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LIMIT THEORY FOR THE SAMPLE AUTOCORRELATIONS
AND EXTREMES OF A GARCH (1�1) PROCESS1

By Thomas Mikosch and Cătălin Stărică

University of Groningen and Chalmers University of Technology

The asymptotic theory for the sample autocorrelations and extremes
of a GARCH�1�1� process is provided. Special attention is given to the case
when the sum of the ARCH and GARCH parameters is close to 1, that is,
when one is close to an infinite variance marginal distribution. This situa-
tion has been observed for various financial log-return series and led to the
introduction of the IGARCH model. In such a situation, the sample auto-
correlations are unreliable estimators of their deterministic counterparts
for the time series and its absolute values, and the sample autocorrela-
tions of the squared time series have nondegenerate limit distributions.
We discuss the consequences for a foreign exchange rate series.

1. Introduction. Log-returns Xt = lnPt − lnPt−1 of foreign exchange
rates, stock indices and share prices Pt� t = 1�2� � � �, typically share the fol-
lowing features:

1. The frequency of large and small values (relative to the range of the data) is
rather high, suggesting that the data do not come from a normal, but from
a heavy-tailed distribution.

2. Exceedances of high thresholds occur in clusters, which indicates that there
is dependence in the tails.

3. Sample autocorrelations of the data are tiny whereas the sample autocor-
relations of the absolute and squared values are significantly different from
zero even for large lags. This behavior suggests that there is some kind of
long-range dependence in the data.

Various models have been proposed in order to describe these features.
Among them, models of the type

Xt = σtZt� t ∈ ��

have become particularly popular. Here �Zt� is a sequence of iid symmetric
random variables with EZ21 = 1. One often assumes the Zt’s to be standard
normal. Moreover, the sequence �σt� consists of nonnegative random variables
such that Zt and σt are independent for every fixed t. We frequently refer to
σt as the stochastic volatility of Xt. Models of this type include the ARCH
and GARCH family; see for example [16] for their definitions and properties.
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We often write σ for a generic random variable with the distribution of σ1�X
for a generic random variable with the distribution of X1, etc.
We restrict ourselves to one particular model which has very often been

used in applications: the GARCH�1�1� process. It is defined by specifying σt
as follows:

σ2t = α0 + β1σ2t−1 + α1X2
t−1 = α0 + σ2t−1�β1 + α1Z2t−1�� t ∈ ��

The parameters α0� α1 and β1 are nonnegative.
The stationary GARCH�1�1� process is believed to capture, despite its sim-

plicity, various of the empirically observed properties of log-returns.
(Stationarity is always understood as strict stationarity.) For example, the
stationary GARCH�1�1� processes can exhibit heavy-tailed marginal distri-
butions of power law type and hence they could be appropriate tools to model
the heavier-than-normal tails of the financial data. This follows from a clas-
sical result by Kesten [29]; see Theorem 2.1 below. Although this result does
not seem to be well known in the econometrics literature, the fact that certain
power moments of X need not exist has been known for a long time; see, for
example, [37]. The question about the extent to which the tails of the esti-
mated GARCH�1�1� model do describe the tails of the empirical distributions
was addressed in [44]. It is shown there that, when using normal innovations,
the tails of the fitted GARCH�1�1� models seem to be much thinner than the
tails apparent in the data. Hence, even though the GARCH�1�1� processes
could display heavy tails, when estimated on the data they do not produce
tails that match the empirical ones. The relationship between the tail index of
a GARCH�1�1� process, its coefficients and the distribution of the innovations
is made clear in Section 2.2.
The tail behavior of the fitted GARCH�1�1� processes is also important

from another perspective. The empirical fact that the GARCH�1�1� models
fitted to log-return data often satisfy the condition α1 + β1 ≈ 1 implies that
one often deals with a class of models with E�X�2+δ = ∞ for δ close to zero.
For such models, the asymptotic behavior of various classical time series tools
such as the sample autocorrelations and the periodogram are not always well
understood and give rise to many theoretical questions. [The GARCH�1�1�
model with α1 + β1 = 1 is called integrated GARCH�1�1� or IGARCH�1�1�;
see [17].]
Another empirical finding concerns the behavior of the sample autocorrela-

tion function (sample ACF) of powers of absolute log-return data at large lags.
It has been noticed that the mentioned sample autocorrelations decay to zero
at a hyperbolic rate (“long-range dependence”). This seems to be in contradic-
tion with the sample ACF behavior of GARCH�1�1� model. The GARCH�1�1�
process has good mixing properties; it is strongly mixing with geometric rate,
provided Z has a density and E�Z�ε <∞ for some ε > 0; see for example [12].
Hence the autocorrelations of the underlying process, its absolute values and
squares, given these quantities are well defined and decrease to zero at an
exponential rate.
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However, as mentioned above, most often the fitted GARCH�1�1�models for
log-return data belong to the class of GARCH�1�1� processes with very heavy
tails, that is, models which do not have a finite fourth moment, although their
second moment may still exist. Hence, autocovariances and autocorrelations
are either not defined (for the squares, third powers, etc.), or when they exist
(for the time series itself and its absolute values) the standard theory for
the sample autocorrelation function, that is, Gaussian limit distributions and√
n-rates of convergence, is not valid any more. We show that in these cases the

sample autocorrelations have infinite variance distributional limits and the
rates of convergence are extremely slow. As a result, the asymptotic confidence
bands are much wider than in the classical asymptotically normal theory. The
fact that the sample ACF of ARCH-type processes has wider confidence bands
than for linear processes has already been mentioned in [4].
Under these circumstances one could hope that the confidence bands are

perhaps wide enough to bound the apparently hyperbolically decaying sam-
ple autocorrelation function of the absolute values of log-returns. In other
words, it is possible that the discrepancy we mentioned between the empir-
ically observed hyperbolic decay rate in the sample autocorrelation function
and the exponential decay of the autocorrelation function of the GARCH�1�1�
model could be explained through statistical uncertainty related to the estima-
tion procedure and hence claimed to be insignificant. If this were true, then,
up to statistical uncertainty, the GARCH�1�1� model could be said to explain
at least the sample autocorrelation function behavior. One of the conclusions
of the paper is that, even when the mentioned larger-than-usual statistical
uncertainty is accounted for, the GARCH�1�1� cannot explain the effect of
almost constancy of the sample ACF of the absolute values of log-returns. The
latter phenomenon can be explained by the nonstationary of the data; see [35]
for an extensive discussion.
As another desirable property that would recommend the GARCH�1�1�

model as a viable candidate that captures the already mentioned common fea-
tures of the financial log-returns, exceedances of very low–high thresholds by
the GARCH�1�1� process tend to occur in clusters. Formally, this behavior can
be described by the weak convergence of the point processes of exceedances,
associated with the time series, to a compound Poisson process. The cluster
sizes of this limiting process determine the extremal index θ ∈ �0�1�, 1/θ being
the expected size of the clusters. Section 4 is devoted to the extremal behavior
of the GARCH�1�1�. A comparison of the estimated extremal indices of sim-
ulated GARCH�1�1� and foreign exchange rate (FX) data is given in Section
6. This analysis reveals that the GARCH�1�1� model fit to the log-returns
does not, once again, properly describe the observed features of the data. The
expected cluster sizes of the exceedances of high–low thresholds of the FX log-
returns are smaller than the expected cluster sizes of simulated GARCH�1�1�
processes whose parameters were estimated from the FX observations. This
means that there is less dependence in the tails of real-life data than in the
GARCH�1�1� model.
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Our results serve in our view a double goal. On the one hand, they can be
thought of as a tool for deciding to which extent the potentially useful features
of the GARCH�1�1� model (heavy tails, slowly decaying sample ACF in the
case α1 + β1 ≈ 1, clustering of the extremes) do actually describe accurately
the corresponding empirical behavior. In this sense, we conclude that, although
displaying useful features, the GARCH�1�1�model does not seem to accurately
describe either the extremal behavior or the correlation structure captured by
the sample ACF of the data set that we analyzed in detail.
On the other hand, we think of our findings as contributions to the growing

number of results that emphasize the serious differences between the behav-
ior of various statistical tools under light and heavy tails when dependency is
present; see [41] for a recent survey paper. In this direction, we showed that
the sample ACFs of GARCH�1�1�models, their absolute values, squares, third
powers, etc., fitted to real-life FX log-returns, are either poor estimators of the
ACFs (slow convergence rates) or meaningless (nondegenerate limit distribu-
tions). Hence, in the case of the GARCH�1�1� modelling, the sample ACF can
be an extremely problematic statistical instrument that has to be used with
caution when making statistical statements.
The paper is organized as follows. In Section 2 we consider some basic

theoretical properties of the GARCH�1�1�model. The weak convergence of the
point processes associated with the sequences �Xt�σt�� ��Xt�� σt� and �X2

t � σ
2
t �

is considered in Section 3. In Section 4 we use these results to study the
extremal behavior of a GARCH�1�1� process, including the calculation of its
extremal index, the weak convergence of the point processes of exceedances
and the weak limits of the distributions of the extremes. In Section 5 we study
the asymptotic behavior of the sample autocovariances and autocorrelations
of the σt’s and Xt’s, their squares and absolute values. Section 6 contains
an empirical study of foreign exchange rates and simulated GARCH�1�1�.
In particular, we check the appropriateness of the GARCH�1�1� as a model
for the observed data as regards their dependence structure described by the
autocorrelation and autocovariance functions, tails and extremal behavior.
We conclude this section by noting that, for the sake of conciseness and due

to the strong connection between the present work and Davis and Mikosch
[11], we use notation and results from [11] without explicitly stating them. For
easy reference an extended, self-contained version of this paper is available
via the Internet; see [34].

2. Basic properties of GARCH�1�1�. In what follows, we collect some
facts about the probabilistic properties of the GARCH�1�1�. First we notice
that the GARCH�1�1� can be considered in the much wider context of stochas-
tic recurrence (or difference) equations of type

Xt = AtXt−1 +Bt� t ∈ ��(2.1)

where ��At�Bt�� is an iid sequence, for every t the vector Xt−1 is indepen-
dent of �At�Bt�, the At’s are iid random d × d matrices and the Bt’s are iid
d-dimensional random vectors.
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Indeed, write

Xt =
(
X2
t

σ2t

)
� At =

(
α1Z

2
t β1Z

2
t

α1 β1

)
� Bt =

(
α0Z

2
t

α0

)
�(2.2)

Then Xt satisfies equation (2.1) with d = 2. Also observe that σ2t satisfies the
recurrence equation

σ2t = α0 + σ2t−1�α1Z2t−1 + β1�� t ∈ ��(2.3)

which is of the same type as (2.1) for d = 1, with Xt = σ2t , At = α1Z2t−1 + β1
and Bt = α0.
Equations of type (2.1) have been extensively studied; see [1, 5, 6, 7, 19, 20,

13, 29, 45] and the references therein.

2.1. Existence of a stationary solution. The first question regards the exis-
tence of a stationary non-anticipative solution to equations (2.1) and (2.3).
Applying the results of [5] (the latter paper contains the most complete results;
for related work see [7, 45] in the case d = 1 and [19] for d ≥ 1) it follows that
(2.1) has a stationary solution if E ln+A < ∞, E ln+�B� < ∞ and if the top
Lyapunov exponent γ̃ defined as γ̃ = inf�n−1E lnA1 · · ·An� n ∈ ��, is nega-
tive. Here �·� is any norm in �n, and A = sup�x�=1 �Ax� is the corresponding
operator norm. Moreover, these conditions are close to necessity; see [5]. In [6]
they also studied the stationarity of the squared stochastic volatility process
σ2t for a general GARCH �p�q� process; the case p = q = 1 was treated in [37].
It is in general difficult to calculate the top Lyapunov exponent γ̃. However,

in the particular case (2.2) calculation yields

An · · ·A1 = An
n−1∏
t=1

(
α1Z

2
t + β1

)
�(2.4)

and so γ̃ = E ln�α1Z2 + β1�, provided E� ln �Z < ∞. Alternatively, one can
use the one-dimensional equation (2.3) and conclude from the conditions and
literature above that

α0 > 0 and E ln
(
α1Z

2 + β1
)
< 0(2.5)

are necessary and sufficient for stationarity of �X2
t � σ

2
t �; see [1] for details.

Moreover, β1 < 1 is necessary; see [6]. Notice that stationarity of σ2t implies
stationarity of the sequence �X2

t � σ
2
t � = σ2t �Z2t �1�� t ∈ �. By construction

of the sequence �Xt�, stationarity of the sequence �Xt�σt� follows. In what
follows, we assume that condition (2.5) is satisfied. Then a stationary version
of �Xt�σt� exists.

2.2. The tails ofXt and σt. In this section we consider the tail behavior of
the vectors �Xt�σt� which are the basic building blocks for the point processes
of Section 3. It can be described by multivariate regular variation; see [39,
40] for properties and applications of this notion. A d-dimensional vector Y is
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said to be regularly varying with index κ ≥ 0 and spectral measure P� on the
Borel σ-field of the unit sphere �d−1 of �d if

P��Y� > xt�Y/�Y� ∈ ·�
P��Y� > t�

v→ x−κP��·��(2.6)

Here→v denotes vague convergence (see [28] for its definition) and P� is the
distribution of a certain random vector � with values in �d−1.
The following result is a consequence of the renewal theory for products

of random matrices due to [29]. By virtue of the special structure of the
GARCH�1�1� process one can, however, reduce the problem to one-dimensional
renewal theory in which case one can apply the elegant results of [20]. For
convenience, we write

At = α1Z2t−1 + β1 t ∈ ��

Theorem 2.1. Assume the law of lnA is nonarithmetic, E lnA < 0, P�A >
1� > 0 and there exists h0 ≤ ∞ such that EAh < ∞ for all h < h0 and
EAh0 = ∞. Then the following statements hold:

(a) The equation

EAκ/2 = 1(2.7)

has a unique positive solution.
(b) Assume α0 > 0 and κ satisfies (2.7). Then there exists a stationary solu-

tion �σ2t � to (2.3). For independent A�σ2 with A =d A1 and σ2 =d σ21 , there
exists a positive constant c0 = E��α0 +Aσ2�κ/2 − �Aσ2�κ/2�/��κ/2�EAκ/2 lnA�
such that

P�σ > x� ∼ c0x−κ(2.8)

and

P��X� > x� ∼ E�Z�κP�σ > x� as x→ ∞�
Moreover, the vector �X�σ� is jointly regularly varying with index κ and spec-
tral measure on �1 given by

P�� ∈ ·� = E��Z�1��κI��Z�1�/��Z�1��∈·�
E��Z�1��κ �

Remark 2.2. If a unique κ > 0 with (2.7) exists, −∞ ≤ E lnA < 0 and
P�A > 1� > 0 hold necessarily; see [46]. Since β1 < 1 is necessary for station-
arity, α1 = 0 is not a possible parameter choice when (2.7) holds.
If the conditions of Theorem 2.1 hold and α1 + β1 = 1 then (2.7) has the

unique solution κ = 2. This implies thatP��X� > x� ∼ cx−2 for some c > 0 and,
in turn, that EX2 = ∞. GARCH�1�1� models fitted to log-returns frequently
have parameters α1 and β1 such that α1+β1 is close to 1. This indicates that
one deals with time series models with extremely heavy tails.

Proof. The function EAh is continuous and convex in h. Since E lnA < 0
it assumes values smaller than 1 in some neighborhood of the origin. More-
over, for sufficiently large h, since P�A > 1� > 0 and EAh0 = ∞, EAh ≥ 1.
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ThereforeEAκ/2 = 1 has a unique positive solution. Since condition (2.5) holds,
a stationary solution �σ2t � exists. The assumptions ensure that EAκ/2+ε < ∞
for small ε > 0 and so all conditions of Theorem 4.1 in [20] are satisfied. The
latter result gives the first relation in (2.8). The second one is a consequence of
a result by Breiman [8]: assume ξ and η are independent nonnegative random
variables such that P�ξ > x� = L�x�x−κ for some slowly varying function L
and Eηκ+ε <∞ for some ε > 0. Then

P�ηξ > x� ∼ EηκP�ξ > x�� x→ ∞�(2.9)

Another application of Breiman’s result yields for any Borel set B ⊂ �1 that

P���X�σ�� > xt� �X�σ�/��X�σ�� ∈ B� = P�σ ��Z�1��I��Z�1�/��Z�1��∈B� > xt�
∼ E��Z�1��κI��Z�1�/��Z�1��∈B�x−κP�σ > t��

P���X�σ�� > t� = P�σ ��Z�1�� > t� ∼ E��Z�1��κP�σ > t��
This concludes the proof. ✷

The idea of the proof of Theorem 2.1 can be used to derive the joint tail
behavior of the following lagged vectors, for h ≥ 0,

Yh = �X0� σ0� � � � �Xh� σh��
Y�i�
h = ��X0�i� σi0� � � � � �Xh�i� σih�� i = 1�2�(2.10)

Z�2�
h =

(
�Z20�1��A1�Z21�1��

2∏
i=1
Ai�Z22�1�� � � � �

h∏
i=1
Ai�Z2h�1�

)
�

This particular form of vectors is used in Section 5 to construct the sample
ACF of the time series �Xt�, its absolute values and squares.

Theorem 2.3. Let h ≥ 0 and assume that the conditions of the
Theorem 2.1(b) are satisfied. Let �·� denote the max-norm.
(a) Y�2�

h is regularly varying with index κ/2 and spectral measure

P��·� =
E�Z�2�

h �κ/2I�Z�2�
h /�Z

�2�
h �ε·�

E�Z�2�
h �κ/2

�

where � = �θ0�X2� θ0� σ2� � � � � θh�X2� θh�σ2�.
(b) Y�1�

h is regularly varying with index κ and spectral measure P�1/2 , where
�1/2 is obtained from � by componentwise taking square roots.
(c) Yh is regularly varying with index κ and spectral measure given by the

distribution of the vector(
r0θ

1�2
0�X2� θ

1/2
0� σ2� � � � � rhθ

1/2
h�X2� θ

1/2
h�σ2

)
�(2.11)

where �rt� is a sequence of iid Bernoulli random variables such that P�r =
±1� = 0�5, independent of �.
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Proof. We start with

Y�2�
h =

(
σ20 �Z20�1�� σ21 �Z21�1�� � � � � σ2h�Z2h�1�

)
=
(
σ20 �Z20�1�� �α0 + σ20A1��Z21�1�� � � � � �α0 + σ2h−1Ah��Z2h�1�

)
=
(
σ20 �Z20�1�� σ20A1�Z21�1�� � � � � σ2h−1Ah�Z2h�1�

)
+Rh = Ch +Rh�

Under the assumptions of Theorem 2.1 on Z, each of the random variables
σ2t is regularly varying with index κ/2 and therefore the tail of Rh is small
compared to the tail of Y�2�

h . Hence the tail of Y
�2�
h is determined only by the

tail of Ch. By the same argument and induction we may conclude that the tail
of Y�2�

h is determined by the tail of the vector σ20Z
�2�
h . Hence for any Borel set

B ⊂ �2h−1 and in view of Breiman’s result (2.9), as t→ ∞,

P

(
�Y�2�
h � > xt�Y�2�

h /�Y
�2�
h � ∈ B

)
P

(
�Y�2�
h � > t

) ∼
P

(
σ20 �Z�2�

h � > xt�Z�2�
h /�Z

�2�
h � ∈ B

)
P

(
σ20 �Z�2�

h � > t
)

∼ x−κ/2
E�Z�2�

h �κ/2I�Z�2�
h /�Z

�2�
h �∈B�

E�Z�2�
h �κ/2

= � x−κ/2P�� ∈ B��

Since Y�2�
h is positive with probability 1, it follows from the results in the

Appendix of [12] that Y�1�
h is regularly varying with index κ and spectral mea-

sureP�1/2 . It remains to consider Yh. We can write Yh = �sign�Z0��X0�� σ0� � � � �
sign�Zh��Xh�� σh�, and, by symmetry of Z, we know that the sequence �sign
�Zt�� is independent of the sequence ���Xt�� σt��. Therefore we can use the
results in the Appendix of [12] to conclude that Yh is regularly varying with
index κ and spectral measure given by the distribution of the vector (2.11). ✷

3. Convergence of point processes. We follow the point process theory
in Kallenberg [28]. The state space of the point processes considered is ��d\�0�.
Write � for the collection of Radon counting measures on ��\�0�. Define

�̃ = �µ ∈ � � µ��x� �x� > 1�� = 0 and µ��x� x ∈ �d−1�� > 0��(3.1)

and let ���̃ � be the Borel σ-field of �̃ .
Let �Xt� be a strictly stationary GARCH�1�1� process. For fixed h ≥ 0, we

consider the strictly stationary sequence of random row vectors

Xt = �Xt�σt� � � � �Xt+h� σt+h�� t ≥ 1�
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Under the conditions of Theorem 2.3, X is regularly varying in �2�h+1� with
index κ > 0, and so are �X� andXt in �. Standard theory for regularly varying
functions implies that there exists a sequence �an� such that

nP��X� > an� → 1� n→ ∞�
and an = n1/κ'�n� for a slowly varying function '. In what follows, εx denotes
Dirac measure at x.
The following theorem is our main result on weak convergence.

Theorem 3.1. Let �Xt� be a GARCH�1�1� process satisfying the conditions
of Theorem 2.1(b). Then

Nn �=
n∑
t=1
εXt/an

d→N �=
∞∑
i=1

∞∑
j=1
εPiQij

�

where →d denotes convergence in distribution in ��̃ ����̃ ��, ∑∞
i=1 εPi is a

Poisson process on �+ with intensity measure ν�dy� = θXκy
−κ−1dy�κ is the

solution to (2.7) and θX is the extremal index of the sequence ��Xt�� which exists
and is positive; see Section 4 for a definition. The process �Pi� is independent of
the sequence of iid point processes

∑∞
j=1 εQij � i ≥ 1, with common distribution

Q on ��̃ � B̃��̃ ��. The latter distribution is specified in Theorem 2.8 of [11].

We write
Qij =

((
Q

�m�
ij�X�Q

�m�
ij� σ

)
�m = 0� � � � � h

)
�

Proof. The theorem is a consequence of Theorem 2.8 in [11]. The latter
requires the joint regular variation of all finite-dimensional distributions of
�Xt�, which follows from Theorem 2.3, and a weak mixing condition on �Xt�,
which is trivially satisfied since the process is strongly mixing with geometric
rate φn; see [12]. Moreover, one needs to check the condition

lim
κ→∞ lim supn→∞

P

( ∨
κ≤�t�≤rn

�Xt� > any
∣∣∣ �X0� > any) = 0� y > 0�(3.2)

where
∨
i bi = maxi bi and rn�mn → ∞ are two integer sequences such that

nφmn
/rn → 0� rnmn/n→ 0. By the definition of the sequence �Xt�, it suffices

to switch in condition (3.2) to the sequence �X2
t � σ

2
t � and to replace any by

a2ny
2. Recall that the former sequence satisfies the recurrence equation (2.1).

In this situation one can apply the techniques of the proof of Theorem 2.3 in
[12] to conclude that (3.2) holds. ✷

Remark 3.2. Analogous results can be obtained for the vectors

X�l�
t = ��Xt�l� σlt � � � � � �Xt+h�l� σlt+h�� l = 1�2�

either by applying the same arguments of proof as above or by deriving the
weak limit of the point processes from Theorem 3.1 in combination with a con-
tinuous mapping argument. Indeed, under the assumptions of Theorem 3.1,

N
�l�
n =

n∑
t=1
εX�l�

t /a
l
n

d→N�l� =
∞∑
i=1

∞∑
j=1
ε
PliQ

�l�
ij
� l = 1�2�
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where �Pi� is the same as above and

Q�l�
ij =

((∣∣∣Q�m�
ij�X

∣∣∣l� ∣∣∣Q�m�
ij�σ

∣∣∣l)�m = 0� � � � � h
)
� l = 1�2�

Remark 3.3. It is possible to extend the above results to point processes
with points in time–space. For illustrational purposes we restrict ourselves
to the processes N̂n = ∑n

t=1 ε�t/n�Xt/an�. The analogous results for the point

processes N̂�l�
n for ��Xt�l� are also valid. The weak convergence of �Nn� implies

the convergence of �N̂n� under the assumption of strong mixing; see [36]. For
fixed x > 0, the point process of exceedances of the threshold xan by the
sequence �Xt� is defined as

Ñn�·� =
n∑
t=1
εt/n�·�I�Xt>xan� = N̂n�· × �x�∞���

According to a result in [26] (cf. [18]), the weak limit of �Ñn� is compound
Poisson with compounding probabilities πk and probability generating func-
tion 3�u� =∑∞

k=1 πku
k. Specifically, in the limiting compound Poisson process

events occur as an ordinary Poisson process, independent of the multiplicities
(cluster sizes) of the events with compounding probabilities πk; that is, πk is
the probability that an event has multiplicity k.

4. The extremal behavior. The point process results of Section 3 enable
one to study the extremal behavior of the sequences �Xt� and �σt�. We assume
that the conditions of Theorem 2.1(b) hold. For any sequence of random vari-
ables �Yn� define the partial maxima

Mn�Y = max
i=1�����n

Yi� n = 1�2 � � � �

Assume that �Yn� is iid with the same marginal distribution as X. Hence we
may conclude that P�Y > x� ∼ cx−κ for some κ > 0. Then, with �bn� such that
nP�X > bn� ∼ 1,

P�b−1n Mn�Y ≤ x� → P�Y�κ� ≤ x�� x > 0�(4.1)

where Y�κ� has a standard Fréchet distribution function 7κ�x� = exp�−x−κ�,
x > 0; see for example [14], Chapter 3. For dependent sequences such as �Xt�
and �σt� exceedances of high thresholds occur in clusters, and so we cannot
expect that (4.1) remains valid for them. For a stationary sequence �Yt� the
notion of extremal index θY describes the clustering behavior of the extremes
(see Leadbetter [30]; cf. [14], Section 8.1):

P�b−1n Mn�Y ≤ x� → �P�Y�κ� ≤ x��θY� x > 0�

The extremal index θY assumes values in [0,1] and can be interpreted as the
reciprocal of the expected cluster size of high-level exceedances of the normal-
ized sequence �Yt�. We define the sequence �bn�Y� for a stationary sequence
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�Yt� as nP�Y > bn�Y� ∼ 1. In particular, bn�σ� bn� �X� and bn�X, up to a mul-
tiplicative constant, are asymptotically of the same order as n1/κ. Recall that
we write At = α1Z2t−1 + β1� t = 1�2� � � � �

Theorem 4.1. Assume the conditions of Theorem 2.1(b) are satisfied.

(a) The partial maxima of �σt� satisfy the limit relation
P�b−1n�σMn�σ ≤ x� → �P�Y�κ� ≤ x��θσ � x > 0�

with extremal index

θσ =
∫ ∞

1
P

(
sup
t≥1

t∏
j=1
Aj ≤ y−1

)
κ

2
y−�κ/2�−1 dy�

(b) The partial maxima of ��Xt�� satisfy the limit relation

P
(
b−1n� �X�Mn� �X� ≤ x

)
→ �P�Y�κ� ≤ x��θ�X�� x > 0�(4.2)

with extremal index

θ�X� = lim
k→∞

E

(
�Z1�κ − max

j=2�����k+1

∣∣∣∣Z2j j∏
i=2
Ai

∣∣∣∣κ/2)+

/
E�Z1�κ�

(c) The partial maxima of �Xt� satisfy the limit relation
P�b−1n�XMn�X ≤ x� → �P�Y�κ� ≤ x��θX� x > 0

with extremal index θX = 2θ�X��1−3̃�0�5��. Here 3̃ is the probability generating
function corresponding to the limiting compound Poisson process of the point
processes of exceedances of the thresholds bn��X� by ��Xt��; see Remark 3.3.

The formulas for the extremal indices given above can be evaluated numer-
ically or by Monte Carlo techniques. An example of how to proceed for an
ARCH(1) process has been given in [13]. We restrict ourselves to the statisti-
cal estimation of these indices for some simulated GARCH�1�1� and foreign
exchange log-returns; see Section 6.

Proof. (a) Taking into account that θσ = θσ2 , the proof follows by an
applications of Theorem 2.1 in [13] to the recurrence equation (2.3) for the
sequence �σ2t �.
(b) The existence of the Frechét limit in (4.2) follows from Theorem 3.3.3 in

[31], the fact that �Xt� is strongly mixing and the Pareto-like tails of X. The
existence of the extremal index θ�X� is a consequence of Theorem 2.8 in [11].
For the calculation of θ�X� = θX2 we follow the lines of the calculation of the
extremal index of an ARCH(1) in Remark 4.2 of [11]. In the notation of the lat-
ter paper, if � = �θ�k�−k� � � � � θ

�k�
k � is the �2k+ 1�-dimensional random row vector
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that appears in the definition of the joint regular variation of �X2
−k� � � � �X

2
k�

by virtue of Theorem 2.3(a) above,

P�� ∈ A� = E
[
�Z�2�

2k+1�X2 �κ/2I
(
Z�2�
2k+1�X2/�Z�2�

2k+1�X2 � ∈ A
)]/

E�Z�2�
2k+1�X2 �κ/2�

where Z�2�
2k+1�X2 = (

Z20�A1Z
2
1� � � � �

∏2k
j=1AjZ

2
2k

)
. Hence, for any measurable

function g,

Eg�θ� = E
[
g�Z�2�

2k+1�X2/�Z�2�
2k+1�X2 ���Z�2�

2k+1�X2 �κ/2
]/
E�Z�2�

2k+1�X2 �κ/2�

Therefore, together with (2.11) of [11], this yields θX2 as the limit for k→ ∞
of the quantities

E

([
θ
�k�
0

]κ/2
−

k∨
j=1

[
θ
�k�
j

]κ/2)
+

/
E
[
θ
�k�
0

]κ/2

= E
(∣∣∣∣Z2k k∏

i=1
Ai

∣∣∣∣κ/2 − max
j=k+1�����2k

∣∣∣∣Z2j j∏
i=1
Ai

∣∣∣∣κ/2
)
+

/
E

∣∣∣∣Z2k k∏
i=1
Ai

∣∣∣∣κ/2

= E
(
�Zk�κ − max

j=k+1�����2k

∣∣∣∣Z2j j∏
i=k+1

Ai

∣∣∣∣κ/2
)
+

/
E�Z�κ�

(c) Notice that, by symmetry of Z� �Xt� = �rt�Xt��, where the sequence
of the rt = sign�Xt� is independent of ��Xt��. As in [13] for the ARCH(1),
one can use this property to obtain the limit distribution of �b−1n�XMn�X� and
the extremal index θX by independent thinning from the point processes of
exceedances for ��Xt��. The weak convergence of the latter processes to a com-
pound Poisson process has been described in Remark 3.3. Then proceed as in
[13], pages 222–223. ✷

5. Convergence of the sample autocorrelations. In this section we
study the weak limit behavior of the sample autocovariances and sample auto-
correlations of the sequences �Xt� and �σt�, their squares and absolute values.
We assume that the conditions of Theorem 2.1(b) hold. Then the vector �Xt�σt�
is regularly varying with index κ > 0 and, by Theorem 3.1 and Remark 3.2,
the point processes Nn�N

�1�
n and N�2�

n generated by the vectors Xt�X
�1�
t and

X�2�
t , respectively, converge in distribution to the process N�N�1� and N�2�.
This is the basis for the weak convergence of the sample autocovariance func-
tion (ACVF) γn�X and the sample autocorrelation function (ACF) ρn�X defined
as

γn�X�h� =
1
n

n−h∑
t=1
XtXt+h and ρn�X = γn�X�h�/γn�X�0�� h = 0�1� � � � �

The sample ACVF/ACF for the sequences ��Xt��� �X2
t �� �σt� and �σ2t � are

defined analogously. The deterministic counterparts (ACVF, ACF) are
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denoted by

γX�h� = EX0Xh� γ�X��h� = E�X0Xh�� γX2�h� = EX2
0X

2
h�

ρX�h� = γX�h�/γX�0� etc.

Usually, centering around the mean–sample mean is included in the defini-
tion of the ACF–sample ACF. However, our choice to focus on the uncentered
versions is justified by the fact that in the heavy–tailed case centering with
the sample mean is not relevant for asymptotic results; similar arguments to
the ones below involving the centered versions yield the same limits.
In what follows, we frequently use the notion of multivariate α-stable dis-

tribution. We refer to [42] for an encyclopedic treatment of multivariate stable
distributions.

5.1. Convergence in distribution of the sample ACF. We first consider the
cases when the sample ACFs have nondegenerate distributional limits. Then
Xt is regularly varying with index κ > 0 and

Nn

d→N =
∞∑
i=1

∞∑
j=1
εPiQij and N

�l�
n

d→N�l�� l = 1�2�

The case κ ∈ �0�2�. An application of Theorem 3.5 in [11] yields

�na−2n �γn�X�m�� γn�σ�m���m=0�����h
d→ ��Vm�X�Vm�σ��m=0�����h�

��ρn�X�m�� ρn�σ�m���m=1�����h
d→
((
Vm�X
V0�X

)
�

(
Vm�σ
V0� σ

))
m=1�����h

�

where the vector ��Vm�X�Vm�σ��m=1�����h is κ/2-stable with point process
representation

Vm�X =
∞∑
i=1

∞∑
j=1
P2iQ

�0�
ij�XQ

�m�
ij�X� m = 0� � � � � h�(5.1)

and the Vm�σ ’s are defined by replacing in (5.1) Q
�0�
ij�XQ

�m�
ij�X with Q�0�

ij� σQ
�m�
ij� σ .

The analogous relations hold for the sample ACVF and ACF of the sequences
��Xt�� and �σt�. In this case, one has to replace ��Vm�X�Vm�σ�� with ��Vm� �X��
Vm�σ��, where Vm� �X� is obtained by replacing the vectors Qij in the infinite

series (5.1) with Q�1�
ij = (��Q�m�

ij�X��Q�m�
ij� σ��m = 0� � � � � h).

The case κ ∈ �0�4�. The same argument as above gives

�na−4n �γn�X2�m�� γn�σ2�m���m=0�����h
d→ ��Vm�X2�Vm�σ2��m=0�����h�

��ρn�X2�m�� ρn�σ2�m���m=1�����h
d→
((
Vm�X2

V0�X2

)
�

(
Vm�σ2

V0� σ2

))
m=1�����h

�

where the vector ��Vm�X2�Vm�σ2��m=1�����h is κ/4-stable.
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5.2. Rates of convergence for the sample ACF toward the ACF. In this sec-
tion we assume that the covariances ofXt (respectivelyX2

t ) are finite. Then, by
the ergodic theorem, γn�X�h� → γX�h� a.s., γn�X�l�h� → γ�X�l�h� a.s., l = 1�2,
and the analogous relations hold for the σ- and σ2-sequences. It brings up the
question as to the rate of convergence in these results.
5.2.1. Convergence to the normal distribution. The Markov chain �X2

t � σ
2
t �

is strongly mixing with geometric rate; see [12]. Hence the standard CLT for
strongly mixing sequences applies provided suitable moment conditions hold;
see for example [27, 33].

The case κ ∈ �8�∞�. Then E�X8+σ8� <∞. The standard CLT applies to
the sample ACVF of the X2- and σ2-sequences,

n1/2
(�γn�X2�m� − γX2�m�� γn�σ2�m� − γσ2�m��)

m=0�����h
d→ (�Gm�X2�Gm�σ2�

)
m=0�����h�

where the limit is multivariate Gaussian with mean zero. The CLT for the
sample ACF follows by an application of the continuous mapping theorem.

The case κ ∈ �4�∞�. Analogous results hold for the X-, �X�- and
σ-sequences. We omit the details.
5.2.2. Convergence to infinite variance stable distributions. The derivation

of these results can be quite technical. We restrict ourselves to explaining the
basic ideas and refer to [11, 34] for more details. The weak limits of the sam-
ple ACVF is characterized in terms of limiting point processes; the limit of
the sample ACF follows from a simple continuous mapping argument. Weak
limits of the vectors of sample autocovariances are infinite variance stable
random vectors. They are functionals of point processes. It is, however, diffi-
cult to describe the spectral measure of these stable vectors analytically; the
latter determines the dependence structure of the vector. See [42] for details.
Therefore the results below are qualitative ones. It is not clear how to use
these results for the construction of asymptotic confidence bands for the sam-
ple ACFs and ACVFs. This issue needs further investigation.

The case κ ∈ �4�8�. We commence with the sequences �X2
t � and �σ2t �. We

establish joint convergence of the sample ACVF to κ/4-stable limits directly
from the point process convergence

N
�2�
n

∞∑
t=1
εan−2�X2

t �σ
2
t �����X

2
t+h�σ

2
t+h�

d→N�2� =
∞∑
i=1

∞∑
j=1
ε
P2iQ

�2�
ij
�(5.2)

where Q�2�
ij = ���Q�m�

ij�X�2� �Q�m�
ij� σ �2�� m = 0� � � � � h�. The weak convergence of the

sample ACF is then a straightforward consequence of the continuous mapping
theorem.
We start with the σ2-sequence and only establish joint convergence of

�γn�σ2�0�� γn�σ2�1��; the extension to arbitrary lags is analogous. Recall that
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At+1 = α1Z2t+β1. Now, using the representation (2.3) and the CLT for �σ2t At+1�
we obtain

a−4n
n∑
t=1

�σ4t+1 −Eσ4� = a−4n
n∑
t=1

(
�α0 + σ2t At+1�2 −Eσ4

)
= a−4n

n∑
t=1
σ4t �A2t+1 −EA2� + a−4n EA2

n∑
t=1

�σ4t −Eσ4� + oP�1��

We conclude that for every ε > 0,

�1−EA2�na−4n
(
γn�σ2�0� −Eσ4

)
= a−4n

n∑
t=1
σ4t �A2t+1 −EA2�I�σt>anε�

+a−4n
n∑
t=1
σ4t �A2t+1 −EA2�I�σt≤anε� + oP�1� = I+ II+ oP�1��

(5.3)

Now, by Karamata’s theorem (see e.g., [3]) as n→ ∞,
var�II� = constn�εan�−8Eσ8I�σt≤anε� ∼ const ε8−k → 0 as ε→ 0�(5.4)

As for I, let xt = (
x
�0�
t�X2� x

�0�
t�σ2� � � � � x

�h�
t�X2� x

�h�
t� σ2

) ∈ ��2�h+1�∖�0� and define the
mappings Tm�ε�X2 � � → �� by

Tj�ε� σ2

( ∞∑
i=1
niεxi

)
=

∞∑
i=1
ni
(
x
�j�
i� σ2

)2
I��x�0�

i� σ2
�>ε�� j = 1�2�

Tm�ε� σ2

( ∞∑
i=1
niεxi

)
=

∞∑
i=1
nix

�0�
i� σ2x

�m−1�
i� σ2 I��x�0�

i� σ2
�>ε�� m ≥ 2�

Since the set �x ∈ �� 2�h+1�\�0�� �x�l�� > ε� for any l ≥ 0 is bounded, the CLT
and the convergence in (5.2) imply that

I = a−4n
n∑
t=1

((
σ2t At+1 + α0

)2 − σ4t EA2)I�σt>anε� + oP�1�
= a−4n

n∑
t=1

(
σ4t+1 − σ4t EA2

)
I�σt>anε� + oP�1�

= T1� ε� σ2N�2�
n −EA2T0� ε�σ2N�2�

n + oP�1�
d→ T1� ε� σ2N

�2� −EA2T0� ε� σ2N�2� =� S�ε�∞��
where ES�ε�∞� = 0. Using again (5.4) and the argument in [10], pages 897
and 898, S�ε�∞� →d V∗

0, say, as ε→ 0. Turning to (5.3), we finally obtain

na−4n
(
γn�σ2�0� −Eσ4

) d→ �1−EA2�−1V∗
0 =� V0�
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For γn�σ2�1�, we proceed as above and write

na−4n �γn�σ2�1� − γσ2�1�� = α−4n
n∑
t=1

(
σ2t
(
α0 + σ2t At+1

)− γσ2�1�)
= a−4n

n∑
t=1
σ4t �At+1 −EA�I�σt>anε� + a−4n

n∑
t=1
σ4t �At+1 −EA�I�σt≤anε�

+EAna−4n
(
γn�σ2�0� − γσ2�0�

)+ oP�1� =� III+ IV + V + oP�1��

As for II, limε→0 lim supn→∞ var�IV� = 0. Moreover,

III+V = a−4n
n∑
t=1

�σ2t σ2t+1−σ4t EA�I�σt>anε�+EAna−4n
(
γn�σ2�0�−γσ2�0�

)+oP�1�
= T2�ε�σ2N

�2�
n −EAT1�ε�σ2N�2�

n +EAna−4n
(
γn�σ2�0�−γσ2�0�

)+oP�1�
d→ T2�ε�σ2N

�2�−EAT1�ε�σ2N�2�+EAV0 as n→∞
d→ V∗

1+EAV0=�V1 as ε→0�

It also follows form [10], pages 897 and 898, that �V0�V1� is jointly
κ/4-stable.
The weak convergence of na−4n �γn�X2�m� − γX2�m��m = 0� � � � � h� follows

the same patterns and can indeed be reduced to the convergence of linear
combinations of the sample ACVF of the σ2-sequence. Notice that the condition
α1 > 0 is necessary for the existence of a regularly varying tail for X with
index κ provided E�Z�κ <∞; see Remark 2.2. We can write Z2t = α−11

(�α1Z2t +
β1� − β1

) = α−11 �At+1 − β1�, and so, using the CLT, for m ≥ 1,

na−4n �γn�X2�m� − γX2�m��

= a−4n α−21
n∑
t=1

[
σ2t σ

2
t+m�At+1 − β1��At+m+1 − β1� − α21γX2�m�

]
= a−4n α−21

n∑
t=1

[
�σ2t+1σ2t+m+1 − β1σ2t σ2t+m+1 − β1σ2t+1σ2t+m + β21σ2t σ2t+m�

−(�1+ β21�Eσ20σ2m − β1Eσ20σ2m+1 − β1Eσ20σ2m−1
)]+ oP�1�

= na−4n α−21
[
�1+ β21��γn�σ2�m� − γσ2�m��

−β1�γn�σ2�m+ 1� − γσ2�m+ 1�� − β1�γn�σ2�m− 1�

−γσ2�m− 1��
]
+ oP�1�

d→ α−21
(�1+ β21�Vm − β1Vm+1 − β1Vm−1

)
�
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For m = 0 one can get a similar expression for the limit variable. We omit
details.

The case κ ∈ �2�4�. Arguments similar to those above show that the joint
convergence of a finite number of sample autocovariances from the X-, �X�-
and σ-sequences have a multivariate κ/2-stable limit. We omit details. The
interested reader is referred to [34]. ✷

6. An empirical study of simulated data and foreign exchange rates.
In this section we study the sample ACFs of the foreign exchange (FX) rate
Japanese yen–U.S. dollar (1992–1996) log-returns and of a fitted GARCH�1�1�
model. Although we focus on one particular series our findings are typical
for log-returns of FX rates, stock indices and share prices. We consider 70,000
30 minute data (in Olsen’s θ-time; see [9] for details). We fitted a GARCH�1�1�
model to the data, using quasi-maximum likelihood estimation (see [22, 21]),

α0 = 10−7� α1 = 0�11� β1 = 0�88�(6.1)

Notice that α1 + β1 = 0�99, a value which is very close to 1. This is a typical
situation for various financial time series; see [17, 2, 23]. Given estimates
α̂1� β̂1, one can calculate the residuals Ẑt = Xt/σ̂t, where α̂2t = α̂0 + α̂1σ̂2t−1 +
β̂1X

2
t−1. For notational ease, we will not distinguish between the estimates

α̂1� β̂1� Ẑt� � � � and the true values α1� β1�Zt� � � � . Figure 1 displays the QQ-
plot of the residuals against the quantiles of the Student (4) distribution with
variance 1 (which has tails P�Z > x� ∼ cx−4), indicating an overall good fit.
In [34] we used a least squares method to get an estimate of 3.56 for the tail
index of the residuals. In the literature, Student distributions, as heavy-tailed
distributions, were fitted to the residuals; see [2]. Given the GARCH�1�1�
model is correct, the choice of a (unit variance) Student distribution for Z is
certainly closer to reality than the normal assumption.
The tails of X and σ are determined by the center and the tails of the

distribution of Z via (2.7). For this reason, in this paper we do not give a
precise parametric description of the distribution of the residuals of the FX
log-returns. For our purposes, it is more realistic to work with the empirical
analogue to (2.7) given by

1
n

n∑
i=1

�α1Z2i + β1�κ/2 = 1�(6.2)

The theoretical basis for this approach is provided by Theorem 1.1 in [38].
There it is shown that, if E�A�κ+δ <∞ for some δ > 0, the solution κ̂ to (6.2) is
asymptotically normal with mean κ and variance �EAκ−1�/�nE�Ak/2 lnA��. If
the latter condition is not satisfied one can still show consistency of κ̂ under the
assumption E�A��κ/2�+δ < ∞; see [15], Lemma 3.3. Replacing the asymptotic
mean and variance by their sample analogues, we obtain the asymptotic 95%
confidence band �2�25− 0�014�2�25+ 0�014� for κ. (The latter confidence band
has to be treated with caution since the finiteness of E�Z�4�5+δ is questionable
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Fig. 1. Plots of the JPY-USD FX log-returns (a) and their residuals (b) from the GARCH�1�1�
model (6.1). (c) QQ-plot of the residuals against the quantiles of a Student(4) distribution with
variance 1.
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for this data set if one assumes that Z has a Student distribution.) For the
GARCH�1�1� process with parameters (6.1) we thus may conclude under the
conditions of Theorem 2.1 that

P�σ > x� ∼ c0x−2�25 and P�X > x� ∼ E�Z�2�25P�σ > x�� x→ ∞�
This implies that EX2 <∞, but EX4 = ∞.
Figure 2 shows the sample ACFs of the FX log-returns and their powers.

Confidence bands were derived from 1000 independent repetitions of 70,000
realizations from the GARCH�1�1� model (6.1). The iid noise was generated
from the empirical distribution of the residuals of the FX log-returns. The
interpretation of these sample ACFs very much depends on how heavy the
tails of the Xt’s are. Using the above findings of a Pareto-like tail for X with
κ = 2�25 and the theory of Section 5, we conclude that the limit distribution
of the sample ACFs of the Xt’s and �Xt�’s have infinite variance 2.25/2-stable
limits with rate of convergence �na−2n �−1 ∼ cn−1+κ/2 = cn0�125. Notice that
n0�125 = 70�0000�125 = 4�03. Thus, despite the large sample size, the asymp-
totic confidence bands for ρn�X�h� and ρn� �X��h� are huge. This observation is
supported by the bands in Figure 2. The slow rate of convergence of these esti-
mators in combination with the extremely heavy tails of the limit distribution
raises serious questions about the meaning and quality of these estimators.
This remark applies even more to the sample ACFs of the squares and third
powers. In those cases, both ρn�X2�h� and ρn�X3�h� converge in distribution;
that is, these statistics do not estimate anything.
The sample ACFs at the first 50 lags, say, of the absolute values of the FX

log-returns do not fall within the 95% confidence bands for the corresponding
sample ACFs of the GARCH�1�1� process; see Figure 2. This means that, even
when accounting for the statistical uncertainity, the GARCH�1�1� model does
not describe the second-order dependence structure of the FX log-returns suf-
ficiently accurately. On the other hand, the corresponding sample ACFs for the
residuals (Figure 3) behave very much like the sample ACF of a finite variance
iid sequence or of a moving average process with very small parameters. This
has also been observed in [32]. This compliance with the theoretical require-
ments of the model is a remarkable feature of the GARCH�1�1� process and
contributed greatly to its success. As a conclusion, the GARCH�1�1� process
cannot explain the long-range dependence effect observed in the sample ACFs
of the FX log-returns; see Figure 2. Even if we take into account that the sam-
ple ACFs of the squares and third powers are not meaningful, the sample ACF
of the absolute values, despite its big statistical uncertainity, should decay to
zero roughly at an exponential rate, due to the strong mixing property with
geometry rate.
Figure 4 displays the results for estimating the extremal indices θX of

the JPY-USD FX log-returns, θZ of their residuals and θσ of the volatility
sequence. The estimates are based on the so-called blocks methods which
involves a sufficiently large number of order statistics; see [24, 25, 43]; [13],
Section 8.1. Under general conditions, θ̂n is consistent and asymptotically
normal. The 95% confidence bands and the median were obtained from 400
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Fig. 4. Estimates of extremal indices as a function of k upper order statistics together with 95%
confidence bands and the median (dotted line) based on model (6.1). The estimates of θX [(a) upper
curve] are above the confidence bands. The same applies for the estimates of θσ (b). The estimates
of θZ (c) are within the confidence bounds.
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independent repetitions based on 70,000 GARCH�1�1� realizations with
parameters (6.1) and, as before, the noise was drawn from the empirical
distribution of the FX log-return residuals. See [34] for an exact description
of the procedure.
The estimates for θX and θσ of the FX log-returns lie above the 97.5%

curve. Hence the expected cluster size is smaller than for the corresponding
GARCH�1�1� model, indicating that there is less dependence in the tails of the
returns series than in theGARCH�1�1�model. The corresponding estimates for
θZ lie within the 95% bands for an iid sequence. This again seems to imply that
the residuals very much behave like an iid sequence (with extremal index 1).

Acknowledgments. Both authors thank the Departments of Mathemat-
ics and Statistics at Chalmers University and the University of Groningen for
financial support. We thank Holger Rootzén for stimulating discussions and
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