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The goal of this paper is to develop a general framework for construct-
ing sequential fixed size confidence regions based on maximum likelihood
estimates. Asymptotic properties of the sequential procedure for setting
up the confidence regions are analyzed under very broad assumptions on
the underlying parametric model. It is shown that the proposed sequential
procedure is asymptotically optimal in the sense that it approximates the
optimal fixed-sample size procedure. It is further shown that the “cost of ig-
norance” associated with the sequential procedure is bounded. Applications
are made to estimation problems arising in prospective and retrospective
studies.

1. Introduction. Sequential techniques have been in the arsenal of mod-
ern statistical methods for over fifty years and found applications in a wide
variety of problems. Most commonly, sequential estimation methods are uti-
lized when one is interested in statistical inferences with fixed precision, for
example, fixed size confidence interval estimation with a given coverage prob-
ability [Stein (1945), Chow and Robbins (1965)].

In general, one can successfully approach statistical problems involving
fixed precision using the principle of accumulated information. In the scalar
parameter case, the observed Fisher information is approximately inversely
proportional to the mean squared error of the ML estimate of an unknown
parameter. The mean squared error of the ML estimate can therefore be con-
trolled if one designs a sequential sampling scheme which achieves a certain
level of observed Fisher information. The same reasoning holds if the unknown
parameter is multivariate. In the latter case, the observed Fisher information
is usually replaced by the minimum eigenvalue of the observed Fisher infor-
mation matrix. It is important to point out that this principle applies to a
wide variety of situations including the cases of non-identically distributed
and dependent observations. Lai and Siegmund (1983) show that a stopping
rule based on the observed Fisher information can be utilized for constructing
a fixed-accuracy estimate of an autoregressive parameter.

In this paper, the described principle of accumulated information is used
for studying sequential maximum likelihood (ML) estimation. We develop a
general framework for constructing fixed size confidence regions based on ML
estimates. Section 2 considers properties of sequential ML estimation in a
general setting and general conditions under which the ML estimates and
their sequential versions are asymptotically normal. Section 3 explains how
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utilizing these results and the principle of accumulated Fisher information
one can set up a sequential fixed size multivariate confidence region for the
unknown parameter vector. The confidence region has asymptotically the cor-
rect coverage probability and the expected number of observations required
for constructing the confidence region is asymptotically equivalent to the (hy-
pothetical) best fixed sample size computed under the assumption that the
parameter vector is known in advance. It is also shown in Section 4 that un-
der additional regularity assumptions the sequential procedure possesses an
important property typically referred to as “bounded cost of ignorance.” In
Section 5, the general conditions of Sections 2 and 3 are verified for the ML
estimates of unknown vector parameters in generalized linear models. The
Appendix contains mathematical details of some proofs presented in Sections
2 and 3.

2. General properties of sequential ML estimates. In this section we
will discuss asymptotic properties of maximum likelihood estimates in a gen-
eral setting. A similar general setup for non-sequential ML estimation has
been considered by Weiss (1971, 1973), Sweeting (1980), Kaufmann (1987).
Their sufficient conditions have been modified in this section to provide a very
general framework for establishing asymptotic normality of the sequential ML
estimates and studying asymptotic properties of sequential confidence regions.

Specialized versions of these results have appeared in the literature.
Anscombe (1952) used similar arguments for establishing asymptotic normal-
ity of sequential ML estimates of an unknown scalar parameter [see Govin-
darajulu (1987), Section 4.11, for details and references]. Grambsch (1983,
1989), Chang and Martinsek (1992) and Chang (1995) studied sequential ML
estimation of a multivariate parameter with applications to fixed size con-
fidence regions. Grambsch (1983, 1989) outlined a framework for sequential
ML inference based on Gleser’s (1969) multivariate extension of Anscombe’s
theorem which provides conditions for replacing a fixed-sample size by a ran-
dom stopping time. Grambsch (1989) proposed a sequential sampling scheme
for estimation of the parameters of a logistic regression in retrospective case-
control studies. Chang and Martinsek (1992) and Chang (1995) considered a
similar problem of ML estimation of the parameters of logistic and general
binary response models. Siegmund and Sellke (1983) considered a more com-
plicated application of sequential methods to the analysis of maximum partial
likelihood estimates in proportional hazards models.

Let Zn denote the vector (matrix) of observations. These may include both
response and explanatory variables in the statistical model (note that explana-
tory variables may have random components). Assuming that the distribution
of the response variables in Zn belongs to a known parametric class indexed
by a r-dimensional parameter λ (λ ∈ �), let Ln�Zn�λ� denote the likelihood
function of the observations. If some of the explanatory variables in the data
matrix Zn are random, the likelihood function Ln�Zn�λ� is defined condition-
ally on those random components. The true value λ0 of the vector parameter
λ is unknown to the statistician and needs to be estimated from Zn by the
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method of maximum likelihood. Assume that the likelihood function is twice
continuously differentiable with respect to λ and let �n�Zn�λ� = lnLn�Zn�λ�.
Let �̇n�Zn�λ� denote the score statistic, that is, �̇n�Zn�λ� = ∂�n�Zn�λ�/∂λ,
and define the expected and observed Fisher information matrices Jn�λ� and
Ĵn�λ�, respectively, to be

Jn�λ� def=
[
−E

∂2�n�Zn�λ�
∂λi∂λj

]
1≤i�j≤r

� Ĵn�λ� def=
[
−∂2�n�Zn�λ�

∂λi∂λj

]
1≤i�j≤r

�

where λ is a parameter point in �. It is important to note that the informa-
tion matrices are assumed to depend on the unknown parameter and there-
fore the described general framework includes statistical models with a fairly
complicated structure, for example, generalized linear models. Next, define
the normalized expected and observed Fisher information matrices as

Kn�λ� def= Q−1
n Jn�λ��Q′

n�−1� K̂n�λ� def= Q−1
n Ĵn�λ��Q′

n�−1�(2.1)

where Qn is a square, non-singular matrix of normalizing coefficients (which
may depend on λ0). The elements of the normalizing matrix represent the rates
at which the elements of the observed Fisher information matrix increase as
n → ∞.

The following conditions will be used throughout this paper. They will be
utilized for proving asymptotic normality of the ML estimate λ̂n and its se-
quential version λ̂T computed at some random stopping time T. In Section 3,
these conditions will be used for establishing asymptotic optimality of confi-
dence regions constructed on the basis of the sequential ML estimate.

Before stating the conditions, we will need the following definitions.

Definition 2.1. A sequence of positive integer-valued random variables
�Tk, k ≥ 1� is said to be regular if there exist positive integers �tk� k ≥ 1�
such that tk → ∞ and Tk/tk

p→ 1 as k → ∞, where p→ denotes convergence in
probability.

Definition 2.2 [Hsu and Robbins (1947)]. A sequence of random variables
�ζk� k ≥ 1� is said to converge completely to a constant ζ if

∑∞
k=1 P��ζk − ζ� >

ε� < ∞ for any ε > 0.

Assumptions. Let λ0 denote the true value of the unknown parameter λ
and assume that, as n → ∞,

A. ��̇n�Zn�λ0��/φmin�Jn�λ0�� converges completely to 0, where φmin�A� =
minimum eigenvalue of the matrix A.

B. Jn�λ� is a continuous function of λ, Kn�λ0� → K�λ0�, where K�λ0� is
a positive definite matrix, and �K̂n�λ� − Kn�λ0�� → 0 (completely) uni-
formly in a shrinking neighborhood of λ0 in the sense that, for any ε > 0,
there exists δε > 0 such that

∑∞
n=1 P

{
sup�λ−λ0�≤δε

�K̂n�λ� − Kn�λ0�� > ε
}

< ∞.
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C. Q−1
n �̇n�Zn�λ0�

d→ N�0� K�λ0��, where
d→ denotes convergence in distri-

bution.
D. Q−1

Tn
�̇Tn

�ZTn
�λ0�

d→ N�0� K�λ0�� for any regular sequence of integer-
valued random variables �Tn� n ≥ 1�.

Conditions A–D will be illustrated in Section 5 where they will be verified
for the ML estimates of unknown parameters in generalized linear models.

Theorem 2.1 shows that conditions A–D imply asymptotic normality of both
the fixed sample and sequential ML estimates. We use the computed Fisher
information matrix Ĵn�λ̂n� to normalize the deviation of the ML estimate
since the marginal distribution of random components in the data matrix Zn

is generally unknown and thus one cannot compute the Fisher information
matrix Jn�λ̂n�.

The proof of Theorem 2.1 essentially follows from Cramèr’s general method-
ology. It makes use of Lemma A.2 given in the Appendix. This lemma estab-
lishes conditions under which the ML estimate λ̂n converges completely λ0. It
is based upon a result of Fahrmeir and Kaufmann (1985).

Theorem 2.1. Assume that conditions A, B and C are satisfied and let λ̂n

denote the ML estimate of λ0. Then, as n → ∞,

�λ̂n − λ0�′Ĵn�λ̂n��λ̂n − λ0�
d→ χ2

r�(2.2)

where χ2
r denotes the chi-square distribution with r degrees of freedom. Further,

if Condition D is also fulfilled then, for any sequence of regular integer-valued
random variables �Tn� n ≥ 1�, as n → ∞,

�λ̂Tn
− λ0�′ĴTn

�λ̂Tn
��λ̂Tn

− λ0�
d→ χ2

r (2.3)

Proof. Making use of a Taylor’s series expansion and the likelihood equa-
tion, one obtains that �̇n�Zn�λ0� = Ĵn�ηn��λ̂n − λ0�, where ηn is a point lying
between λ0 and λ̂n. It follows from (2.1) that Q−1

n �̇n�Zn�λ0� = K̂n�ηn�Q′
n�λ̂n −

λ0�. Therefore,

K̂
1/2
n �λ̂n�Q′

n�λ̂n − λ0� = K̂
1/2
n �λ̂n�K̂−1

n �ηn�Q−1
n �̇n�Zn�λ0�

= K−1/2�λ0�Q−1
n �̇n�Zn�λ0� + Rn�

(2.4)

where Rn = �K̂
1/2
n �λ̂n�K̂−1

n �ηn� − K−1/2�λ0��Q−1
n �̇n�Xn�λ0�. By Condition C,

the first term on the right-hand side of (2.4) is asymptotically normal �0� Ir�
and, by Lemma A.2, λ̂n → λ0 a.s. Therefore, ηn → λ0 a.s. and, by Condition
B,

K̂1/2
n �λ̂n�K̂−1

n �ηn� → K−1/2�λ0� a s (2.5)

Noting that Q−1
n �̇n�Xn�λ0� is asymptotically normal, one can easily conclude

that Rn

p→ 0. This proves that K̂
1/2
n �λ̂n�Q′

n�λ̂n − λ0�
d→ N�0� Ir� and together

with (2.1) implies that (2.2) holds.
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In order to prove (2.3), note that as in (2.4)

K̂
1/2
Tn

�λ̂Tn
�Q′

Tn
�λ̂Tn

− λ0� = K−1/2�λ0�Q−1
Tn

�̇Tn
�ZTn

�λ0� + RTn
 

Utilizing (2.5) one can show that K̂
1/2
Tn

�λ̂Tn
�K̂−1

Tn
�ηTn

� → K−1/2�λ0� a.s. To-

gether with Condition D this implies immediately that RTn

p→ 0. Therefore,

making use of Condition D again implies that K̂
1/2
Tn

�λ̂Tn
�Q′

Tn
�λ̂Tn

−λ0�
d→ �0� Ir�

and (2.3) holds. ✷

3. Sequential fixed size confidence regions. The aim of this section
is to demonstrate how sequential sampling schemes based on observed Fisher
information can be used for making fixed precision inferences in the general
setting described in Section 2. Motivated by Theorem 2.1, it is natural to define
an approximate �1− α�100% (0 < α < 1) confidence ellipsoid for λ0 by

CRn = �λ ∈ Rr � �λ̂n − λ�′Ĵn�λ̂n��λ̂n − λ� ≤ χ2
r�1−α��(3.1)

where χ2
r�1−α is the �1 − α�100% percentile of the χ2

r distribution. By (2.2),
this confidence ellipsoid has asymptotically the projected coverage probability
�1− α�, that is, P�λ0 ∈ CRn� → 1− α as n → ∞ 

It can be shown that the size (defined as the length of the maximal axis)
of CRn is given by 2�χ2

r�1−α/φmin�Ĵn�λ̂n���1/2. Making a natural assumption
that the observed information matrix does not remain bounded as n → ∞, it
is clear that the size of the confidence ellipsoid approaches 0. However, for any
fixed value of n, the size cannot be controlled since φmin�Ĵn�λ̂n�� is a random
quantity. In order to guarantee that the confidence ellipsoid is of fixed size in
the sense that its maximal axis ≤ 2d, one can resort to sequential sampling
and set the sample size equal to

N�d� = min�n ≥ 1 � φmin�Ĵn�λ̂n�� ≥ χ2
r�1−α/d2� (3.2)

Note that this fixed precision sequential procedure is based on the principle
of accumulated Fisher information because sampling is to be continued until
the minimum eigenvalue of the observed information matrix Ĵn�λ̂n� achieves
a certain threshold. This threshold depends on the characteristics of the con-
fidence ellipsoid (namely, size and coverage probability) which should be spec-
ified prior to data collection.

The sample size N�d� can be thought of as a random variable approximat-
ing the best fixed sample size

n�d� = min�n ≥ 1 � φmin�Jn�λ0�� ≥ χ2
r�1−α/d2� (3.3)

Note that the best fixed sample size n�d� is incomputable since the Fisher
information matrix Jn�λ0� involves λ0 and the expectation in Jn�λ0� is taken
with respect to the unknown marginal distribution of the random components
in the data matrix Zn. No fixed-sample size procedure could accomplish the
goal of constructing a confidence region for λ0 of fixed size and prescribed
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coverage probability. However, Jn�λ0� can be consistently estimated by the
observed Fisher information matrix ĴN�d��λ̂N�d�� and it is reasonable to expect
that the sequential fixed size confidence ellipsoid

CRN�d� = �λ ∈ Rr � �λ̂N�d� − λ�′ĴN�d��λ̂N�d���λ̂N�d� − λ� ≤ χ2
r�1−α�

has (at least asymptotically) the correct coverage probability 1− α.

Definition 3.1. A sequential procedure associated with a stopping time
N�d� is said to be asymptotically equivalent to an optimal fixed-sample size
procedure if, as d → 0, (i) N�d�/n�d� → 1 a.s., (ii) EN�d�/n�d� → 1, (iii)
P�λ0 ∈ CRN�d�� → 1− α.

Conditions (ii) and (iii) are typically referred to as asymptotic efficiency and
asymptotic consistency. These concepts were introduced by Chow and Robbins
(1965) in the context of sequential interval estimation of the mean of i.i.d.
observations. Their original ideas have later been extended to various set-
tings including multivariate regression by Gleser (1965), Srivastava (1971)
and generalized linear models by Chang and Martinsek (1992), Chang (1995).
A comprehensive account of these and related topics can be found in Govin-
darajulu (1987), Chapter 5.

It is stated in Theorem 3.1 that the sequential procedure defined earlier
in this section is asymptotically equivalent to the optimal fixed-sample size
procedure. Therefore, without knowing λ0, one obtains sequentially the results
as good (in terms of sample size and coverage probability) as if one knew the
true value of the parameter in advance.

Theorem 3.1. Assume that conditions A–D are satisfied and

lim
ρ→1

lim
d→0

�n�dρ�/n�d�� = 1 (3.4)

Then the sequential procedure is asymptotically equivalent to the optimal fixed-
sample size procedure.

Remark 3.1. Condition (3.4) is satisfied if n�d� is proportional to a power
function or a slowly changing function of d which is the case in most applica-
tions.

It will be shown in Section 5 that the conditions of Theorem 3.1 are satisfied
in generalized linear models with fixed and i.i.d. random covariates.

Proof of Theorem 3.1. By (2.3), �λ̂N�d� − λ0�′ĴN�d��λ̂N�d���λ̂N�d� − λ0�
d→

χ2
r as long as �N�d�� d > 0� is a regular sequence of random variables and

therefore P�λ0 ∈ CRN�d�� → 1− α will follow from N�d�/n�d� → 1.
Regarding the convergence of N�d�/n�d� to 1, note that by the well-known

properties of eigenvalues [see, e.g., Bellman (1960), Chapter 7], the eigen-
values of a sum of two non-negative definite matrices are uniformly larger
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than the eigenvalues of either of these matrices. Therefore, recalling that
Jk�λ� is a sum of non-negative definite matrices, one can easily infer that
�φmin�Jk�λ��� k ≥ 1� is a non-decreasing sequence of positive numbers. Let-
ting Uk = φmin�Ĵk�λ̂k��, mk = φmin�Jk�λ0��, b = χ2

r�1−α/d2, it follows from
Lemma A.3 that (3.4) and

φmin�Ĵk�λ̂k��/φmin�Jk�λ0�� → 1 a.s.(3.5)

imply that N�d�/n�d� → 1 a.s. Therefore it remains to prove that (3.5) holds.
To this end one can utilize Lemma A.1 with Ak = Ĵk�λ̂k�, Bk = Jk�λ0�,
Dk = Qk, ak = φmin�Ĵk�λ̂k��, bk = φmin�Jk�λ0��. By conditions A and B,
D−1

k Ak�D′
k�−1 = K̂k�λ̂k� → K�λ0� and D−1

k Bk�D′
k�−1 = Kk�λ0� → K�λ0�,

where K�λ0� is a positive definite matrix. Hence (3.5) follows from Lemma
A.1 and therefore N�d�/n�d� → 1 a.s. as d → 0.

In order to verify that EN�d�/n�d� → 1, note first that (A.1) in Lemma A.1
implies

�φmin�Ĵk�λ̂k��/φmin�Jk�λ0�� − 1� ≤ �K̂k�λ̂k� − Kk�λ0��/φmin�Kk�λ0�� (3.6)

Furthermore, by Condition B, K̂k�λ̂k�−Kk�λ0� → 0 (completely) since λ̂k → λ0
(completely). Observing that φmin�Kk�λ0�� → φmin�K�λ0�� > 0, one obtains
that the left-hand side of (3.6) also converges completely to 0. Therefore, for
any ε > 0,

∑∞
k=1 P�φmin�Ĵk�λ̂k�� < εφmin�Jk�λ0��� < ∞ which in view of

Lemma A.3 implies that EN�d�/n�d� → 1 as d → 0. ✷

4. Bounded cost of ignorance. This section is concerned with one in-
teresting extension of the results established in Theorem 3.1. According to
Theorem 3.1, the expected sample size EN�d� which should be taken for set-
ting up a fixed size confidence region for λ0 is asymptotically equivalent to the
best fixed sample size n�d�. Both EN�d� and n�d� obviously approach infinity
as d → 0 and therefore EN�d�/n�d� → 1 does not necessarily imply that
EN�d� − n�d� is bounded. The question of whether EN�d� − n�d� remains
bounded as d approaches 0 is of much interest in sequential analysis. The
difference EN�d� − n�d� is called the cost of ignorance in not knowing the
best fixed sample size n�d� prior to the experiment. If the cost of ignorance is
bounded from above by a constant as d → 0 then the sequential procedure is
said to have the property of bounded cost of ignorance.

In most simple problems of sequential point and interval estimation, the
cost of ignorance can be analyzed using methods based on renewal theory un-
der the assumption that the observations are i.i.d. [see Feller (1966), Chapter
11] and Siegmund [(1985), Chapter 8]. A comprehensive study of the asymp-
totic behavior of the cost of ignorance under broader assumptions was initiated
by Lai and Siegmund (1977, 1979) and Woodroofe (1977) by developing nonlin-
ear renewal theory. Nonlinear renewal theory shows that the cost of ignorance
converges to a constant for certain stopping times generated by sums of de-
pendent random variables. Specifically, the above-mentioned authors consider
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stopping rules of the form

N�b� = min �k ≥ 1 � Uk ≥ b� with Uk = Sk + ξk� k ≥ 1�(4.1)

where b > 0, Sk is a partial sum of i.i.d. random variables with a positive mean
and �ξk� k ≥ 1� is a “slowly changing sequence” satisfying certain regularity
conditions. Second-order approximations to expected stopping times yielding
asymptotic representations for the cost of ignorance have received a lot of
attention in the literature. Recent developments in this area are discussed in
Woodroofe (1982) and Siegmund (1985).

The central idea of nonlinear renewal theory is to express the random se-
quence �Uk� k ≥ 1� generating a stopping time as a sum of a random walk
and a noise sequence [as in (4.1)]. Then, by controlling the noise sequence and
analyzing the first term, one can generally show that the cost of ignorance for
the stopping rule is asymptotically equal to a constant. A key role in these
proofs is played by the assumption that the leading term (random walk) has
a certain structure and the joint probability distribution of the summands be-
longs to a known class of distributions (e.g., sum of i.i.d. random variables,
stationary process, Markov process, etc.). If a representation of this type is
difficult to achieve or little can be assumed about the structure of the leading
term, it appears problematic to apply the probabilistic methods of nonlinear
renewal theory or appropriately modify them. It is not clear in most problems
involving models with elaborate structure (time series and non-linear regres-
sion models) whether the difference between the expected sample size and the
best fixed sample size (cost of ignorance) converges to a constant.

One of the ways to deal with this complication is to consider a broader prob-
lem of determining conditions under which the cost of ignorance is asymptoti-
cally bounded. The weaker assumptions on the underlying models may enable
one to study the asymptotic behavior of the cost of ignorance in estimation
problems with a fairly complex structure. Studying asymptotic efficiency of
the sequential fixed-accuracy estimate of an autoregressive parameter consid-
ered by Lai and Siegmund (1983), Vexler and Konev (1995) demonstrate that
nonlinear renewal theory cannot be directly applied in this situation. As an al-
ternative, Vexler and Konev (1995) proposed to compute the Laplace-Stieltjes
transform of the expected sample size and then utilize a Tauberian theorem
to show that the cost of ignorance is bounded.

Building upon these results, Vexler and Dmitrienko (1999) developed a
general framework for obtaining asymptotic approximations to expected stop-
ping times with a bounded remainder term. Instead of relying on probabilistic
methods (as in nonlinear renewal theory) based on assumptions of indepen-
dence or stationarity, they heavily use Tauberian techniques to obtain expan-
sions based on moment assumptions only. This new approach for deriving
asymptotic expansions can greatly simplify asymptotic analysis of the cost of
ignorance in a variety of sequential estimation problems.

The main theorem of Vexler and Dmitrienko (1999) is stated below as
Lemma 4.1. We make use of this lemma for establishing the asymptotic bound-
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edness of the cost of ignorance for the sequential procedure described in Sec-
tion 2.

Lemma 4.1. Assume that �Uk� k ≥ 1� is a sequence of non-negative random
variables and �mk� k ≥ 1� is a sequence of non-negative real numbers such that
mk → ∞ as k → ∞. Assume further that, as b → ∞,

∞∑
k=1

P��Uk − mk� > δmk� < ∞ for some δ > 0�(4.2)

b−1
∞∑

k=1

e−mk/b = O�1��(4.3)

b−2
∞∑

k=1

e−mk/bE�Uk − mk�2 = O�1��(4.4)

∞∑
k=1

min�1� �b − mk�−2� = O�1� (4.5)

Then
∑∞

k=1 �P�Uk < b� − I�mk < b�� = O�1� as b → ∞, where I�A� denotes
the indicator function of the set A.

Unlike nonlinear renewal theorems, this lemma requires no representation
for the random sequence �Uk� k ≥ 1� and makes no assumptions about the
joint distribution of the Uk’s.

The first assumption of Lemma 4.1 is clearly satisfied if Uk/mk converges
completely to 1 and one can see that the other three assumptions hold under
simple growth conditions on mk and E�Uk − mk�2. For example, Vexler and
Dmitrienko (1999) show that the assumptions of Lemma 4.1 are satisfied pro-
vided �mk� k ≥ 1� is a non-decreasing sequence of positive real numbers such
that

lim inf
k→∞

�mk+s − mk� > 0 for some integer s ≥ 1(4.6)

and

E�Uk − mk�t = O�kt/2� for some t > 2 as k → ∞ (4.7)

It is shown in Lai [(1996), Section 2] that (4.7) is not a restrictive condition
and it is satisfied for a very broad class of stochastic sequences including
martingales, moving averages and mixing sequences.

In order to see how Lemma 4.1 can be applied, let

Uk = φmin�Ĵk�λ̂k��� mk = φmin�Jk�λ0��� b = χ2
r�1−α/d2 (4.8)

One can see from (4.8) that in general Uk has no simple structure and there-
fore the methods of nonlinear renewal theory cannot be adapted so as to obtain
an approximation to EN�d�. Chang (1995) points out that the sufficient con-
ditions of nonlinear renewal theorems are very difficult to verify even in the
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special case of sequential ML estimation of the parameter of a binary response
model with i.i.d. random covariates.

Using the definitions of N�d� and n�d� it is easy to verify that

EN�d� ≤
∞∑

k=1

P�Uk < b� and n�d� =
∞∑

k=1

I�mk < b� 

If the conditions of Lemma 4.1 are satisfied then the difference
∑∞

k=1 P�Uk <
b�−∑∞

k=1 I�mk < b� is bounded from above uniformly in b which implies that
EN�d� − n�d� is less than some positive constant for any d > 0. In other
words, this means that only a finite amount of information can be lost, if any,
when the sequential procedure is applied instead of the hypothetical optimal
procedure with the sample size n�d�.

Theorem 4.1, which constitutes a strengthening of Theorem 3.1, shows that
under some additional assumptions one can utilize Lemma 4.1 and claim that
the cost of ignorance in not knowing λ0 and the marginal distribution of the
random covariates for the proposed sequential procedure is bounded.

Theorem 4.1. Assume that conditions A–D of Section 2 are fulfilled.
Assume further that

lim inf
k→∞

�φmin�Jk+s�λ0��−φmin�Jk�λ0��� > 0 for some integer s ≥ 1�(4.9)

k−1 tr �Cov Ĵk�λ0�� = O�1�� k → ∞�(4.10)

φ2
max�QkQ′

k�E�λ̂k − λ0�4 = O�1�� k → ∞�(4.11)

�K̂k�λ� − K̂k�λ0�� ≤ �λ − λ0�ak(4.12)

for any parameter point λ�

where �ak� k ≥ 1� is a sequence of random variables such that

k−2φ2
max�QkQ′

k�Ea4
k = O�1�� k → ∞�(4.13)

Then lim supd→0�EN�d� − n�d�� < ∞.

Remark 4.1. Note that Conditions A–D ensure that EN�d�/n�d� → 1 as
d → 0. The additional conditions are imposed in Theorem 4.1 in order to
assert lim supd→0�EN�d� − n�d�� < ∞. Although the conditions of Theorem
4.1 may appear unwieldy, they can easily be verified for a variety of mod-
els. Roughly speaking, the theorem imposes conditions only on the growth
rate of the minimum eigenvalue of the information matrix Jk�λ0� and the
convergence rate of the ML estimate λ̂k. Some examples will be provided in
Section 5.

Proof of Theorem 4.1. In order to prove that EN�d� − n�d� is bounded
from above, one needs to verify the conditions of Lemma 4.1 using the notation
introduced in (4.8).
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It has been shown in the proof of Theorem 3.1 [see the proof of
EN�d�/n�d� → 1] that (4.2) is a consequence of Conditions A and B of
Section 2.

Next, by (4.9), there exists a positive number ε such that mk ≥ εk for
any k ≥ k0. Let q = e−ε/b and note that 1 − q = O�1/b�, b → ∞. Then∑∞

k=k0
e−mk/b ≤ ∑∞

k=k0
e−εk/b = ∑∞

k=k0
qk = O�b� as d → 0 or b → ∞ and hence

(4.3) holds.
Toward verifying (4.4) it suffices to show that, as k → ∞,

E�Uk − mk�2 = E�φmin�Ĵk�λ̂k�� − φmin�Jk�λ0���2 = O�k� (4.14)

Then making use of the same argument as in the verification of (4.3) will yield∑∞
k=k0

e−mk/bE�Uk − mk�2 = O�∑∞
k=k0

kqk� = O��1− q�−2� = O�b2� as b → ∞.
Now in order to establish (4.14), note that

k−1E�φmin�Ĵk�λ̂k�� − φmin�Jk�λ0���2

≤ 2k−1E�φmin�Ĵk�λ0�� − φmin�Jk�λ0���2(4.15)

+2k−1E�φmin�Ĵk�λ̂k�� − φmin�Ĵk�λ0���2

and consider the first term on the right-hand side of (4.15). It can be shown
along the lines of Lemma A.1 that

�φmin�Ĵk�λ0�� − φmin�Jk�λ0���2 ≤ �Ĵk�λ0� − Jk�λ0��2(4.16)

and hence, noting that EĴk�λ0� = Jk�λ0� and using (4.10),

k−1E�φmin�Ĵk�λ0�� − φmin�Jk�λ0���2

≤ k−1E�Ĵk�λ0� − Jk�λ0��2(4.17)

= k−1 tr � Cov Ĵk�λ0�� = O�1�� k → ∞ 

Next, utilizing an inequality similar to (4.16), the definition of the normalized
information matrices Kk�λ0� and K̂k�λ0� and then (4.13), one obtains that

E�φmin�Ĵk�λ̂k�� − φmin�Ĵk�λ0���2
≤ E�Ĵk�λ̂k� − Ĵk�λ0��2
≤ �Qk�4E�K̂k�λ̂k� − K̂k�λ0��2
≤ r2φ2

max�QkQ′
k�E�K̂k�λ̂k� − K̂k�λ0��2

≤ r2�φ2
max�QkQ′

k�Ea4
k�1/2�φ2

max�QkQ′
k�E�λ̂k − λ0�4�1/2 

(4.18)

Now making use of (4.11) and (4.13), it follows from (4.18) that the second
term on the right-hand side of (4.15) is bounded as k → ∞ which together
with (4.17) implies (4.14).

Finally, regarding (4.5), note that, by (4.9), one can find an η > 0 for which

mk+s − mk = φmin�Jk+s�λ�� − φmin�Jk�λ�� ≥ η(4.19)
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for any k ≥ k1. Define l�b� = max�k ≥ 1 � mk < b�. It is clear that l�b� > k1
for any sufficiently large b. Assuming first that k1 ≤ k ≤ l�b�, let j�k� equal
the integer part of �l�b� − k�/s, where s is defined by (4.9). Since k ≤ l�b� −
j�k�s, one obtains from the monotonicity of the sequence �mk� k ≥ 1� that
mk ≤ ml�b�−j�k�s. From this inequality and (4.19), for any k1 ≤ k ≤ l�b�, we
have b − mk ≥ ml�b� − mk ≥ ml�b� − ml�b�−j�k�s ≥ ηj�k�. Therefore, noting

that j�k� takes on the values 0�1�2�    , it can be seen that
∑l�b�

k=k1
min�1� �b−

mk�−2� ≤ 1+sη−2∑∞
j=1 j−2 < ∞ uniformly in b. Next, considering k > l�b� and

defining j�k� as the integer part of �k − l�b� + 1�/s, one can show similarly
that, uniformly in b,

∑∞
k=l�b�+1 min�1� �b − mk�−2� ≤ 1 + sη−2∑∞

j=1 j−2 < ∞
which implies that (4.5) is satisfied. ✷

5. Sequential estimation in generalized linear models. This section
discusses sequential maximum likelihood estimation in generalized linear
models. Generalized linear models (GLMs) have been introduced by Nelder
and Wedderburn (1972) as a useful class of statistical models based on the
exponential family of distributions. Formally, the term “generalized linear
models” refers to statistical models in which observations follow a distribu-
tion from an exponential family and the natural parameter of this family is a
function of a linear combination of unknown parameters. Assume that a vec-
tor Y′

n = �y1�    � yn� of response variables is observed whose components are
independent and their probability density functions fyk

�y�Xk� γ�, 1 ≤ k ≤ n,
with respect to a σ-finite measure ν on the real line belong to an exponential
family of distributions, that is,

fyk
�y�Xk� γ� = exp �ϕk�yθk − b�θk��� �(5.1)

where ϕk is a weight, b�·� is some specified function. Further, θk = h�X′
kγ�,

where h�·� is an increasing function, Xk is an r-vector of explanatory variables
(covariates) and γ is an r-vector of unknown parameters to be estimated from
the data. In the context of exponential families, θk is referred to as a natural
parameter. The link function h�u� is said to be a natural link function if
h�u� = u.

It is of interest to note that it is also common to define GLMs in terms of
the mean of the dependent variable yk. Let µk = Eyk, then µk is assumed to
be connected with Xk and γ through a function g, that is, g�µk� = X′

kγ. It
can be shown that the two definitions of GLMs are equivalent.

It will be assumed throughout this section that the covariate vectors Xk�k ≥
1� in (5.1) are fixed or stochastically independent. The assumption of fixed co-
variates is reasonable in prospectively designed studies when data on human
patients or laboratory animals are collected over a period of time. Random-
covariate GLMs are relevant in retrospective studies in which data are ob-
tained by randomly sampling from existing data sets. Examples of GLMs with
fixed and random covariates will be provided later in this section.

The major tool for the analysis of GLMs is the method of maximum like-
lihood (ML) estimation. Nelder and Wedderburn (1972) proposed an efficient
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version of the scoring algorithm to implement ML estimation in GLMs. Berk
(1972) gave sufficient conditions for consistency and asymptotic normality of
the ML estimate for exponential models in the i.i.d. case. Haberman (1977)
considered ML estimation of a vector of natural parameters in a general ex-
ponential family of distributions. Fahrmeir and Kaufmann (1985) improved
Haberman’s results by proving asymptotic normality of the ML estimate un-
der weaker conditions.

Since this paper discusses GLMs with random covariates, it is instructive
to compare two approaches to the definition of the ML estimators in statistical
models with random effects considered in the literature. The first one assumes
the knowledge of the marginal distribution of random explanatory variables.
This approach may be too restrictive in situations where little information on
the distribution of the random effects is available. In this paper, we adopt an
alternative approach based on conditional arguments. Regardless of the form
of the marginal distribution of random explanatory variables, we can introduce
the conditional likelihood function (given the random covariates) and compute
the conditional ML estimates of the unknown parameters. Conditional ML
estimation in logistic regression models is discussed in Prentice and Breslow
(1978), Stefanski and Carroll (1985). Sequential sampling in the conditional
likelihood framework is studied in Grambsch (1989), Chang and Martinsek
(1992) and Chang (1995).

Let �n�γ� denote the log-likelihood function conditional on the random co-
variates. The expected and observed Fisher information matrices Jn�γ� and
Ĵn�γ� are given by

Jn�γ� =
n∑

k=1

ϕkE
(
b̈�θk��ḣ�X′

kγ��2XkX′
k

)
�

Ĵn�γ� =
n∑

k=1

ϕk

(
b̈�θk��ḣ�X′

kγ��2 − �yk − ḃ�θk��ḧ�X′
kγ�

)
XkX′

k�

(5.2)

where γ is a parameter point, ḃ�θ� and b̈�θ� denote the first and second deriva-
tives of b�θ�, respectively. The normalized expected and observed information
matrices Kn�γ� and K̂n�γ� are defined as in (2.1) with Qn = J

1/2
n �γ0�, where

J
1/2
n �γ0� denotes the left Cholesky root of the positive definite matrix Jn�γ0�

[see Horn and Johnson (1985), pages 406–407] and γ0 denotes the true value
of the parameter γ. The role played by the Cholesky representation in multi-
variate statistical analysis was emphasized by Fahrmeir and Kaufmann (1985)
and Fahrmeir (1987). Note that Kn�γ� = Ir (r × r identity matrix).

In what follows, we will verify Conditions A–D of Section 2 for the gener-
alized linear model (5.1). The simpler conditions will be utilized later in the
sequential ML analysis of GLMs encountered in prospective and retrospective
studies.

Note that the conditions developed by Haberman (1977) and Fahrmeir and
Kaufmann (1985) cannot be used directly in this section since the analysis of
the sequential ML estimates (which follows from Section 2) relies on the com-
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plete convergence of the non-sequential ML estimate and observed information
matrix. Thus, the results of Haberman (1977) and Fahrmeir and Kaufmann
(1985) need to be extended and strengthened in order to verify conditions A–D
for generalized linear models.

Condition A. Generally, Condition A can be verified by applying
Chebyshev’s inequality and requiring that, for some s ≥ 1,

∑∞
n=1 E��̇n�γ0��s/

�φmin�Jn�γ0���s < ∞.

Condition B. Lemma 5.1 describes conditions under which K̂n�γ� → Ir

(completely) as n → ∞ uniformly in a neighborhood of γ0.

Lemma 5.1. Assume that φ−1
min�Jn�γ0���Ĵn�γ� − Ĵn�γ0�� → 0 �completely�

uniformly in a neighborhood of γ0 and φ−1
min�Jn�γ0���Ĵn�γ0� − Jn�γ0�� → 0

�completely� as n → ∞. Then K̂n�γ� → Ir �completely� as n → ∞ uniformly
in a shrinking neighborhood of γ0.

Proof. It follows from the definition of the normalized information matrix
K̂n�γ� that �K̂n�γ� − Ir� ≤ �J

−1/2
n �γ0����J−1/2

n �γ0��′��Ĵn�γ� − Jn�γ0��. Since
�J−1/2

n �γ0����J−1/2
n �γ0��′� = tr J−1

n �γ0� ≤ rφmax�J−1
n �γ0�� = r/φmin�Jn�γ0���

one can easily see that

�K̂n�γ� − Ir� ≤ rφ−1
min�Jn�γ0����Ĵn�γ� − Ĵn�γ0�� + �Ĵn�γ0� − Jn�γ0���

which, in view of the assumptions, completes the proof of Lemma 5.1. ✷

Condition C. The normalized score statistic J
−1/2
n �γ0��̇n�γ0� is a sum of

independent random vectors with mean zero and a finite covariance matrix.
Therefore the asymptotic normality of J

−1/2
n �γ0��̇n�γ0� follows from the central

limit theorem for triangular arrays of independent random variables [see, e.g.,
Chow and Teicher (1988), Chapter 9].

Lemma 5.2. Let Zkn = ϕk�yk − ḃ�θk��ḣ�X′
kγ0�u′J−1/2

n �γ0�Xk, 1 ≤ k ≤ n,
where u �= 0 is an arbitrary r-vector and assume that, for any ε > 0,∑n

k=1 E�Z2
knI��Zkn� > ε�� → 0 as n → ∞ �Lindeberg condition�. Then Condi-

tion C is satisfied.

Proof. It follows from (5.2) that u′J−1/2
n �γ0��̇n�γ0� =

∑n
k=1 Zkn. It is easy

to check that EZkn = 0. Next, it follows from (5.1) that

Eyk = ḃ�θk�� Var yk = b̈�θk�/ϕk (5.3)

Hence
∑n

k=1Var Zkn = u′u. By the central limit theorem and Lindeberg condi-
tion, this immediately implies that u′J−1/2

n �γ0��̇n�γ0� is asymptotically normal
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�0� u′u�. Since u �= 0 is an arbitrary r-vector, making use of Cramèr-Wold’s
theorem [see Billingsley (1968), page 49] completes the proof of Lemma 5.2.

✷

Condition D. The verification of Condition D is based on arguments sim-
ilar to those employed in Anscombe’s (1952) theorem on asymptotic normality
of randomly stopped statistics and Gleser’s (1969) extension of Anscombe’s re-
sults to the multivariate case which can be stated as follows. Assume that Dn

is a non-singular matrix and Sn is a random vector, n ≥ 1. Also, assume that
D−1

n Sn is asymptotically normal �0� I�, where I denotes the identity matrix.
Then, for any non-decreasing sequence �tn� n ≥ 1� of positive integers with
tn → ∞ as n → ∞, D−1

tn
STn

is asymptotically normal �0� I� provided Tn is an
integer-valued random variable (indexed by n) such that Tn/tn

p→ 1 and, for
any ε > 0 and some δε > 0,

lim sup
n→∞

P

{
max

−tnδε≤k≤tnδε

�D−1
tn
�Stn+k − Stn

�� > ε

}
≤ ε (5.4)

It is important to note that the preceding results assume that the normaliz-
ing matrix Dtn

is based on a fixed sample size tn. This assumption appears to
be restrictive since in most problems of sequential analysis the fixed sample
size is replaced with a random sample size and one is typically interested in
proving the asymptotic normality of D−1

Tn
STn

.
In order to extend the main results of Gleser (1969) to this more realistic

setting, write D−1
Tn

STn
as a product of D−1

Tn
Dtn

and D−1
tn

STn
. Then, because of

the preceding results, D−1
tn

STn
is asymptotically normal. The next step is to

determine conditions on the normalizing matrix Dn such that D−1
Tn

Dtn

p→ I.
Finally, one can apply Slutsky’s theorem in order to establish the asymptotic
normality of D−1

Tn
STn

.
Lemma 5.3 implements the outlined plan. It establishes conditions that

need to be imposed on the normalizing matrix J
1/2
n �γ0� (which plays the role

of Dn) in order to prove the asymptotic normality of J
−1/2
Tn

�γ0��̇Tn
�γ0�. The

assertion of Lemma 5.3 easily follows from a general result stated in the Ap-
pendix (see Lemma A.4) since �̇n�γ0� is a sum of independent random vectors
with mean zero and covariance matrix Jn�γ0�.
Lemma 5.3. Assume that Condition C holds and, for any η > 0, there

exists a δη > 0 for which tr �J�n�1+δη���γ0� − Jn�γ0�� ≤ ηφmin�Jn�γ0��. Then
Condition D is satisfied.

Prospective studies. In this subsection we will illustrate the theoretical
results obtained earlier in the paper with two examples of particular practical
importance. These examples represent two different classes of GLMs. First
we will consider a binary regression model with fixed covariates and then the
case of GLMs with random covariates.

As an example of a prospective study, consider a quantal biological assay
or a dose finding study. The response variables y1�    � yn are independent
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Bernoulli with the probabilities of success pk, 1 ≤ k ≤ n, which are modelled
as a function of several covariates:

pk = G�γ1x1k + γ2x2k + · · · + γrxrk� = G�X′
kγ��(5.5)

where G is a specified distribution function, X′
k = �x1k�    � xrk� is a non-

random covariate vector for the kth observation (kth subject or experimental
unit) and γ = �γ1�    � γp� is an unknown parameter vector to be estimated
from the data.

It is easy to show that the distribution function of yk can be embedded into
the exponential family (5.1) with

ϕk = 1� b�θ� = ln�1+ eθ�� h�x� = ln�G�x�/�1− G�x��� (5.6)

The general binary response model (5.5) includes, as special cases, logit and
probit regression models. Further examples of binary response models with
fixed covariates used in educational and industrial testing are discussed in
Wu (1985).

Estimation in binary responses models has been considered in various pa-
pers [see Govindarajulu (1988) for details and references]. The ML estimates
of the parameters in one-factor models of the form pk = G�γ1 + γ2xk� were
shown by Church and Cobb (1973) to be equivalent to the Spearman-Karber
estimates if the covariate values xk, 1 ≤ k ≤ n, are equally spaced, num-
ber of observations at each xk is the same for all k and p1 ≤ · · · ≤ pk. The
asymptotic behavior of the Spearman-Karber estimates was studied by Miller
(1973) and sequential versions of the Spearman-Karber estimates were intro-
duced by Nanthakumar and Govindarajulu (1994, 1999) and Govindarajulu
and Nanthakumar (2000). The above-mentioned results will be extended in
this section to the binary regression model (5.5) with several covariates. The
proposed sequential procedure can be applied to practical problems when the
selected sample of subjects is not homogeneous and covariates need to be in-
troduced in the model in order to describe the variability in the responses.

It will be shown that the sequential ML estimate of the unknown parameter
in the general binary response model (5.5) possesses the optimal properties
described in Section 2. In order to prove that the fixed size confidence regions
based on the sequential ML estimate are asymptotically consistent and ef-
ficient, it remains to verify Conditions A–D of Section 2 using the auxiliary
results established earlier in this section.

The above-mentioned conditions will be verified under the assumption that
the fixed covariate vectors have a compact range, that is, the Xk’s belong to
a compact subset of the r-dimensional space. This implies, for example, that
�Xk�, k ≥ 1, are uniformly bounded. The assumption of compact range has
been used by Fahrmeir and Kaufmann (1985) in their asymptotic analysis of
the ML estimates in GLMs.

This assumption is not restrictive and can be justified by the following
observation. It can be seen from (5.6) that the Fisher information matrix Jn�γ�
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for the model (5.5) is given by

Jn�γ� =
n∑

k=1

g2�X′
kγ��G�X′

kγ��1− G�X′
kγ���−1XkX′

k�(5.7)

where g�x� = dG�x�/dx. Therefore, if x2g2�x� = o�G�x��1− G�x��� as �x� →
∞, then the contribution of a covariate vector Xk with a large norm in terms
of the added information is essentially negligible. This condition is satisfied
in most problems of practical interest, for example, problems involving logit
and probit regression models.

Let φmin�n� = φmin�
∑n

k=1 XkX′
k� and φmax�n� = φmax�

∑n
k=1 XkX′

k�. Making
use of the compact range assumption, it is easy to show that, in any compact
neighborhood of the true parameter point γ0,

C1φmin�n� ≤ φmin�Jn�γ�� ≤ φmax�Jn�γ�� ≤ C2φmax�n��(5.8)

where C1 and C2 are some positive constants. Therefore the asymptotic be-
havior of φmin�Jn�γ�� and φmax�Jn�γ�� in a neighborhood of γ0 can be con-
trolled by imposing conditions on the minimum and maximum eigenvalues of∑n

k=1 XkX′
k. Inequalities similar to (5.8) will be frequently used below in the

proof of Theorem 5.1.
Theorem 5.1 formulates conditions under which the sequential fixed size

confidence ellipsoid CRN�d� has asymptotically the correct coverage probability
and the sequential sample size N�d� is asymptotically equivalent to the best
fixed sample size n�d� as the size of the confidence ellipsoid becomes small.

Theorem 5.1. Assume that the covariate vectorsXk, k ≥ 1, have a compact
range,

n∑
k=1

�Xk�2 = O�φmin�n��� n → ∞�(5.9)

∞∑
n=1

φ
−q
min�n� < ∞ for some q > 0�(5.10)

for any ε > 0 and some δε > 0� φ−1
min�n�

n�1+δε�∑
k=n+1

�Xk�2 ≤ ε

for any large n 

(5.11)

Assume also that g�x� is twice continuously differentiable, g�x� > 0 for any x,
and limρ→1 limd→0�n�dρ�/n�d�� = 1. Then the sequential procedure is asymp-
totically equivalent to the optimal fixed-sample size procedure.

Proof. In view of Theorem 3.1 and the assumption that

lim
ρ→1

lim
d→0

�n�dρ�/n�d�� = 1�

it suffices to verify Conditions A–D of Section 2.
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Starting with Condition A, note that the score statistic �̇n�γ0� =
∑n

k=1�yk −
G�X′

kγ0��w�X′
kγ0�Xk, where w�x� = g�x�/�G�x��1 − G�x����is a sum of in-

dependent random vectors with mean zero. Since �yk − G�X′
kγ0�� ≤ 1 and,

by the assumption of compact range, w�X′
kγ0� is uniformly bounded (note

that w�·� is a strictly positive function), an elementwise application of the
Marcienkiewicz-Zygmund inequality yields

E��̇n�γ0��2 = O

(
n∑

k=1

�Xk�2
)

 (5.12)

Now, an application of Chebyshev’s inequality with s = 2 along with (5.12),
(5.8) and the assumption (5.9) implies that Condition A holds.

The verification of Condition B simply reduces to checking the assumptions
of Lemma 5.1. By the definition of Ĵn�γ� and (5.6),

Ĵn�γ� − Ĵn�γ0� =
n∑

k=1

�T�yk� X′
kγ� − T�yk� X′

kγ0��XkX′
k(5.13)

where

T�u� v� = �u − G�v�� d

dv

(
g�v�

G�v��1− G�v��
)
− g2�v�

G�v��1− G�v��  (5.14)

By a Taylor series expansion in (5.13) along with the uniform boundedness of
�yk − G�X′

kγ0�� and Xk, �Ĵn�γ� − Ĵn�γ0�� ≤ C3�γ − γ0�
∑n

k=1 �Xk�2, where
C3 is a positive constant. Together with (5.8) and (5.9), this proves that the
first assumption of Lemma 5.1 is satisfied. Concerning the second assump-
tion, note that Ĵn�γ0� −Jn�γ0� =

∑n
k=1

(
T�yk� X′

kγ0� − ET�yk� X′
kγ0�

)
XkX′

k,
where T�u� v� is defined in (5.14), is a sum of independent random matrices.
By the Marcienkiewicz-Zygmund inequality, the assumption that the Xk’s be-
long to a compact set and (5.9), we have, for any s ≥ 1,

φ−2s
min�n�E�Ĵn�γ0� − Jn�γ0��s = O

(
φ−2s

min�n�
n∑

k=1

�Xk�2s

)

= O

( ∞∑
n=1

φ1−2s
min �n�

)
 

(5.15)

Applying Chebyshev’s inequality with s = �q + 1�/2 and making use of
(5.15) and (5.10) yields

∑∞
n=1 P��Ĵn�γ0� − Jn�γ0�� ≤ εφmin�Jn�γ0���

≤ C4
∑∞

n=1 φ
−q
min�n� < ∞, where C4 is a positive constant. This proves that

the second assumption of Lemma 5.1 is also satisfied and hence Condition B
holds.

By Lemma 5.2, Condition C will follow if the

Zkn = �yk − G�X′
kγ0��

g�X′
kγ0�

G�X′
kγ0��1− G�X′

kγ0��
u′J−1/2

n �γ0�Xk�

1 ≤ k ≤ n�

(5.16)
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satisfy the Lindeberg condition with any r-vector u �= 0. Noting that, for any
δ > 0, E�Z2

knI��Zkn� > ε�� ≤ ε−δE�Zkn�2+δ, it is easy to see from (5.16), the
uniform boundedness of �yk − G�X′

kγ0�� and Xk and (5.8) that
n∑

k=1

E�Z2
knI��Zkn� > ε�� ≤ C5φ

−δ/2
min �n� → 0� n → ∞�

where C5 is a positive constant, since, by (5.10), φmin�n� → ∞ as n → ∞.
Hence Condition C is satisfied.

Finally, Condition D can be verified with the aid of Lemma 5.3. Observe from
the definition of the information matrix Jn�γ0� in (5.7) that the assumption of
compact range implies that 0 ≤ tr �J�n�1+δ���γ0�−Jn�γ0�� ≤ C6

∑n�1+δ�
k=n+1 �Xk�2

and C7φmin�n� ≤ φmin�Jn�γ0��, where C6 and C7 are positive constants. For
any fixed positive number η, let ε = ηC7/C6. For the selected ε > 0, one can
now find a δ > 0 such that (5.11) holds. In view of the inequalities given above,
(5.11) yields, for the chosen δ, tr �J�n�1+δ���γ0�−Jn�γ0�� ≤ ηφmin�Jn�γ0�� and
the condition of Lemma 5.3 is satisfied implying that Condition D is satisfied.
This completes the proof of Theorem 5.1. ✷

The conditions imposed in Theorem 5.1 on the binary regression model
(5.5) with fixed covariates ensure that the proposed sequential procedure is
asymptotically efficient in the sense that the ratio EN�d�/n�d� approaches
1 as the confidence region becomes small. This property of the sequential
procedure can be further strengthened and it can be shown that the sequential
procedure possesses the property of bounded cost of ignorance.

Sufficient conditions under which the sequential procedure associated with
the stopping rule (3.2) possesses the property of bounded cost of ignorance are
given below in Theorem 5.2.

Theorem 5.2. Under the assumptions of Theorem 5 1 and

lim inf
k→∞

φmin

(
k+s∑

i=k+1

XiX
′
i

)
> 0 for some integer s ≥ 1�(5.17)

the sequential procedure has a bounded cost of ignorance.

Proof. The assertion of the theorem will follow if one verifies the condi-
tions of Theorem 4.1.

The first condition, namely (4.9), is a straightforward consequence of (5.17).
From the definition of Jk�γ� and the assumption of compact range we obtain
that

φmin�Jk+s�γ�� − φmin�Jk�γ�� ≥ φmin�Jk+s�γ� − Jk�γ��

≥ Cφmin

(
k+s∑

i=k+1

XiX
′
i

)
�

(5.18)

for sufficiently large k, where C is some positive constant.
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Next, it was shown in Theorem 5.1 [see display (5.15)] that E�Ĵk�γ0� −
Jk�γ0��2 is of the same order of magnitude as

∑k
i=1 �Xi�2. Now, recalling that

the Xi’s are uniformly bounded and tr �Cov Ĵk�γ0�� = E�Ĵk�γ0� − Jk�γ0��2,
one obtains that (4.10) is satisfied.

In order to verify (4.11) it suffices to show that k2E�γ̂k − γ0�4 = O�1�,
k → ∞, since, by (5.8) and the assumption of compact range, φmax�Jk�γ0�� ≤
tr Jk�γ0� = O�k�.
The proof that k2E�γ̂k − γ0�4 = O�1� follow from a result of Ibragimov and

Hasminskii (1981). The observations yi, i ≥ 1, in the general binary regres-
sion model (5.5) are independent and therefore, by Ibragimov and Hasminskii
[(1981), Theorem 1.5.8],

P�k1/2E�γ̂k − γ0� > t� = O�e−t2�� k → ∞�(5.19)

provided

sup
i≥1

∫ ∞

−∞
sup

γ

�f
1/2
yi

�y�Xi� γ� − f
1/2
yi

�y�Xi� γ0��2
�γ − γ0�2

dν�y� < ∞(5.20)

and, for any large k,
k∑

i=1

Hi�γ� γ0� ≥ kc�γ0��γ − γ0�2/�1+ �γ − γ0�2��(5.21)

where fyi
�y�Xi� γ� is the probability density function of yi, ν is the support-

ing measure, c�γ� is some function of γ. Further, Hi�γ� γ0� is the Hellinger
distance for the ith observation given by Hi�γ� γ0� = ∫∞

−∞�f
1/2
yi

�y�Xi� γ� −
f

1/2
yi

�y�Xi� γ0��2dν�y�. It can be seen that (5.19) implies that k2E�γ̂k −γ0�4 =
O�1� and therefore it remains to verify (5.20) and (5.21) for the binary regres-
sion model (5.5) with uniformly bounded covariates.

The supporting measure in (5.20) can be chosen to assign the same weight
of one to the two points 0, 1 and zero to any other point on the real line. Then,
for any γ, fyi

�0�Xi� γ� = 1 − G�X′
iγ� and fyi

�1�Xi� γ� = G�X′
iγ�. Since, by

Taylor’s expansion and the assumption of compact range,

sup
i≥1

sup
γ

�f1/2
yi

�0�Xi� γ� − f1/2
yi

�0�Xi� γ0��2

≤ sup
ζ

(
g2�X′

iζ�
4�1− G�X′

iζ��
)
�Xi�2�γ − γ0�2

≤ C1�γ − γ0�2�

and, similarly, supi≥1 supγ�f
1/2
yi

�1�Xi� γ� − f
1/2
yi

�1�Xi� γ0��2 ≤ C2�γ − γ0�2,
where C1 and C2 are constants, the condition (5.20) is satisfied.

Regarding (5.21), note that, by Ibragimov and Hasminskii [(1981), Theorem
1.7.6], for some positive constant C3,

k∑
i=1

Hi�γ� γ0� ≥ C3φmin�Jk�γ0���γ − γ0�2/�1+ �γ − γ0�2� 
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It follows from (5.18) and (5.17) that lim infk→∞ k−1φmin�Jk�γ0�� > 0 and
hence (5.21) holds for any sufficiently large k. Together with (5.20), this implies
(5.19) and therefore (4.11) follows.

The last two conditions of Theorem 4.1, namely (4.12) and (4.13), can be
verified along the lines of Lemma 5.1. Making use of the inequalities utilized
in this lemma and (5.15), one can show that

�K̂k�γ� − K̂k�γ0�� ≤ �γ − γ0�ak�(5.22)

where ak = rC4φ−1
min�Jk�γ0��

∑k
i=1 �Xi�2. Note that �ak� k ≥ 1� is a non-

random sequence. By the assumption of compact range, (5.18) and the fact that
φmax�Jk�γ0�� = O�k�, k−1φmax�Jk�γ0��a2

k = O�a2
k� = O�k2φ−2

min�Jk�γ0��� =
O�1� as k → ∞. In view of (5.22), this implies that (4.12) and (4.13) hold and
thus completes the proof of Theorem 5.2. ✷

Retrospective studies. In retrospective studies subjects are sampled
from a population under consideration to relate response variables to certain
demographic variables or exposures to suspected risk factors. These explana-
tory variables are regarded as random effects since the data are collected by
random sampling. Two particular cases of the generalized linear model arise
naturally in the context of retrospective studies. These are binary regression
and Poisson regression models. In this subsection, we will consider a general
model including the binary and Poisson regression models discussed above as
special cases. Given n pairs of observations �y1� X1��    � �yn� Xn�� assume
that each pair satisfies the generalized linear model (5.1) with ϕk = 1, k ≥ 1
and the covariates X1�    � Xn are i.i.d. random vectors.

Chang and Martinsek (1992) and Chang (1995) considered similar prob-
lems of ML estimation of the parameters of binary response models when
the marginal distribution of random covariates is unknown. It was shown
that, under the assumption that the random covariates are i.i.d., the sequen-
tial ML estimation procedures for setting up fixed size confidence regions are
asymptotically consistent and efficient. Here we will extend these results to
the generalized linear model (5) with i.i.d. random covariates. We will also
strengthen the results of Chang and Martinsek (1992) by showing that in
the case of a logistic regression model the sequential procedure possesses an
important property of bounded cost of ignorance.

It will be shown in the following theorem that the sequential procedure de-
scribed in Section 2 is asymptotically equivalent to the optimal fixed-sample
size procedure. Since the best fixed sample size required in this problem is
n�d� = �χ2

r�1−α/d2φ�, where φ = φmin�J�γ�� and J�γ� is the information ma-
trix based on a single observation �y1� X1�, the condition (3.4) on n�d� is
trivially satisfied.

To simplify the notation, for any parameter point γ, let

Vk�γ� = �b̈�h�X′
kγ���ḣ�X′

kγ��2
−�yk − ḃ�h�X′

kγ���ḧ�X′
kγ��XkX′

k� k ≥ 1 
(5.23)
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Note that Vk�γ� is the observed information matrix of the kth observation. It
is easy to see that these matrices are independent and identically distributed.

Theorem 5.3. Assume that

�EV1�γ0�� < ∞� �CovV1�γ0�� < ∞�(5.24)

E

(
sup

�γ−γ0�≤δ

�V1�γ� − V1�γ0��/�γ − γ0�
)2

< ∞� δ > 0 (5.25)

Then the sequential procedure is asymptotically equivalent to the optimal fixed-
sample size procedure.

Proof. The proof is similar to that of Theorem 5.1 in that it is also based
on the successive verification of Conditions A–D of Section 2.

Condition A follows from a result of Hsu and Robbins (1947) provided

E�b̈�h�X′
1γ0���ḣ�X′

1γ0��2�X1�2� < ∞
which is equivalent to the first condition in (5.24). Condition B can be verified
by using Lemma 5.1. Concerning the first condition of this theorem, note that,
by the definition of Vk�γ�,

φ−1
min�Jn�γ0�� sup

�γ−γ0�≤δ

�Ĵn�γ� − Ĵn�γ0�� ≤ δφ−1
min�J�γ0��τn�

where τn = n−1∑n
k=1 sup�γ−γ0�≤δ �Vk�γ� − Vk�γ0��/�γ − γ0�. Since τn is an

average of i.i.d. random variables with a finite second moment (see (5.25)),
it follows from Hsu and Robbins (1947) that τn converges completely to a
constant and therefore the first condition of Lemma 5.1 is satisfied. The second
condition of Lemma 5.1 follows from Hsu and Robbins (1947) since (5.24)
holds. Next, in view of (5.24), Condition C is implied by the central limit
theorem for i.i.d. random variables. Finally, applying Lemma 5.3 and noting
that tr �J�n�1+δ���γ0� − Jn�γ0�� = nδ tr J�γ0� can always be made smaller
than ηφmin�Jn�γ0�� = ηnφmin�J�γ0�� for any large n by choosing 0 < δ <
ηφmin�J�γ0��/ tr J�γ0�, one can conclude that Condition D is also satisfied.
The proof of Theorem 5.3 is now complete. ✷

Remark 5.1. Since Vk�γ� is the observed information matrix of the kth
pair �yk� Xk�, Condition (5.24) in Theorem 5.3 translates into the assumption
that the observed information matrix of each individual observation has two
finite moments. Further, (5.25) plays the same role as the classical univariate
Cramèr’s assumption that, for any parameter point γ, �∂3 lnf�z�γ�/∂γ3� ≤
H�z� and EHm�z� < ∞ for some m ≥ 1.

The following example shows that the conditions of Theorem 5.3 are satis-
fied in most widely used models with random covariates.
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Example 5.1. Generalized linear models are most frequently used in prac-
tice under the assumption of natural link, that is, h�u� = u. This implies that
the individual observed information matrices Vk�γ�, k ≥ 1, defined in (5.23)
take the following very simple form: Vk�γ� = b̈�X′

kγ�XkX′
k. It is easy to see

that

�EV1�γ0�� = E�b̈�X′
1γ0��X1�2� (5.26)

Next, let A = Cov V1�γ0� and B = E�V1�γ0�V1�γ0�′� (to simplify nota-
tion). Then A = B− �EV1�γ0���EV1�γ0��′ and �EV1�γ0���EV1�γ0��′ is a non-
negative definite matrix. Therefore, the eigenvalues of B dominate those of A.
Making use of this fact, it can be seen that �A� ≤ √

rφmax�A� ≤ √
rφmax�B�

≤ √
r�B�. Hence �Cov V1�γ0�� ≤

√
r�E�V1�γ0�V1�γ0�′�� =

√
rE��b̈�X′

1γ0��2×
�X1�4� which together with (5.26) implies that the first two conditions of
Theorem 5.3 are satisfied provided

E��b̈�X′
1γ0��2�X1�4� < ∞ (5.27)

The verification of the last condition of Theorem 5.3 relies on a Taylor series
expansion:

E

(
sup

�γ−γ0�≤δ

�V1�γ� − V1�γ0��/�γ − γ0�
)2

≤ E

(
�X1�3 sup

�ζ−γ0�≤δ

β�X′
1ζ�

)2

�

(5.28)

where β�u� = d3b�u�/du3 and ζ is a parameter point lying on the line con-
necting γ and γ0. One can now conclude that the assertions of Theorem 5.3
hold in a GLM based on a natural link if (5.27) is satisfied and the right-hand
side of (5.28) is finite.

Consider a binary regression model with random covariates. Under the
assumption of natural link, G�x� becomes the standard logistic distribution
function, that is, G�x� = ex/�1 + ex�. Assume that E�X1�6 < ∞. It follows
from (5.6) that b�θ� = ln�1+ eθ� and it is easy to verify that

b̈�θ� = eθ�1+ eθ�−2 and β�θ� = eθ�1− eθ��1+ eθ�−3(5.29)

are bounded over the real line. Therefore (5.27) and (5.28) are finite implying
that the sequential procedure for setting up a fixed size confidence region is
asymptotically consistent and efficient for the logistic regression model.

Next, assume that the data collected from a retrospective study are mod-
elled using a Poisson distribution. This distribution generates a generalized
linear model with b�θ� = eθ. Models of this type with the natural link function
are known as log-linear models. Since b�θ� = eθ is an increasing function of
θ which dominates any power function, observe from the Cauchy inequality
that, for some positive constant C1, E��b̈�X′

1γ0��2�X1�4� ≤ C1Ee2�γ0��X1� and
(5.27) follows from the assumption that EeC2�X1� < ∞ for any constant C2.
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Similarly, one can see that the same condition implies that the left-hand side
of (5.28) is finite since

E

(
�X1�3 sup

�ζ−γ0�≤δ

β�X′
1ζ�

)2

≤ E
(
�X1�3e��γ0�+δ��X1�

)2
and �X1�3 ≤ C3e��γ0�+δ��X1� for some constant C3. The condition EeC2�X1� < ∞,
C2 > 0, is obviously satisfied if the tails of the distribution of �X1� converge
to 0 faster than an exponential rate.

Chang and Martinsek (1992) have established the asymptotic efficiency
of the sequential procedure for constructing a fixed size confidence region
in the logistic regression case. Their result can be generalized by establishing
the property of bounded cost of ignorance, that is, by proving that EN�d�−n�d�
remains bounded as the size of the confidence region becomes small. For lo-
gistic regression with i.i.d. random covariates, we have the following theorem
towards bounded cost of ignorance. The proof of Theorem 5.4 can be carried
out using arguments similar to those employed in the proof of Theorem 5.2
and is omitted.

Theorem 5.4. Assume that E�X1�8 < ∞. Then the sequential procedure
has bounded cost of ignorance.

APPENDIX

This section contains the statements and proofs of some of the results used
in this paper that are somewhat technical in nature.

The following lemma is a variation of a result in matrix analysis [see, e.g.,
Roy (1957), pages 142–143]: If A and B are positive definite r × r matrices,
then, for any r-vector x, φmin�AB−1� ≤ x′Ax/x′Bx ≤ φmax�AB−1�. Lemma
A.1 shows how a double inequality of this type can be utilized in establishing
the closeness of φmin�A�/φmin�B� to 1.

Lemma A.1. Let �Ak� k ≥ 1� and �Bk� k ≥ 1� be two sequences of posi-
tive definite r × r matrices and let ak and bk denote their minimum eigenval-
ues, respectively. Also let Ãk = D−1

k Ak�D′
k�−1 and B̃k = D−1

k Bk�D′
k�−1, where

�Dk� k ≥ 1� is a sequence of non-singular r × r matrices. Then∣∣ak/bk − 1
∣∣ ≤ δk = �Ãk − B̃k�/φmin�B̃k� (A.1)

Consequently, if, for some positive definite r × r matrix D,

Ãk → D� B̃k → D� k → ∞�(A.2)

then ak/bk → 1, k → ∞.
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Proof. First, consider the function sk�x� = x′Akx/x′Bkx, where x is an r-
vector. Let y = D′

kx. Since Dk is a non-singular matrix, sk�x� takes the same
set of values as Sk�y� = y′Ãky/y′B̃ky and therefore infy Sk�y� ≤ sk�x� ≤
supy Sk�y�. Now assume without loss of generality that �y� = 1 and let δk =
�Ãk−B̃k�/φmin�B̃k�. Then, utilizing the fact that φmin�B̃k� ≤ y′B̃ky, we obtain
that

∣∣Sk�y� − 1
∣∣ = �y′�Ãk − B̃k�y�/y′B̃ky ≤ δk. Together with infy Sk�y� ≤

sk�x� ≤ supy Sk�y� this implies, for any r-vector x with �x� = 1 and k ≥ 1,

1− δk ≤ x′Akx/x′Bkx ≤ 1+ δk (A.3)

Now fix any k ≥ 1 and let xk denote a normalized eigenvector associated
with the eigenvalue ak of the matrix Ak. Then ak = x′

kAkxk. By the definition
of the minimum eigenvalue, bk ≤ x′

kBkxk. Therefore, in view of (A.3), one
obtains that

bk ≤ x′
kBkxk ≤ �1− δk�−1x′

kAkxk = �1− δk�−1ak 

On the other hand, letting xk denote a normalized eigenvector associated with
bk one can easily infer from (A.3) that ak ≤ x′

kAkxk ≤ �1 + δk�x′
kBkxk =

�1+ δk�bk. Thus, �ak/bk − 1� ≤ δk = �Ãk − B̃k�/φmin�B̃k� which proves (A.1).
If Assumption (A.2) is also satisfied then �Ãk − B̃k� → 0 and φmin�B̃k� →

φmin�D� > 0. By (A.1), this readily implies that ak/bk → 1, k → ∞. ✷

Lemma A.2. Let λ̂n denote the ML estimate of λ0. Assume that Conditions
A and B hold. Then λ̂n converges completely to λ0 as n → ∞.

Proof. The proof is an extension of the proof of the strong consistency
of the ML estimate of the parameter in a generalized linear model given in
Fahrmeir and Kaufmann [(1985), Theorem 2; see also Fahrmeir and Kauf-
mann (1986)].

Fix any δ > 0 and note that the inequality �k�Zk�λ� − �k�Zk�λ0� ≤ 0 (for
any λ such that �λ−λ0� = δ� implies that there exists a local maximum inside
the sphere �λ ∈ Rr � �λ − λ0� ≤ δ� and therefore �λ̂k − λ0� ≤ δ.

For the same δ, consider any λ with �λ − λ0� = δ and let u = �λ − λ0�/δ.
It is clear that �u� = 1. Now expand the log-likelihood function �k�Zk�λ� in a
Taylor series around λ0:

�k�Zk�λ� − �k�Zk�λ0� = δu′�̇k�Zk�λ0� − �δ2/2�u′Ĵk�λ̃�u�(A.4)

where λ̃ lies between λ and λ0. Define the sets

Ak =
{
��̇k�Zk�λ0�� ≤ �δ/2� inf

�λ−λ0�≤δ
φmin�Ĵk�λ��

}
�

Bk =
{

sup
�λ−λ0�≤δ

�K̂k�λ� − Kk�λ0�� ≤ εφmin�Kk�λ0��
}

� 0 < ε < 1 
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Note that u′Ĵk�λ̃�u ≥ φmin�Ĵk�λ̃�� ≥ inf �λ−λ0�≤δ φmin�Ĵk�λ�� and �u′�̇k�Zk�λ0��
≤ ��̇k�Zk�λ0�� since �u� = 1. Therefore, by (A.4), Ak ⊂ ��k�Zk�λ�− �k�Zk�λ0�
≤ 0� and

∞∑
k=1

P��λ̂k − λ0� > δ� ≤
∞∑

k=1

P�Ac
k� (A.5)

In order to complete the proof of the lemma, it suffices to show that
∑

P�Ac
k� <

∞. By Lemma A.1 with Ak = Ĵk�λ�, Bk = Jk�λ0� and Dk = Qk, for any λ,

φmin�Ĵk�λ�� ≥ φmin�Jk�λ0���1− �K̂k�λ� − Kk�λ0��/φmin�Kk�λ0��� 

Hence, on the set Bk, inf �λ−λ0�≤δ φmin�Ĵk�λ�� ≥ �1−ε�φmin�Jk�λ0��. Therefore

�Ac
k ∩ Bk� ⊂ ���̇k�Zk�λ0�� > �δ/2��1− ε�φmin�Jk�λ0��� 

Thus, using the inequality P�Ac
k� ≤ P�Ac

k ∩ Bk� + P�Bc
k�, we obtain

∞∑
k=1

P�Ac
k� ≤

∞∑
k=1

P���̇k�Zk�λ0�� > �δ/2��1− ε�φmin�Jk�λ0��� +
∞∑

k=1

P�Bc
k� 

By Condition A, ��̇k�Zk�λ0��/φmin�Jk�λ0�� → 0 completely. Also,
∑

P�Bc
k� <

∞ since, by Condition B, �K̂k�λ�−Kk�λ0�� → 0 completely in some neighbor-
hood of λ0 and φmin�Kk�λ0�� → φmin�K�λ0�� > 0. Therefore,

∑
P�Ac

k� < ∞
and λ̂n converges completely to λ0 in view of (A.5). ✷

Lemma A.3. Let �Uk� k ≥ 1� be a sequence of positive random variables
and �mk� k ≥ 1� a sequence of positive real numbers such that m1 ≤ m2 ≤
m3 · · · → ∞, Uk/mk → 1 a.s. as k → ∞. For any b > 0, let T�b� = inf�k ≥ 1 �
Uk ≥ b�, t�b� = inf�k ≥ 1 � mk ≥ b� and assume that

lim
ρ→1

lim
b→∞

�t�bρ�/t�b�� = 1 (A.6)

Then, as b → ∞, T�b�/t�b� → 1 a.s. and ET�b�/t�b� → 1 if, for some δ > 0,∑∞
k=1 P�Uk < δmk� < ∞.

Proof. In order to establish that T�b�/t�b� → 1 a.s., let A�k0� η� = ��Uk−
mk� ≤ ηmk for all k ≥ k0�, where η > 0 and k0 ≥ 1. It is easy to see that on
this event, t�b/�1+ η�� ≤ T�b� ≤ t�b/�1− η�� for all b ≥ b0, where b0 → ∞ as
k0 → ∞. By (A.6), for any η > 0, there exists η′ > 0 such that

�1− η′�t�b� ≤ t�b/�1+ η�� and t�b/�1− η�� ≤ �1+ η′�t�b� for all b ≥ b0 

Therefore, A�k0� η� ⊂ ��T�b�/t�b�−1� ≤ η′ for all b ≥ b0� and hence Uk/mk →
1 a.s. implies P�A�k0� η�� → 1 as k0 → ∞ which in turn implies that
T�b�/t�b� → 1 a.s.
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Next, T�b�/t�b� → 1 a.s. will imply ET�b�/t�b� → 1 if �T�b�/t�b�� b ≥ 1�
is a uniformly integrable family of random variables. Take the value of δ for
which

∑∞
k=1 P�Uk < δmk� < ∞ and note that

T�b� ≤ I�T�b� = 1� +∑∞
k=2 I�T�b� = k� Uk−1 ≥ δmk−1�

+
∞∑

k=1

I�Uk < δmk� 
(A.7)

By the definition of the stopping rule T�b�, �T�b� = k� ⊂ �Uk−1 < b�. Since
�mk� k ≥ 1� is an increasing sequence of positive numbers,

∞∑
k=2

I�T�b� = k� Uk−1 ≥ δmk−1� ≤
∞∑

k=1

I�mk < b/δ� ≤ t�b/δ� 

From (A.6), t�b/δ� ≤ Ct�b� for some C as b → ∞. Therefore, it follows from
(A.7) that, for sufficiently large b, T�b�/t�b� ≤ 1 + C + ∑∞

k=1 I�Uk < δmk�.
In view of the assumption

∑∞
k=1 P�Uk < δmk� < ∞, it now implies that

�T�b�/t�b�� b ≥ 1� is uniformly integrable and therefore ET�b�/t�b� → 1.
✷

Lemma A.4. Suppose that Z1�    � Zn are independent random r-vectors
with mean zero and E�Zk�2 < ∞. Let Sn = ∑n

k=1 Zk and Vn = Cov Sn. As-

sume also that V
−1/2
n Sn

d→ N�0� Ir� as n → ∞, where V
1/2
n is the left Cholesky

square root of Vn, and, for any η > 0, there exists δη > 0 for which

tr
(
V�n�1+δη�� − Vn

)
≤ ηφmin�Vn� (A.8)

Then, for any regular sequence of integer-valued random variables �Tn� n ≥ 1�,
V

−1/2
Tn

STn
is asymptotically normal �0� Ir�, n → ∞.

Proof. It is easy to see that the asymptotic normality of V
−1/2
Tn

STn
is im-

plied by

V
−1/2
tn

STn

d→ N�0� I�� V
−1/2
Tn

V
1/2
tn

p→ Ir (A.9)

Concerning the first relation in (A.9), it follows from the assumptions of the
lemma that Tn/tn

p→ 1 for some sequence of positive integers �tn� n ≥ 1�.
Therefore it suffices to verify condition (5.4). Consider the cases 0 ≤ k ≤ tnδ
and −tnδ ≤ k ≤ 0 separately. Applying Kolmogorov’s inequality elementwise
and making use of the inequality

�V
−1/2
tn

�2 = tr V−1
tn

≤ rφmax�V−1
tn
� = r/φmin�Vtn

��(A.10)
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it can be seen that

P

{
max

0≤k≤tnδ
�V

−1/2
tn

�Stn+k − Stn
�� > ε

}
≤ �r/ε2��V

−1/2
tn

�2
�tn�1+δ��∑
i=tn+1

E�Zi�2

= �r/ε2��V
−1/2
tn

�2 tr �V�tn�1+δ�� − Vtn
�(A.11)

≤ �r/ε�2 tr �V�tn�1+δ�� − Vtn
�/φmin�Vtn

� 
Now utilizing the same argument when −tnδ ≤ k ≤ 0 and noting that
φmin�Vtn

� is an increasing function of n yields

P
{
max−tnδ≤k≤tnδ �V

−1/2
tn

�Stn+k − Stn
�� > ε

}
≤ 2�r/ε�2 tr �V�tn�1+δ�� − Vtn

�/φmin�Vtn
� 

(A.12)

Set η = ε3/�2r2� and choose δ > 0 such that (A.8) holds. It follows from (A.12)
that Condition (5.4) is satisfied for the chosen δ and the first relation in (A.9)
holds.

The verification of the second relation in (A.9) makes use of properties of
Cholesky square roots of positive definite matrices. Since V

−1/2
Tn

and V
1/2
tn

are
the left Cholesky roots of some matrices, they are both lower triangular with
positive diagonal elements and hence V

−1/2
Tn

V
1/2
tn

is the left Cholesky root of

V
−1/2
Tn

Vtn
�V−1/2

Tn
�′. Therefore V

−1/2
Tn

Vtn
�V−1/2

Tn
�′ p→ Ir implies that V

−1/2
Tn

V
1/2
tn

p→ Ir.
It is worth noting that this argument would break down if the symmetric
square roots of matrices were used because in general V

−1/2
Tn

V
1/2
tn

is not a

symmetric square root of V
−1/2
Tn

Vtn
V

−1/2
Tn

.

In order to show that V
−1/2
Tn

Vtn
�V−1/2

Tn
�′ p→ Ir, one can employ an argument

similar to that used for proving the first relation in (A.9). Find a sequence
of real integers �tn� n ≥ 1� such that tn → ∞ and Tn/tn

p→ 1, n → ∞, and
assume that, for any ε > 0 and some δε > 0,

max
−tnδε≤k≤tnδε

�V
−1/2
tn+kVtn

�V−1/2
tn+k�′ − Ir� ≤ ε for any large n (A.13)

Then P��V
−1/2
Tn

Vtn
�V−1/2

Tn
�′ − Ir� > ε� ≤ P��Tn/tn − 1� > δ� as n → ∞ and

therefore V
−1/2
Tn

Vtn
�V−1/2

Tn
�′ p→ Ir. Now it suffices to verify that (A.13) holds.

Again, considering separately the cases 0 ≤ k ≤ tnδ and −tnδ ≤ k ≤ 0, it can
be seen from (A.10) that, for any 0 ≤ k ≤ tnδ,

�V
−1/2
tn+kVtn

�V−1/2
tn+k�′ − Ir� ≤ �V

−1/2
tn+k��Vtn+k − Vtn

���V−1/2
tn+k�′�

≤ r�Vtn+k − Vtn
�/φmin�Vtn+k�(A.14)

≤ r tr �V�tn�1+δ�� − Vtn
�/φmin�Vtn

�
since φmin�Vtn+k� ≥ φmin�Vtn

� and �Vtn+k − Vtn
� ≤ tr �Vtn+k − Vtn

� ≤ tr
�V�tn�1+δ�� − Vtn

� due to the monotonicity of eigenvalues [cf. Bellman (1960),
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Chapter 7]. Utilizing the same argument when −tnδ ≤ k ≤ 0 together with
(A.14) yields

max
−tnδ≤k≤tnδ

�V
−1/2
tn+kVtn

�V−1/2
tn+k�′ − Ir� ≤ 2r tr �V�tn�1+δ�� − Vtn

�/φmin�Vtn
� (A.15)

Set η = ε/�2r� in (A.8) and choose the δ > 0 for which this condition is
satisfied. Then the right-hand side of (A.15) is less than ε implying that (A.13)
holds and hence both relations in (A.9) hold. This establishes the asymptotic
normality of V

−1/2
Tn

STn
and thus completes the proof of Lemma A.4. ✷
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