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DATA: A THEORETICAL ANALYSIS
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The interval mapping method has been shown to be a powerful tool for

mapping QTL. However, it is still a challenge to perform a simultaneous
analysis of several linked QTLs, and to isolate multiple linked QTLs. To cir-
cumvent these problems, multiple regression analysis has been suggested
for experimental species. In this paper, the multiple regression approach
is extended to human sib-pair data through multiple regression of the
squared difference in trait values between two sibs on the proportions of
alleles shared identical by descent by sib pairs at marker loci. We conduct
an asymptotic analysis of the partial regression coefficients, which provide
a basis for the estimation of the additive genetic variance and of locations
of the QTLs. We demonstrate how the magnitude of the regression coef-
ficients can be used to separate multiple linked QTLs. Further, we shall
show that the multiple regression model using sib pairs is identifiable, and
our proposed procedure for locating QTLs is robust in the sense that it can
detect the number of QTLs and their locations in the presence of several
linked (QTLs) in an interval, unlike a simple regression model which may
find a “ghost” QTL with no effect on the trait in the interval with several
linked QTLs. Moreover, we give procedures for computing the threshold
values for prespecified significance levels and for computing the power for
detecting (QTLs). Finally, we investigate the consistency of the estimator
for QTL locations. Using the concept of epi-convergence and variation anal-
ysis theory, we shall prove the consistency of the estimator of map location
in the framework of the multiple regression approach. Since the true IBD
status is not always known, the multiple regression of the squared sib
difference on the estimated IBD sharing is also considered.

1. Introduction. Mapping genes that influence quantitative traits such
as blood pressure and weight is an important endeavor in genetics, and has
received tremendous attention since the birth of genetics as a science. It is
the first step towards the eventual identification of these genes, which would
eventually lead to the understanding as to how genetic variability affects the
variation of quantitative traits.
Statistical inference for gene mapping consists of locating quantitative trait

loci (QTLs) relative to a set of DNA markers and of estimating their effects on
trait values of interest. Our ability to map QTLs has been greatly enhanced
by the rapid development in construction and refinement of genetic map-
ping combined with the development of relevant statistical methodology
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[Haley, Knott and Elsen (1994), Wang et al. (1998)]. The interval mapping
method [Lander and Botstein (1989)] has been shown theoretically to be a
powerful tool for mapping QTL. The method uses markers that flank the chro-
mosomal interval of interest to detect any QTL lying within. Compared with
methods based on a single marker, the interval mapping approach has been
shown to have greater statistical power and can provide much more accurate
estimation of effects and positions of QTLs. It also has been shown that it is
relatively robust [Knott and Haley (1992), Luo and Kearsey (1992)].
Despite these advantages, however, it is still difficult for the approach to

search simultaneously several QTLs, linked or unlinked, and to distinguish
multiple linked QTLs. In particular, when two or more QTLs are located on
the same chromosomal region, the interval mapping approach may map these
loci to wrong locations [Knott and Haley (1992), Martinez and Curnow (1992)].
The interval mapping combined with linear regression analysis in QTL

mapping which is called composite interval mapping, mostly for experimen-
tal species, that has been proposed by several workers seems to provide some
improvements [Haley and Knott (1992), Haley, Knott and Elsen (1994),
Rodolphe and Lefort (1993), Jansen (1993), Zeng (1993, 1994)]. These workers
demonstrate that, using multiple markers, the regression approach can detect
the effects of multiple QTLs and separate multiple linked QTLs using both
markers flanking the QTLs and markers in other regions. This approach is
sensible, because quantitative traits are unlikely to be controlled by a single
QTL, and because the use of multiple markers in different regions of chromo-
somes would help detect multiple QTLs. While one can still use the interval
mapping method to search multiple QTLs simultaneously, the heavy compu-
tation burden makes this approach impractical. The advantage of composite
interval mapping is that when testing for the putative QTL in an interval,
one uses other markers as covariates to control for other QTL, and hence
to separate multiple linked QTL effects and to reduce the residual variance
[Kao, Zeng and Teasdale (1999)]. A great improvement in mapping QTLs by
composite interval mapping has been reported in mice [Dragani et al. (1995)],
Drosophila [Liu et al. (1996)] and Arabidopsis thailiana [Kuittinen, Sillanpää
and Savolainen (1997)]. Recently, Bayesian inference for QTL mapping has
been reported by Hoeschele and Varanden (1993), Satagopan, Yandell, Newton
and Osborn (1996) and Sillanpää and Arjas (1998).
Understanding the genetic architecture of a quantitative trait is a major

research focus in quantitative genetics [Templeton (1999)]. The genetic archi-
tecture of a trait refers in part to the number, genomic locations, frequen-
cies and effects of QTL, as well as to the interactions of QTL alleles within
(dominance) and between (epistasis) loci, pleiotropic effects of QTL, QTL by
environment interactions and so forth. Multiple interval mapping was recently
proposed for the identification and estimation of the genetic architecture
parameters as well as simultaneous mapping multiple QTL [Kao, Zeng and
Teasdale (1999)].
The interval mapping approach for experimental species apparently moti-

vated Fulker and Cardon (1994) to propose an interval mapping method for
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human sib-pair data that uses information from a pair of flanking markers.
Their simulations show that for nearly all modes of gene action, allele fre-
quency and marker density, this approach provides greater power than tradi-
tional sib-pair analysis based on a single marker.
In view of the limitations of the interval mapping approach and advantages

of the regression approach, it is logical to consider extending the regression
approach that is suitable for experimental species to human data, for exam-
ple, sib-pair data. Several multipoint variance components methods for map-
ping QTL have been developed recently that allow for marker-specific effects,
residual additive genetic effects and random environmental effects [Goldga
(1990), Schork (1993), Amos (1994), Xu and Atchley (1995), Blangero and
Almasy (1997), Almasy and Blangero (1998)]. A number of applications of the
variance components approach to QTL analysis in human pedigree data has
appeared recently [Comuzzie et al. (1997), Wang et al. (1997), Begleiter et al.
(1998), Duggirala et al. (1999)]. The goal of this paper is to further extend the
multiple regression approach to human sib-pair data and provide a thorough
theoretical analysis of the model.
Based on the proposed multiple regression model, we first consider the case

in which the number of alleles shared identical by descent (IBD) by two sib-
lings can be determined unequivocally. Under this situation, we consider the
asymptotic properties of the partial regression coefficients, which provide a
basis for the estimation of the additive genetic variance and of locations of the
QTLs. We shall show how the magnitude of the regression coefficients can be
used to separate multiple linked QTLs. Further, we shall show that the mul-
tiple regression model using sib pairs is identifiable, and our proposed proce-
dure for locating QTLs is robust. Moreover, we give procedures for computing
the threshold values for prespecified significance levels and for computing the
power for detecting QTLs.
Once the theoretical framework is established for the case when IBD status

can be determined unequivocally, we then turn to the more realistic case when
the IBD status is estimated based on marker data. For simplicity, we only
consider the case of diallelic markers. This may be suitable, for example, for
markers such as single nucleotide polymorphism (SNP), which is diallelic.
Finally, we investigate the consistency of the estimator for QTL locations,

an issue apparently ignored in the literature [Wright (1994)]. In fact, the
traditional asymptotic theory is not sufficient to prove this consistency. Using
the concept of epi-convergence and variation analysis theory, we shall prove
the consistency of the estimator in the framework of the multiple regression
approach.

2. A multiple linear regression model. Let Yi and Yi′ be the trait
values for a pair of siblings in the sibship i, respectively. We consider the
following model:

Yi = µ+
k∑

l=1
gil + ei� Yi′ = µ+

k∑
l=1

gi′l + ei′�(1)
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where µ is the grand mean, k is the number of QTLs that collectively influence
the trait value, gil and gi′l are genetic effects due to the lth QTL and ei� ei′ are
residual environmental effects independent of gil and gi′l. It is assumed that
ei and e′i are independent, and that E�ei� = E�e′i� = 0 and V�ei� = V�e′i� = σ2

e .
Let Zi = �Yi − Yi′ �2 be the squared difference of trait values between the

two sibs in sibship i. Let σ2
a�l� be the additive genetic variance due to the lth

QTL. We assume that a sample of n sib pairs has been taken at random from
the population, and that the number of markers to be considered is m. For
ease of discussion, we further assume that there is no epistasis or dominance.
Let π̄ij be the proportion of alleles, at jth marker locus, shared identical by
descent (IBD) by ith sib pair and πij = π̄ij− 1

2 , which is referred to as the IBD
value throughout this paper. To detect which marker is linked to QTLs, the
squared trait difference Zi can be regressed onto πij �j = 1� � � � �m�. This is a
multilocus generalization of the Haseman–Elston sib-pair method [Haseman
and Elston (1972)]. Therefore, we have the following regression model:

Zi = α+ πi1β1 + · · · + πimβm + εi�(2)

where εis are independent random variables with E	εi
 = 0 and V�εi� = σ2.
Note that σ2 should not be confused with the residual environmental variance
σ2

e . In the following, we shall see that

σ2 = 4

[
k∑

l=1
σ2

α�l�

]
σ2

e + 2σ4
e �

If we let

Ri =	1� πi1� � � � � πim
� Z=	Z1� � � � �Zn
T�

ε=	ε1� � � � � εn
T� β=	α�β1� � � � � βm
T�

and

R = [
RT

1 � � � � �R
T
n

]T
�

then the above model can be written in a matrix form:

Z = Rβ+ ε�(3)

with E	ε
 = 0 and V�ε� = σ2I, where I is an n× n identity matrix.
Using the standard least squares method, we obtain the following estimator

for β:

β̂n = �RTR�−1RTZ�

3. Asymptotic properties. In this section, we investigate the asymp-
totic properties of the estimator β̂, which are the basis for further theoretical
analysis of the model. We assume that data on n sib pairs are obtained inde-
pendently. We also assume Haldane’s mapping function (i.e., no crossing-over
interference).
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3.1. Consistency. Under these assumptions, using the same argument as
that of Rodolphe and Lefort (1993), we have the following asymptotic results
(Appendix A).

Theorem 1. Under the assumed model (3) and the above assumptions,
√

n�β̂n − β� L→ N�0� σ2U−1��
where U = E	RT

1 R1
 is given by

U =



1 0 0 · · · 0
0 A1 0 · · · 0
0 0 A2 · · · 0
· · · · · · · · · · · · · · · · · · · · · · · ·
0 0 0 · · · Aν,


(4)

with Ai = 	 18 exp�−4�jj′ �
 for the ith chromosome, and �jj′ representing the
genetic distance between the markers Mj and Mj′ , where ν is the number of
chromosomes on which the markers are placed, and the dimension of U is
m+ 1.

This theorem establishes the consistency of the estimator β̂n.

3.2. Asymptotic variance of β̂. If we let aj = exp�−4�j�j+1�, we can show,
after some algebra, that

U−1 =



1 0 0 · · · 0
0 A−1

1 0 · · · 0
0 0 A−1

2 · · · 0
· · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 0 0 · · · A−1

ν ,




where

A−1
i = 8




1

1− a21

−a1

1− a21
0 · · · 0

−a1

1− a21

1− a21a
2
2

�1− a21��1− a22�
−a2

1− a22
· · · 0

0
−a2

1− a22

1− a22a
2
3

�1− a22��1− a23�
· · · 0

· · · · · · · · · · · · · · ·

0 0 0 · · · 1

1− a2mi−1




�

From the proof of Theorem 1 (Appendix A), we know that the variance
matrix is given by V�β̂n� = σ2�RTR�−1 and that

( 1
n
RTR

)−1 is almost surely
convergent to U−1. From the structure of the matrix U−1, we can further see
that the asymptotic correlation structure of β̂n is simple: the estimator β̂j is
correlated only with the estimators of the effect of flanking markers. More
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specifically, we have

V�β̂j� =
8σ2

n

1− exp�−8�j�j+1�
�1− exp�−8�j−1� j���1− exp�−8�j�j+1��

≈ σ2

n

�j−1� j+1
�j−1� j�j�j+1

+ o��j−1� j� �j�j+1�(5)

and

Cov�β̂j� β̂j+1� =
8σ2

n

− exp�−4�j�j+1�
1− exp�−8�j�j+1�

≈ −σ2

n

1− 4�j�j+1
�j�j+1

+ o��j�j+1��(6)

It can be seen from the above equation that, as the distance between two adja-
cent markers becomes smaller, that is, the marker density increases, V�β̂j�
increases. This suggests that although we can have a dense map, only those
markers that are close to QTL are worth fitting in the model. Therefore, to
select an optimal subset of markers is very helpful in mapping QTL [Kao,
Zeng and Teasdale (1999)]. Furthermore, in order to maintain the accuracy of
the estimation, one needs to increase the sample size.

3.3. Asymptotic partial regression coefficients. In this section, we shall
examine asymptotic properties of the estimated partial regression coefficients.
These asymptotic results allow us to distinguish multiple linked QTLs, to esti-
mate the number of the QTL and to detect their true locations.
To increase the reliability and accuracy of QTL mapping, the effects of

possible multiple linked QTLs on the same chromosome should be adequately
separated in testing and estimation. In asymptotic terms, it is desirable that
the asymptotic partial regression coefficient of the trait associated with the
marker depends only on those QTLs which are located on the interval flanked
by the two neighboring markers, and are independent of the effects of QTL
located outside of the interval.
If we assume the existence of k QTLs, distributed all over the genome, and

with linkage equilibrium and no epistasis, we can show that this is the case.
Using arguments similar to those of Rodolphe and Lefort (1993) and Zeng
(1993, 1994), we can show (Appendix B)

Theorem 2. Let tl be the location of the lth QTL and σ2
a�l� be its additive

genetic variance. Then

β̂j

a�s�→β!
j = − ap

1− a2p
xj−1 +

1− a2pa
2
r

�1− a2p��1− a2r�
xj − ar

1− a2r
xj+1�(7)

where ap = exp�−4�j−1� j�� ar = exp�−4�j�j+1� and xj = −2∑k
l=1 σ

2
a�l� ×

exp�−4�j� tl
�.

Theorem 2 gives an explicit asymptotic formula for the estimate of the par-
tial regression coefficient β̂j, which allows us to obtain some analytic results
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and provides the bases for gaining insight into the multiple regression model
for mapping QTL. As the following corollary shows, similar to the case of
experimental organisms [Zeng (1993, 1994)], β!

j depends only on those QTLs
that are located within the interval that is flanked by the two neighboring
markers, and is independent of effects of QTLs located outside the interval
(Appendix C).

Corollary 1. (i) If a subset of QTLs are located in the left-hand side of
marker Mj−1, then their contribution to β!

j is zero.
(ii) If a subset of QTLs are located in the right-hand side of marker Mj+1,

then their contribution to β!
j is also zero.

(iii) If a subset of QTLs are located between markers Mj−1 and Mj, then
their contribution to β!

j and β!
j−1 + β!

j is

β!
j = −2∑

l

σ2
a�tl� exp�−4�j� tl

�1− exp�−8�j−1� tl�
1− exp�−8�j−1� j�

(8)

and

β!
j−1 + β!

j = −2∑
l

σ2
a�tl�

exp�−4�j−1� tl� + exp�−4�j� tl
�

1+ exp�−4�j−1� j�
�(9)

respectively.

From Corollary 1, we can conclude that, roughly speaking, the effect of each
QTL is shared by its flanking markers. Suppose that in the interval flanked
by markers Mj−1 and Mj, there is only one QTL, which is located at tl. If
�j−1� j → 0, then β!

j−1 + β!
j → −2σ2

a�l�; that is, when the interval harboring
the QTL shrinks to the true QTL tl� β

!
j−1+β!

j converges to β = −2σ2
a�l�. Hence,

if there is only one QTL in the interval flanked by markersMj−1 andMj, then
− 1

2�β!
j−1 + β!

j� can be taken as an estimate of σ2
a�l�.

An immediate implication of Theorem 2 is that QTLs located in other chro-
mosomes do not contribute to the partial regression coefficient βj, nor do the
effects of any subset of QTLs located outside the interval flanked by markers
Mj−1 and Mj+1. This very nice property suggests that a conditional (interval)
test or an estimation procedure for locating QTLs can be constructed based on
the partial regression coefficient, and such a test or estimate of the true QTL
location can be used to detect the linkage of those QTLs which are located
within the defined interval of interest.
The idea of the composite interval mapping of Zeng (1993, 1994) and Jansen

(1993, 1994) for experimental organisms also can be extended to human data,
as explained as follows. Assume that the interval of interest is flanked by
markers M1 and M2, arranged in that order. We then use two additional
markers: one marker ML is placed further left of marker M1 and another
marker MR, further right of M2. Denote the recombination fraction between
marker Mi and the putative QTL by ci�i = 1�2�, and the recombination frac-
tion between the markers M1 and M2 by c12. The composite interval mapping
approach based on sib pairs is to regress the squared difference of trait values
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on the IBD values πL�πR and πq at marker ML�MR and the putative QTL
[Fulker and Cardon (1994), Xu and Atchley (1995)]; that is,

Zi = α+ πLβL + πqβq + πRβR + εi�

where
πq = β1π1 + β2π2�

β̂1 =
	�1− 2c1�2 − �1− 2c2�2�1− 2c12�2


1− �1− 2c12�4
�

β̂2 =
	�1− 2c2�2 − �1− 2c1�2�1− 2c12�2


1− �1− 2c12�4
�

Since πq is unknown, it is estimated through IBD values π1 and π2 calcu-
lated at the two flanking markers M1 and M2. The QTLs located outside of
the interval flanked by ML and MR have no contribution to β!

q. Only QTLs
located in the interval contribute to β!

q. Therefore, with an appropriate dense
map, we should be able to separate the multiple linked QTLs and to narrow
down the chromosomal region to localize QTL. These results are similar to the
results of Zeng (1993, 1994) and Jansen (1993, 1994) for experimental species.

3.4. Identifiability and robustness. As far as identifiability, robustness and
consistency are concerned, we only discuss the dense marker case in order to
facilitate the discussion. In this case, it is assumed that at any point in the
genome, there is a marker. This is admittedly an ideal case, but we point out
that the advance of molecular genetics renders this assumption possible.
In the previous discussion, we presented an algorithm which can be used

to detect the region in which the true QTL is located, but we still do not know
the exact locations of the true QTL in the region. Now we shall discuss how
to identify the exact locations of these QTLs. Assume that a marker is located
at t in the chromosome of interest and that its corresponding coefficient in the
multiple regression is denoted by β!

t for an infinitely large sample size. We
also assume that a true QTL is located at t! in the chromosome. Intuitively,
we can expect that the partial regression coefficient βt will tend to have a
large negative peak in the neighborhood of the true location t! of the QTL.
Indeed, this is true. The following theorem further states that, at t!� β!

t will
reach the local minimum (Appendix D).

Theorem 3. Suppose that there is only one QTL, located at t!, in the region
	lt� rt
, and the two flanking markers of the QTL are located at lt and rt,
respectively. Then

(i) β!
t! < β!

t when t �= t! and t ∈ 	lt� rt
 that is, β!
t reaches its minimum over

the region 	lt� rt
 at t!.
Furthermore,

dβ!
t

dt
< 0 when t ∈ �t! − ε� t!� for some ε > 0�

dβ!
t

dt
> 0 when t ∈ �t!� t! + ε� for some ε > 0�

and dβ!
t/dt does not exist at t = t!.
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(ii) As the distance �rt − lt� goes to zero, then β!
lt
and β!

rt
collapse into one

variable.

β!
t! = σ2

a�t!��

Since the number of QTLs is typically unknown a priori, it may be difficult
to fit, at first, a multiple regression model. However, Theorem 3 says that
when all true QTLs are separated, we can always narrow regions (intervals)
so that in each region (or interval) there exists only one QTL. Further, the
minimum of the partial regression coefficient in such regions (or intervals)
is uniquely determined and corresponds to the true QTL location. Of course,
it should be pointed out that this theorem holds asymptotically. In reality,
especially in human genetics research, sample sizes are typically not very
large.
To demonstrate the robustness of the model for the localization of QTLs, we

present three figures. Figure 1 shows the regression coefficient β!
t of a simple

regression model and the partial regression coefficient of a multiple regression

Fig. 1. Profile of partial regression coefficients of simple and multiple regression models at marker
loci. A single QTL with an additive genetic variance of 0.25 is assumed. The QTL is located at
43 cM from one end of the chromosome. The solid curve represents the multiple regression model,
and the dotted, the simple regression model.
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for a single QTL with its true location at 43 cM in a chromosome with 100 cM
in length containing six equally spaced markers. The additive genetic variance
for the QTL is set to be 0.25. Suppose that the putative QTL is located at t!,
the marker information is available at t and t varies from 0 to 100 cM on
the chromosome. It is clear that for the multiple regression model, β!

t = 0
outside the interval [40cM, 60cM] and reaches the minimum −0�25 at the true
location within the interval [40cM, 60cM]. For the simple regression model,
although the regression coefficient β!

t is not equal to zero outside the interval,
it also reaches the minimum at the true location. Thus, for the single QTL,
both simple regression and multiple regression models are able to localize the
true QTL when the map is dense.
Now consider the case when there are two QTLs, one located at 44 cM and

the other, 73 cM from one end of the chromosome. The regression coefficients
for the simple and the partial regression coefficient for the multiple regression
models are plotted in Figure 2. Although there are actually two QTLs in the
same chromosomal region, we do not know the number of QTLs a priori. From

Fig. 2. Profile of partial regression coefficients of simple and multiple regression at marker loci.
Two QTLs, with additive genetic variances of 0.25 and 0.5, respectively, are located at 44 cM and
73 cM. The solid curve represents the multiple regression model, and the dotted one, the simple
regression model.
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Figure 2 we can see that the regression coefficients of both simple and multiple
regression models have two peaks at 44 cM and 73 cM positions. However,
the regression coefficient of the simple regression model has only one sharp
peak at 73 cM location. It is clear that its peak at the location of 44 cM is less
prominent. It shows that if there are two QTLs, the multiple regression model
is more robust and has better ability to distinguish multiple linked QTLs than
the simple regression model.
Figure 3 shows the regression coefficient of the simple regression and par-

tial regression coefficient of the multiple regression for two QTLs, located at
54 cM and 68 cM, respectively. It is evident that, for the two linked QTLs in the
interval [40cM, 80cM], they can hardly be separated by a simple regression
model. However, the two loci can be distinguished very clearly by the multiple
regression model. Again, Figure 3 demonstrates that even in the case where
the two QTLs are closely linked, by searching the local minimum of the par-
tial regression coefficient, the multiple regression model is still able to localize
QTLs when we have a dense map.

Fig. 3. Profiles of partial regression coefficients of simple and multiple regression models. Two
QTLs, with additive genetic variances of 0.25 and 0.5, respectively, are located at 54 cM and 68 cM.
The solid curve represents the multiple regression model, and the dotted one, the simple regression
model.
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4. Thresholds and power.

4.1. The thresholds of the test. To implement the proposed mapping pro-
cedure, it is critical to determine the threshold for a given significance level,
so that one can reject or accept the null hypothesis H0� σ2

a = 0 depending
on whether or not the statistic exceeds the threshold. In this section, we give
procedures for computing the thresholds.
For a particular chromosomal interval flanked by two markers, the esti-

mated partial regression coefficient of the multiple regression depends only
on those QTL located within the interval. It is thus natural to test whether
or not there exists a QTL in a given marker interval. Suppose that we want
to test the interval 	Mj−1�Mj
. Let

Xd = −√
n
β̂�d�√
2σ̂

�

Where β̂�d� is associated with a marker located at locus d in the interval
	Mj−1�Mj
 and σ2 is the variance of the residuals, and are both estimated by
the multiple regression method. The test statistic is then taken as

max
dε	Mj−1�Mj


Xd�

We can show that (Appendix E)

σ2 = 4

(
k∑

l=1
σ2

a�l�

)
σ2

e + 2σ4
e �

It can be seen that under the null hypothesisH0� σ2
a = 0�Xd is asymptotically

a Gaussian process with mean 0 and a complicated covariance function, which
can be approximated by the function R�u� = e−�u�, as n → ∞. Therefore, Xd

can still be approximated by an Ornstein–Uhlenbeck process.
Using the results of Feingold, Brown and Siegmund (1993), we have, under

the null hypothesis,

P0

(
max

d
Xd > b

)
≈ 1−1�b� + tlbφ�b��(10)

where l is the length of the tested interval, and φ�x� and 1�x� are the density
and cumulative functions of the standard normal distribution, respectively.
When the genetic map is not dense, that is, markers are not available at

some locations, it is usually assumed that xi�d� is known at equispaced dis-
tances of � centimorgons. For this case, (10) becomes

P0

(
max

k
Xk� > b

)
≈ 1−1�b� + tlbφ�b�ν�b

√
2t���(11)

where ν�x� ≈ e−0�583x [Feingold, Brown and Siegmund (1993)]. Note that this
equation is equivalent to (10) when � = 0. Here, the function ν�x� is a dis-
creteness correction factor to account for the fact that we are computing the
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likelihood ratio statistic at discrete points on the chromosome instead of con-
tinuously as is the case for a dense map.

Another test statistic T = β̂/
√

V�β̂� also can be used to detect the existence
of QTL [Fulker and Cardon (1994)]. We shall show an asymptotic relationship
between Xd and T. Suppose that the markers are equally spaced along the
chromosome with the length l of the interval. It has been shown above that

V�β̂� ≈ σ2

n

2
l
�

Therefore,

T ≈
√

nβ̂√
2σ

√
l

≈ −
√

lXd�

When l ≤ 1 Morgan, �T� and Xd may be very close.
This result makes sense intuitively. When we search QTL in a longer

chromosomal region, there is a higher probability to make errors. Therefore,
to maintain a prespecified significance level of the test, we need to increase
the critical value of the test.
To illustrate this point graphically, we calculated the threshold as a function

of l for the statistic Xd at 0.05, 0.01 and 0.001 level. The results are shown
in Figure 4. Thus, we can see that for a fixed significance level α, increasing
l will decrease 1−1�b� and hence increase the threshold b.

4.2. The power of the test. Assume that in the interval 	Mj−1�Mj
 there
exists only one QTL, located at l, with additive genetic variance σ2

a�l�. Under
the null hypothesis H0� σ2

a�l� = 0, we have

E	β̂�d�
 ≈ −2σ2
a�l� exp�−4�dl�

1− exp�−8�l�j−1�
1− exp�−8�j−1� d�

≈ −2σ2
a�l�

�l�j−1
�j−1� d

exp�−4�d�l��

The coefficient of exp�−4�dl� depends in general on the genetic distance
between the marker and the QTL. However, if �d� l is small, E	β̂�d�
 can be
approximated by

E	β̂�d�
 ≈ −2σ2
a�l� exp�−4�d� l��

In this case,

E	Xd
 ≈
√

n

2

2σ2
a�l�
σ

exp�−4�d� l�

≈ ξe−4�u��
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Fig. 4. Thresholds of test statisticXd as a function of length of chromosomal region to be searched.
The solid curve is for a significance level of 5%, the dashed one, a significance level of 1%, and the
dotted one, a significance level of 0.1%.

where ξ = √
2n�σ2

a�l�/σ�, and �u� is the distance between the marker and
the QTL. Using the results of Feingold, Brown and Siegmund (1993), we can
obtain the following approximations:

(i) for a dense map,

Pd�ξ

(
max

d
Xd > b

)
≈ 1−1�b− ξ� +φ�b− ξ�	2ξ−1 − �b+ ξ�−1
�(12)

(ii) for an equispaced map,

Pd�ξ

(
maxk Xk� > b

)
≈ 1−1�b− ξ�

+φ�b− ξ�	2ξ−1ν − �b+ ξ�−1ν2
�
(13)

where ν = ν�b√2t��.
Figure 5 demonstrates the power of the test statistic Xd as a function of

genetic distance between the marker and trait loci for a significance level of
0.05 with n = 100, 200, 500 and 1000. As expected, as sample size or heri-
tability increases, so does the power of the test.



MULTIPLE REGRESSION APPROACH TO MAPPING QTL 1259

Fig. 5. Statistical power as a function of genetic distance between the marker and trait loci. The
power is calculated assuming a heritability of 0.15, with a significance level of 5% and an additive
genetic variance of 0.5. The four curves, from upper left-hand side to the lower right-hand side,
represent powers for sample sizes n = 100�200�500 and 1000, respectively, where n is the number
of sib pairs.

5. Regression on estimated IBD proportions. For human data, the
proportions π̄ of alleles shared IBD cannot always be scored with certainty
and thus need to be estimated. We consider only estimation of π̄ for each
marker individually. The estimation of π̄ by the joint marker information will
be discussed elsewhere.
Let fi be the probability that the sib pair has i alleles IBD at the marker

locus. Then, for any given marker locus, the estimated π̄ is given by

π̂ = f2 + 1
2f1�

Let π̂i� j be the estimation of π̄ij and π!
ij = π̂ij − 1

2 . The squared difference
of trait values can be regressed onto π!

ij as follows:

Zi = α! + π!
i1β

!
1 + · · · + π!

imβ!
m + εi� i = 1� � � � � n�(14)

where εi’s are independent random variables with E	εi
 = 0 and V�εi� = σ2,
the same as defined in (2). Let

R!
i = 	1� π!

i1� � � � � π
!
im
� R! = 	R!T

1 � � � � �R!T
n 
T�
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and

β! = 	α!� β!
1� � � � � β

!
m
T�

The least squares estimate of β! is given by

β̂! = �R!TR!�−1R!TZ�

Under the same assumption as that in Theorem 1, we can show (Appendix F)

Theorem 4. Under model �14� and the above assumptions,
√

n�β̂!
n − β!� L→ N�0� σ2U−1

! �
and

β̂!
n

a�s�→ U−1
! W!�

where

W! =
[
x0� x

!
1� � � � � x

!
m

]T
� x!

j = −5
4

k∑
l=1

σ2
a�l� exp�−4�jl��

and U! = E	R!T
1 R!

1
 is given by

U! =



1 0 0 · · · 0
0 B1 0 · · · 0
0 0 B2 · · · 0
· · · · · · · · · · · · · · · · · · · · · · · ·
0 0 0 · · · Bν,


(15)

with Bi = 	bj� l
 for the ith chromosome, bj�j = 1
4pjqj�1 − pjqj�� bj� l =

1
2pjqjplql�1− 2plql +pjqjplql� exp�−4�j� l�� pj and qj�pl and ql being fre-
quencies of the marker alleles 1 and 2 at the marker locus Mj and Ml, res-
pectively, and �j� l representing the genetic distance between the markers Mj

and Ml.

It is clear from above that the matrix U! does not have the same nice struc-
tures as matrix U does. This feature, unfortunately, does not lead to a sim-
ple form of the inverse matrix of Bi and hence makes it difficult to obtain
an explicit expression for the asymptotic estimation of the partial regres-
sion coefficient β!

j. Therefore, Theorem 2 and Corollary 1 no longer hold in
this case.
As we can see from the above discussion, Theorem 2 and Corollary 1 form

the foundation to distinguish multiple linked QTLs using the multiple regres-
sion approach. The question naturally arises as whether or not it is still pos-
sible for the multiple regression model to separate the linked QTLs using
π! instead of π. To investigate this question, we consider a numerical exam-
ple. Assume that all alleles at all loci have an equal frequency of 0.5, with
all the other parameters the same as that of Figure 2, that is, two QTLs at
44 cM and 73 cM from one end of the chromosome, respectively. We can see
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Fig. 6. Profile of partial regression coefficients of multiple regression based on estimated IBD
values π!. Two QTLs, with the additive genetic variances 0.25 and 0.5, respectively, are located
at 44 cM and 73 cM from one end of the chromosome.

from Figure 6 that the asymptotic partial regression coefficient of the multiple
regression is no longer zero outside the interval [40cM, 80cM]. This implies
that multiple regression of the squared difference onto the estimation π! of π
has unfortunately less power to separate the multiple linked QTLs than based
on π. We can also see that, fortunately, the partial regression coefficient curve
of the multiple regression model, based on π!, does not depart significantly
from the curve of the multiple regression model based on π. This shows that
in many cases, replacing π by π!, the multiple regression model may still be
able to distinguish multiple linked QTLs.

6. Consistency of map locations. Throughout this section, we have
assumed a dense map. Given a random sample of n sib pairs from the popula-
tion, we can obtain estimates of the partial regression coefficient β̂t for marker
locus t. It is clear that β̂t depends on sample size n. To explicitly express this
dependency, we denote β̂t by β̂t�n� .
As we discussed earlier, to detect the true QTL, we seek the local minimum

of β̂t�n�. Suppose that in interval 70, the local minimum of β̂t�n� is obtained.
Let tn = argmint∈70

β̂t�n�. Ideally, we hope that when the sample size n goes
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to infinity, the estimated location of the putative QTL, tn, will converge to the
true QTL location t! in the interval 70, as is taken implicitly in the literature.
In Section 3, we have proved that β̂t�n� →a�s� βt and in the dense marker
case, t! = argmint∈70

βt is exactly the location of the true QTL. Now the
question is whether tn → t! or would converge at all. It should be pointed
out that, in general, limn→∞mint∈70

β̂t�n� �= mint∈70
limn→∞ β̂t�n�, that is,

almost sure convergence of β̂t�n� does not guarantee automatically tn → t!.
To circumvent this problem, we resort to the concept of epi-convergence [see
Aubin and Frankowska (1990)].
We begin with a brief introduction of the concept of epi-convergence and

some related basic results. Interested readers should consult Dupac̆ová and
Wets (1988) for more details.
A sequence of function �gν� Rn → �R� ν = 1� � � �� is said to be epi-convergent

to g� R → �R if, for all t in R, we have

lim
ν→∞

gν�tν� ≥ g�t� for all �tν�∞ν=1 converging to t�(16)

and for some �tν�∞ν=1 converging to t,

lim
ν→∞gν�tν� ≤ g�t��(17)

we then say that g is the epi-limit of the gν and write g = epi- limν→∞ gν.
The following theorem establishes that if gν is epi-convergent to g, then
this ensures the sequence of the minimizer of gν will converge to the min-
imizer of g.

Theorem 5 [Wets (1991)]. Suppose �g�gν� Rn → �R� ν = 1� � � �� is a collec-
tion of functions such that g = epi- limν→∞ gν. Then if tk ∈ argmingνk for
some subsequence �νk� k = 1� � � �� and t = limk→∞ tk, it follows that

t ∈ argming

and

lim
k→∞

�inf gνk� = inf g�

Hence, in particular, if there exists a bounded set D ⊂ Rn such that, for some
subsequence �νk� k = 1� � � ��,

argmingνk
⋂

D �= ��

then the minimum of g is attained at some point in the closure of D.

To invoke Theorem 5, we first need to show that β̂t�n� is epi-convergent.

Lemma 1. A sequence of the estimator β̂t�n� of the partial regression coef-
ficient is epi-convergent to β!

t with probability 1.

The proof is given in Appendix G.
We are now in a position to prove the consistency of the estimator tn of the

true location of the QTL.
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Theorem 6. Assume that the region 70 of the chromosome contains a
unique QTL, located at t!, and the marker map is dense. Then the estima-
tor tn = argmint∈70

β̂t�n� of the location t! of the true QTL is consistent, that
is, tn →a�s� t!.

Proof. Since tn = argmint∈70
β̂t�n� is bounded in the set 70, then by

Lemma 1 and Theorem 5, for every sequence tn, there exists a subsequence
tnk

such that it converges to, say, t0 with probability 1 and

t0 ∈ argmin
t∈70

βt�

Because of the assumption of the unique QTL in 70, we conclude that

t0 = t!�

Therefore

lim
n→∞ tn = t! a.s.

The proof is complete. ✷

Note that the above consistency of the estimator tn of the true location
of the QTL is proved under the assumption of a dense marker map. For a
nondense marker map, the IBD values πj in the chromosome which are not at
marker loci are estimated from the IBD values at flanking markers. The limit
of the sequence of the minimum of the partial regression coefficient of multiple
regression of the squared sib trait difference on such estimated IBD values
may no longer correspond to the true QTL location. Therefore, in general, in
the nondense map case, the above consistency theorem may not hold. The
detailed analysis is beyond the scope of this paper.

7. Discussion. A great challenge to all existing QTL mapping methods is
how to separate multiple linked QTLs. Although a simultaneous search using
interval mapping approach can in principle be helpful, heavy computational
burdens would practically preclude this approach. In addition, computing the
threshold for declaring linkage also can be difficult. Under assumptions of
no epistasis or dominance, the multiple regression approach has been shown
to be statistically more powerful and more precise in separating multiple
linked QTLs in experimental organisms [Haley and Knott (1992), Haley, Knott
and Elsen (1994), Rodolph and Lefort (1993), Jansen (1993), Zeng (1993,
1994)].
In this paper, we have extended the multiple regression approach to QTL

mapping using human sib-pair data, which regresses squared difference in
trait values of two siblings onto the proportions of genes shared IBD scored
at multiple marker loci. For the first time, we investigated the asymptotic
properties of this approach under the ideal situation in which the marker
density is high and IBD status can be scored unequivocally. Parallel to the case
of experimental organisms, we have shown that, for sib-pair data, the expected
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partial regression coefficient of the regression model at any particular marker
depends on the effects of QTLs which are located in the nearby interval flanked
by two neighboring markers, and is unaffected by the effects of other QTLs
located outside the interval. This feature alone enables us to improve both the
precision as well as the accuracy of QTL mapping. Obviously, our model and
results can be extended for relative pairs other than siblings.
For the dense marker case, we have further proved the consistency of the

estimators of the partial regression coefficients when IBD status can be deter-
mined unequivocally. We also have shown that the multiple regression method
is identifiable and is fairly robust, and that QTLs can be mapped through
detecting the minimum of the partial regression coefficients. In addition, we
have provided methods for computing the thresholds for linkage declaration
and for power calculation.
One important contribution of this paper is the proof of consistency of the

estimator tn of the true map location to the QTL using the multiple regression
method. Since the estimator tn is obtained by minimizing β̂t�n�, the proof of
convergence of tn to the true QTL location t! of the QTL requires the exchange
of limiting process with minimization process. However, the traditional point-
wise convergence does not guarantee this exchange to be legal. To justify this
exchange, we have used the concept of epi-convergence and the theory of vari-
ation analysis, and have proved the epi-convergence of the sequence of the
estimators tn. By doing so, we have proved the consistency of the estimator tn
under the dense map assumption.
It should be noted that the major focus of our theoretical investigation of

the proposed multiple regression model is based on the assumption that IBD
information can be scored unequivocally for all sib pairs. This is mainly for the
sake of mathematical tractability. In practice, of course, IBD sharing is often
estimated due to missing parental data, or uninformative matings. If this is
the case, we have demonstrated that the use of estimated IBD information
would result in a decrease in statistical power in detecting multiple linked
QTLs. This is to be expected, since the estimated IBD information obscures
the linkage information contained in the IBD configurations.
Given rapid advances in molecular genetics, especially in map refinement

and genotyping technology [see, e.g., Wang, Fan and Siao (1998)], the assump-
tion of unequivocal IBD information may not be too far off, since the map den-
sity in humans can be made practically very high, and the IBD information at
a particular locus can be extracted in most cases through the use of multiple
polymorphic, closely linked markers. In view of this, the major conclusions
reached in this paper should hold in general for currently available data.
Another assumption, somewhat related with the assumption of unequivo-

cal IBD information, is the dense map assumption. This, again, is mainly for
mathematical tractability, as in the case of Feingold, Brown and Siegmund
(1993). With today’s molecular technology, the genetic map is not dense in the
sense assumed in this paper. Therefore, the asymptotic behaviors of all esti-
mators in the nondense marker case, including the identifiability, robustness
and consistency of the multiple regression model, and the impact of the den-
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sity of the markers on QTL mapping should be further investigated. However,
the current molecular technology (e.g., SNP markers) can provide us a practi-
cally dense map. Therefore, although the asymptotic behaviors of the proposed
multiple regression model may not hold exactly as in the dense map case, we
believe all major conclusions would be correct in general.
For the proposed multiple regression model, one may find an apparent

paradox concerning the desired marker density. On one hand, our results
demonstrate that a denser map is better than a sparser map, for example, for
isolation of multiple QTLs. On the other hand, however, the variance of the
estimates of the partial regression coefficients increases as the marker density
increases. How should one compromise these two conflicting demands?
The variance of the estimated partial regression coefficients increases as

the marker density increases. This is due to the fact that the advantage of
a dense map can only be taken fully if there are enough recombinations in
the data. For experimental organisms, the shortage of recombinations in the
collected data can be compensated by the use of historical recombinations
when experiments are carefully designed [Xiong and Guo (1997)]. In humans,
obviously, experimentation is out of the question. However, the use of linkage
disequilibrium for fine-scale mapping of QTLs is clearly worth investigating in
the future. An alternative approach is to select an optimal subset of markers
for mapping QTL. Once we have a dense map, only the markers that are close
to QTL are worth fitting in the model [Kao, Zeng and Teasdale (1999)]. The
strategy for selection of an optimal set of markers will be also studied in the
future.

APPENDICES

Appendix A. Let U = E	RT
1 R1
. Then

U =




1 E	π11
 · · · E	π1j
 · · · E	π1m

E	π11
 E	π2

11
 · · · E	π11π1j
 · · · E	π11π1m

· · · · · · · · · · · · · · · · · ·

E	πim
 E	π1mπ11
 · · · E	π1mπ1j
 · · · E	π2
im



 �

To determine the matrix U, we need to calculate the elements of the matrix U.
When π̄1j = 0, the two sibs inherited different alleles from their parents.

Thus, P�π̄ij = 0� = 1
2
1
2 . By symmetry, we have P�π̄1j = 1� = 1

4 . When π̄1j = 1
2 ,

the two sibs share one allele IBD. Therefore, P�π̄1j = 1
2� = 1

2 . Since π1j =
π̄1j − 1

2 ,

E	π1j
 = E	π̄1j
 − 1
2

= 0� j = 1� � � � �m�
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Similarly, we have

E	π2
1j
 =

(− 1
2

)2 1
4 + 02 12 +

( 1
2

)2 ( 1
4

)
= 1

8 � j = 1� � � � �m�

Using results in Haseman and Elston (1972, Table IV), we have

E	π1jπ1j′ 
 = (− 1
2

) ( 1
2

)
P�π̄1j = 0� π̄1j′ = 0�

+ (− 1
2

) ( 1
2

)
P�π̄1j = 0� π̄1j′ = 1�

+ ( 1
2

) (− 1
2

)
P�π̄1j = 1� π̄1j′ = 0�

+ 1
2
1
2P�π̄1j = 1� π̄1j′ = 1�

= 1
8�29− 1�

= 1
8 exp�−4�j�j′ �� j� j′ = 1� � � � �m� j �= j′�

(A.1)

where 9 = c2j� j′ + �1 − cj� j′ �2 and cjj′ is the recombination fraction between
marker j and marker j′. Thus, U has form (4).
Since each element of U is finite, by the strong law of large numbers, we

have

1
n
RTR = 1

n

n∑
i=1

RT
i Ri

a�s�→ E	RT
1 R1
 = U�(A.2)

Recall that

β̂n = �RTR�−1RTZ�(A.3)

Substituting Z in (3) into (A.3), we obtain

β̂n = β+ �RTR�−1RTε�

Thus,
√

n�β̂n − β� = √
n�RTR�−1RTε�

By the central limit theorem and the assumption that εi are iid, we obtain

√
nRTε

L→ N�0� σ2U��(A.4)

From (A.2) and (A.4), and using Slutsky’s theorem, it follows that

√
n�β̂n − β� L→ N�0� σ2U−1� as n → ∞�

The proof is complete.
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Appendix B. From the definitions of R and Z, it follows that

1
n
RTZ =

[
1
n

n∑
i=1

zi�
1
n

n∑
i=1

πi1zi� � � � �
1
n

n∑
i=1

πimzi

]T

�(A.5)

To apply the strong law of large numbers, we need to calculate E	π1jz1
. By
conditioning, we have

E	π1jZ1
=− 1
2P�π̄1j = 0�E	Z1�π̄1j = 0


+ 1
2P�π̄1j = 1�E	Z1�π̄1j = 1


= 1
8�E	Z1�π̄1j = 1
 −E	Z1�π̄1j = 0
��

(A.6)

Let π̄tl
be the proportion of alleles shared IBD at the lth trait locus and

gtl
= gitl

− gi′tl . Therefore, the squared difference is

Zi =
k∑

l=1
g2

tl
+ 2

k∑
u=1

k∑
v=1

gtu
gtv

+ 2
k∑

l=1
gtl

�ei − ei′ � + �ei − ei′ �2�(A.7)

Now we first calculate E	z1�π̄1j = 1
. Conditioning on all QTLs, we have

E	Z1�π̄1j = 1
=∑
πt1

· · ·∑
πtk

E	Z1�π̄t1
· · · π̄tk


P�π̄t1
· · · π̄tk

�π̄1j = 1�

=σ2
e +

k∑
l=1

[
σ2

a�l�29tl
�1−9tl

� + 2σ2
a�l��1−9tl

�2
]

=σ2
e + 2

k∑
l=1

σ2
a�l��1−9tl

��

(A.8)

where 9tl
= c2jtl +�1−cjtl

�2 and cjtl
is the recombination fraction between the

marker Mj and the lth true QTL. Similarly, we have

E	Z1�π̄1j = 0
 = σ2
e + 2

k∑
l=1

σ2
a�l�9tl

�(A.9)

Thus, it follows from (A.6), (A.8) and (A.9) that

xj = E	π1jZ1
 = −1
4

k∑
l=1

σ2
a�l� exp�−4�jtl

�� j = 1� � � � �m�(A.10)
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Similarly, from (A.7) it follows that

x0 = E	Z1
 =
k∑

l=1
σ2

a�l� + σ2
e �(A.11)

By the strong law of large numbers, we obtain

1
n

n∑
i=1

πijZi

a�s�→ E	π1jZ1
�

Thus,

1
n
RTZ

a�s�→ W = 	x0� x1� � � � � xm
T�

In Theorem 1, we have proved that

1
n
RTR

a�s�→ U

or

(
1
n
RTR

)−1
a�s�→ U−1�

Therefore,

β̂ = �RTR�−1RTZ

=
( 1
n
RTR

)−1 1
n
RTZ

a�s�→ U−1W�

Using the tri-diagonal structure of inverse Ai, we obtain

β̂j

a�s�→ β!
j = − ap

1− a2p
xj−1 +

1− a2pa
2
r

�1− a2p��1− a2r�
xj − ar

1− a2r
xj+1�

where xj = 8x′
j� ap = exp�−4�j−1� j�� ar = exp�−4�j�j+1� and Ai = 	 18×

exp�−4�j�j′ �
. This completes the proof.

Appendix C. (i) Under the assumption that a subset of QTLs is located
on the left-hand side of marker Mj−1, we have

�jtl
= �j−1� tl + �j−1� j

and

�j+1tl = �j� tl
+ �j�j+1�
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It follows from (7) that

β!
j = −2∑

l

σ2
a�tl� exp�−4�jtl

�
[
− ap

1− a2p

1
ap

+ 1− a2pa
2
r

�1− a2p��1− a2r�
− ar

1− a2r
ar

]

= 0�

(ii) can be similarly proved.
(iii) From the above discussions, we have

�j+1� tl = �j� tl
+ �j�j+1�

Note that if all QTLs are located between markers Mj−1 and Mj, then, from
(7), it follows that

β!
j = −2∑

l

σ2
a�tl�

[ −ap

1− a2p
exp�−4�j−1� tl� +

1− a2pa
2
r

�1− a2p��1− a2r�
exp�−4�j� tl

�

− ar

1− a2r
exp�−4�j+1� tl�

]

= −2∑
l

σ2
a�tl�

[ −ap

1− a2p
exp�−4�j−1� tl� +

1
1− a2p

exp�−4�j� tl
�
]

= −2∑
l

σ2
a�tl�

exp�−4�j� tl
��1− exp�−8�j−1� tl��

1− exp�−8�j−1� j�
�

Similarly, we have

β!
j−1 + β!

j = −2∑
l

σ2
a�tl�

[
1

1− a2p
exp�−4�j−1� tl�

ap

1− a2p
exp�−4�j� tl

�

+ −ap

1− a2p
exp�−4�j−1� tl� +

1
1− a2p

exp�−4�j� tl
�
]

= −2∑
l

σ2
a�tl�

exp�−4�j−1� tl� + exp�−4�jtl
�

1+ exp�−4�j−1� j�
�

This completes the proof.

Appendix D. (i) From the proof of Theorem 2, we know that

β!
t = −2σ2

a�t!�
exp�−4�t− t!���1− exp�−8�t! − lt���

1− exp�−8�rt − lt��
�(A.12)

Simple calculations yield that, when t > t!,

dβ!
t

dt
=
8σ2

a�t!��1− exp�−8�t! − lt���
1− exp�−8�rt − lt��

exp�−4�t− t!���(A.13)
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and when t < t!,

dβ!
t

dt
= −

8σ2
a�t!��1− exp�−8�t! − lt���
1− exp�−8�rt − lt��

exp�−4�t! − t���(A.14)

Thus, it follows from (A.13) and (A.14) that, when lt ≤ t < t!� dβ!
t/dt < 0

and t! < t ≤ rt� dβ!
t/dt > 0, which implies that

β!
t! < β!

t� ∀ t ∈ 	lt� rt
 and t �= t!�

that is, β!
t reaches its local minimum at t! in the region 	lt� rt
. It follows from

(A.13) that

lim
t→t!+

dβ!
t

dt
=
8σ2

a�t!��1− exp�−8�t! − lt���
1− exp�−8�rt − lt��

�

Similarly, from (A.14) we have

lim
t→t!−

dβ!
t

dt
= −

8σ2
a�t!��1− exp�−8�t! − lt���
1− exp�−8�rt − lt��

�

Taken together, it is obvious that dβt/dt does not exist.
(ii) Recall from Corollary 1,

β!
lt
+ β!

rt
= −2σ2

a�t!�
exp�−4�ltt

!� + exp�−4�rtt
!�

1+ exp�−4�ltrt
� �

which can be approximated by

β!
lt
+ β!

rt
≈ −2σ2

a�t!�
2− 4��ltt

! + �rtt
!�

2− 4�ltrt

= −2σ2
a�t!�

when �ltrt
is small.

This completes the proof.

Appendix E. In Appendix B, we show that

Z1 =
k∑

l=1
g2

tl
+ 2

k∑
u=1

k∑
v=1

gtu
gtv

+ 2
k∑

l=1
gtl

ε1 + ε21

= α+ g + 2
( k∑

l=1
gtl

)
ε1 + ε21 − σ2

e �
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where

α =
k∑

l=1
σ2

a�l� + σ2
e �

g =
k∑

l=1

(
g2

tl
− σ2

a�l�
)+ 2

k∑
u=1

k∑
v=1

gtugtv�

Thus,

Z2
1 = �α+ g�2 + 4

(
k∑

l=1
gtl

)2
ε21 + �ε21 − σ2

e �2

+4�α+ g�
(

k∑
l=1

gtl

)
ε1 + 2�α+ g�(ε21 − σ2

e

)

+4

(
k∑

l=1
gtl

)
ε1
(
ε21 − σ2

e

)
�

Denote the terms in Z2
1 involving ε1 by γ. Then,

γ = 4
( k∑

l=1
gtl

)2
ε21 + �ε21 − σ2

e �2 + 4�α+ g�
k∑

l=1
gtl

ε1

+2�α+ g��ε21 − σ2
e � + 4

( k∑
l=1

gtl

)
ε1�ε21 − σ2

e ��

since ε1 is independent of all genetic effects, we have

E	γ
 = 4
( k∑

l=1
σ2

a�l�

)
σ2

e + 3σ4
e − 2σ4

e + σ4
e

= 4
( k∑

l=1
σ2

a�l�

)
σ2

e + 2σ4
e �

The proof is complete. ✷

Appendix F. Now we first calculate the matrix U!. Recall that π!
1j =

π̂1j − 1
2 . The estimation π̂1j of IBD values π̄1j can take values 0� 1

4 �
1
2 �

3
4 or 1

with the probabilities listed in Haseman and Elston [(1972), Table V]. Thus,

E
[
π!2
1j

] = 1
4P�π̂1j = 0� + 1

16P
(
π̂1j = 1

4

)
+ 1

16P
(
π̂1j = 3

4

)
+ 1

4P�π̂1j = 1�

= 1
4pjqj�1− pjqj��
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To calculate E	π!
1jπ

!
1l
, we need to calculate P�π̂1jπ̂1l�. Clearly,

P�π̂1j = 1� π̂1l = 1� =∑
m

∑
n

P�π̂1j = 1� π̂1l = 1� π̄1mπ̄1n�

= p2
jq

2
jp

2
l q

2
l 9

2�

where 9 = θ2jl + �1 − θjl�2 and θjl is the recombination fraction between the
marker locusMj and the marker locusMl. Arguing similarly above, we obtain

P
(
π̂1j = 3

4 � π̂1l = 1
) = 2p2

jq
2
j�p3

l ql + plq
3
l �9�

P
(
π̂1j = 3

4 � π̂1l = 3
4

) = 2�p3
jqj + pjq

3
j��p3

l ql + plq
3
l ��29+ 1��

P
(
π̂1j = 1

4 � π̂1l = 1
) = 2P2

jq
2
j�p3

l ql + plq
3
l ��1−9��

P
(
π̂1j = 1

4 � π̂1l = 3
4

) = 2�p3
jqj + pjq

3
j��p3

l ql + plq
3
l ��3− 29��

P
(
π̂1j = 1

4 � π̂1l = 1
4

) = 2�p3
jqj + pjq

3
j��p3

l ql + plq
3
l ��29+ 1��

P
(
π̂1j = 1

4 � π̂1l = 0
) = 2p2

jq
2
j�p3

l ql + plq
3
l �9�

P
(
π̂1j = 0� π̂1l = 1

) = p2
jq

2
jp

2
l q

2
l �1−9�2�

P
(
π̂1j = 0� π̂1l = 3

4

) = 2p2
jq

2
j�p3

l ql + plq
3
l ��1−9��

P
(
π̂1j = 0� π̂1l = 1

4

) = 2p2
jq

2
j�p3

l ql + plq
3
l �9�

P
(
π̂1j = 0� π̂1l = 0

) = p2
jq

2
jq

2
l p

2
l 9

2�

Using the above results and computingE	π!
1jπ

!
1l
 by conditioning on the valves

of P�π̂1j� π̂1l�, we have

E	π!
1jπ

!
1l
 = 1

2pjqjplql�1− 2plql + pjqjplql��29− 1�
= 1

2pjqjplql�1− 2plql + pjqjplql� exp�−4�jl��
Similar to the proof in Appendix B, we can show that

E	Z1�π̂1j = 1
 = σ2
e + 2

k∑
l=1

σ2
a�l�9�

E
[
Z1�π̂1j = 1

4

]
= σ2

e + 1
2

k∑
l=1

σ2
a�l��29+ 1��

E
[
Z1�π̂1j = 3

4

]
= σ2

e + 1
2

k∑
l=1

σ2
a�l��3− 29��

E	Z1�π̂1j = 1
 = σ2
e + 2

k∑
l=1

σ2
a�l��1−9��
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which implies

xj = E	Z1π
!
1j
 = −5

4

k∑
l=1

σ2
a�l� exp�−4�jl��

Therefore,

β̂!
n

a�s�→ U−1
! W!�

Appendix G. In Theorem 1, we have shown that

β̂t�n�
a�s�→ β!

t�

Taking �tn = t�∞n=1, then condition (17) of the epi-convergence is satisfied. Now
our main task is to verify condition (16).
Since it is difficult to obtain the explicit formula for β̂tn

�n�, is difficult to
verify directly condition (16) by using the explicit formula for β̂tn

�n�. To indi-
cate that the elements of the matrix R depend on tn, we denote R by R�tn�.
For the same reason, we denote the matrix U and the vector W by U�t� and
W�t� to emphasize their dependence on the marker locus t.
To verify that condition (16) is satisfied, we first show that

lim
n→∞

[
1
n
RT�tn�R�tn�

]−1
= U−1�t�(A.15)

and

lim
n→∞

1
n
RT�tn�Z = 	E	z1
�E	π11Z1
 · · ·E	π1tz1
 · · ·E	π1mz1

�(A.16)

Let A�tn� = 1
n
RT�tn�R�tn�. If we can show

lim
n→∞ A�tn� = U�t��(A.17)

then

lim
n→∞ A−1�tn� = U−1�t�(A.18)

will hold. To see this, let A�tn� = �aij�tn��m×m�B�tn� = �bij�tn��m×m =
A−1�tn� and U�t� = �uij�t��m×m; then �bij�tn� = f�a11�tn�� � � � � amn�tn��� i,
j = 1� � � � �m� is a continuous function of �aij�tn�� i� j = 1� � � � �m� because
both A−1�tn� and U−1�t� exist. Therefore,

lim
n→∞ bij�tn� = f

(
lim
n→∞a11�tn�� � � � � lim

n→∞amm�tn�
)

(by continuity of function f)

= f�u11�t�� � � � � umm�t�� (by (A.17))

= U−1�t��
Now we prove (A.17) is satisfied.
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Recall that
1
n
RT�tn�R�tn�

=




1 ··· 1
n

n∑
i=1

πitn
··· 1

n

n∑
i=1

πim

1
n

n∑
i=1

πi1 ··· 1
n

n∑
i=1

πi1πitn
··· 1

n

n∑
i=1

πi1πim

··· ··· ··· ··· ···
1
n

n∑
i=1

πim ··· 1
n

n∑
i=1

πimπitn
··· 1

n

n∑
i=1

π2
im




�

(A.19)

Thus, we need only to prove

lim
n→∞

1
n

n∑
i=1

πitn
= E	π1t
(A.20)

lim
n→∞

1
n

n∑
i=1

πijπitn
= E	π1jπ1t
� j = 1� � � � �m�(A.21)

and

lim
n→∞

1
n

n∑
i=1

π2
itn

= E	π2
1t
�(A.22)

Since proving that (A.20)–(A.22) are satisfied is similar to proving that (A.20)
is satisfied, and since (A.22) is easier to prove than (A.21), here we only sketch
the proof of (A.21).
In Theorem 1, we have proved that

lim
n→∞

1
n

n∑
i=1

πijπit = E	π1jπ1t
 a�s�(A.23)

Thus,

lim
n→∞

1
n

n∑
i=1

πij�πitn
− πit� = 0 a�s�(A.24)

implies (A.21). Now we prove (A.24). Note that by the strong law of large
numbers, we have

lim
n→∞

1
n

n∑
i=1

πijπitn
= E	π1jπ1t
 a.s. (by (A.23))(A.25)

and

1
n

n∑
i=1

�πijπitn
−E	π1jπ1tn
�

a�s�→ 0�(A.26)
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From (A.1), it follows that

E	π1jπ1tn
 −E	π1jπ1t
 = 1
8 exp�−4�j� tn

� − 1
8 exp�−4�j� t�

≤ 1
8

∣∣exp�−4��j� tn
− �jt�� − 1

∣∣
= 1

8

∣∣exp�−4�tn − t�� − 1
∣∣

→0 (as tn → t).

(A.27)

Combining (A.25), (A.26) and (A.27), we have

lim
n→∞

1
n

n∑
i=1

�πijπitn
− πijπit� = lim

n→∞
1
n

n∑
i=1

�πijπitn
−E	π1jπ1tn
�

− lim
n→∞

1
n

n∑
i=1

�πijπit −E	π1jπ1t
�

+ lim
n→∞�E	π1jπ1tn
 −E	π1jπ1t
�

→ 0�

which proves (A.24), and hence (A.23) and (A.15).
Now we prove (A.16). In (A.16), only one term 1

n

∑n
i=1 πitn

z1 which involves
tn needs to be dealt with because the other terms in the equation have already
been considered in Theorem 1. By the same argument as that used in proving
(A.24), we have

lim
n→∞

(
n∑

i=1
πitn

zi −E	π1tz1

)

= lim
n→∞

1
n

n∑
i=1

�πitn
zi − πitzi� + lim

n→∞
1
n

n∑
i=1

�πitzi −E	π1tz1
�

= lim
n→∞

1
n

n∑
i=1

�πitn
zi −E	π1tnz1
� − lim

n→∞
1
n

n∑
i=1

�πitzi −E	π1tz1
�

+ lim
n→∞�E	π1tnz1
 −E	π1tz1
� + lim

n→∞
1
n

n∑
i=1

�πitzi −E	π1tz1
�

→ 0�

(A.28)

which implies (A.16). Note that in proving that the penultimate term in (A.28)
converges to zero we also used the following fact:

lim
n→∞�E	π1tnz1
 −E	π1tz1
� = − 1

4σ
2
a�exp�−4�tnt

!� − exp�−4�tt!��

≤ 1
4σ

2
a

∣∣exp�−4��tnt
! − �tt! �� − 1

∣∣
≤ 1

4σ
2
a

∣∣exp�−4�tn − t�� − 1
∣∣

→0 (as tn → t).

(A.29)
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Let a�tn� denote the row of A−1�tn� corresponding to the putative QTL t. Then
(A.15) and (A.16) imply that

lim
n→∞ β̂tn

�n� = lim
n→∞a�tn� lim

n→∞
1
n
RT�tn�Z�(A.30)

which suggests that the condition (16) is satisfied since limn→∞ β̂tn
�n� exists

and hence

lim
n→∞

β̂tn
�n� = lim

n→∞ β̂tn
�n��
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