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LOCAL POLYNOMIAL REGRESSION ESTIMATORS IN
SURVEY SAMPLING1
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Estimation of finite population totals in the presence of auxiliary infor-
mation is considered. A class of estimators based on local polynomial
regression is proposed. Like generalized regression estimators, these esti-
mators are weighted linear combinations of study variables, in which the
weights are calibrated to known control totals, but the assumptions on the
superpopulation model are considerably weaker. The estimators are shown
to be asymptotically design-unbiased and consistent under mild assump-
tions. A variance approximation based on Taylor linearization is suggested
and shown to be consistent for the design mean squared error of the esti-
mators. The estimators are robust in the sense of asymptotically attaining
the Godambe–Joshi lower bound to the anticipated variance. Simulation
experiments indicate that the estimators are more efficient than regres-
sion estimators when the model regression function is incorrectly specified,
while being approximately as efficient when the parametric specification
is correct.

1. Introduction.

1.1. Background. In many survey problems, auxiliary information is avail-
able for all elements of the population of interest. Population registers in some
countries contain age and taxable income for all residents. Studies of labor
force characteristics or household expenditure patterns might benefit from
these auxiliary data. Geographic information systems may contain measure-
ments derived from satellite imagery for all locations. These spatially explicit
data can be useful in augmenting measurements obtained in agricultural sur-
veys or natural resource inventories. Indeed, use of auxiliary information in
estimating parameters of a finite population of study variables is a central
problem in surveys.

One approach to this problem is the superpopulation approach, in which a
working model ξ describing the relationship between the auxiliary variable
x and the study variable y is assumed. Estimators are sought which have
good efficiency if the model is true, but maintain desirable properties like
asymptotic design unbiasedness (unbiasedness over repeated sampling from

Received June 1999; revised March 2000.
1Supported in part by cooperative agreement 68-3A75-43 between USDA Natural Resources

Conservation Service and Iowa State University. Funds for computing equipment provided by
NSF SCREMS Grant DMS-97-07740.

AMS 1991 subject classifications. Primary 62D05; secondary 62G08.
Key words and phrases. Calibration, generalized regression estimation, Godambe-Joshi lower

bound, model-assisted estimation, nonparametric regression.

1026



LOCAL SURVEY REGRESSION ESTIMATORS 1027

the finite population) and design consistency if the model is false. Typically, the
assumed models are linear models, leading to the familiar ratio and regres-
sion estimators [e.g., Cochran (1977)], the best linear unbiased estimators
[Brewer (1963), Royall (1970)], the generalized regression estimators [Cassel,
Särndal, and Wretman (1977), Särndal (1980), Robinson and Särndal (1983)],
and related estimators [Wright (1983), Isaki and Fuller (1982)].

The papers cited vary in their emphasis on design and model, but it is
fair to say that all are concerned to some extent with behavior of the esti-
mators under model misspecification. Given this concern with robustness, it
is natural to consider a nonparametric class of models for ξ, because they
allow the models to be correctly specified for much larger classes of functions.
Kuo (1988), Dorfman (1992), Dorfman and Hall (1993), Chambers (1996) and
Chambers, Dorfman and Wehrly (1993) have adopted this approach in con-
structing model-based estimators.

This paper describes theoretical properties of a new type of model-assisted
nonparametric regression estimator for the finite population total, based on
local polynomial smoothing. Local polynomial regression is a generalization of
kernel regression. Cleveland (1979) and Cleveland and Devlin (1988) showed
that these techniques are applicable to a wide range of problems. Theoret-
ical work by Fan (1992, 1993) and Ruppert and Wand (1994) showed that
they have many desirable theoretical properties, including adaptation to the
design of the covariate(s), consistency and asymptotic unbiasedness. Wand
and Jones (1995) provide a clear explanation of the asymptotic theory for
kernel regression and local polynomial regression. The monograph by Fan
and Gijbels (1996) explores a wide range of application areas of local polyno-
mial regression techniques. However, the application of these techniques to
model-assisted survey sampling is new.

In Section 1.2 we introduce the local polynomial regression estimator and
in Section 1.3 we state assumptions used in the theoretical derivations of
Section 2, in which our main results are described. Section 2.1 shows that the
estimator is a weighted linear combination of study variables in which the
weights are calibrated to known control totals. Section 2.2 contains a proof
that the estimator is asymptotically design unbiased and design consistent,
and Section 2.3 provides an approximation to its mean squared error and a
consistent estimator of the mean squared error. Section 2.4 provides sufficient
conditions for asymptotic normality of the local polynomial regression esti-
mator and establishes a central limit theorem in the case of simple random
sampling. We show that the estimator is robust in the sense of asymptoti-
cally attaining the Godambe–Joshi lower bound to the anticipated variance in
Section 2.5, a result previously known only for the parametric case. Section 3
reports on a simulation study of the design properties of the estimator, which
is competitive with the classical survey regression estimator when the popula-
tion regression function is linear, but dominates the regression estimator when
the regression function is not linear. Our estimator also performs well relative
to other parametric and nonparametric estimators, both model-assisted and
model-based.
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1.2. Proposed estimator. Consider a finite population UN = �1� � � �,
i� � � � �N�. For each i ∈ UN, an auxiliary variable xi is observed. In this article,
we explore the case in which the xi are scalars. But it will be clear from the
definition of the estimator later in this section that there is no inherent reason
to do so, except to make the theory more tractable. Most of the properties of the
estimator we will discuss are also expected to hold for multidimensional xi,
though the “curse of dimensionality” implies that practical applications would
be complicated by sparseness of the regressors in the design space. Sparseness
adjustments [e.g., Hall and Turlach (1997)] or dimension-reducing alternatives
such as additive modeling [Hastie and Tibshirani (1990)] would then need to
be employed. These topics will be explored elsewhere.

Let tx =
∑
i∈UN xi. A probability sample s is drawn from UN according to a

fixed-size sampling design pN�·�, where pN�s� is the probability of drawing the
sample s. Let nN be the size of s. Assume πiN = Pr�i ∈ s� = ∑

s� i∈s pN�s� > 0
and πijN = Pr�i� j ∈ s� = ∑

s� i� j∈s pN�s� > 0 for all i� j ∈ UN. For compact-
ness of notation we will suppress the subscript N and write πi� πij in what
follows. The study variable yi is observed for each i ∈ s. The goal is to estimate
ty = ∑

i∈UN yi.
Let Ii = 1 if i ∈ s and Ii = 0 otherwise. Note that Ep	Ii
 = πi, where

Ep	·
 denotes expectation with respect to the sampling design (i.e., averaging
over all possible samples from the finite population). Using this notation, an
estimator t∗y of ty is said to be design-unbiased if Ep

[
t∗y
] = ty. A well-known

design-unbiased estimator of ty is the Horvitz–Thompson estimator,

t̂y = ∑
i∈s

yi
πi

= ∑
i∈UN

yiIi
πi

(1)

[Horvitz and Thompson (1952)]. The variance of the Horvitz–Thompson esti-
mator under the sampling design is

Varp
(
t̂y
) = ∑

i� j∈UN

(
πij − πiπj

)yi
πi

yj

πj
�(2)

Note that t̂y does not depend on the �xi�. It is of interest to improve upon
the efficiency of the Horvitz–Thompson estimator by using the auxiliary
information.

The estimator we propose is motivated by modeling the finite population of
yi’s, conditioned on the auxiliary variable xi, as a realization from an infinite
superpopulation, ξ, in which

yi =m�xi� + εi�
where εi are independent random variables with mean zero and variance
v�xi�, m�x� is a smooth function of x, and v�x� is smooth and strictly positive.
Given xi,m�xi� = Eξ	yi
 and so is called the regression function, while v�xi� =
Varξ�yi� and so is called the variance function.

Let K denote a continuous kernel function and let hN denote the band-
width. We begin by defining the local polynomial kernel estimator of degree q
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based on the entire finite population. Let yU = 	yi
i∈UN be theN-vector of yi’s
in the finite population. Define the N× �q+ 1� matrix

XUi =

1 x1 − xi · · · �x1 − xi�q
���

���
���

1 xN − xi · · · �xN − xi�q

 = [
1 xj − xi · · · �xj − xi�q

]
j∈UN�

and define the N×N matrix,

WUi = diag
{

1
hN
K

(
xj − xi
hN

)}
j∈UN

�

Let er represent a vector with a 1 in the rth position and 0 elsewhere. Its
dimension will be clear from the context. The local polynomial kernel estimator
of the regression function at xi, based on the entire finite population, is then
given by

mi = e′1�X′
UiWUiXUi�−1X′

UiWUiyU = w′
UiyU�(3)

which is well defined as long as X′
UiWUiXUi is invertible.

If these mi’s were known, then a design-unbiased estimator of ty would be
the generalized difference estimator

t∗y = ∑
i∈s

yi −mi
πi

+ ∑
i∈UN

mi(4)

[Särndal, Swensson and Wretman (1992), page 221]. The design variance of
the estimator (4) is

Varp
(
t∗y
) = ∑

i� j∈UN
�πij − πiπj�

yi −mi
πi

yj −mj
πj

�(5)

which we would expect to be smaller than (2); the deviations �yi − mi� =
��m�xi�−mi�+εi� will typically have smaller variation than the �yi� for any
reasonable smoothing procedure under the model ξ.

The population estimator mi is the traditional local polynomial regression
estimator for the unknown function m�·�, widely discussed in the nonpara-
metric regression literature. In the present context, it cannot be calculated,
because only the yi in s ⊂ UN are known. Therefore, we will replace each mi
by a sample-based consistent estimator. Let ys = 	yi
i∈s be the nN-vector of
yi’s obtained in the sample. Define the nN × �q+ 1� matrix

Xsi =
[
1 xj − xi · · · �xj − xi�q

]
j∈s�

and define the nN × nN matrix

Wsi = diag
{

1
πjhN

K

(
xj − xi
hN

)}
j∈s
�

A sample design-based estimator of mi is then given by

m̂oi = e′1�X′
siWsiXsi�−1X′

siWsiys = wo′
siys�(6)
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as long as X′
siWsiXsi is invertible. When we substitute the m̂oi into (4), we have

the local polynomial regression estimator for the population total

t̃oy = ∑
i∈s

yi − m̂oi
πi

+ ∑
i∈UN

m̂oi �(7)

The sample estimator in (6) differs in one important way from the tra-
ditional local polynomial regression estimator. The presence of the inclusion
probabilities in the “smoothing weights” wo

si makes our sample-based estima-
tor m̂i a design-consistent estimator of the finite population smoothmi, which
is based on some (not necessarily optimal) bandwidth hN, considered fixed
here for any N. In real survey problems, hN will rarely be optimal because a
single bandwidth would be chosen and used to compute weights to be applied
to all study variables. Despite this, the topics of theoretically optimal and prac-
tical bandwidth selection are clearly of some interest and will be addressed
elsewhere. Regardless of the choice of hN�mi is a well-defined parameter of
the finite population. Specifically, mi is a function of finite population totals,
each of which can be estimated consistently by their corresponding Horvitz–
Thompson estimators. That is, we have included probability weights in the
smoothing weights in order to construct asymptotically design-unbiased and
design-consistent estimators of the finite population smooths mi [not m�xi�].
This is consistent with the development of the generalized regression estima-
tor (GREG), which our procedure reverts to as the bandwidth becomes large.

In principle, the estimator (6) can be undefined for certain i ∈ UN, even if
the population estimator in (3) is defined everywhere: if for some sample s,
there are less than q+1 observations in the support of the kernel at some xi,
then the matrix X′

siWsiXsi will be singular. This is not a problem in practice,
because it can be avoided by selecting a bandwidth that is sufficiently large to
make X′

siWsiXsi invertible at all locations xi. However, that situation cannot
be excluded theoretically as long as the bandwidth is considered fixed for a
given population. Therefore, for the purpose of the theoretical derivations in
Section 2, we will consider an adjusted sample estimator that is guaranteed
to exist for any sample s ⊂ UN.

The adjusted sample estimator for mi is given by

m̂i = e′1

(
X′
siWsiXsi + diag

{
δ

N2

}q+1
j=1

)−1
X′
siWsiys = w′

siys(8)

for some small δ > 0. The terms δN−2 in the denominator are small order
adjustments that ensure the estimator is well defined for all s ⊂ UN. This
adjustment was also used by Fan (1993) for the same reason when the xi are
considered random. Another possible adjustment would consist of replacing
the usual choice of a kernel with compact support by one with infinite support
such as the Gaussian kernel. In practice, however, such kernels have been
found to increase the computational complexity of local polynomial fitting and
result in less satisfactory fits compared to those obtained with compactly sup-
ported kernels. The adjustment proposed here maintains the sparseness of the
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smoothing vector wsi, and its effect can be made arbitrarily small by choosing
δ accordingly. We let

t̃y = ∑
i∈s

yi − m̂i
πi

+ ∑
i∈UN

m̂i(9)

denote the local polynomial regression estimator that uses the adjusted sample
smoother in (8). The remainder of this article will be concerned with studying
the properties of t̃y (and t̃oy when appropriate).

The development of the model-assisted local polynomial regression estima-
tor above could clearly be followed for other kinds of smoothing procedures.
We focus on the local polynomial methodology because it is of considerable
practical interest. In the case q = 0, the estimator relies on kernel regres-
sion, and behaves like a classical poststratification estimator, but mixed over
different possible stratum boundaries. As the bandwidth becomes large, the
estimator reverts to the Hájek estimator, Nt̂y/N̂, where N̂ = ∑

s 1/πk. In
the local linear regression �q = 1� case, the estimator looks something like a
poststratified regression estimator, and the estimator reverts to the classical
regression estimator as the bandwidth becomes large.

1.3. Notation and assumptions. Our basic approach to studying the design
and model properties of the estimators will be to use a Taylor linearization for
the sample smoother m̂i. Note first that we can write mi = f�N−1ti�0� and
m̂i = f�N−1t̂i� δ� for some function f, where the δ comes from the adjustment
in (8) and vanishes in the population fit (3),

ti =
[
tig

]G
g=1 =

[ ∑
k∈UN

1
hN
K

(
xk − xi
hN

)
z
†
igk

]G
g=1

=
[ ∑
k∈UN

z∗igk

]G
g=1

and

t̂i =
[
t̂ig

]G
g=1 =

[ ∑
k∈UN

1
hN
K

(
xk − xi
hN

)
z
†
igk

Ik
πk

]G
g=1

=
[ ∑
k∈UN

z∗igk
Ik
πk

]G
g=1

for suitable z†igk. For local polynomial regression of degree q�G = 3q+2. If we

let G1 = 2q+ 1, we can write the z†igk as

z
†
igk =

{ �xk − xi�g−1� g ≤ G1,
�xk − xi�g−G1−1yk� g > G1.

Examples. The kernel regression �q = 0� and local linear regression
�q = 1� cases are of particular interest.

In the case q = 0,

ti1 =
∑
k∈UN

1
hN
K

(
xk − xi
hN

)
and ti2 =

∑
k∈UN

1
hN
K

(
xk − xi
hN

)
yk�
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so that (3) is the Nadaraya–Watson estimator, based on the entire finite popula-
tion, of the model regression function:mi = t−1i1 ti2. Ignoring the δ-adjustment,
the corresponding sample-based estimator is then

m̂0
i = t̂−1i1 t̂i2�

In the case of local linear regression �q = 1�,

ti1 = ∑
k∈UN

1
hN
K

(
xk − xi
hN

)
� ti2 =

∑
k∈UN

1
hN
K

(
xk − xi
hN

)
�xk − xi��

ti3 = ∑
k∈UN

1
hN
K

(
xk − xi
hN

)
�xk − xi�2� ti4 =

∑
k∈UN

1
hN
K

(
xk − xi
hN

)
yk

and

ti5 = ∑
k∈UN

1
hN
K

(
xk − xi
hN

)
�xk − xi�yk�

Then

mi =
ti3ti4 − ti2ti5
ti1ti3 − t2i2

�

with the corresponding sample-based estimator

m̂0
i =

t̂i3t̂i4 − t̂i2t̂i5
t̂i1t̂i3 − t̂2i2

�

Using a Taylor approximation, define

RiN = m̂i −mi −
1
N

∑
k∈UN

zik

(
Ik
πk

− 1
)
− ∂m̂i
∂δ

∣∣∣∣
t̂i=ti� δ=0

δ

N2
�(10)

where

zik =
G∑
g=1

∂m̂i

∂�N−1t̂ig�

∣∣∣∣
t̂i=ti� δ=0

z∗igk�

To prove our theoretical results, we make the following assumptions.

(A1) (Distribution of the errors under ξ). The errors εi are independent and
have mean zero, variance v�xi� and compact support, uniformly for allN.

(A2) For each N, the xi are considered fixed with respect to the superpopula-
tion model ξ. The xi are independent and identically distributed F�x� =∫ x
−∞ f�t�dt, where f�·� is a density with compact support 	ax� bx
 and
f�x� > 0 for all x ∈ 	ax� bx
.

(A3) (Mean and variance functionsm�v on 	ax� bx
). The mean functionm�·�
is continuous and has q + 1 continuous derivatives, and the variance
function v�x� is continuous and strictly positive.
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(A4) (KernelK). The kernelK�·� has compact support 	−1�1
, is symmetric
and continuous, and satisfies∫ 1

−1
K�u�du = 1�

(A5) (Sampling rate nNN−1 and bandwidth hN). AsN→ ∞� nNN−1 → π ∈
�0�1�, hN → 0 and Nh2N/�log logN� → ∞.

(A6) (Inclusion probabilities πi and πij). For all N�mini∈UN πi ≥ λ > 0,
mini� j∈UN πij ≥ λ∗ > 0 and

lim sup
N→∞

nN max
i� j∈UN� i�=j

�πij − πiπj� <∞�

(A7) Additional assumptions involving higher-order inclusion probabilities:

lim
N→∞

n2N max
�i1� i2� i3� i4�∈D4�N

∣∣Ep	�Ii1 −πi1��Ii2 −πi2��Ii3 −πi3��Ii4 −πi4�
∣∣ <∞�

whereDt�N denotes the set of all distinct t-tuples �i1� i2� � � � � it� fromUN,

lim
N→∞

max
�i1� i2� i3� i4�∈D4�N

∣∣Ep	�Ii1Ii2 − πi1i2��Ii3Ii4 − πi3i4�
∣∣ = 0

and

lim sup
N→∞

nN max
�i1� i2� i3�∈D3�N

∣∣Ep[�Ii1 − πi1�2�Ii2 − πi2��Ii3 − πi3�]∣∣ <∞�

Remarks. (i) The �xi� are kept fixed with respect to the model to make the
results in later sections look like traditional (nonasymptotic) finite population
results. Assumption (A2), however, ensures that the �xi� are a random sam-
ple from a continuous distribution. In order to maintain the article’s emphasis
on the model ξ and sampling design pN, the conditioning on the xi’s will be
suppressed in what follows.

(ii) The assumption of compactly supported errors in A1 is made to simplify
bounding arguments used extensively in the proofs. It is possible to obtain the
results using finite population moment assumptions of the form

lim sup
N→∞

1
N

∑
i∈UN

εki <∞ with ξ-probability 1�

though this significantly complicates the arguments. The assumption of com-
pactly supported errors is also used to establish uniform integrability needed
to allow taking expectations through Taylor approximations. Alternatively, it
is possible to modify (A3) and (A4) to include additional assumptions about
smoothness of the first derivatives of the various functions, which are nor-
mally not required for local polynomial regression. Assumption (A5) would
then also be modified by a factor of log logN/ logN in the bandwidth rate.
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These adjustments, together with moment assumptions on the εk, would guar-
antee uniform convergence of the nonparametric regression components of the
estimator. Such assumptions were used in Opsomer and Ruppert (1997) for
the same purpose in the context of additive model fitting. The assumptions
are based on the uniform convergence results of Pollard (1984).

(iii) Assumption (A6) is similar to assumptions used by Robinson and
Särndal (1983), who examined the parametric regression case. (A7) extends
those assumptions. Assumptions (A6) and (A7) involve first through fourth-
order inclusion probabilities of the design. These assumptions hold for simple
random sampling without replacement. Let ρk denote the kth order inclu-
sion probability of k distinct elements under simple random sampling without
replacement. Then (A6) is well known, and it is easy to check that the first
expression in (A7) becomes

N2�ρ4 − 4ρ1ρ3 + 6ρ21ρ2 − 3ρ41� = O�1��

the second one becomes

ρ4 − ρ22 = O�N−1�

and the third expression becomes

nN�ρ3 − 2ρ1ρ2 + ρ31 − 2ρ1ρ3 + 5ρ21ρ2 − 3ρ41� = O�1��

(iv) By similar arguments, (A6) and (A7) will hold for stratified simple ran-
dom sampling with fixed stratum boundaries determined by the xi’s and for
related designs. If clustering is a significant feature of the design, then there
are at least two possibilities for auxiliary information: availability at the ele-
ment level and availability at the cluster level. (A6) and (A7) will generally not
hold (at the element level) for designs with nontrivial clustering. The first case,
however, is rare in practice because a clustered design is unlikely to be used
when such detailed element-level frame information is available. In the second
case, elements may be fully enumerated within selected clusters or they may
be subsampled. If they are fully enumerated, the assumptions above apply
directly to the sample of clusters with cluster-level auxiliary information. If
they are subsampled, then the framework above would require extensions to
describe the subsampling procedure. Though such extensions are beyond the
scope of the present investigation, we believe that results similar to those
described below would continue to hold under reasonable assumptions.

These remarks indicate that it should be possible to obtain the results we
describe under a variety of asymptotic formulations. The specific assumptions
we describe are only one possibility, though we believe they are reasonable and
they give some insight into when the asymptotic approximations we describe
would be expected to work.
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2. Main results.

2.1. Weighting and calibration. Note from (7) that

t̃oy = ∑
i∈s

yi
πi

+ ∑
j∈UN

(
1− Ij

πj

)
wo′
sjys

= ∑
i∈s

{
1
πi

+ ∑
j∈UN

(
1− Ij

πj

)
wo′
sjei

}
yi(11)

= ∑
i∈s
wisyi�

Thus t̃oy is a linear combination of the sample yi’s, where the weights are the
inverse inclusion probabilities, suitably modified to reflect the information in
the auxiliary variable xi. The same reasoning applies directly to t̃y.

Because the weights are independent of yi, they can be applied to any
study variable of interest. In particular, they can be applied to the auxiliary
variables 1� xi� � � � � x

q
i . Then it is straightforward to verify that for the local

polynomial regression estimator t̃oy,∑
i∈s
ωisx

l
i =

∑
i∈UN

xli

for l = 0�1� � � � � q. That is, the weights are exactly calibrated to the q + 1
known control totals N� tx� � � � � txq . Calibration is a highly desirable property
for survey weights and in fact motivates the class of estimators considered by
Deville and Särndal (1992). Part of the desirability of the calibration property
comes from the fact that ifm�xi� is exactly a qth degree polynomial function of
xi, then t̃oy is exactly model-unbiased. In addition, the control totals are often
published in official tables or otherwise widely disseminated as benchmark
values, so reproducing them from the sample is reassuring to the user.

While the local polynomial regression estimator t̃y is no longer exactly cal-
ibrated, it remains approximately so, in the sense that its weights reproduce
the control totals to terms of o�δN−1�. We omit the proof.

2.2. Asymptotic design unbiasedness and consistency. The price for using
m̂i’s in place of mi’s in the generalized difference estimator (4) is design bias.
The estimator t̃y is, however, asymptotically design unbiased and design con-
sistent under mild conditions, as the following theorem demonstrates.

Theorem 1. Assume (A1)–(A7). Then the local polynomial regression
estimator

t̃y = ∑
i∈UN

{
�yi − m̂i�

Ii
πi

+ m̂i
}



1036 F. J. BREIDT AND J. D. OPSOMER

is asymptotically design unbiased (ADU) in the sense that

lim
N→∞

Ep

[
t̃y − ty
N

]
= 0 with ξ-probability 1�

and is design consistent in the sense that

lim
N→∞

Ep
[
I��t̃y−ty�>Nη�

]
= 0 with ξ-probability 1

for all η > 0.

The proof of this and following theorems rely on several technical lemmas
which are gathered in the Appendix.

Proof. By Markov’s inequality, it suffices to show that

lim
N→∞

Ep

∣∣∣∣ t̃y − tyN

∣∣∣∣ = 0�

Write

t̃y − ty
N

= ∑
i∈UN

yi −mi
N

(
Ii
πi

− 1
)
+ ∑
i∈UN

m̂i −mi
N

(
1− Ii

πi

)
�

Then

Ep

∣∣∣∣ t̃y − tyN

∣∣∣∣≤Ep

∣∣∣∣ ∑
i∈UN

yi −mi
N

(
Ii
πi

− 1
)∣∣∣∣

+
{
Ep

[ ∑
i∈UN

�m̂i −mi�2
N

]
Ep

[ ∑
i∈UN

�1− π−1
i Ii�
N

]}1/2

�

(12)

Under (A1)–(A6) and using the fact that

lim sup
N→∞

1
N

∑
i∈UN

�yi −mi�2 <∞

by Lemma 2(iv) in the Appendix, the first term on the right of (12) converges
to zero as N → ∞, following the argument of Theorem 1 in Robinson and
Särndal (1983). Under (A6),

Ep

[ ∑
i∈UN

�1− π−1
i Ii�2
N

]
= ∑
i∈UN

πi�1− πi�
Nπ2

i

≤ 1
λ
�

Combining this with Lemma 4, the second term on the right of (12) converges
to zero as N→ ∞, and the theorem follows. ✷
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2.3. Asymptotic mean squared error. In this section we derive an asymp-
totic approximation to the mean squared error of the local polynomial regres-
sion estimator and propose a consistent variance estimator. We first show that
the asymptotic mean squared error of the local polynomial regression estima-
tor is equivalent to the variance of the generalized difference estimator, given
in (5).

Theorem 2. Assume (A1)–(A7). Then

nNEp

(
t̃y − ty
N

)2

= nN
N2

∑
i� j∈UN

�yi −mi��yj −mj�
πij − πiπj
πiπj

+ o�1��(13)

Proof. Let

aN = n1/2N
∑
i∈UN

yi −mi
N

(
Ii
πi

− 1
)

and bN = n1/2N
∑
i∈UN

mi − m̂i
N

(
Ii
πi

− 1
)
�

Then

Ep
[
a2N

] = nN
N2

∑
i� j∈UN

�yi −mi��yj −mj�
πij − πiπj
πiπj

≤
(
1
λ
+ nNmaxi� j∈UN� i�=j �πij − πiπj�

λ2

) ∑
i∈UN

�yi −mi�2
N

�

so that lim supN→∞Ep	a2N
 <∞ by (A6). By Lemma 5, Ep	b2N
 = o�1�, so that
Ep	aNbN
 ≤

(
Ep

[
a2N

]
Ep

[
b2N

])1/2 = o�1��
Hence,

nNEp

(
t̃y − ty
N

)2

= Ep
[
a2N

]+ 2Ep	aNbN
 + Ep
[
b2N

] = Ep
[
a2N

]+ o�1��
and the result is proved. ✷

The next result shows that the asymptotic mean squared error in (13) can
be estimated consistently under mild assumptions.

Theorem 3. Assume (A1)–(A7). Then

lim
N→∞

nNEp
∣∣∣V̂(
N−1t̃y

)− AMSE�N−1t̃y�
∣∣∣ = 0�

where

V̂
(
N−1t̃y

) = 1
N2

∑
i� j∈UN

�yi − m̂i��yj − m̂j�
πij − πiπj
πiπj

IiIj

πij
(14)

and

AMSE
(
N−1t̃y

) = 1
N2

∑
i� j∈UN

�yi −mi��yj −mj�
πij − πiπj
πiπj

�
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Therefore, V̂�N−1t̃y� is asymptotically design unbiased and design consistent
for AMSE�N−1t̃y�.

Proof. Write

AN = nNEp
∣∣∣∣ 1
N2

∑
i� j∈UN

�yi −mi��yi −mj�
πij − πiπj
πiπj

IiIj − πij
πij

∣∣∣∣�
Now

n2NEp

(
1
N2

∑
i� j∈UN

�yi −mi��yj −mj�
πij − πiπj
πiπj

IiIj − πij
πij

)2

= n2N
∑

i� k∈UN

1− πi
πi

1− πk
πk

�yi −mi�2�yk −mk�2
N4

πik − πiπk
πiπk

+ 2n2N
∑
i∈UN

∑
k� l∈UN�k �=l

1− πi
πi

πkl − πkπl
πkπl

�yi −mi�2�yk −mk��yl −ml�
N4

× Ep
[Ii − πi
πi

IkIl − πkl
πkl

]
+ n2N

∑
i�j∈UN� i�=j

∑
k� l∈UN�k �=l

πij − πiπj
πiπj

πkl − πkπl
πkπl

× �yi −mi��yj −mj��yk −mk��yl −ml�
N4

Ep

[
IiIj − πij
πij

IkIl − πkl
πkl

]
= a1N + a2N + a3N�

But

a1N ≤ n2N
∑
i∈UN

�yi −mi�4
λ3N4

+ n2N
∑

i� k∈UN� i�=k

�yi −mi�2�yk −mk�2�πik − πiπk�
λ4N4

≤
(

1
Nλ3

+ nNmaxi� k∈UN� i�=k �πik − πiπk�
Nλ4

) ∑
i∈UN

�yi −mi�4
N

�

which goes to zero as N→ ∞, and

a3N ≤ �nNmaxi� k∈UN� i�=k �πik − πiπk��2
λ4λ∗2

∑
i� j∈UN� i�=j

∑
k� l∈UN�k �=l

× ��yi −mi��yj −mj��yk −mk��yl −ml��
N4

∣∣∣∣Ep[IiIj − πijπij

IkIl − πkl
πkl

]∣∣∣∣
≤ O�N−1� + �nNmaxi� k∈UN� i�=k �πik − πiπk��2

λ4λ∗2

× max
�i� j� k� l�∈D4�N

∣∣∣∣Ep[IiIj − πijπij

IkIl − πkl
πkl

]∣∣∣∣ ∑
i∈UN

�yi −mi�4
N

�
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which converges to zero as N→ ∞ by (A7). The Cauchy–Schwarz inequality
may then be applied to show that a2N → 0 as N → ∞, and it follows that
AN → 0 as N→ ∞.

Next, write

BN = nNEp

∣∣∣∣ 1
N2

∑
i� j∈UN

�2�yi −mi��mj − m̂j�

+ �mi − m̂i��mj − m̂j��
πij − πiπj
πiπj

IiIj

πij

∣∣∣∣
≤

(2nNmaxi� j∈UN� i�=j �πij − πiπj�
λ2λ∗

+ 2nN
λ2N

)

×
{∑

i∈UN�yi −mi�2
N

∑
i∈UN Ep	�mi − m̂i�2


N

}1/2

+
(
nNmaxi� j∈UN� i�=j �πij − πiπj�

λ2λ∗
+ nN
λ2N

)

×
∑
i∈UN Ep	�mi − m̂i�2


N

→ 0

as N→ ∞ using (A6) and Lemma 4. The result then follows because

nNEp�V̂�N−1t̃y� − AMSE �N−1t̃y�� ≤ AN +BN� ✷

An alternative variance estimator could be constructed by replacing the
term π−1

i π
−1
j in (14) with the product of weights ωisωjs from (11). This is the

analogue of the weighted residual technique [Särndal, Swensson andWretman
(1989)] for estimating the variance of the general regression estimator, which
they propose to improve the conditional and small sample properties of the
variance estimator.

Simplified versions of (13) and (14) are given in Corollary 1 below for the
case of simple random sampling.

2.4. Asymptotic normality. The local polynomial regression estimator
inherits the limiting distributional properties of the generalized difference
estimator, as we now demonstrate.

Theorem 4. Assume that (A1)–(A7) hold and let t∗y and Varp�t∗y� be as
defined in �4� and �5�, respectively. Then,

N−1�t∗y − ty�
Var1/2p �N−1t∗y�

�→N�0�1�
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as N→ ∞ implies

N−1�t̃y − ty�
V̂1/2�N−1t̃y�

�→N�0�1�

as N→ ∞, where V̂�N−1t̃y� is given in �14�.

Proof. From the proof of Theorem 2,

N−1�t̃y − ty� =
∑
i∈UN

yi −mi
N

(
Ii
πi

− 1
)
+ op�n−1/2

N � =N−1�t∗y − ty� + op�n−1/2
N ��

Further, V̂�N−1t̃y�/AMSE�N−1t̃y� →p 1 by Theorem 3, so the result is
established. ✷

Thus, establishing a central limit theorem (CLT) for the local polynomial
regression estimator is equivalent to establishing a CLT for the generalized
difference estimator, which in turn is essentially the same problem as estab-
lishing a CLT for the Horvitz–Thompson estimator. Additional conditions on
the design beyond those of Theorem 3 are generally needed; for example,
conditions which ensure that the design is well approximated by unequal
probability Bernoulli sampling conditioned to the fixed sample size nN, or
by successive sampling with stable draw-to-draw selection probabilities [e.g.,
Sen (1988), Thompson (1997), page 62]. These conditions can be verified on a
design-by-design basis. In the following corollary, we establish a central limit
theorem for the pivotal statistic under simple random sampling.

Corollary 1. Assume that the design is simple random sampling without
replacement, and assume that (A1)–(A7) hold. Then

N−1�t̃y − ty�
V̂1/2�N−1t̃y�

�→N�0�1�

as N→ ∞, where V̂�N−1t̃y� can be written as

V̂
(
N−1t̃y

) = (
1− nN

N

)∑
i∈s�yi − m̂i�2 − n−1

N 	∑i∈s�yi − m̂i�
2
nN�nN − 1� �

Proof. From the assumptions and Lemma 2(iv),

lim sup
N→∞

N−1 ∑
i∈UN

�yi −mi�4 <∞�

from which the Lyapunov condition (3.25) of Thompson (1997) can be deduced.
Note that

Varp

(
N−1t∗y

)
=

(
1− nN

N

)∑
i∈UN�yi −mi�2 −N−1

[∑
i∈UN�yi −mi�

]2
nN�N− 1� �
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From Theorem 3.2 of Thompson (1997),

N−1�t∗y − ty�(
Varp�N−1t∗y�

)1/2 �→N�0�1��

so that the result follows from Theorem 4. ✷

2.5. Robustness. In this section we consider the behavior of the anticipated
variance,

Var
(
N−1�t̃y − ty�

) = E
(
N−1�t̃y − ty�

)2 − E2[N−1�t̃y − ty�
]
�

where the expectation is taken over both design, pN, and model, ξ. It can be
shown from previous results that

E2[N−1�t̃y − ty�
] = o(n−1

N

)
�

so that the model-averaged design mean squared error and the anticipated
variance are asymptotically equivalent in this case.

Godambe and Joshi (1965) showed that for any estimator t̂y satisfying

E
[
N−1�t̂y − ty�

] = 0�

the following inequality holds:

E
(
t̂y − ty
N

)2

≥ 1
N2

∑
i∈UN

v�xi�
1− πi
πi

�

The right-hand side of the above expression is the Godambe–Joshi lower
bound, which attains its minimum value when πi ∝ v1/2�xi�. Conditions under
which generalized regression estimators asymptotically attain this lower
bound have been studied by Wright (1983), Tam (1988) and others. In what
follows, we prove that the local polynomial regression estimator is robust in
the sense that it asymptotically attains the Godambe–Joshi lower bound.

Theorem 5. Under (A1)–(A7), t̃y asymptotically attains the Godambe–Joshi
lower bound, in the sense that

nNE
(
t̃y − ty
N

)2

= nN
N2

∑
i∈UN

v�xi�
1− πi
πi

+ o�1��

Proof. Write

bN = n
1/2
N

N

∑
i∈UN

�mi − m̂i�
(
Ii
πi

− 1
)
�

cN = n
1/2
N

N

∑
i∈UN

�yi −m�xi��
(
Ii
πi

− 1
)
�
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dN = n
1/2
N

N

∑
i∈UN

�m�xi� −mi�
(
Ii
πi

− 1
)
�

Then

nNE
(
t̃y − ty
N

)2

= E	b2N
 + E	c2N
 + E	d2N
 + 2E	bNcN


+ 2E	bNdN
 + 2E	cNdN
�
By Lemma 8, E	b2N
 → 0 as N→ ∞. Next,

E	d2N
 = nN
N2

∑
i� j∈UN

E	�mi −m�xi���mj −m�xj��

πij − πiπj
πiπj

≤
(
nNmaxi� j∈UN� i�=j �πij − πiπj�

λ2
+ 1
λ

) ∑
i∈UN

E�mi −m�xi��2
N

→ 0

as N→ ∞ by Lemma 6. Note that

E	c2N
 =
nN
N2

∑
i∈UN

v�xi�
1− πi
πi

so that

lim sup
N→∞

E	c2N
 ≤ lim sup
N→∞

1
Nλ

∑
i∈UN

v�xi� <∞

by (A3). The cross product terms go to zero as N → ∞ by application of the
Cauchy–Schwarz inequality, and the result is proved. ✷

3. Simulation results. In this section, we report on some simulation
experiments comparing the performance of several estimators:

HT Horvitz–Thompson Equation (1)
REG Linear regression Cochran [(1977), page 193]
REG3 Cubic regression
PS Poststratification Cochran [(1977), page 134]
LPR0 Local polynomial with q = 0 Equation (7)
LPR1 Local polynomial with q = 1 Equation (7)
KERN Model-based nonparametric Dorfman (1992)
CDW Bias-calibrated nonparametric Chambers, Dorfman

and Wehrly (1993)

The first four estimators are parametric estimators (corresponding to con-
stant, linear, cubic and piecewise constant mean functions) and the last four
are nonparametric. The poststratification estimator is based on a division of
the x-range into ten equally-sized strata. In practice, a survey designer with
full auxiliary information �xi�i∈UN could implement an efficient stratification,
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as a referee has pointed out. Direct comparison of a prestratification approach
to our estimation approach is difficult in a design-based setting, so we instead
use poststratification. The number of poststrata was chosen to ensure a very
small probability of empty poststrata. Note that poststratification can also
be regarded as a special case of the empirical likelihood procedure described
in Chen and Qin (1993), using auxiliary information on the deciles of the
x-distribution.

Of the four nonparametric procedures, two are model-assisted (LPR0 and
LPR1) and two are model-based (KERN and CDW). In KERN, the estimated
mean function from a nonparametric procedure is used to predict each non-
sampled yi. The CDW estimator involves an additional bias calibration step,
which requires specification of a working parametric model. We take the work-
ing model to be m�x� = βx� v�x� = σ2 (this is the correct model for the first
of our study populations). In KERN and CDW, we use the Nadaraya–Watson
estimator, which is also used in LPR0 under equal-probability sampling.

The Epanechnikov kernel,

K�t� = 3
4
�1− t2�I��t�≤1��

is used for all four nonparametric estimators. Two different bandwidths are
considered: h = 0�1 and 0.25. The first bandwidth is equal to the poststratum
width and the second is based on an ad hoc rule of 1/4th the data range. We
have also considered but do not report on results for h = 1�0, which is a large
bandwidth relative to the data range. Results for this third case confirm that
as the bandwidth becomes large, LPR0 and KERN become numerically equiva-
lent to HT under equal-probability sampling, while LPR1 becomes numerically
equivalent to REG.

We consider eight mean functions:

Linear: m1�x� = 1+ 2�x− 0�5�,
Quadratic: m2�x� = 1+ 2�x− 0�5�2,
Bump: m3�x� = 1+ 2�x− 0�5� + exp�−200�x− 0�5�2�,
Jump: m4�x� = �1+ 2�x− 0�5�I�x≤0�65�� + 0�65I�x>0�65�,
cdf: m5�x� = 6

( 1�5−2x
σ

)
, where 6 is the standard normal cdf,

Exponential: m6�x� = exp�−8x�,
Cycle1: m7�x� = 2+ sin�2πx�,
Cycle4: m8�x� = 2+ sin�8πx�,

with x ∈ 	0�1
. These represent a range of correct and incorrect model speci-
fications for the various estimators considered. For m1, REG is expected to be
the preferred estimator, since the assumed model is correctly specified. It is
therefore interesting to see how much efficiency, if any, is lost by only assuming
that the underlying model is smooth instead of linear. The remaining mean
functions represent various departures from the linear model. For m2, the
trend is quadratic, so that an assumed linear model would be misspecified
over the whole range of the xk, but would be reasonable locally. The function
m3 is linear over most of its range, except for a “bump” present for a small
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portion of the range of xk. The mean functionm4 is not smooth. The sigmoidal
function m5 is the mean of a binary random variable described below, and m6
is an exponential curve. The function m7 is a sinusoid completing one full
cycle on 	0�1
, while m8 completes four full cycles.

The population xk are generated as independent and identically distributed
(iid) uniform (0,1) random variables. The population values yik �i = 1� � � � �8�
are generated from the mean functions by adding iid N�0� σ2� errors in all
cases except cdf. The cdf population consists of binary measurements gener-
ated from the linear population via

y5k = I�y1k≤1�5��
Note that the finite population mean of y5 is N−1∑

k∈UN I�y1k≤1�5�, the finite
population cdf of y1�F1�t�, at the point t = 1�5.

We evaluate two possible values for the standard deviation of the errors:
σ = 0�1 and 0.4. The population is of size N = 1000. Samples are generated
by simple random sampling using sample size n = 100. Other sample sizes of
n = 200 and 500 have been considered but are not reported here. The effect
of increasing sample size is similar to the effect of decreasing error standard
deviation.

For each combination of mean function, standard deviation and bandwidth,
1000 replicate samples are selected and the estimators are calculated. Note
that for each sample, a single set of weights is computed and applied to all
eight study variables, as would be common practice in applications.

As the population is kept fixed during these 1000 replicates, we are able to
evaluate the design-averaged performance of the estimators. Specifically, we
estimate the design bias, design variance and design mean squared error. For
nearly all cases in this simulation, the percent relative design biases

Ep
[
t̂y
]− ty
ty

× 100%

were less than one percent for all estimators, and are not presented. (The
exceptions were percent relative design biases, in rare cases, of up to 12% for
the model-based nonparametric procedures.)

Table 1 shows the ratios of MSEs for the various estimators to the MSE for
the local polynomial regression estimator with q = 1 (LPR1). Generally, both
parametric and nonparametric regression estimators perform better than HT,
regardless of whether the underlying model is correctly specified or not, but
that effect decreases as the model variance increases.

With a few exceptions, the model-based nonparametric estimators KERN
and CDW have similar behavior in this study. With respect to design MSE,
the model-assisted estimators LPR0 and LPR1 are sometimes much better
and never much worse (MSE ratio ≥ 0�95) than the model-based estimators
KERN and CDW. Similarly, LPR1 is sometimes much better and never much
worse than LPR0 in this study, and so LPR1 emerges as the best among the
nonparametric estimators considered here.
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Table 1

Ratio of MSE of Horvitz–Thompson (HT), linear regression (REG), cubic regression (REG3),
poststratification (PS), local constant regression (LPR0), model-based kernel (KERN) and bias-

calibrated nonparametric (CDW) estimators to local linear regression (LPR1) estimator

Population � h HT REG REG3 PS LPR0 KERN CDW

linear 0.1 0.10 33.35 0.09 0.94 1.43 0.98 0.98 0.95
0.1 0.25 35.41 0.95 1.00 1.52 1.45 1.68 0.98
0.4 0.10 2.97 0.90 0.94 1.05 0.96 0.95 0.95
0.4 0.25 3.16 0.95 1.00 1.12 1.00 1.02 0.98

quadratic 0.1 0.10 2.96 3.02 0.94 1.15 0.99 1.02 1.08
0.1 0.25 3.08 3.14 0.98 1.20 1.29 2.16 2.70
0.4 0.10 1.01 1.02 0.94 1.03 0.96 0.95 0.96
0.4 0.25 1.07 1.08 1.00 1.10 1.00 1.07 1.11

bump 0.1 0.10 25.06 4.90 4.00 2.08 1.13 1.50 1.47
0.1 0.25 8.57 1.67 1.37 0.71 1.13 1.32 1.14
0.4 0.10 3.43 1.35 1.30 1.15 0.98 1.01 1.01
0.4 0.25 2.94 1.16 1.11 0.98 1.01 1.07 1.03

jump 0.1 0.10 7.12 5.24 2.08 1.51 1.00 1.08 1.07
0.1 0.25 4.88 3.59 1.42 1.03 1.13 1.53 1.46
0.4 0.10 1.47 1.30 1.05 1.07 0.96 0.95 0.95
0.4 0.25 1.51 1.33 1.07 1.09 1.00 1.05 1.04

cdf 0.1 0.10 6.37 3.00 1.64 1.20 1.00 1.02 1.02
0.1 0.25 5.00 2.35 1.29 0.94 1.09 1.44 1.58
0.4 0.10 1.58 1.05 0.97 1.05 0.98 0.97 0.97
0.4 0.25 1.64 1.09 0.01 1.08 1.00 1.04 1.08

exponential 0.1 0.10 5.21 2.90 1.07 1.36 1.10 1.19 1.19
0.1 0.25 4.88 2.72 1.00 1.27 1.64 2.44 2.45
0.4 0.10 1.14 1.02 0.96 1.05 0.97 0.96 0.96
0.4 0.25 1.20 1.07 1.00 1.10 1.03 1.10 1.10

cycle1 0.1 0.10 46.58 18.68 1.36 2.73 1.24 1.46 1.25
0.1 0.25 16.15 6.48 0.47 0.94 1.66 2.55 2.34
0.4 0.10 3.91 2.08 0.99 1.15 0.97 0.97 0.96
0.4 0.25 3.67 1.95 0.93 1.08 1.09 1.26 1.23

cycle4 0.1 0.10 3.85 3.79 3.56 1.83 1.21 1.97 2.02
0.1 0.25 0.98 0.96 0.91 0.46 1.09 1.00 1.09
0.4 0.10 2.27 2.26 2.17 1.35 1.07 1.42 1.45
0.4 0.25 0.97 0.97 0.93 0.58 1.07 1.01 1.08

Based on 1000 replications of simple random sampling from eight fixed populations of size

N = 1000.

Sample size is n = 100.

Nonparametric estimators are computed with bandwidth h and Epanechnikov kernel.



1046 F. J. BREIDT AND J. D. OPSOMER

Among the parametric estimators in this study, the higher-order paramet-
ric estimators (REG3 and PS) generally perform better than REG, except in
the linear population. In most cases, LPR1 is competitive or better than the
parametric estimators (MSE ratios ≥ 0�95). In several cases, the paramet-
ric estimators are somewhat better than LPR1 (MSE ratios 0.90–0.94). This
is due to undersmoothing when the population is linear or quadratic and is
due to oversmoothing in other cases. Finally, the PS estimator for the bump
and cycle4 populations and the REG3 estimator for cycle1 are substantially
better than the oversmoothed LPR1 estimator. In each of these cases, how-
ever, the LPR1 estimator at the smaller bandwidth is much better than the
corresponding parametric estimator.

Overall, then, the performance of the LPR1 estimator is consistently good,
particularly at the smaller bandwidth. LPR1 loses a small amount of effi-
ciency relative to REG for a linear population, but dominates REG for other
populations. It dominates the other nonparametric estimators considered here
and it dominates the higher-order parametric estimators provided it is not
oversmoothed.

One common concern when using nonparametric regression techniques is
how sensitive the results are to the choice of the smoothing parameter. This is
especially important in the context of survey sampling, because the same set of
regression weights (with a single choice for the bandwidth) are often used for a
large number of different variables, as was done in the simulation experiment
described above. A variable-specific bandwidth selection procedure based on
cross-validation is currently being investigated by the authors and might be
appropriate when the primary emphasis of a study is on achieving the best
possible precision for a small number of variables. The investigation of such
automated bandwidth selection procedures will be reported on elsewhere.

As the bandwidth becomes large, the local linear regression estimator
becomes equivalent to the classical regression estimator and the MSEs con-
verge. Clearly, the bandwidth has an effect on the MSE of LPR1, but Table 1
suggests that large gains in efficiency over other estimators can be gained
for a variety of bandwidth choices. In particular, for either of the bandwidths
considered here, LPR1 essentially dominates HT for all populations and essen-
tially dominates REG for all populations except linear, where it is competitive.
This again shows that the local linear regression estimator is likely to be
an improvement over Horvitz–Thompson and classical regression estimation
when the relationship between the auxiliary variable and the variable of inter-
est is nonlinear.

We have investigated the performance of the estimated variances from
Corollary 1 relative to simulation variances. The ratios are generally close to 1,
though there is a fairly large amount of variability for sample size n = 100.
The performance of the variance estimators for LPR1 is similar to the perfor-
mance of variance estimators for REG in the cases we have examined. Further
investigation of variance estimation for local polynomial regression estimators,
including the use of the weighted residual technique [Särndal, Swensson and
Wretman (1989)], will be reported elsewhere.
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APPENDIX

Lemmas.

Lemma 1. Assume (A2) and (A5). Then∣∣∣∣FN�x+ hN� −FN�x− hN�2hN
− f�x�

∣∣∣∣ → 0(15)

as N→ ∞, uniformly in x.

Proof. Define DN = supx �FN�x� − F�x��. By (A2) and the law of the
iterated logarithm [Serfling (1980), page 62], DN satisfies

lim sup
N→∞

2N1/2DN
�2 log logN�1/2 = 1�(16)

Let ε > 0 be given. Then there exists η > 0 such that �x − x′� < η implies
that �f�x� − f�x′�� < ε/2, by uniform continuity of f on 	ax� bx
. Using (16)
and (A5), choose N∗ so large that N ≥N∗ implies that

hN <
η

2
�

2N1/2DN
�2 log logN�1/2 < 1+ ε and

�2 log logN�1/2
2N1/2hN

<
ε

2�1+ ε� �(17)

[Note that x′ ∈ �x − hN�x + hN� implies that �x − x′� < 2hN < η.] It follows
that for any x,∣∣∣∣FN�x+ hN� −F�x+ hN�

2hN
+ F�x− hN� −FN�x− hN�

2hN

+ F�x+ hN� −F�x− hN�
2hN

− f�x�
∣∣∣∣

≤ DN
2hN

+ DN
2hN

+
∣∣∣∣F�x+ hN� −F�x− hN�

2hN
− f�x�

∣∣∣∣(18)

= 2N1/2DN
�2 log logN�1/2

�2 log logN�1/2
2N1/2hN

+ �f�xN� − f�x��

≤ �1+ ε� ε

2�1+ ε� +
ε

2
= ε�

where the equality in (18) holds for some xN ∈ �x− hN�x+ hN� by the mean
value theorem. ✷

The uniform convergence in Lemma 1 has a number of useful consequences.

Lemma 2. Under (A1)–(A6):



1048 F. J. BREIDT AND J. D. OPSOMER

(i) For k ≥ 0,

lim sup
N→∞

1
N

∑
i∈UN

(
1

2NhN

∑
j∈UN

I�xi−hN≤xj≤xi+hN�

)k
<∞�

(ii) There exists N∗, independent of x, such that N ≥N∗ implies∑
k∈UN

I��x−xk�≤hN� ≥ q+ 1�

(iii) The N−1tig are uniformly bounded in i and the N−1t̂ig are uniformly
bounded in i and s.

(iv) The mi are uniformly bounded in i and the m̂i are uniformly bounded
in i and s.

(v) The first, second, third and fourth order mixed partials of m̂i with
respect to N−1tig and δ, evaluated at t̂i = ti� δ = 0, are uniformly bounded
in i.

(vi) The R2
iN are uniformly bounded in i and s.

Proof. (i) By Lemma 1,

lim sup
N→∞

1
N

∑
i∈UN

(
1

2NhN

∑
j∈UN

I�xi−hN≤xj≤xi+hN�

)k

≤ lim sup
N→∞

1
N

∑
i∈UN

{∣∣∣∣FN�xi + hN� −FN�xi − hN�2hN
− f�xi�

∣∣∣∣+ f�xi�}k

≤ lim sup
N→∞

1
N

∑
i∈UN

�ε+ f�xi��k

<∞�
(ii) If not, then we could set ε = minx f�x�/2 > 0 by compactness of

the support and continuity of f, and choose N∗ so large that N ≥ N∗ sat-
isfies (17) and implies �q + 1�/�2NhN� < ε. For some x and some N ≥
N∗�

∑
k∈UN I��x−xk�≤hN� < q+ 1, so that

f�x� −
∑
k∈UN I��x−xk�≤hN�

2NhN
> f�x� − q+ 1

2NhN

> min
x
f�x� − minx f�x�

2
= ε�

contradicting the uniform convergence in (15).
(iii) Under the given assumptions,

lim sup
N→∞

�N−1t̂ig� = lim sup
N→∞

∣∣∣∣ ∑
k∈UN

1
NhN

K

(
xk − xi
hN

)
�xk − xi�p1y

p2
k

Ik
πk

∣∣∣∣
≤ lim sup

N→∞

∑
k∈UN

c

NhNλ
I�xi−hN≤xk≤xi+hN��
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which does not depend on s, and is bounded independently of i by Lemma 1.
Since λ < 1, the same uniform bound works for N−1tig.

(iv), (v), (vi) The mi are continuous functions of the uniformly bounded tig,
with denominators uniformly bounded away from zero by (ii) above. Similarly,
the m̂i and their derivatives are continuous functions of the uniformly bounded
t̂ig, with denominators uniformly bounded away from zero by the adjustment
in (8). Combining these results and using the definition in (10), the R2

iN are
uniformly bounded in i and s. ✷

Lemma 3. Assume (A1)–(A7). For the Taylor linearization remainders of
the sample local polynomial residuals in (10),

nN
N

∑
i∈UN

Ep
[
R2
iN

]
= O

(
1

nNh
2
N

)
�

Proof. Note that

n2Nh
2
N

N

∑
i∈UN

Ep�N−1�t̂ig − tig��4

≤ cn
2
Nh

2
N

N5h4N

∑
i� j� k� l�m∈UN

I�xi−hN≤xj� xk� xl� xm≤xi+hN�

×
∣∣∣∣Ep	�Ij − πj��Ik − πk��Il − πl��Im − πm�


∣∣∣∣
≤ c1h2Nn2N max

�j� k� l�m�∈D4�N

∣∣∣∣Ep	�Ij − πj��Ik − πk��Il − πl��Im − πm�

∣∣∣∣

× 1
N

∑
i∈UN

( ∑
j∈UN

I�xi−hN≤xj≤xi+hN�
NhN

)4

+ c2
nNh

2
N

NhN
nN max

�j� k� l�∈D3�N

∣∣∣∣Ep[�Ij − πj�2�Ik − πk��Il − πl�]
∣∣∣∣

× 1
N

∑
i∈UN

( ∑
j∈UN

I�xi−hN≤xj≤xi+hN�
NhN

)3

+ c3
n2Nh

2
N

N2h2N

1
N

∑
i∈UN

( ∑
j∈UN

I�xi−hN≤xj≤xi+hN�
NhN

)2

+ c4
n2Nh

2
N

N3h3N

1
N

∑
i∈UN

( ∑
j∈UN

I�xi−hN≤xj≤xi+hN�
NhN

)
�

which remains bounded by (A5), (A7) and Lemma 2(i).
The assumptions of Theorem 5.4.3 of Fuller (1996) with α = 1� s = 4� aN =

O��nNhN�−2� and expectation N−1∑
i∈UN Ep	·
 are then met for the sequence
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�R2
iN�. Since this function and its first three derivatives with respect to the

elements of �N−1ti� δ� evaluate to zero, we conclude that

nN
N

∑
i∈UN

Ep
[
R2
iN

]
= O

(
1

nNh
2
N

)
�

which goes to zero by (A5). ✷

Lemma 4. Assume (A1)–(A7). Then

lim
N→∞

1
N

∑
i∈UN

Ep�m̂i −mi�2 = 0�

Proof. By (10),

1
N

∑
i∈UN

Ep�m̂i −mi�2 = 1
N3

∑
i∈UN

∑
k� l∈UN

zikzil
πkl − πkπl
πkπl

+ 2
N2

∑
i� k∈UN

zik Ep

[(
1− Ik

πk

)
RiN

]
(19)

+ 1
N

∑
i∈UN

Ep
[
R2
iN

]
+ o

(
δ

N2

)
�

where the remainder term o�δN−2� comes from the expansion (10) and does
not depend on the sample. By Lemma 1 and Lemma 2(v),

1
N3

∑
i� k∈UN

z2ik ≤
c

N3h2N

∑
i� k∈UN

I�xi−hN≤xk≤xi+hN� → 0

as N → ∞. Thus, following the argument of Theorem 1 in Robinson and
Särndal (1983), the first term of (19) is

1
N3

∑
i∈UN

∑
k� l∈UN

zikzil
πkl − πkπl
πkπl

= 1
N3

∑
i∈UN

∑
k∈UN

z2ik
1− πk
πk

+ 1
N3

∑
i∈UN

∑
k �=l
zikzil

πkl − πkπl
πkπl

≤ 1
λN3

∑
i� k∈UN

z2ik +
Nmaxi� j∈UN� i�=j �πij − πiπj�

λ2N3

∑
i� k∈UN

z2ik�

which converges to zero using (A6).
The last term of (19) converges to zero by Lemma 3, and the second term

converges to zero by an application of the Cauchy–Schwarz inequality. ✷

Lemma 5. Assume (A1)–(A7). Then

lim
N→∞

nN
N2

Ep

[ ∑
i� j∈UN

�m̂i −mi��m̂j −mj�
(
1− Ii

πi

)(
1− Ij

πj

)]
= 0�
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Proof. By (10),

nN
N2

Ep

[ ∑
i� j∈UN

�m̂i −mi��m̂j −mj�
(
1− Ii

πi

)(
1− Ij

πj

)]

= nN
N4

∑
i� j� k� l∈UN

zikzjlEp

[(
1− Ii

πi

)(
1− Ij

πj

)(
1− Ik

πk

)(
1− Il

πl

)]

+ 2nN
N3

∑
i� j� k∈UN

zikEp

[
RjN

(
1− Ii

πi

)(
1− Ij

πj

)(
1− Ik

πk

)]

+ nN
N2

∑
i� j∈UN

Ep

[
RiNRjN

(
1− Ii

πi

)(
1− Ij

πj

)]
+ o�1�

= b1N + b2N + b3N + o�1��
The remainder term o�1� comes from the O�δN−2� term in (10), using the
Cauchy–Schwarz inequality for its two cross-products. In b1N, we consider
separately the cases of one, two, three and four distinct elements in �i� j� k� l�.
Straightforward bounding arguments like those in Lemma 3 show that each
such case converges to zero. We omit the details. The term b3N converges to
zero by Lemma 3 and (A6). The cross-product term b2N goes to zero by an
application of the Cauchy–Schwarz inequality, and the result is proved. ✷

Lemma 6. Under (A1)–(A5),

lim
N→∞

N−1 ∑
i∈UN

E�mi −m�xi��2 = 0�

Proof. This follows directly from standard local polynomial regression
theory [e.g., Wand and Jones (1995), page 125]. ✷

Lemma 7. Assume (A1)–(A7). Then,

lim
N→∞

nN
N

∑
i∈UN

E
[
R2
iN

]
= 0�

Proof. The proof is identical to that of Lemma 3, after replacing the
expectation operator with N−1∑

i∈UN E	·
, because the uniformity results of
Lemma 1 and Lemma 2 hold not only for all i ∈ UN and s, but also across
realizations from ξ. ✷

Lemma 8. Assume (A1)–(A7) hold. Then,

lim
N→∞

nN
N2

E
[ ∑
i� j∈UN

�m̂i −mi��m̂j −mj�
(
1− Ii

πi

)(
1− Ij

πj

)]
= 0�

Proof. The result follows from the assumptions and Lemma 7, using
bounding arguments exactly as in Lemma 5. ✷
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Royall, R. M. (1970). On finite population sampling under certain linear regression models.

Biometrika 57 377–387.



LOCAL SURVEY REGRESSION ESTIMATORS 1053

Ruppert, D. and Wand, M. P. (1994). Multivariate locally weighted least squares regression.
Ann. Statist. 22 1346–1370.

Särndal, C.-E. (1980). On π-inverse weighting versus best linear unbiased weighting in proba-
bility sampling. Biometrika 67 639–650.

Särndal, C.-E., Swensson, B. and Wretman, J. (1989). The weighted residual technique for
estimating the variance of the general regression estimator of the finite population
total. Biometrika 76 527–537.

Särndal, C.-E., Swensson, B. and Wretman, J. (1992). Model Assisted Survey Sampling.
Springer, New York.

Sen, P. K. (1988). Asymptotics in finite population sampling. In Handbook of Statistics
(P. R. Krishnaiah and C. R. Rao, eds.) 6 291–331. North-Holland, Amsterdam.

Serfling, R. J. (1980). Approximation Theorems of Mathematical Statistics. Wiley, New York.
Tam, S. M. (1988). Some results on robust estimation in finite population sampling. J. Amer.

Statist. Assoc. 83 242–248.
Thompson, M. E. (1997). Theory of Sample Surveys. Chapman and Hall, London.
Wand, M. P. and Jones, M. C. (1995). Kernel Smoothing. Chapman and Hall, London.
Wright, R. L. (1983). Finite population sampling with multivariate auxiliary information.

J. Amer. Statist. Assoc. 78 879–884.

Department of Statistics
Colorado State University
Fort Collins, Colorado 80523-1877
E-mail: jbreidt@stat.colostate.edu

Statistical Laboratory
and Department of Statistics

Iowa State University
of Science and Technology

221 Snedecor Hall
Ames, Iowa 50011-1210
E-mail: jopsomer@iastate.edu


