .zero slope interior to a, b . More generally, when f might not satisfy 2.2 ,
one would either confine attention to testing for unimodality away from the
tails or use larger bandwidths in the tails so as to suppress bumps that arise
from data sparseness.

ˆNext we define the bootstrap version of h , and show that it satisfies acrit
limit law similar to that in Theorem 2.1. Conditional on XX , let XX* �
� � �4X , . . . , X denote a resample drawn randomly, with replacement, from the1 n

ˆ ˆ �̂ Ž .distribution with density f � f , and define f by 2.1 except that Xˆcrit h h icrit� ˆ�there is replaced by X . Write h for the infimum of bandwidths such thati crit
�̂f is unimodal.h

ŽOur proof of Theorem 2.1 in Section 4 will involve constructing W depend-
.ing on n such that

1�7ˆ2.3 n h � C R in probability.Ž . crit 2 2

For this W, let W * be a standard Wiener process independent of W, and let S
Ž .be the unique point at which Z R , 	 vanishes. Define2

Z* r , sŽ .
�2 �1� rR K � s � u W * ru du � Z R , S � R ru K u du,Ž . Ž . Ž . Ž .Ž .H H2 2 2
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and let R� denote the infimum of all values of r such that the function2
Ž . Ž .Z* r, 	 does not change sign on ��, � . It is straightforward to prove that

R� is strictly positive with probability 1.2

Ž .THEOREM 2.2. Assume condition 2.2 and that W is constructed so that
Ž .2.3 holds. Then

� �1�7ˆ � �sup P n h � C x XX � P R � x W � 0Ž .Ž .crit 2 2
0�x��

in probability as n � �.

Ž .Theorem 2.2 and 2.3 together imply that, under H ,0, bound

� �ˆ ˆ � �2.4 sup P h �h � x XX � P R �R � x W � 0Ž . Ž .ž /crit crit 2 2
0�x��

ˆŽ .in probability. It follows that the distribution of the stochastic process G x
Ž � � .� P R �R � x W does not depend on f , which makes it possible to develop2 2

an asymptotically correct test of H . This could be based on tabulation of0, bound
ˆthe distribution of G and applying an asymptotic test, but alternatively it

ˆ Ž .may be accomplished by Monte Carlo methods, as follows. Put G x �n

ˆ� ˆŽ � .P h �h � x XX , let f denote a ‘‘template’’ density with a shoulder andcrit crit 0
ˆ ˆlet G denote the version of G that results from an n-sample drawn0 n n

randomly from f . Using Monte Carlo methods we may compute to arbitrary0
ˆŽ . � Ž . 4accuracy the value of a constant t � t n such that P G t � 1 � 
 � 
 ,
 
 0 n 


where 
 is the desired significance level of the test. Then, the test with the
ˆ Ž .form: reject H in favor of H if G t � 1 � 
 , has asymptotically0, bound 1 n 


correct level under H .0, bound
One would expect the template approach to capture second-order effects

better than a purely asymptotic argument. This may be confirmed by simula-
tion. To capture second-order effects even more accurately, one could use a

Ž .skewed template for example if there was evidence that the sampling
distribution was skewed, although it is difficult to ensure both the right
degree of skewness and the right value of C .2

2.3. Dip�excess mass test. It suffices to consider the excess mass test
ˆstatistic, �, which equals twice the dip test statistic. Let F be the empirical

distribution function of the n-sample XX introduced in Section 2.2, and for
m � 1 and � � 0 define

m
ˆ � �E � � sup F C � � C ,Ž . Ž .½ 5Ýnm j j

C , . . . , C j�11 m

ˆ ˆŽ .where the supremum is over disjoint intervals C , . . . , C , F C is the F-mea-1 m
� � Ž . Ž . Ž .sure of C, and C equals the length of C. Put D � � E � � E �nm nm n, m�1

Ž .and � � sup D � . We reject the null hypothesis of unimodality if � is too� n2
large.



M.-Y. CHENG AND P. HALL1302

Ž . �3�5Cheng and Hall 1998 established that under H , � is of size n .0, class

We show next that under H it is of size n�4�7, for which purpose we0, bound
Ž .augment 2.2 by the condition,

f � is Holder-continuous within a neighborhood of the¨2.5Ž . Ž . Ž .unique point x � x satisfying f x � f x .2 1 2 1

� Ž .4 � Ž . �41�7 Ž .Let W be as in Section 2.2, and define C � f x � f � x , � t , t , u4 1 1 1 2
� Ž . Ž .4 Ž 4 4. Ž .� W t � W t � t � t � u t � t and1 2 2 1 2 1

1�7R � 24 sup sup � 0, t , u � � t , t , u� 4Ž . Ž .4 1 2 3
���u�� ���t �t �t ��1 2 3

� sup � 0, t , u .Ž .1
���t ��1

2.6Ž .

It may be proved that R is finite and positive with probability 1, and that its4
distribution has no atoms.

Ž . Ž . 4�7THEOREM 2.3. Assume conditions 2.2 and 2.5 . Then n � � C R in4 4
distribution as n � �.

The bootstrap setting for Theorem 2.3 is similar to that for Theorem 2.1.
Let �* be the bootstrap version of �, computed using the resample XX* drawn

ˆby sampling from the distribution with density f . For a suitable construc-crit
tion of W, Theorem 2.3 may be stated in the stronger sense that n4�7� � C R4 4
in probability. We assume this construction below. Let W * be another Wiener
process, independent of W; define

U r , s � r�4 K � s � u W ru du;Ž . Ž . Ž .H
1 2Ž . Ž .let R denote the infimum of all r � 0 such that U r, s � 1 � s , as a2

function of s, does not change sign on the real line and let S be the unique
1 2Ž . Ž .point at which U R, s � 1 � s vanishes. Put2

� y , y , uŽ .1 2

� W * y � W * yŽ . Ž .1 2

12 2 �1� R t y U R , S � R 1 � t yŽ .� 4H 2 2
0

2 �1� y U R , S � R 1 � t y dtŽ .� 41 1

1 12 2 2 3 3� 1 � S y � y � RS y � yŽ . Ž . Ž .2 1 2 12 6

1 4 4� y � y � u y � y ,Ž .Ž .2 1 2 124

1�7 � Ž . �and, with ��24 replacing �, define R by 2.6 . With probability 1, R is4 4
finite and positive, and its distribution has no atoms.
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Ž . Ž .THEOREM 2.4. Assume conditions 2.2 and 2.5 and that W is con-
structed so that n4�7� � C R in probability. Then,4 4

�4�7 � �sup P n �* � C x XX � P R � x W � 0Ž .Ž .4 4
0�x��

in probability as n � �.

Theorem 2.4 is directly analogous to Theorem 2.2 and implies the obvious
Ž .analog of 2.4 ,

�� �2.7 sup P �*�� � x XX � P R �R � x W � 0.Ž . Ž . Ž .4 4
0�x��

Therefore, bootstrap calibration applied to the ratio �*�� produces tests of
H with asymptotically correct level. Specifically, if f is the template0, bound 0

ˆ ˆŽ . Ž � .density introduced in Section 2.2, if H x � P �*�� � x XX , if H is then 0 n
ˆversion of H when the n-sample is drawn from f rather than f and if then 0

ˆ� Ž . 4constant u is defined by P H u � 1 � 
 � 
 , then the test which
 0 n 

ˆ Ž .rejects H if H u � 1 � 
 has asymptotically correct level under0, bound n 


H .0, bound
Ž .Hartigan 1997 has suggested an asymptotic test based on the results in

Theorem 2.4, normalizing the test statistic using the square root of the
number of data values interior to the shoulder segment. If one calibrates via
the asymptotic distribution, then this ingenious approach avoids using the
template density. In order to better capture second-order effects, however,
one could compute the template density and then, simulating from that

Ždistribution taking the Monte Carlo sample size equal to the actual sample
.size compute an approximation to the distribution of the test statistic under

the null hypothesis.

2.4. Adaptivity of bootstrap calibration methods. The factorization which
forms the basis for our bootstrap calibration method is also valid under

Ž . Ž .H , where instead of 2.4 and 2.7 it produces results of the form0, class

� �ˆ ˆ � �2.8 sup P h �h � x XX � P R �R � x W � 0,Ž . Ž .ž /crit crit 1 1
0�x��

�� �2.9 sup P �*�� � x XX � P R �R � x W � 0.Ž . Ž . Ž .3 3
0�x��

A suitable regularity condition for each of these results is the following
Ž .version of 2.2 , where the shoulder point x is no longer permitted, thereby1

Ž .ensuring that H rather than H obtains:0, class 0, bound

� �f is supported on a compact interval a, b , and has two
Ž .derivatives there; f � � 0 at x 	 a, b and f � � 0 at all0

Ž .other points in a, b ; f has two Holder-continuous deriva-¨
Ž . Ž .tives in a neighborhood of x ; f � x � 0, f � a� � 0,0 0

Ž .f � b� � 0.
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Ž .Result 2.8 is discussed in an Australian National University Ph.D. thesis by
Ž . Ž . Ž .M. York 1998 and 2.9 appears in Cheng and Hall 1996 . As in the case of

R and R , the variables R and R are functionals of a standard Wiener2 4 1 3
process W; R� and R� are functionals of W and an independent Wiener1 3
process W * and all variables R and R� have continuous distributions. Itj j

Ž . Ž .follows from 2.8 and 2.9 that if H holds instead of H , yet we0, class 0, bound
apply the bootstrap test suggested when H is valid, the asymptotic0, bound
level of the test lies strictly between 0 and 1. In this sense, the tests
suggested in Sections 2.2 and 2.3 are adaptive; other approaches to calibra-
tion, such as that discussed toward the end of Section 2.1, do not enjoy this
property. Moreover, bootstrap calibration under H turns out to be0, bound
conservative when H is true, as we shall show in the next section.0, class

3. Numerical study. The bandwidth and dip�excess mass tests for
H were applied to three Normal mixture densities: the two unimodal-0, bound
with-shoulder densities given by

�1 �19�8 9�8 9�88e 1 � 8e � N 0, 1 � 1 � 8eŽ . Ž . Ž .½ 5
3.1Ž .

'� N �9 3 �8, 0.0625 ,Ž .
3.2 100�109 � N 0, 1 � 9�109 � N 1.3, 0.09Ž . Ž . Ž . Ž . Ž .

Ž . Ž .and illustrated in panels a and b , respectively, of Figure 2 and the
Ž .unimodal-without-shoulder standard Normal density, depicted in panel d of

that figure. In all cases the bandwidth and dip�excess mass tests for H0, bound
were calibrated using the methods suggested in Sections 2.2 and 2.3. The
template density f employed for calibration was taken as0

3.3 16�17 � N 0, 1 � 1�17 � N �1.25, 0.0625Ž . Ž . Ž . Ž . Ž .

Ž .and is unimodal with a shoulder. It is illustrated in panel c of Figure 2.
The sample sizes used were 50 and 100. In each setting, 500 samples were

simulated and conditional on each of these, 500 resamples were drawn. Then,
all the required conditional and unconditional probabilities were approxi-

ˆmated by their corresponding empirical values. To obtain values of h andcrit
ˆ�h , kernel density estimates were computed over an equally spaced grid ofcrit
512 points. To avoid problems arising from data sparseness in the tails, only
modes that occurred within 1.5 standard deviations of the mean were counted.
The same rule was followed when evaluating the dip�excess mass statistics.

Figure 3 illustrates the actual versus nominal levels when the two tests for
� Ž . �H calibrated using the density at 3.3 as the template were applied to0, bound

Ž . Ž .data generated from the two shoulder-densities given by 3.1 and 3.2 ,
respectively. Note that the actual versus nominal curves are close to the

Ž . Ž . Ž .diagonal line, especially in the cases illustrated by panels b , c and d . This
indicates that both tests have accurate levels. The figure also suggests that,
overall, the excess mass test has better level accuracy than the bandwidth
test.
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Ž . Ž . Ž .FIG. 2. Panels a , b and c depict the unimodal-with-shoulder densities represented by the
Ž . Ž . Ž .Normal mixture formulas 3.1 � 3.3 , respectively. Panel d illustrates the standard Normal

density, which of course is unimodal without a shoulder.

Figure 4 depicts, for both the bandwidth and dip�excess mass tests, the
actual versus nominal levels when the true density is standard Normal and
the shoulder density f is used to provide calibration. Note particularly that0
all the curves always lie below the diagonal line, illustrating the conser-
vatism of a method calibrated for H when it is applied to test H .0, bound 0, class
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Ž .FIG. 3. Actual versus nominal levels for the bandwidth dashed lines and dip�excess mass
Ž . Ž .dotted lines tests, calibrated for H using the template density at 3.3 , when data are0, bound

Ž . � Ž . Ž . �generated from the density at 3.1 panel a for n � 50 and panel b for n � 100 or from the
Ž . � Ž . Ž . �density at 3.2 panel c for n � 50 and panel d for n � 100 .

Figure 5 is essentially the obverse of Figure 4: in the latter, the sampling
density was standard Normal, and we calibrated using f , but in Figure 5 the0
sampling density is f and we calibrate using the standard Normal. The fact0
that the dashed and dotted lines in both panels of Figure 5 lie above the
diagonal line demonstrates that, as expected, calibrating a test of H0, bound
using a template for H results in an anticonservative procedure.0, class
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Ž .FIG. 4. Actual versus nominal levels for the bandwidth dashed lines and dip�excess mass
Ž . Ž .dotted lines tests, calibrated for H using the template density at 3.3 , when data are0, bound

� Ž . Ž . �generated from the standard Normal density panel a for n � 50 and panel b for n � 100 .

Ž .FIG. 5. Actual versus nominal levels for the bandwidth dashed lines and dip�excess mass
Ž .dotted lines tests, calibrated for H using the standard Normal density, when data are0, class

Ž . � Ž . Ž . �generated from the density at 3.3 panel a for n � 50 and panel b for n � 100 .
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4. Technical arguments.

4.1. Proof of Theorem 2.1. Let  � n�1�7 and write C, R for C , R ,2 2
respectively. We shall prove that

ˆ ˆ Ž .There exist � , � � 0 such that, if h � h � , � is1 2 crit crit 1 2
redefined to be the supremum of the set HH of values

�Ž1 �7.��1 Ž̂ � .h � n such that f 	 h has at least one turning4.1Ž . � �2 2Ž . Ž .point in II � � x � n , x � n , then with proba-2 1 1
1�7ˆbility tending to 1, HH is nonempty and n h has thecrit

claimed limit distribution.
Ž .Arguments similar to those of Mammen, Marron and Fisher 1992 may be

Ž . Ž .employed to prove that a for each � 	 0, 1�7 , the probability that for1
�Ž1 �7.��1 Ž̂ � .some h � n the function f 	 h has more than one turning point in �1

Ž .converges to 0, b for each c � 0 and � � 0, the probability that for some2
�1�7 Ž̂ � . Ž .h � cn the function f 	 h has more than one turning point in � � II �2

ˆŽ . Ž � .converges to 0, and c with probability 1, f 	 h has at least one turning point
ˆŽ . Ž . Ž . Ž .in II � for each h � h . The theorem follows from 4.1 and a � c .2 crit

Ž .The embedding of Komlos, Major and Tusnady 1975 ensures the exis-´ ´
0Ž . Ž .tence of a standard Wiener process W such that, with W t � W t �1 1

ˆ ˆŽ . Ž .tW 1 , the empirical distribution function F of XX may be written as F x �1
Ž . �1�2 0� Ž .4 Ž �1 .F x � n W F x � O n log n uniformly in x. It follows thatp

ˆ ˆ� �f � x h � Ef � x hŽ . Ž .
�11�2 2� � n h W F x � hz � W F x K � z dz� 4 � 4Ž . Ž . Ž . Ž .H 1 1 1

�12� O nh log nŽ .½ 5p

uniformly in �� � x � � and h � 0. Writing x � x �  y and h � r and1 1
using standard results on the modulus of continuity of a Wiener process, we
deduce that if � , � � 0 are sufficiently small then for some � � 0,1 2 3

ˆ ˆ� �f � x �  y r � Ef � x �  y rŽ . Ž .1 1 1 1

�11�2 2 2� � n  r W F x �  y � r z f x � W F x� 4 � 4Ž . Ž . Ž . Ž .Ž . H1 1 1 1 1 1 1

� K � z dz � O  2 n�� 3 r�2Ž . Ž .p 1

�1 � � �1uniformly in 0 � r � const. n and y � const. n , for all values of the1
constants. Therefore, defining

�1�2W t � �  f x W F x �  f x t � W F x ,� 4 � 4 � 4Ž . Ž . Ž . Ž . Ž .2 1 1 1 1 1 1

we find that, uniformly in the same values of r and y,1

�2 2 ˆ ˆ� � r f � x �  y r � Ef � x �  y rŽ . Ž .� 41 1 1 1 1

1�2 �� 3� f x W y � r z K � z dz � O n .Ž . Ž . Ž . Ž .H1 2 1 p

4.2Ž .
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Using the fact that f � is Holder continuous in a neighborhood of x , we see¨ 1
that, for � , � , � � 0 chosen sufficiently small,1 2 3

ˆ �Ef � x �  y r � f � x �  y � r z K z dz� 4Ž . Ž .Ž . H1 1 1 1
4.3Ž .

1 2 2 2 2 2 2 �� 3�  y � r f � x � O  y � r nŽ . � 4Ž . Ž .1 1 12

�1 � � � 2 Ž .uniformly in 0 � r � const. n and y � const. n . Combining 4.2 and1
Ž .4.3 we deduce that

1�22 �2ˆ �f � x �  y r �  r f x W y � r z K � z dzŽ . Ž . Ž .Ž . H1 1 1 1 2 1

1 2 2 �2 2 2 �� 3� y � r f � x � O r � y � r nŽ . � 4Ž . Ž .1 1 p 1 12

4.4Ž .

�1 � � �2uniformly in 0 � r � const. n and y � const. n .1
� Ž .4 � Ž . � Ž . � 241�7 � Ž .2 � Ž . � 341�7Let T � sgn f � x , C � f x � f � x , C� � f x f � x ,1 1 1 1 1

Ž . 1�2 Ž .y � Crs, r � Cr and W Ct � C TW �t . Then W is a standard Wiener1 2
Ž .process, and 4.4 implies that for different values of � , � , � � 0, chosen1 2 3

sufficiently small,

ˆ �f � x � Crs CrŽ .1

�  2C�T r�2 W r z � s K � z dz� 4Ž . Ž .Hž
1 2 2 �2 2 2 �� 3� r 1 � s � O r � r 1 � s n� 4Ž . Ž .p2 /

4.5Ž .

2 2 �4 2 �� 3�  C�Tr Z r , s � O r � 1 � s n ,� 4Ž . Ž .p

�1 � � �2 Ž .uniformly in 0 � r � const. n and y � const. n . Result 4.1 follows from
this formula.

4.2. Proof of Theorem 2.2. We give the proof only in outline, noting the
analogs of steps in the proof of Theorem 2.1 and not pausing to give detailed
bounds for remainder terms. In the derivation of Theorem 2.1 we should

ˆ ˆ ˆ ˆŽ Ž � . . Ž Ž � . . Žreplace f 	 h , f by f * 	 h , f . Let x denote the shoulder of f . Thus,ˆcrit 1 crit
�̂ 	̂Ž . Ž . . Ž .f x � f x � 0. In place of 4.2 we have, conditional on XX and for aˆ ˆcrit 1 crit 1

standard Wiener process W � independent of W,2

�2 2 ˆ ˆ� � � r f *� x �  y r � E f *� x �  y r XXŽ . Ž .� 4ˆ ˆ1 1 1 1 1

1�2 �� f x W y � r z K � z dz � o 1 .Ž . Ž . Ž . Ž .H1 2 1 p

4.6Ž .

ˆŽ . Ž .By 4.5 and since h � CR � o  we have, in notation from the proof ofcrit p
Theorem 2.1,

�̂ �̂ ˆ 2 2 2�f x � CRs � f x � CRs h �  C�TR Z R , s � o  .Ž . Ž . Ž .Ž .crit 1 crit 1 crit p
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Ž . Ž .Furthermore, x � x � CRS � o  , and soˆ1 1 p

ˆ � �E f *� x �  y r XXŽ .� 4ˆ1 1

�̂� f x �  y � r z K z dz� 4Ž . Ž .ˆH crit 1 1

�1 �12 2�  C�TR Z R , CR x � x � CR  � r zŽ . Ž . Ž .Ž .ˆ� 4H 1 1 14.7Ž .

�K z dz � o  2Ž . Ž .p

�12 2 2�  C�TR Z R , S � CR y � r z K z dz � o  .Ž . Ž . Ž . Ž .� 4H 1 p

Ž . Ž .Combining 4.6 and 4.7 we deduce that

1�2 �2 �2ˆ �f *� x �  y r �  r f x W y � r z K � z dzŽ . Ž . Ž .Ž .ˆ H1 1 1 1 2 1

�12�C�TR Z R , S � CR y � r z K z dzŽ . Ž . Ž .� 4H 1
4.8Ž .

� o  2 .Ž .p

� Ž . 1�2 Ž .Making the changes of variable y � Crs, r � Cr and W Ct � C W * �t ,1 2
Ž .the right-hand side of 4.8 becomes

C�TR2 2Z* r , s � o  2 .Ž . Ž .p

The theorem follows from this approximation. �

1Ž . � Ž . �4.3. Proof of Theorem 2.3. Let a � f x and b � f � x . Given � , �1 1 0 124
Ž Ž .. Ž � Ž �Ž3 �7.�3�1 �	 0, min a, 1�7 , define JJ � 0, a � � , JJ � a � � , a � n and1 0 2 0

Ž �Ž3 �7.�3�1 .JJ � a � n , � . Arguing as in the proof of Theorem 2 of Muller and¨3
Ž .Sawitzki 1991 , we may show that

2�3�1 �Ž4�7.�Ž� �5.1sup D � � O n log n , sup D � � O n .Ž . Ž . Ž .Ž .½ 5n2 p n2 p
�	JJ �	JJ1 2

Therefore,

4.9 sup D � � o n�4�7 .Ž . Ž . Ž .n2 p
�	JJ 
JJ1 2

Ž . Ž .We prove the theorem in the case f � x � 0. The case f � x � 0 may be1 1
Ž . Ž .treated similarly. Since f � x � 0 and condition 4.2 holds, x � x and1 1 0

Ž . Ž . Ž .there exists a point x such that x � x , f x � f x and f � x � 0. Let2 0 2 2 1 2
�1�7 �� 3 Ž �1 �1. Ž � n , � � n with � � 1�7, II � x � n , x � n , II � x �3 0 1 1 1 2

�1 �1. Ž �1 �1. Ž� n , x � � n and II � �n , n . Given t , . . . , t 	 II , put y � t �2 2 1 3 0 j j
. Ž1. Ž7.x � 	 II , j � 1, . . . , 3. Let sup , . . . , sup denote suprema over, respec-1 2

Ž . Ž . Ž .tively, 1 �� � t � t � �; 2 t 	 II , t 	 II such that t � t ; 3 y 	 II ;1 2 1 0 2 1 1 2 1 2
Ž . Ž .4 �� � t � 			 � t � �; 5 t , . . . , t 	 II , t 	 II such that t � 			 � t ;1 4 1 3 0 4 1 1 4
Ž . Ž .6 t 	 II , t , . . . , t 	 II such that t � 			 � t and 7 y , . . . , y 	 II such1 0 2 4 1 1 4 1 3 2
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that y � 			 � y . Write � � a � b� 3, where �� � � � �. Given a stan-1 3
dard Wiener process W , define1

�1�2W y � a W F x � a y � W F x ,� 4 � 4Ž . Ž . Ž . Ž .1 1 1 1

also a standard Wiener process. Using the embedding of Komlos, Major and´
Ž .Tusnady 1975 we may choose W , a standard Wiener process depending on´ 1

n, such that

ˆ ˆF t � F tŽ . Ž .2 1

�1�2� F t � F t � n W F t � W F t� 4 � 4Ž . Ž . Ž . Ž .2 1 1 2 1 1

�1� F t � F t W 1 � O n log n� 4Ž . Ž . Ž . Ž .2 1 1 p

ˆ ˆŽ . Ž . Ž .uniformly in all t , t . Therefore, defining D x , x , � � F x � F x �1 2 1 2 2 1
Ž . Ž . 1�2� Ž . Ž .4 Ž 4 4. Ž� x � x and D y , y , � � a W y � W y � b y � y � b� y �2 1 0 1 2 1 2 2 1 2
.y and noting the Holder continuity of f � in a neighborhood of x , we deduce¨1 1

that if � � 0 is sufficiently small,1

supŽ2. D t , t , �Ž .1 2

Ž2. ˆ ˆ ˆ ˆ� sup F t � F x � F x � F tŽ . Ž . Ž . Ž .� 2 2 1 1

ˆ ˆ�F x � F x � � t � tŽ . Ž . Ž . 42 1 2 1

1Ž3. 2 2 4 4� sup a � y �  y � f � x � y � b yŽ . Ž .Ž 2 1 2 2 12

�1�2�n W F x � a� y � W F x 1 � o 1� 4 � 4Ž . Ž . Ž .� 41 2 2 1 2 p

�1�2�n W F x � a y � W F x 1 � o 1� 4 � 4Ž . Ž . Ž .� 41 1 1 1 1 p

� a � b� 3 x � x � a � b� 3 � y �  yŽ . Ž .Ž . Ž . .2 1 2 1

ˆ ˆ 4 2� F x � F x � o  � � .Ž . Ž .� 4 Ž .2 1 p

Ž . Ž .Since f � x � 0 and f � x � 0, then for any �� � � � �, the above quan-2 1
tity is maximized when � � n�3�7. Hence,

Ž2. ˆ ˆ 3sup D t , t , � � F x � F x � a � b� x � xŽ . Ž . Ž . Ž .Ž .1 2 2 1 2 1
4.10Ž .

�  4 supŽ3. D 0, y , � � o  4 .Ž . Ž .0 1 p

Similarly,

supŽ5. D t , t , � � D t , t , �� 4Ž . Ž .1 2 3 4

ˆ ˆ 3� F x � F x � a � b� x � xŽ . Ž . Ž .Ž .2 1 2 14.11Ž .
�  4 supŽ7. D 0, y , � � D y , y , � � o  4 ,� 4Ž . Ž . Ž .0 1 0 2 3 p

supŽ6. D t , t , � � D t , t , �� 4Ž . Ž .1 2 3 4

ˆ ˆ 3� F x � F x � a � b� x � xŽ . Ž . Ž .Ž .2 1 2 14.12Ž .
�  4 supŽ3. D 0, y , � � o  4 .Ž . Ž .0 1 p
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Ž 3Ž1��1. . Ž 3�1. Ž � Ž .Define II � a � b , �� , II � ��, n i.e., such that II � � � :3 4 3
4. Ž .� 	 II , S � sup D � ,4 n �	 II n23

� Ž5.S � sup max sup D t , t , � � D t , t , � ,� 4Ž . Ž .Žn 1 2 3 4
�	II3

Ž6. Ž2.sup D t , t , � � D t , t , � � sup D t , t , � .� 4Ž . Ž . Ž ..1 2 3 4 1 2

Ž � .We may show that for sufficiently small � , P S � S � 1. From this1 n n
Ž . Ž . Ž .result, 4.10 , 4.11 and 4.12 we deduce that

�4 Ž7. S � sup sup D 0, y , � � D y , y , �� 4Ž . Ž .n 0 1 0 2 3
�	II4

Ž3.� sup D 0, y , � � o 1 .Ž . Ž .0 1 p

4.13Ž .

Define

1�2Z� � sup sup a �W y � W y � W y � W 0� 4Ž . Ž . Ž . Ž .3 2 1ž
���y � 			 �y �������� 1 3

4 4 4�b y � y � y � � y � y � yŽ .Ž .3 2 1 3 2 1

1�2 4� sup a W 0 � W y � by � � y .� 4Ž . Ž .1 1 1 /
���y ��1

It can be shown that the difference between Z� and the right-hand side of
Ž .4.13 converges in probability to zero. Changing variable from y to t �i i
Ž 2 .1�7 Ž . Ž 2 .1�14 �Ž 2 .1�7 4b �a y , and noting that W t � b �a W a�b t also defines ai 2
Wiener process, we deduce that Z� has the same distribution as
Ž 4 .1�7 �1�7 Ž .a �b 24 Z. Theorem 2.3 follows from this result and 4.9 .

ˆ4.4. Proof of Theorem 2.4. Write F for the distribution function corre-crit
ˆ ˆ �̂� Ž .sponding to density f . Let x denote the shoulder of f thus, f x �ˆ ˆcrit 1 crit crit 1

	̂ Ž . �f x � 0 . Let C, C� be as in Section 4.1. Using the embedding of Komlos,ˆ ´crit 1
Ž .Major and Tusnady 1975 we may prove that for an appropriate choice of W,´

and with the random function U defined as in Section 2.3,
2� 12 2 �1 �1f̂ x � Cy �  C�TR U R , S � R y � S � R y � o 1 .Ž .Ž . Ž . Ž .ˆ ½ 5crit 1 p2

Ž � � � � � �In this simplified argument it is assumed, here and below, that y , y , y1 2
.are all bounded. Therefore, using the exact form for the remainder in

Taylor’s theorem,

ˆ ˆF x � Cy � F xŽ . Ž .ˆ ˆcrit 1 crit 1

12 �ˆ ˆ� Cyf x � Cy tf x � Cy 1 � t dt� 4Ž . Ž .Ž .ˆ ˆHcrit 1 crit 1
0

2 2 2ˆ� Cyf x � Cy  C�TRŽ .Ž .ˆcrit 14.14Ž .
1 �1� t U R , S � R 1 � t y� 4Ž .H

0

21 �1 4� S � R 1 � t y dt � o  .� 4Ž . Ž .p2
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Ž .Hence, writing t � x � Cy for i � 1 and 2 and defining A y , y �ˆi 1 i 1 2
ˆ ˆ ˆ 3Ž . Ž . Ž . Ž .F x � Cy � F x � Cy and � � f x � u C CC�T, we haveˆ ˆ ˆcrit 1 2 crit 1 1 crit 1

A y , y � � t � t  4C 2C�T� 4Ž . Ž . Ž .1 2 2 1

12 2 �1� R t y U R , S � R 1 � t yŽ .� 4H 2 2
0

2 �1�y U R , S � R 1 � t y dtŽ .� 41 1
4.15Ž .

1 12 2 2 2 3 3� R 1 � S y � y � RS y � yŽ . Ž . Ž .2 1 2 12 6

1 4 4� y � y � u y � y � o 1 .Ž . Ž .Ž .2 1 2 1 p24

ˆ ˆ ˆ 2Ž . Ž . Ž .Define x � x by f x � f x . Since h � CR � o  and x � xˆ ˆ ˆ ˆ ˆ2 1 crit 2 crit 1 crit p 1 1
Ž . Ž 2 .� CRS � o  , we may show that x � x � O  . This result and theˆp 2 2 p

Holder continuity of f � near x yield that, for any sequence of numbers¨ 2
Ž . � �� � o 1 and real number y � �,

1 2 2 2ˆ ˆ ˆ4.16 F x � � y � F x � � yf x � f � x � y � o � .Ž . Ž .Ž . Ž . Ž . Ž .ˆ ˆ ˆcrit 2 crit 2 crit 2 2 p2

Using the Komlos�Major�Tusnady embedding again, this time conditional on´ ´
ˆXX and for the empirical distribution function F* of the resample XX* and

noting that
1�2 �1�1�2 4 2ˆn Cf x  C C� � 1Ž .� 4 Ž .ˆcrit 1

in probability as n � �, we may establish the existence of standard Wiener
Ž .processes W * and W ** conditional on XX such that

ˆ ˆ 4 2F* x � Cy � F* x � Cy � A y , y � C C�TŽ .Ž . Ž .� 4 Ž .ˆ ˆ1 2 1 1 1 24.17Ž .
� W * y � W * y � o 1Ž . Ž . Ž .2 1 p

and

ˆ ˆF* x � � y � F* x � � yŽ . Ž .ˆ ˆ2 2 2 1

ˆ ˆ� F x � � y � F x � � yŽ . Ž .ˆ ˆcrit 2 2 crit 2 1

1�2�1�2 ˆ�n � f x W ** y � W ** y 1 � o 1 .� 4Ž . Ž . Ž .� 4Ž .� 4ˆcrit 2 2 1 p

Ž .The last equality and 4.16 yield that

ˆ ˆF x � � y � F x � � y � � x � � y � x � � yŽ . Ž .ˆ ˆ ˆ ˆŽ .crit 2 2 crit 2 1 2 2 2 1

1 2 2 2 3� f � x � y � y �  CC�� u y � yŽ . Ž .Ž .2 2 1 2 12

1�2�1�2 ˆ� n � f x W ** y � W ** y� 4Ž . Ž .Ž .� 4ˆcrit 2 2 1

4.18Ž .

� o � 2 �  3� � n�1�2� 1�2 .Ž .p
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Ž . Ž . 2Combining 4.15 and 4.17 and observing that C C� � C , we see that4

ˆ ˆ 44.19 F* t � F* t � � t � t � � C T � y , y , u � o 1 .Ž . Ž . Ž . Ž . Ž . Ž .� 42 1 2 1 4 1 2 p

Ž . Ž .Then 4.18 and 4.19 imply that

ˆ ˆF* x � � y � F* x � Cy � � x � � y � x � CyŽ .Ž . Ž .ˆ ˆ2 2 1 1 2 2 1 1

1�21 2 2 3 �1�2 ˆ� f � x � y � u � CC�y � n � f xŽ . Ž .� 4ˆ2 2 2 crit 22

� W ** y � W ** 0 �  4C T � y , 0, u� 4Ž . Ž . Ž .2 4 14.20Ž .
ˆ ˆ� F* x � F* x � � x � xŽ . Ž .ˆ ˆ ˆ ˆŽ .2 1 2 1

� o � 2 �  4 � n�1�2� 1�2 .Ž .p

Ž . Ž .Arguing as in the proof of Theorem 2.3 and observing 4.18 � 4.20 ,

4�* �  C sup sup � 0, y , u � � y , y , u� 4Ž . Ž .4 1 2 3
u y � 			 �y1 3

4� sup � 0, y , u � o  .Ž . Ž .p
y

This result implies Theorem 2.4. �
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