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We consider methods for kernel regression when the explanatory
and/or response variables are adjusted prior to substitution into a conven-
tional estimator. This “data-sharpening” procedure is designed to preserve
the advantages of relatively simple, low-order techniques, for example,
their robustness against design sparsity problems, yet attain the sorts of
bias reductions that are commonly associated only with high-order meth-
ods. We consider Nadaraya–Watson and local-linear methods in detail,
although data sharpening is applicable more widely. One approach in par-
ticular is found to give excellent performance. It involves adjusting both
the explanatory and the response variables prior to substitution into a local
linear estimator. The change to the explanatory variables enhances resis-
tance of the estimator to design sparsity, by increasing the density of design
points in places where the original density had been low. When combined
with adjustment of the response variables, it produces a reduction in bias
by an order of magnitude. Moreover, these advantages are available in mul-
tivariate settings. The data-sharpening step is simple to implement, since
it is explicitly defined. It does not involve functional inversion, solution of
equations or use of pilot bandwidths.

1. Introduction. The term “data sharpening” refers to methods for pre-
processing data so that, when they are substituted into a conventional estima-
tor, performance is improved relative to what it would be if the raw data were
employed. Of course, there are often other ways of improving performance,
usually involving changing the construction of the estimator. Data sharpening
recognizes that the conventional estimator had certain advantages, as well as
shortcomings, and attempts to retain the former, even enhancing them, while
adjusting the data so as to overcome the latter. It also provides insight into
the reasons for poor performance of standard methods—we must understand
deficiencies in order to rectify them.

In this paper we suggest data sharpening methods for reducing the bias,
and in some instances improving performance in other respects, of standard
nonparametric estimators of a regression mean. The methods are available in
a multivariate setting and involve simple, explicitly defined adjustments to
the data. We explore a range of different approaches, applicable to Nadaraya–
Watson and local-linear estimators, and conclude that one of them in

Received March 1999; revised May 2000.
1Supported by Grant 81NE-54413 from the Swiss National Science Foundation.
AMS 1991 subject classifications. Primary 62G07; secondary 62H05.
Key words and phrases. Bandwidth, curse of dimensionality, design sparsity, explanatory

variables, kernel methods, local-linear estimator, local-polynomial methods, Nadaraya–Watson
estimator, response variables, smoothing.

1339



1340 E. CHOI, P. HALL AND V. ROUSSON

particular, designed for the local-linear case, has advantages that make it very
attractive. It involves slightly shifting the design points (i.e., the explanatory
variables) so that they become more concentrated in places where the original
design density had been relatively low and more sparse where the concentra-
tion had been high. As a result, the estimator computed from the sharpened
data is less susceptible to difficulties arising from design sparsity. At the same
time, the estimator has an order of magnitude less bias [in fact, O�h4� rather
than O�h2�, where h denotes bandwidth] than the original local-linear esti-
mator, except in the near vicinity of the boundary and has the same order of
bias as the local-linear approach close to the boundary. The order of variance
is unchanged.

Conventional approaches to bias reduction, based for example on high-order
polynomials or high-order kernels, suffer more from design sparsity than the
techniques that they are endeavouring to improve. In particular, high-order
local polynomial methods involve more parameters than local linear meth-
ods and so demand more data in the local neighborhood for adequate fitting.
As a result, they do not realize their theoretical gains unless sample size is
relatively large; the requirement for more data in the local neighborhood is
manifested in greater susceptibility to the curse of dimensionality. This is not
the case for our bias-reduced estimator ĝLL�1, which performs relatively well
for small samples and is the most significant of the new estimators suggested
in this paper. In the case of that estimator, our method works simultaneously
to reduce bias and improve resistance against design sparsity.

More generally than this particular approach, we explore a variety of dif-
ferent forms of data sharpening. We show that asymptotic performance of
the Nadaraya–Watson estimator can be made equal to that of the local-linear
method by moving design points closer together in places where the design
density is high and further apart where it is low. The resulting estimator
may be shown to be first-order equivalent to its local-linear counterpart. The
fact that it is clearly more vulnerable to design sparsity than the original
Nadaraya–Watson estimator provides an explanation of the relatively poor
performance of the local-linear method in this respect.

A second approach, which involves adjusting response variables rather than
explanatory variables, reduces the bias of the Nadaraya–Watson estimator by
an order of magnitude; and a third method, which tweaks both explanatory
and response variables before substituting them back into the conventional
Nadaraya–Watson estimator, achieves bias reductions of the same order as
the second method, but in a different manner. It was a version of the latter
technique, although in the local-linear case, that we advocated earlier.

All our methods have counterparts for other approaches to nonparamet-
ric regression, for example for the convolution-type methods suggested by
Priestley and Chao or Gasser and Müller [see, e.g., Wand and Jones (1995),
pages 130–135]. We choose the Nadaraya–Watson and local linear methods for
detailed analysis because they are arguably of greatest methodological inter-
est. Indeed, there is a significant recent literature on techniques for improv-
ing the asymptotic performance of the Nadaraya–Watson estimator to that of
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local linear methods. It includes work of Müller and Song (1993) and Mam-
men and Marron (1997) on “identity reproducing regression” or “mass centred
smoothing,” which involves applying data-dependent functional transforma-
tions to reduce the bias of the Nadaraya–Watson estimator. Müller (1997)
has suggested an alternative technique which achieves the same end and is
based on adjusting the density estimator in the denominator of the Nadaraya–
Watson estimator. Hall and Presnell (1999) have considered a weighted boot-
strap approach to making the Nadaraya–Watson estimator unbiased for linear
functions; this is the principal source of the bias problems from which it suf-
fers. Related contributions for other estimator types include those suggested
by Hougaard (1988) and Hougaard, Plum and Ribel (1989).

Data-sharpening methods for density estimation have been discussed by
Choi and Hall (1999), although in implementation they are different from
those considered here. Methods that involve data shifting for purposes other
than resubstitution into an estimator include those suggested by Boswell
(1983), Fwu, Tapia and Thompson (1981) and Jones and Stewart (1997).

A potential drawback of our data-sharpening estimators is that, unlike
local-linear methods, they are not unbiased for linear functions. As a result
they may experience difficulties when estimating an approximately linear
function that is particularly steep. Also, while the data-sharpening idea can
be applied generally, some theoretical analysis or numerical experimentation
would be needed to determine the best approach in any given setting.

2. Methodology.

2.1. Definitions of basic estimators. Suppose independent data vectors
�Xi�Yi� for 1 ≤ i ≤ n are generated from a multivariate distribution. TheXi’s
are assumed to be p-vectors, the Yi’s are scalars, and we wish to estimate the
expected value of Y given X; that is, g�x� = E�Y�X = x�. Nadaraya–Watson
and local-linear estimators of g are

ĝNW�x�=
∑

i YiKi�x�∑
i Ki�x�

�

ĝLL�x�= eT1 �X�x�TW�x�X�x��−1X�x�TW�x�Y�
(2.1)

respectively, where Ki�x� = K��x−Xi�/h�, e1 is the �p+ 1�-vector with 1 in
the first position and 0 elsewhere, W = diag�Ki�, Y = �Y1� � � � �Yn�T,

X�x� =



1 �X1 − x�T
���

���
1 �Xn − x�T


 �

K is a nonnegative kernel (a function of p variables), and h is a bandwidth. For
discussion of local-linear smoothing for multivariate design, see, for example,
Ruppert and Wand (1994) and Fan and Gijbels (1996).

Both ĝNW and ĝLL have biases of order h2, but the bias of the latter is
typically less in absolute value than that of ĝNW, at least in minimax terms;
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see Fan (1993). On the other hand, ĝNW is generally more resistant to sparse
design than ĝLL, not least because (unlike ĝLL) it never takes the form of a
nonzero number divided by zero. It also has the advantage of being always
nonnegative if the Yi’s are nonnegative. In the context of local polynomial
fitting, ĝLL is more resistant to sparse design than estimators that are based
on fitting polynomials of second or third degree, which have biases of order
h4. This is particularly true in multivariate cases. We suggest data-sharpening
methods for reducing the bias of ĝNW to that of ĝLL, to first order, or reducing
it to order h4, and for reducing the bias of ĝLL to order h4.

2.2. Data-sharpening versions of ĝNW. Our first application of data
sharpening to ĝNW is based on moving design variables a little closer together
in places where the design density is high and a little further apart in places
where it is low, so as to overcome difficulties caused by inaccurate estimation
of the design density in both the numerator and the denominator of ĝNW.
(Estimation of the design density is implicit in the numerator and explicit in
the denominator.) These difficulties are particularly familiar in simpler prob-
lems of density estimation, where they lead to density estimators being too
low in peaks and too high in troughs.

This approach has some similarities to methods suggested for nonparamet-
ric density estimation by Choi and Hall (1999). However, in the latter case a
reduced bandwidth must be used for the sharpening step; by way of contrast,
when sharpening data for ĝNW, the same bandwidth is used throughout.

Specifically, put

X̂j =
∑

i XiKi�Xj�∑
i Ki�Xj�

�(2.2)

The first data-sharpening version of ĝNW, which we denote by ĝNW�1, has the
definition of ĝNW at (2.1) except that we replace the design points Xi by their
sharpened form. That is,

ĝNW�1�x� =
∑

i YiK̂i�x�∑
i K̂i�x�

�

where K̂i�x� = K��x− X̂i�/h�.
Our second version leaves the explanatory variables unchanged and instead

adjusts the response variables. Specifically, put Ŷj = ĝNW�Xj� and Ỹj =
2Yj − Ŷj, and let ĝNW�2 have the definition of ĝNW, except that each Yi is

replaced by Ỹi,

ĝNW�2�x� =
∑

i ỸiKi�x�∑
i Ki�x�

�

A third version alters both explanatory and response variables, as follows.
Put Y̆j = 2Yj − ĝLL�Xj�, where we may choose to drop diagonal terms when
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defining ĝLL�Xj�. Then ĝNW�3 has the definition of ĝNW, except that each

�Xi�Yi� is replaced by �X̂i� Y̆i�,

ĝNW�3�x� =
∑

i Y̆iK̂i�x�∑
i K̂i�x�

�

We shall argue in Section 4 that ĝNW�1 has properties similar to those of ĝLL,
while ĝNW�2 and ĝNW�3 have biases of order h4, rather than h2, except in the
close vicinity of boundaries. All three estimators have asymptotic variances of
order �nhp�−1.

2.3. Data-sharpening versions of ĝLL. To construct our first sharpened ver-
sion of ĝLL we move the Xi’s in the direction opposite to that suggested in
Section 2.2, and similarly translate the response variablesYi, in order to coun-
teract the major contributions to bias from both the numerator and denomina-
tor of ĝLL. Specifically, put X̃j = 2Xj−X̂j, where X̂j is as in Section 2.2, and

let Ỹj be as in Section 2.2. (Again, we may drop diagonal terms when defin-

ing X̃j and Ỹj.) Then, ĝLL�1 has the definition of ĝLL at (2.1), except that we

replace the data pairs �Xi�Yi� by their sharpened form �X̃i� Ỹi� throughout.
That is,

ĝLL�1�x� = eT1 �X̃�x�TW̃�x�X̃�x��−1X̃�x�TW̃�x�Ỹ�
where W̃ = diag�K̃i�, K̃i�x� = K��x− X̃i�/h�, Ỹ = �Ỹ1� � � � � Ỹn�T and

X̃�x� =



1 �X̃1 − x�T
���

���
1 �X̃n − x�T


 �

The transformation that takes Xj to X̃j moves the explanatory variables
away from the mode or modes of their distribution, and so counteracts any
problems that might be caused by design sparsity. This can be particularly
beneficial in multivariate settings, where the “curse of dimensionality” can
lead to greater difficulties through data sparsity than in one dimension. Panel
(a) of Figure 1 illustrates this point. Arrows there show the way in which
design points have been moved closer together in a place of relative sparsity,
and also the corresponding changes that have been made to response variables.

Our second data-sharpened local linear estimator is the analogue of ĝNW�2.
Let Y̆i be as in Section 2.2. Then, ĝLL�2 has the definition of ĝLL except that
each Yi is replaced by Y̆i:

ĝLL�2�x� = eT1 �X�x�TW�x�X�x��−1X�x�TW�x�Y̆�
where Y̆ = �Y̆1� � � � � Y̆n�T. Contrary to ĝLL�1, this form of data sharpening
leaves the explanatory variables unchanged, as shown in panel (b) of Figure 1.
Both ĝLL�1 and ĝLL�2 have biases of order h4, rather than h2, except in the
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Fig. 1. Geometric effects of data sharpening. Panels (a) and (b) indicate original data (white
points) and sharpened data (black points) used for ĝLL�1 and ĝLL�2, respectively. For clarity, the
original data contain no noise. Arrows indicate movements produced by the sharpening algorithm.
The dotted and solid lines superimposed are the local linear estimates obtained from the original
and the sharpened data, respectively. We observe that the latter curves are closer to the white
points which represent the true curve. Additionally, the data sharpening illustrated in panel (a)
has alleviated sparsity problems by moving design points closer together.
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close vicinity of boundaries; and in the case of ĝLL�2, bias is of order h3 at
boundaries.

Methods such as ĝNW�2 and ĝLL�2 lend themselves readily to iteration,
enabling methods of arbitrarily high order to be obtained by repeatedly sharp-
ening data prior to substitution into ĝNW or ĝLL. It is not difficult to see
that the size of variance remains unchanged at �nhp�−1, while bias reduces
to O�h2�l+1�� away from the boundary, in the case of l-fold sharpened data.
Boundary bias is of order hl+1 in the case of ĝNW�2, and hl+2 for ĝLL�2. Numer-
ical performance of methods based on iteration will be addressed in the next
section.

The estimator ĝLL�2 has an obvious analogue in the context of a general kth-
degree local polynomial estimator q̂. There the sharpened response variables
Y̆j should be redefined as 2Yj− q̂�Xj� and the sharpened version of q̂ defined
by constructing the estimator for data pairs �Xi� Y̆i� instead of �Xi�Yi�. Bias
is reduced by an order of magnitude, relative to that for the unsharpened
estimator, and variance is inflated only by a constant factor.

3. Numerical performance. In our Monte Carlo study, where we assess
the finite-sample performance of our methods, we consider p = 1 and address
a linear-with-Gaussian-peak target function defined by

g�x� = gk�x� = 2− 5x+ 2�5k exp�−200k�x− 0�5�2��(3.1)

The parameter k, as it increases, sharpens the peak and makes estimators of
gk more prone to suffer bias problems. So as not to confound general estimator
performance with edge effects, in most parts of our study we distributed design
points beyond the ends of the estimation interval, which we took to be � =
�0�1
. Nevertheless, we discuss edge effects. In a real-data example at the end
of the section we consider the case p = 2.

We compared the data-sharpened estimators ĝNW�1, ĝNW�2, ĝNW�3, ĝLL�1
and ĝLL�2 with conventional local-polynomial methods, and with a multi-
plicative bias reduction technique suggested by Linton and Nielsen (1994)
and Jones, Linton and Nielsen [(1995), Section 4.2]. The high-degree local-
polynomial fits that we considered included the local quadratic estimator ĝquad
and the local cubic estimator ĝcub. A problem with the multiplicative bias
reduction estimator is that its denominator can take values close or equal
to zero, even when design data are relatively plentiful. In consequence it is
not surprising to note that this method was not found competitive with other
approaches with respect to squared error properties. Also, the sharpened ver-
sions ĝNW�1 and ĝNW�3 of ĝNW suffer particularly from data sparseness for
relatively small samples and were found not to perform as well as the other
data-sharpening methods. Thus, for the sake of brevity we only present in
what follows the results for ĝNW�2, ĝLL�1, ĝLL�2, ĝquad and ĝcub along with the
benchmarks ĝNW and ĝLL.

The results discussed below are for the case of the biweight kernel, sample
size n = 100, and Normal N(0�0�52) errors. The design density was chosen
to be αB�4� q� + �1 − α�U�� � for α ∈ �0�1
 and q = 1�2�4, where B�p�q�
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and U�� � denote the beta distribution with parameters p and q and the
uniform distribution on � , respectively. For the case q = 4, a large value of
α corresponds to dense design towards the centre of � and sparse design at
the edges. The cases q = 1 and q = 2 correspond, respectively, to a J-shaped
density and to an asymmetric unimodal density (with mode near the right end
of � ) for large values of α. When continuing design points beyond the ends
of � we took the density to be constant (i.e., uniformly distributed stochastic
design).

Figure 2 depicts median integrated squared error (ISE) curves for various
densities and estimators and for k = 2 in the target function gk at (3.1).
We considered median ISE rather than mean ISE since the latter, due to
the random denominators, do not necessarily exist. Thus these curves were
constructed by taking the median of 1000 replications of ISEs at each value of
h. We employed a grid of 51 logarithmically equally spaced bandwidths, and
for each bandwidth in the grid we evaluated the corresponding smooths at 201
equispaced points in � . The trapezoidal rule was used to calculate integrated
squared error.

For small values of h the curve estimates were not defined since there were
insufficient design points in the bandwidth window. This problem was espe-
cially noticeable for high-order local-polynomial methods. We determined, for
each estimator and for different values of α and q, the smallest bandwidths
hmin for which the curve estimates could be calculated at each of the 201 grid
points of � in 90% of cases. We noted that as α increased, ĝLL�1 had the
smallest value of hmin for all three values of q, indicating its greater robust-
ness against sparsity problems. The vertical lines in Figure 2 denote hmin for
each estimator type. Note that hmin coincides for ĝNW and ĝNW�2 and for ĝLL
and ĝLL�2. Median ISE curves were computed between the respective values
of hmin and 0.35. Further information about the effects of data sparsity on
computability of different estimators is given in Figure 3, where, for different
estimator types and two different designs, the percentage of samples for which
the estimator can be calculated is graphed against bandwidth. The estimators
ĝNW and ĝLL�1 can be calculated more often than the others, with ĝLL�1 doing
better than ĝNW in cases where design sparsity is a particular problem at
boundaries.

To produce the curves in Figure 2 we resolved data sparsity problems by
considering only those samples for which the estimates could be calculated
at all grid points in � for their respective hmin. Panels (a), (b), (c) and (d) in
Figure 2 display results in the cases α = 0 and �α� q� = �1�4�� �1�2� and (1,1),
respectively. Note that in each of these panels we present only the better of
ĝquad and ĝcub for the sake of picture clarity. For uniform design, ĝNW�2� ĝLL�1
and ĝLL�2 are competitive with high-order-local-polynomial methods, as indi-
cated in panel (a). In particular, ĝLL�1 performs very well. The performance
of ĝquad and ĝcub, however, deteriorates markedly when design is nonuniform,
as is evident from panels (b), (c) and (d). For the case �α� q� = �1�4�� ĝNW�2
and ĝLL�1 perform best, achieving the smallest minimum values of median
ISE curves. In the case �α� q� = �1�2�, for which the peak in the regression
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Fig. 2. Median integrated squared error comparison of sharpened and local polynomial estima-
tors with n = 100 and target function g2. Panels (a), (b), (c) and (d) depict four different design
density settings, with α = 0 and �α� q� = �1�4�� �1�2� and (1, 1), respectively. The solid, dotted,
short-dashed, medium-dashed and long-dashed lines represent median integrated squared error
curves for ĝNW, ĝNW�2� ĝLL� ĝLL�1 and ĝLL�2, respectively, while the dotted–dashed lines refer to
ĝquad in panels (b) and (c) and to ĝcub in panels (a) and (d).
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Fig. 3. Percentage of times an estimate is well defined as function of bandwidth. Panels (a) and
(b) correspond to the design density settings α = 0 and �α� q� = �1�4�, respectively, in the context
of Figure 2. Sample size was n = 100. Graphs for ĝNW�2 and ĝLL�2 are identical to those for ĝNW
and ĝLL, respectively, and so are not shown. Line types for estimators ĝNW� ĝLL and ĝLL�1 are the
same as in Figure 2, while dotted–short–dashed and dotted–long–dashed lines refer to ĝquad and
ĝcub, respectively.
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function is not co-symmetric with the design density, ĝLL�1 clearly outperforms
ĝNW�2.

The case �α�1� is more difficult, since the design is particularly sparse at
the left end of � . Here also ĝLL�1 attains least median ISE over �hmin�0�35
,
thanks to its greater robustness against sparse design. This enables ĝLL�1 to
have a significantly smaller value of hmin than the other estimators. Broadly
similar conclusions may be drawn if we take k = 3 or k = 5 in (3.1).

Performance at the left boundary was also investigated in the case k =
2, along with α = 0 and �α� q� = �1�4�. For each method, we considered
the median of 1000 ISEs in [0,0.1] calculated at their respective median ISE
optimal bandwidth (as found in the last paragraph). In this part of the study
we did not generate design points outside � . While all methods share the
same order of performance in the uniform setting, with median ISE ranging
from 0.003 (for ĝNW�2) to 0.007 (for ĝcub�, we observed huge differences for
the sparse design setting �α� q� = �1�4�. Here median ISE ranged from 0.006
(for ĝNW�2), to 4.6 (for ĝquad) and to 333.9 (for ĝcub�, the estimates ĝLL�1 and
ĝLL�2 achieving 0.11 and 0.28, respectively. We conclude that high-degree-
local-polynomial methods suffer particularly from sparse design at the edges.

We then explored the effects of l-fold data sharpening, of the type employed
in ĝLL�2. The following results were observed for sample sizes n = 50�100 and
200 and with k = 2 in the target function gk at (3.1). There was generally
an initial decrease in the minimum value of median ISE curves, the overall
minimum occurring at two-fold sharpening (i.e., after one more sharpening
step than was used to construct ĝLL�2). Beyond that point, however, the min-
imum slowly increased. Exceptions were the cases �α� q� = �1�2� and (1,1),
along with sample size n = 50 for which the minimum occurred after a sin-
gle sharpening step. For all three sample sizes, the value of bandwidth at
which the minimum occurred gradually increased with l, confirming suspi-
cions that for a fixed sample size, iterating data sharpening beyond a certain
point inflates variance to such an extent that deleterious effects are not out-
weighed by reductions in bias.

Finally we illustrate our methodology in the case p = 2 using a bivari-
ate real-data example taken from Brinkman (1981). The data set consists
of 88 measurements from an experiment in which ethanol was burned in
a single-cylinder automobile test engine. The first component X�1� of the
explanatory variable X represents the engine’s compression ratio, the sec-
ond component X�2� denotes the richness of the air–ethanol mixture fed to
the engine and the response variable Y represents nitrous oxide concentra-
tion in the engine exhaust. IncreasingX�1� tends to monotonically increase the
response, even over a wide range, whereas increasing X�2� at first increases
and then decreases nitrous oxide emissions. Therefore, a graph of g�x� =
E�Y�X = x� has a ridge virtually parallel to the x�1� axis, gradually increasing
in the x�1� direction. Conventional low-order curve estimators can be expected
to underestimate the true height of the ridge. Indeed, an application of ĝLL�1
increases estimated ridge height by 17%, relative to that for the conventional
estimator ĝLL, with negligible adverse effects caused by increased stochastic
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error. See Figure 4. The bivariate bandwidth was �h1� h2� = �1�0�1�, and the
kernel was bivariate Normal.

4. Theoretical properties. Write x = �x�1�� � � � � x�p��, and assume
K�x� = ∏

i L�x�i��, where L is a compactly supported, symmetric, univariate,
Hölder-continuous probability density. (Of course, kernels that are not of the
product type could be used instead; they include, for example, a p-variate, non-
product form of the biweight kernel.) Suppose, too, that Y−E�Y�X = x� may
be written as εσ�x�, where the distribution of ε has unit variance and does not
depend on x, and σ�x� is a bounded, continuous function and that h = h�n�

Fig. 4. Perspective plots of regression surface estimates obtained using ĝLL and ĝLL�1. Panel (a)
shows the estimate ĝLL�1, and panel (b) plots ĝLL�1 − ĝLL. The same bandwidths were used for
both estimates. The effect of using ĝLL�1 rather than ĝLL is to increase ridge height by 17%, on
average, while keeping features, in particular the slope of the ridge, unchanged.



DATA SHARPENING 1351

converges to 0 as n → ∞, in such a manner that for some η > 0� nηh → 0 and
n1−ηhp → ∞. Call these conditions �C1�.

To address performance in the interior of the support of the design distri-
bution, let f denote the density of X, and assume that f�x� > 0 and both
f and g have four bounded derivatives in a neighborhood of x. Call these
conditions �C2�. To treat performance on the boundary, assume that the func-
tion representing the boundary of the support � of f has three bounded
derivatives. [The boundary is a �p − 1�-dimensional figure in p-dimensional
space. For example, when p = 2 the boundary of the support of f is a curve—a
one-dimensional figure—in the plane.] Suppose, too, that f has three bounded
derivatives in the set � formed by the intersection of � with an open neigh-
borhood of a point x0 on the boundary, that g has three bounded derivatives
in � and that f�x0� > 0. Call these conditions �C3�.

Put ∇f�x� = �∂f�x�/∂x�1�� � � � � ∂f�x�/∂x�p��T�∇2f�x� = �∂2f�x�/∂x�j�∂x�k��
(the former a p-vector and the latter a p × p matrix), κ1 = ∫

K2� κ2 =∫
u2L�u�du and

κ3 =
∫ {

2K�u� −
∫
K�u+ v�K�v�dv

}2
du�

If λ�t� = ∫
L�s+ t�L�s�ds then κ1 = λ�0�p and

κ3 = 4λ�0�p +
{ ∫

λ�t�2 dt
}p

− 4
{ ∫

λ�t�L�t�dt
}p
�

Values of κ1� κ2 and κ3 are given in Table 1 when p = 1 and the kernel is
uniform, Epanechnikov, biweight, triweight or standard Normal. In the first
four cases, L�t� = 1

2 �
3
4�1 − t2�� 15

16�1 − t2�2 or 35
32�1 − t2�3, respectively, on the

interval (−1�1), and equals zero elsewhere.
Let tr�M� denote the trace of a p× p matrix M.

Table 1
Values of κ1� κ2 and κ3 when p = 1.

Kernel �1 �2 �3

Uniform
1
2

1
3

5
6
≈ 0�833

Epanechnikov
3
5

1
5

8387
9856

≈ 0�851

Biweight
5
7

1
7

4665929295
4635158528

≈ 1�007

Triweight
350
429

1
9

6000946648025
5205581365248

≈ 1�153

Normal
1

2
√
π

1
4
√
6+√

3− 8

2
√
6π

≈ 0�407
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Theorem 4.1. (i) Under conditions �C1� and �C2�, ĝNW�1 is asymptotically
Normally distributed with mean g+ 1

2h
2 tr�∇2g�κ2 + o�h2� +O��nhp�−1� and

variance given by �nhp�−1κ1f−1σ2 + o��nhp�−1� (both the same as in the case
of ĝLL�, and ĝNW�2� ĝNW�3� ĝLL�1andĝLL�2 are asymptotically Normally dis-
tributed with mean g + O�h4 + �nhp�−1� and variance �nhp�−1κ3f−1σ2 +
o��nhp�−1�. (ii) Under conditions �C1� and �C3�, the asymptotic variances of
all five estimators equal O��nhp�−1� at each point in � (including x0�. Fur-
thermore, the asymptotic biases of ĝNW�1� ĝNW�2� ĝNW�3 and ĝLL�1 are O�h2 +
�nhp�−1� on � , while the asymptotic bias of ĝLL�2 equals O�h3 + �nhp�−1�
there, and all five estimators are asymptotically Normally distributed at each
point of � .

The conventional, uncorrected Nadaraya–Watson estimator has bias of
order h+O��nhp�−1� at the boundary, and so part (ii) of the theorem demon-
strates that all three types of data sharpening applied to ĝNW reduce boundary
bias. Perhaps of greater interest, however, is the reduction of boundary bias
in the case of ĝLL�2, effectively from O�h2� to O�h3�.

It may be proved that ĝNW�1 = ĝLL + op�h2 + �nhp�−1/2�. This is another
way of stating that ĝNW�1 achieves, to first order, the same asymptotic bias and
variance as ĝLL. Therefore, in adjusting ĝNW to ĝNW�1 we have remedied inef-
ficiency properties of the former. But that adjustment clearly involves increas-
ing the susceptibility of ĝNW to design sparsity, and so we may conclude that
the enhanced theoretical, asymptotic performance of ĝLL, relative to ĝNW, is
achieved at the expense of design sparsity problems. This is readily observed
in practice, too. It may also be explained through the fact that the “local con-
stant” estimator ĝNW is obtained by fitting only one parameter, relative to the
two parameters required for ĝLL.

The potential for reducing mean squared error by data sharpening is clear
from the theorem. In particular, the asymptotic mean squared errors of ĝNW�2,
ĝNW�3, ĝLL�1 and ĝLL�2 all equalO�h8+�nhp�−1�, rather thanO�h4+�nhp�−1�
as in the case of ĝNW and ĝNLL. Therefore, for the first four estimators, by
choosing h of size n−1/�p+8�, the order of asymptotic mean squared error can
be reduced to n−8/�p+8�, which should be compared with the smallest order,
n−4/�p+4�, which is achievable for the estimators ĝNW and ĝLL.

Note that, with � · � denoting the L2 metric for functions κ
1/2
3 = �2K −

K ∗K� > 2�K� − �K� = κ
1/2
1 , where “∗” denotes convolution. Therefore, data

sharpening inflates asymptotic variance by a constant factor, except in the
case of ĝNW�1.

The smoothness assumptions in conditions �C2� and �C3� are clearly over
restrictive in some instances. In particularly, to obtain the bias properties of
ĝNW�1 in parts (i) and (ii) of the theorem we require only two derivatives of
f and g, and to obtain the biases of ĝNW�2, ĝNW�3 and ĝLL�1 in part (ii) we
need only two derivatives. Furthermore, the orders of asymptotic bias stated
in the theorem for the interior of � are available uniformly in points in �
that are distant at least Ch from the boundary, where C > 0 depends on the
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support ofK and on the first four derivatives of the boundary (assumed finite).
Likewise, the asymptotic bias results stated for points that are within O�h�
of the boundary are valid uniformly there.

5. Outline of theoretical arguments. Let “as. bias ĝ” denote the
asymptotic bias of an estimator ĝ, put εi = Yi − E�Yi�Xi�, define x + ψ̂�x�
to equal the ratio at (2.2) when Xj there is replaced by x, and put ξ =
�nhp�−1. Standard Taylor-series methods may be used to prove that as. bias
ψ̂ = h2a1 + o�h2�, as. bias ĝNW = g + h2a2 + o�h2� + O�ξ� and as. bias
ĝLL = g + h2a3 + o�h2� + O�ξ�, where a1 = κ2�∇f�f−1 (a p-vector), a2 =
1
2κ2 tr�∇2�fg� − g∇2f�f−1 and a3 = 1

2κ2 tr�∇2g� (both scalars). Therefore,

X̂j = Xj + h2a1�Xj� + Z
�1�
j + R1� X̃j = Xj − h2a1�Xj� + Z

�2�
j + R2� Ỹj =

g�Xj�−h2a2�Xj�+Z�3�
j +2εj+R3 and Y̆j = g�Xj�−h2a3�Xj�+Z�4�

j +2εj+R4,

where the variables Z�k�
j are measurable in the sigma-field generated by the

Xi’s and have zero mean, and Rk denotes a random variable that equals
op�h2�+Op��nhp�−1/2�. These formulae, while not in themselves adequate for
the purpose of calculating bias and variance, guide our arguments
below.

For each estimator the asymptotic bias may be calculated, up to terms
O�h4� +O�ξ�, as the ratio of the expected values of numerator and denomi-
nator. We shall give outline arguments in the cases of ĝNW�1 and ĝLL�1. For
ĝNW�1, using the approximations developed in the previous paragraph, we see
that

as. bias ĝNW�1�x� +O�ξ�
= f�x�−1h−p ∫ �g�y� − g�x��f�y�

×K
[�x− y− h2a1�y��/h

]
dy+ o�h2�

= f�x�−1 ∫ [
g�x− hy− h2a1�y�� − g�x�]
× f�x− hy− h2a1�y��K�y�dy+ o�h2�

= h2��∇f�T�∇g�κ2 + 1
2f tr�∇2g�κ2 − f�∇g�Ta1�f−1 + o�h2�

= 1
2h

2 tr�∇2g�κ2 + o�h2��

(5.1)

Calculations in the case of ĝLL�1 are similar but more complex; we out-
line the argument. First, writing Ui�x� = g�Xi� − g�x� − h2a2�x� and U =
�U1� � � � �Un�T, observe that with β�x� = as. bias ĝLL�1�x� we have

β�x� +O�ξ� = eT1

[
E
{
X̃�x�TW̃�x�X̃�x�

}]−1
E
{
X̃�x�TW̃�x�U�x�

}
+ o�h2��

In the formula for Ui�x�, Taylor-expand the term g�Xi� around X̃i, obtaining
Ui�x� = Vi�x�+�a1�x�T∇g�x�−a2�x��h2+op�h2�whereVi�x� = g�X̃i�−g�x�.
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Therefore,

β�x� +O�ξ� = eT1

[
E
{
X̃�x�TW̃�x�X̃�x�

}]−1
E
{
X̃�x�TW̃�x�V�x�

}

+
{
a1�x�T∇g�x� − a2�x�

}
h2 + o�h2�(5.2)

= as. bias g̃LL�x� +
{
a1�x�T∇g�x� − a2�x�

}
h2 + o�h2��

where V = �V1� � � � �Vn�T and g̃LL is the estimator defined by a local-linear fit
to the “pseudodata” �X̃i� g�X̃i��. To work out as. bias g̃LL we use an argument
familiar from calculating the asymptotic bias of ĝLL: first, expand g�X̃i� as

g�X̃i� = g�x� + �X̃i − x�T∇g�x�
+ 1

2�X̃i − x�T∇2g�x��X̃i − x� + op��X̃i − x�2��
(5.3)

next, observe that the contribution to g̃LL from �X̃i−x�T∇g�x� vanishes iden-
tically (not just asymptotically) when the expansion at (5.3) is substituted into
the definition of g̃LL and finally, note that the contribution to asymptotic bias
from 1

2�X̃i−x�T∇2g�x��X̃i−x� is, up to terms of smaller order than h2, iden-
tical to the contribution from 1

2�Xi − x�T∇2g�x��Xi − x� to the conventional
local-linear estimator ĝLL, and so equals

1
2h

2 tr�∇2g�κ2. Combining the results
from (5.2) down we conclude that

as. bias g̃LL�1 +O�ξ�
= 1

2h
2 tr�∇2g�κ2 + �aT1 ∇g − a2�h2 + o�h2� = o�h2��

(5.4)

More extensive analysis shows that, when f and g have four bounded deriva-
tives, the “o�h2�” terms at (5.1) and (5.4) are actually O�h4�.

Calculation of asymptotic variance is routine, and asymptotic Normality fol-
lows via Lindeberg’s theorem. Bias computations at the boundary are similar.
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