
The Annals of Statistics
2000, Vol. 28, No. 3, 837–859

SEQUENTIAL TESTING PROBLEMS FOR
POISSON PROCESSES

By G. Peskir1 and A. N. Shiryaev1

University of Aarhus and Steklov Mathematical Institute

We present the explicit solution of the Bayesian problem of sequential
testing of two simple hypotheses about the intensity of an observed Poisson
process. The method of proof consists of reducing the initial problem to
a free-boundary differential-difference Stephan problem and solving the
latter by use of the principles of smooth and continuous fit. A rigorous
proof of the optimality of the Wald’s sequential probability ratio test in the
variational formulation of the problem is obtained as a consequence of the
solution of the Bayesian problem.

1. Description of the problem. Suppose that at time t = 0 we begin to
observe a Poisson process X = �Xt�t≥0 with intensity λ>0 which is either λ0
or λ1 where λ0<λ1. Assuming that the true value of λ is not known to us,
our problem is then to decide as soon as possible and with a minimal error
probability (both specified later) if the true value of λ is either λ0 or λ1.

Depending on the hypotheses about the unknown intensity λ, this problem
admits two formulations. The Bayesian formulation relies upon the hypothesis
that an a priori probability distribution of λ is given to us, and that λ takes
either of the values λ0 and λ1 at time t = 0 according to this distribution.
The variational formulation (sometimes also called a fixed error probability
formulation) involves no probabilistic assumptions on the unknown intensity
λ. The Wald sequential probability ratio test (SPRT) is known to be optimal
in this context for a large class of observable processes (see [5, 6, 2]).

Despite the fact that the Bayesian approach to sequential analysis of prob-
lems on testing two statistical hypotheses has generated a considerable inter-
est in the last fifty or so years (see, e.g., [15, 16, 3, 8, 4, 13, 14]), it turns out
that not many problems of that type have been solved explicitly (by obtain-
ing a solution in closed form). In this respect the case of testing two simple
hypotheses about the mean value of a Wiener process with drift is exceptional
as the explicit solution to the problem has been obtained in both Bayesian and
variational formulation. These solutions (including the proof of the optimality
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837



838 G. PESKIR AND A. N. SHIRYAEV

of the SPRT) were found by reducing the initial problem to a free-boundary
Stephan problem (for a second order differential operator) which could be
solved explicitly (see [12, 13]).

Our main aim in this paper is to present the explicit solution of the Pois-
son intensity problem stated above in the context of a Bayesian formulation
(Section 2), and then apply this result to deduce the optimality of the method
(SPRT) in the context of a variational formulation (Section 3) with a precise
description of the set of all admissible probabilities of a wrong decision (“errors
of the first and second kind”). It will be clear from the sequel that the corre-
sponding Stephan problem becomes more delicate, since in the present case
one needs to deal with a differential-difference operator, the appearance of
which is a consequence of the discontinuous character of the observed (Poisson)
process. The problem solved in Section 2 has been open for some time. (In the
1984 paper [6], the authors write that “in the case of Poisson processes, an
explicit solution [of the Bayesian and Stephan problem] is not known”.)

2. Solution of the Bayesian problem. In the Bayesian formulation of
the problem (see [13], Chapter 4) it is assumed that at time t = 0 we begin
observing a trajectory of the point process X = �Xt�t≥0 with the compensator
(see [9], Chapter 18) A = �At�t≥0, where At = λt and a random intensity
λ = λ�ω� takes two values λ1 and λ0 with probabilities π and 1 − π. (We
assume that λ1 > λ0 > 0 and π ∈ �0	1�.)

2.1. For a precise probability-statistical description of the Bayesian
sequential testing problem it is convenient to assume that all our consid-
erations take place on a filtered probability space �
	� 	 ��t�t≥0	Pπ�, where
Pπ has the following special structure:

Pπ = πP1 + �1− π�P0(2.1)

for π ∈ �0	1�. We further assume that the �0-measurable random variable
λ = λ�ω� takes two values λ1 and λ0 with probabilities Pπ�λ = λ1� = π and
Pπ�λ = λ0� = 1−π. Concerning the observable point process X = �Xt�t≥0, we
assume that Pπ�X ∈ · �λ = λi� = Pi�X ∈ · �, where Pi�X ∈ · � coincides with
the distribution of a Poisson process with intensity λi for i = 0	1.

Probabilities π and 1−π play a role of a priori probabilities of the statistical
hypotheses:

H1 : λ = λ1	(2.2)

H0 : λ = λ0�(2.3)

2.2. Based upon the information which is continuously updated through
the observation of the point process X, our problem is to test sequentially the
hypotheses H1 and H0. For this it is assumed that we have at our disposal
a class of sequential decision rules �τ	 d� consisting of stopping times τ =
τ�ω� with respect to �� X

t �t≥0 where � X
t = σ�Xs � s ≤ t� and � X

τ -measurable
functions d = d�ω� which take values 0 and 1. Stopping the observation of X
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at time τ, the terminal decision function d indicates that either the hypothesis
H1 or the hypothesis H0 should be accepted; if d = 1 we accept H1, and if
d = 0 we accept that H0 is true.

2.3. Each decision rule �τ	 d� implies losses of two kinds: the loss due
to a cost of the observation, and the loss due to a wrong terminal decision.
The average loss of the first kind may be naturally identified with cEπ�τ�,
and the average loss of the second kind can be expressed as aPπ�d = 0	 λ =
λ1�+bPπ�d = 1	 λ = λ0�, where c	 a	 b > 0 are some constants. It will be clear
from (2.8) below it is no restriction to assume that c = 1, as the case of general
c > 0 follows by replacing a and b with a/c and b/c, respectively. Thus, the
total average loss of the decision rule �τ	 d� is given by

Lπ�τ	 d� = Eπ
(
τ + a1�d=0	λ=λ1� + b1�d=1	λ=λ0�

)
�(2.4)

Our problem is then to compute

V�π� = inf
�τ	 d�

Lπ�τ	 d�(2.5)

and to find the optimal decision rule �τ∗	 d∗�, called the π-Bayes decision rule,
at which the infimum in (2.5) is attained.

Observe that for any decision rule �τ	 d� we have
aPπ�d = 0	 λ = λ1� + bPπ�d = 1	 λ = λ0�

= aπα�d� + b�1− π�β�d�	
(2.6)

where α�d� = P1�d = 0� is called the probability of an error of the first kind,
and β�d� = P0�d = 1� is called the probability of an error of the second kind.

2.4. The problem (2.5) can be reduced to an optimal stopping problem for
the a posteriori probability process defined by

πt = Pπ�λ = λ1 �� X
t �(2.7)

with π0 = π under Pπ . Standard arguments (see [13], pages 166 and 167)
show that

V�π� = inf
τ
Eπ�τ + ga	b�πτ��	(2.8)

where ga	b�π� = aπ ∧ b�1 − π�; the optimal stopping time τ∗ in (2.8) is also
optimal in (2.5), and the optimal decision function d∗ is obtained by setting

d∗ =
{
1	 if πτ∗ ≥ b/�a+ b�	
0	 if πτ∗ < b/�a+ b��

(2.9)

Our main task in the sequel is therefore reduced to solving the optimal stop-
ping problem (2.8).
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2.5. Another natural process, which is in a one-to-one correspondence with
the process �πt�t≥0, is the likelihood ratio process, it is defined as the Radon–
Nikodym density,

ϕt =
d�P1 �� X

t �
d�P0 �� X

t �
	(2.10)

where Pi �� X
t denotes the restriction of Pi to � X

t for i = 0	1. Since

πt = π
d�P1 �� X

t �
d�Pπ �� X

t �
	(2.11)

where Pπ �� X
t = πP1 �� X

t + �1− π�P0 �� X
t , it follows that

πt =
(

π

1− πϕt
)/(

1+ π

1− πϕt
)

(2.12)

as well as that

ϕt =
1− π
π

πt
1− πt

�(2.13)

Moreover, the following explicit expression is known to be valid (see, e.g., [5]
or [9], Theorem 19.7):

ϕt = exp
(
Xt log

(
λ1
λ0

)
− �λ1 − λ0� t

)
�(2.14)

This representation may now be used to reveal the Markovian structure in
the problem. Since the process �Xt�t≥0 is a time-homogeneous Markov process
having stationary independent increments (Lévy process) under both P0 and
P1, from the representation (2.14), and due to the one-to-one correspondence
(2.12), we see that �ϕt�t≥0 and �πt�t≥0 are time-homogeneous Markov processes
under both P0 and P1 with respect to natural filtrations which clearly coin-
cide with �� X

t �t≥0. Using then further that Eπ�Y �� X
t � = E1�Y �� X

t �πt +
E0�Y �� X

t ��1 − πt� for any (bounded) measurable Y, it follows that �πt�t≥0,
and thus �ϕt�t≥0 as well, is a time-homogeneous Markov processes under each
Pπ for π ∈ �0	1�. [Observe, however, that although the same argument shows
that �Xt�t≥0 is a Markov process under each Pπ for π ∈ �0	1�, it is not a time-
homogeneous Markov process unless π equals 0 or 1.] Note also directly from
(2.7) that �πt�t≥0 is a martingale under each Pπ for π ∈ �0	1�. Thus, the opti-
mal stopping problem (2.8) falls into the class of optimal stopping problems
for Markov processes, and we therefore proceed by finding the infinitesimal
operator of �πt�t≥0. A slight modification of the arguments above shows that
all these processes actually possess a strong Markov property.
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2.6. By Itô’s formula (see, e.g., [10], Chapter 2, Section 3 or [7], Chapter I,
Section 4), one can verify that processes �ϕt�t≥0 and �πt�t≥0 solve the following
stochastic equations, respectively:

dϕt =
(
λ1
λ0
− 1

)
ϕt−d�Xt − λ0t�	(2.15)

dπt =
�λ1 − λ0�πt−�1− πt−�
λ1πt− + λ0�1− πt−�

(
dXt −

(
λ1πt− + λ0�1− πt−�

)
dt

)
(2.16)

(cf. formula (19.86) in [9]). Equation (2.16) may now be used to determine the
infinitesimal operator of the Markov process �πt	� X

t 	Pπ�t≥0 for π ∈ �0	1�.
For this, let f = f�π� from C1�0	1� be given. Then by Itô’s formula we find

f�πt� = f�π0� +
∫ t
0
f′�πs−�dπs

+ ∑
0<s≤t

(
f�πs� − f�πs−� − f′�πs−�!πs

)

= f�π0� +
∫ t
0
f′�πs−�

(
−�λ1 − λ0�πs−�1− πs−�

)
ds

+ ∑
0<s≤t

(
f�πs� − f�πs−�

)

= f�π0� +
∫ t
0
f′�πs−�

(
−�λ1 − λ0�πs−�1− πs−�

)
ds(2.17)

+
∫ t
0

∫ 1

0

(
f�πs− + y� − f�πs−�

)
µπ�ds	dy�

= f�π0� +
∫ t
0
f′�πs−�

(
−�λ1 − λ0�πs−�1− πs−�

)
ds

+
∫ t
0

∫ 1

0

(
f�πs− + y� − f�πs−�

)
νπ�ds	dy�

+
∫ t
0

∫ 1

0

(
f�πs− + y� − f�πs−�

)(
µπ�ds	dy� − νπ�ds	dy�

)
= f�π0� +

∫ t
0
��f��πs−�ds+Mt	

where µπ is the random measure of jumps of the process �πt�t≥0 and νπ is a
compensator of µπ (see, e.g., [10], Chapter 3 or [7], Chapter II), the operator
� is given as in (2.19) below, andM = �Mt�t≥0 defined as

Mt =
∫ t
0

∫ 1

0

(
f�πs− + y� − f�πs−�

)(
µπ�ds	dy� − νπ�ds	dy�)(2.18)

is a local martingale with respect to �� X
t �t≥0 and Pπ for every π ∈ �0	1�. It

follows from (2.17) that the infinitesimal operator of �πt�t≥0 acts on f ∈ C1�0	1�
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like

��f��π� = −�λ1 − λ0�π�1− π�f′�π� +
(
λ1π + λ0�1− π�

)
(2.19)

×
(
f

(
λ1π

λ1π + λ0�1− π�
)
− f�π�

)
�

2.7. Looking back at (2.5) and using explicit expressions (2.4) and (2.6)
with (2.1), it is easily verified (cf. [8], page 105) that the payoff π �→ V�π�
is a concave function on [0, 1], and thus it is continuous on �0	1�. Evidently,
this function is pointwise dominated by π �→ ga	b�π�. From these facts and
from the general theory of optimal stopping for Markov processes (see, e.g.,
[13]) we may guess that the payoff π �→ V�π� from (2.8) should solve the
following Stephan problem (for a differential-difference equation defined by
the infinitesimal operator):

��V��π� = −1	 A∗ < π < B∗	(2.20)

V�π� = aπ ∧ b�1− π�	 π �∈ �A∗	B∗�	(2.21)

V�A∗+� = V�A∗�	 V�B∗−� = V�B∗� (continuous fit)	(2.22)

V′�A∗� = a (smooth fit)(2.23)

for some 0 < A∗ < b/�a + b� < B∗ < 1 to be found. Observe that (2.21)
contains two conditions relevant for the system: (1) V�A∗� = aA∗ and (2)
V�π� = b�1 − π� for π ∈ �B∗	 S�B∗�� with S = S�π� from (2.24) below. These
conditions are in accordance with the fact that if the process �πt�t≥0 starts or
ends up at some π outside �A∗	B∗�, we must stop it instantly.

Note from (2.16) that the process �πt�t≥0 moves continuously toward 0 and
only jumps toward 1 at times of jumps of the point process X. This provides
some intuitive support for the principle of smooth fit to hold at A∗. How-
ever, without a concavity argument it is not a priori clear why the condition
V�B∗−� = V�B∗� should hold at B∗. As Figure 1 shows, this is a rare property
shared only by exceptional pairs �A	B�, and one could think that once A∗ is
fixed through the “smooth fit,” the unknown B∗ will be determined uniquely
through the “continuous fit.” While this train of thought sounds perfectly log-
ical, we shall see quite the opposite below that (2.19) dictates our travel to
solution from B∗ to A∗.

Our next aim is to show that the three conditions in (2.22) and (2.23) are
sufficient to determine a unique solution of the Stephan problem, which in
turn leads to the solution of the optimal stopping problem (2.8).

2.8. Solution of the Stephan problem (2.20)–(2.23). Consider equation
(2.20) on �0	B� with some B > b/�a+ b� given and fixed. Introduce the “step”
function

S�π� = λ1π

λ1π + λ0�1− π�
(2.24)
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Fig. 1. In view of problem (2.8) and its decomposition via (2.4) and (2.6) with (2.1), we consider
τ = inf�t ≥ 0 �πt �∈ �A	B�� for �πt�t≥0 from �2�7�+�2�12�+�2�14� with π ∈ �A	B� given and fixed	
so that π0 = π under P0 and P1� the computer drawings above show the following functions	
respectively: (1) π �→ P1�πτ = A�� (2) π �→ P0�πτ ≥ B�� (3) π �→ E1�τ�; (4) π �→ E0�τ�; (5)
π �→ πE1�τ�+�1−π�E0�τ�+aπP1�πτ =A�+b�1−π�P0�πτ ≥B� = Eπ�τ+ga	 b�πτ��; (6) π �→ Eπ�τ+
ga	 b�πτ�� and π �→ ga	 b�π�	 where A = 0�3	B = 0�7	 λ0 = 1	 λ1 = e and a = b = 8. Functions
(1)–(4) are found by solving systems analogous to the system (3.15)–(3.17); their discontinuity at
B should be noted, as well as the discontinuity of their first derivative at B1 = 0�46��� from (2.25);
observe that function (5) is a superposition of functions (1)–(4), and thus the same discontinuities
carry over to function (5), unless something special occurs. The crucial fact to be observed is that if
function (5) is to be the payoff (2.8), and thus extended by the gain function π �→ ga	 b�π� outside
�A	B�	 then such an extension would generally be discontinuous at B and have a discontinuous
first derivative at A� this is depicted in the final picture (6). It is a matter of fact that the optimal
A∗ and B∗ are to be chosen in such a way that both of these discontinuities disappear; these are
the principles of continuous and smooth fit respectively. Observe that in this case the discontinuity
of the first derivative of (5) also disappears at B1	 and the extension obtained is C1 everywhere
but at B∗ where it is only C0 generally (see Figure 3).
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for π ≤ B. Observe that π �→ S�π� is increasing, and find points · · · < B2 <
B1 < B0 �= B such that S�Bn� = Bn−1 for n ≥ 1. It is easily verified that

Bn =
�λ0�nB

�λ0�nB+ �λ1�n�1−B�
n = 0	1	 � � � �(2.25)

Denote In = �Bn	Bn−1� for n ≥ 1, and introduce the “distance” function

d�π	B� = 1+
[
log

(
B

1−B
1− π
π

)/
log

(
λ1
λ0

)]
(2.26)

for π ≤ B, where �x� denotes the integer part of x. Observe that d is defined
to satisfy

π ∈ In ⇐⇒ d�π	B� = n(2.27)

for all 0 < π ≤ B.
Consider equation (2.20) on I1 upon setting V�π� = b�1 − π� for π ∈

�B	S�B��; this is then a first-order linear differential equation which can be
solved explicitly, and imposing a continuity condition at B which is in agree-
ment with (2.22), we obtain a unique solution π �→ V�π�B� on I1; move then
further and consider equation (2.20) on I2 upon using the solution found on
I1; this is then a first-order linear differential equation which can be solved
explicitly, and imposing a continuity condition over I2 ∪ I1 at B1, we obtain a
unique solution π �→ V�π�B� on I2; continuing this process by induction, we
find the following formula:

V�π�B� = �1− π�γ1
πγ0

n−1∑
k=0

(
Cn−k

βk

k!
logk

((
λ1
λ0

)k−1 π

1− π
))

(2.28)
−
(
n
λ1 − λ0
λ0λ1

+ b
)
π +

(
n

λ0
+ b

)
for π ∈ In, where C1	 � � � 	 Cn are constants satisfying the following recurrence
relation:

Cp+1 =
p−1∑
k=0

(
Cp−k

(
f
�p�
k − f�p�k+1

))
+ �Bp�γ0
�1−Bp�γ1

(
λ1 − λ0
λ0λ1

Bp −
1
λ0

)
(2.29)

for p = 0	1	 � � � 	 n− 1, with

f
�p�
k = βk

k!
logk

((
λ1
λ0

)k−p−1 B

1−B
)

(2.30)

and where we set

γ0 =
λ0

λ1 − λ0
� γ1 =

λ1
λ1 − λ0

� β = 1
�λ1 − λ0�

�λ0�γ1
�λ1�γ0

�(2.31)

Making use of the distance function (2.26), we may now write down the
unique solution of (2.20) on �0	B� satisfying (2.21) on �B	S�B�� and the second
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part of (2.22) at B:

V�π�B� = �1− π�γ1
πγ0

d�π	B�−1∑
k=0

(
Cd�π	B�−k

βk

k!
logk

((
λ1
λ0

)k−1 π

1− π
))

(2.32)
−
(
d�π	B�λ1 − λ0

λ0λ1
+ b

)
π +

(
d�π	B�
λ0

+ b
)

for 0 < π ≤ B. It is clear from our construction above that π �→ V�π�B� is C1

on �0	B� and C0 at B.
Observe that when computing the first derivative of π �→ V�π�B�, we can

treat d�π	B� in (2.32) as not depending on π. This then gives the following
explicit expression:

V′�π�B� = �1− π�γ1−1
πγ0+1

d�π	B�−1∑
k=0

(
Cd�π	B�−k

βk

k!
logk

((
λ1
λ0

)k−1 π

1− π
)

×
(
k/ log

((
λ1
λ0

)k−1 π

1− π
)
− �π + γ0�

))
(2.33)

−
(
d�π	B�λ1 − λ0

λ0λ1
+ b

)
for 0 < π ≤ B.

Setting C = b/�a + b�, elementary calculations show that π �→ V�π�B� is
concave on �0	B�, as well as that V�π�B� → −∞ as π ↓ 0, for all B ∈ �C	1�.
Moreover, it is easily seen from (2.28) (with n = 1) that V�π�1� < 0 for all
0 < π < 1. Thus, if for some B̂ > C, close to C, it happens that π �→ V�π� B̂�
crosses π �→ aπ when π moves to the left from B̂, then a uniqueness argument
presented in Remark 2.2 below [for different B’s the curves π �→ V�π�B� do
not intersect] shows that there exists B∗ ∈ �C	1�, obtained by moving B from
B̂ to 1 or vice versa, such that for some A∗ ∈ �0	C� we have V�A∗�B∗� = aA∗
and V′�A∗�B∗� = a (see Figure 2). Observe that the first identity captures the
first part of (2.22), while the second settles (2.23).

These considerations show that the system (2.20)–(2.23) has a unique (non-
trivial) solution consisting of A∗	B∗ and π �→ V�π�B∗�, if and only if

lim
B↓C

V′�B−�B� < a�(2.34)

Geometrically this is the case when for B > C, close to C, the solution π �→
V�π�B� intersects π �→ aπ at some π < B. It is now easily verified by using
(2.28) (with n = 1) that (2.34) holds if and only if the following condition is
satisfied:

λ1 − λ0 >
1
a
+ 1
b
�(2.35)
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Fig. 2. A computer drawing of “continuous fit” solutions π �→ V�π�B� of (2.20), satisfying (2.21)
on �B	S�B�� and the second part of (2.22) at B	 for different B in �b/�a+ b�	1�� in this particular
case we took B = 0�95	 0�80	 0�75	 � � � 	0�55	 with λ0 = 1	 λ1 = 5 and a = b = 2. The unique
B∗ is obtained through the requirement that the map π �→ V�π�B∗� hits “smoothly” the gain
function π �→ ga	 b�π� at A∗� as shown above, this happens for A∗ = 0�22 � � � and B∗ = 0�70 � � � �
such obtained A∗ and B∗ are a unique solution of the system (2.38) and (2.39). The solution
π �→ V�π�B∗� leads to the explicit form of the payoff (2.8) as shown in Figure 3 below.

In this process, one should observe that B1 from (2.25) tends to a number
strictly less than C whenB ↓ C, so that all calculations are actually performed
on I1.

Thus, condition (2.35) is necessary and sufficient for the existence of a
unique nontrivial solution of the system (2.20)–(2.23); in this case the optimal
A∗ and B∗ are uniquely determined as the solution of the system of transcen-
dental equations V�A∗�B∗� = aA∗ and V′�A∗�B∗� = a, where π �→ V�π�B�
and π �→ V′�π�B� are given by (2.32) and (2.33), respectively; once A∗ and
B∗ are fixed, the solution π �→ V�π�B∗� is given for π ∈ �A∗	B∗� by means of
(2.32).

2.9. Solution of the optimal stopping problem (2.8). We shall now show
that the solution of the Stephan problem (2.20)–(2.23) found above coincides
with the solution of the optimal stopping problem (2.8). This in turn leads to
the solution of the Bayesian problem (2.5).
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Theorem 2.1. (I) Suppose condition (2.35) holds. Then the π-Bayes deci-
sion rule �τ∗	 d∗� in the problem (2.5) of testing two simple hypotheses H1 and
H0 is explicitly given by (see Remark 2.3)

τ∗ = inf�t ≥ 0 �πt �∈ �A∗	B∗��	(2.36)

d∗ =
{
1 �acceptH1�	 if πτ∗ ≥ B∗
0 �acceptH0�	 if πτ∗ = A∗	

(2.37)

where the constants A∗ and B∗ satisfying 0 < A∗ < b/�a + b� < B∗ < 1 are
uniquely determined as solutions of the system of transcendental equations,

V�A∗�B∗� = aA∗	(2.38)

V′�A∗�B∗� = a(2.39)

with π �→ V�π�B� and π �→ V′�π�B� in (2.32) and (2.33), respectively.
(II) In the case when condition (2.35) fails to hold, the π-Bayes decision rule

is trivial: accept H1 if π > b/�a + b� and accept H0 if π < b/�a + b�; either
decision is equally good if π = b/�a+ b�.

Proof. (I) (i) We showed above that the Stephan problem (2.20)–(2.23) is
solvable if and only if (2.35) holds, and in this case the solution π �→ V∗�π� is
given explicitly by π �→ V�π�B∗� in (2.32) for A∗ ≤ π ≤ B∗, where A∗ and B∗
are a unique solution of (2.38) and (2.39).

In accordance with the interpretation of the Stephan problem, we extend
π �→ V∗�π� to the whole of [0, 1] by setting V∗�π� = aπ for 0 ≤ π < A∗ and
V∗�π� = b�1−π� for B∗ < π ≤ 1 (see Figure 3). Note that π �→ V∗�π� is C1 on
�0	1� everywhere but at B∗ where it is C0. To complete the proof it is enough
to show that the map π �→ V∗�π� such defined equals the payoff defined in
(2.8), and that τ∗ defined in (2.36) is an optimal stopping time.

(ii) Since π �→ V∗�π� is not C1 only at one point at which it is C0, we can
apply Itô’s formula to V∗�πt�. In exactly the same way as in (2.17) this gives

V∗�πt� = V∗�π� +
∫ t
0
��V∗��πs−�ds+Mt	(2.40)

whereM = �Mt�t≥0 is a martingale given by

Mt =
∫ t
0

(
V∗�πs− + !πs� −V∗�πs−�

)
dX̂s(2.41)

and X̂t = Xt −
∫ t
0 Eπ�λ �� X

s− �ds = Xt −
∫ t
0�λ1πs− + λ0�1 − πs−��ds is the so-

called innovation process (see, e.g., [9], Theorem 18.3) which is a martingale
with respect to �� X

t �t≥0 and Pπ whenever π ∈ �0	1�. Note in (2.40) that we
may extend V′

∗ arbitrarily to B∗ as the time spent by the process �πt�t≥0 at
B∗ is of Lebesgue measure zero.
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Fig. 3. A computer drawing of the payoff (2.8) in the case λ0 = 1	 λ1 = 5 and a = b = 2 as
indicated in Figure 2� The interval �A∗	B∗� is the region of continued observation of the pro-
cess �πt�t≥0	 while its complement in �0	1� is the stopping region. Thus	 as indicated in (2.36),
the observation should be stopped as soon as the process �πt�t≥0 enters �0	1�\�A∗	B∗�	 and
this stopping time is optimal in problem (2.8). The optimal decision function is then given by
(2.37).

(iii) Recall that ��V∗��π� = −1 for π ∈ �A∗	B∗�, and note that due to the
smooth fit (2.23) we also have ��V∗��π� ≥ −1 for all π ∈ �0	1�\�A∗	B∗�.
To verify this claim first note that ��V∗��π� = 0 for π ∈ �0	 S−1�A∗�� ∪

�B∗	1�, since �f ≡ 0 if f�π� = aπ or f�π� = b�1 − π�. Observe also that
��V∗��S−1�A∗�� = 0 and ��V∗��A∗� = −1 both due to the smooth fit (2.23).
Thus, it is enough to verify that ��V∗��π� ≥ −1 for π ∈ �S−1�A∗�	A∗�.
For this, consider the equation �V = −1 on �S−1�A∗�	A∗� upon imposing

V�π� = V�π�B∗� for π ∈ �A∗	 S�A∗�� and solve it under the initial condi-
tion V�A∗� = V�A∗�B∗� + c where c ≥ 0. This generates a unique solu-
tion π �→ Vc�π� on �S−1�A∗�	A∗�, and from (2.28) we read that Vc�π� =
V�π�B∗� +Kc�1 − π�γ1/πγ0 for π ∈ �S−1�A∗�	A∗� where Kc = c�A∗�γ0/�1 −
A∗�γ1 . [Observe that the curves π �→ Vc�π� do not intersect on �S−1�A∗�	A∗�
for different c’s.] Hence we see that there exists c0 > 0 large enough such
that for each c > c0 the curve π �→ Vc�π� lies strictly above the curve
π �→ aπ on �S−1�A∗�	A∗� and for each c < c0 the two curves intersect. For
c ∈ �0	 c0� let πc denote the (closest) point (to A∗) at which π �→ Vc�π� inter-
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sects π �→ aπ on �S−1�A∗�	A∗�. Then π0 = A∗ and πc decreases (continuously)
in the direction of S−1�A∗� when c increases from 0 to c0. Observe that the
points πc are “good” points since by Vc�πc� = aπc = V∗�πc� with V′

c�πc� > a =
V′
∗�πc� and Vc�S�πc�� = V�S�πc��B∗� = V∗�S�πc�� we see from (2.19) that

��V∗��πc� ≥ ��Vc��πc� = −1. Thus, if we show that πc reaches S−1�A∗�
when c ↑ c0, then the proof of the claim will be complete. Therefore assume
on the contrary that this is not the case. Then Vc1

�S−1�A∗�−� = aS−1�A∗�
for some c1 < c0, and Vc�S−1�A∗�−� > aS−1�A∗� for all c > c1. Thus by
choosing c > c1 close enough to c1, we see that a point π̃c > S−1�A∗� arbi-
trarily close to S−1�A∗� is obtained at which Vc�π̃c� = aπ̃c = V∗�π̃c� with
V′
c�π̃c� < a = V′

∗�π̃c� and Vc�S�π̃c�� = V�S�π̃c��B∗� = V∗�S�π̃c��, from where
we again see by (2.19) that ��V∗��π̃c� ≤ ��Vc��π̃c� = −1. This however leads
to a contradiction because π �→ ��V∗��π� is continuous at S−1�A∗� (due to the
smooth fit) and ��V∗��S−1�A∗�� = 0 as already stated earlier. Thus, we have
��V∗��π� ≥ −1 for all π ∈ �0	1� (upon setting V′

∗�B∗� �= 0, for instance).
(iv) Recall further that V∗�π� ≤ ga	b�π� for all π ∈ �0	1�. Moreover, since

π �→ V∗�π� is bounded, and �Xt−λit�t≥0 is a martingale under Pi for i = 0	1,
it is easily seen from (2.41) with (2.17) upon using the optional sampling
theorem, that Eπ�Mτ� = 0 whenever τ is a stopping time of X such that
Eπ�τ� <∞. Thus, taking the expectation on both sides in (2.40), we obtain

V∗�π� ≤ Eπ�τ + ga	b�πτ��(2.42)

for all such stopping times, and hence V∗�π� ≤ V�π� for all π ∈ �0	1�.
(v) On the other hand, the stopping time τ∗ from (2.36) clearly satisfies

V∗�πτ∗� = ga	b�πτ∗�. Moreover, a direct analysis of τ∗ based on (2.12)–(2.14)
(see Remark 2.3 below), together with the fact that for a Poisson process
�Nt�t≥0 the exit time of the process �Nt − µt�t≥0 from �Ã	 B̃� has a finite
expectation for any real µ, shows that Eπ�τ∗� < ∞ for all π ∈ �0	1�. Taking
then the expectation on both sides in (2.40), we get

V∗�π� = Eπ�τ∗ + ga	b�πτ∗��(2.43)

for all π ∈ �0	1�. This fact and the consequence of (2.42) stated above show
that V∗ = V, and that τ∗ is an optimal stopping time. The proof of the first
part is complete.

(II) Although in principle it is clear from our construction above that the
second part of the theorem holds as well, we shall present a formal argument
for completeness.
Suppose that the π-Bayes decision rule is not trivial. In other words, this

means that V�π� < ga	b�π� for some π ∈ �0	1�. Since π �→ V�π� is concave,
this implies that there are 0 < A∗ < b/�a+b� < B∗ < 1 such that τ∗ = inf�t >
0 �πt �∈ �A∗	B∗�� is optimal for problems (2.8) and (2.5), respectively, with d∗
from (2.9) in the latter case. Thus V�π� = Eπ�τ∗ + ga	b�πτ∗�� for π ∈ �0	1�,
and therefore by the general Markov processes theory and due to the strong
Markov property of �πt�t≥0, we know that π �→ V�π� solves (2.20) and satisfies
(2.21) and (2.22); a priori we do not know if the smooth fit condition (2.23)
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is satisfied. Nevertheless, these arguments show the existence of a solution
to (2.20) on �0	B∗� which is b�1 − B∗� at B∗ and which crosses π �→ aπ
at (some) A∗ < b/�a + b�. But then the same uniqueness argument used in
Section 2.8 above (see Remark 2.2 below) shows that there must exist points
Â∗ ≤ A∗ and B̂∗ ≥ B∗ such that the solution π �→ V̂�π� B̂∗� of (2.20) satisfying
V̂�B̂∗� B̂∗� = b�1− B̂∗� hits π �→ aπ smoothly at Â∗. The first part of the proof
above then shows that the stopping time τ̂∗ = inf�t > 0 �πt �∈ �Â∗	 B̂∗�� is
optimal. As this stopping time is known to be Pπ-a.s. pointwise the smallest
possible optimal stopping time (see the proof of Theorem 3.1 below), this shows
that τ∗ cannot be optimal unless the smooth fit condition holds at A∗, that is,
unless Â∗ = A∗ and B̂∗ = B∗. In any case, however, this argument implies
the existence of a nontrivial solution to the system (2.20)–(2.23) and since this
fact is equivalent to (2.35) as shown above, we see that condition (2.35) cannot
be violated.
Observe that we have actually proved that if the optimal stopping problem

(2.8) has a nontrivial solution, then the principle of smooth fit holds at A∗. An
alternative proof of the statement could be done by using Lemma 3 on page
118 in [13]. The proof of the theorem is complete. ✷

Remark 2.2. The following probabilistic argument can be given to show
that the two curves π �→ V�π	B′� and π �→ V�π	B′′� from (2.32) do not
intersect on �0	B′� whenever 0 < B′ < B′′ ≤ 1.

Assume that the two curves do intersect at some Z < B′. Let π �→ απ + β
denote the tangent of the map V� · �B′� at Z. Define a map π �→ g�π� by
setting g�π� = �απ + β� ∧ b�1 − π� for π ∈ �0	1�, and consider the optimal
stopping problem (2.8) with g instead of ga	b. Let V = V�π� denote the value
function. Consider also the map π �→ V∗�π� defined by V∗�π� = V�π�B′�
for π ∈ �Z	B′� and V∗�π� = g�π� for π ∈ �0	1�\�Z	B′�. As π �→ V∗�π� is
C0 at B′ and C1 at Z, then in exactly the same way as in sections (iii)–(v)
of the proof of Theorem 2.1, we find that V∗�π� = V�π� for all π ∈ �0	1�.
However, if we consider the stopping time σ∗ = inf�t > 0 �πt �∈ �Z	B′′��, then
it follows in the same way as in section (v) of the proof of Theorem 2.1 that
V�π�B′′� = Eπ�σ∗ + g�πσ∗�� for all π ∈ �Z	B′′�. As V�π�B′′� < V∗�π� for
π ∈ �Z	B′�, this is a contradiction. Thus, the curves do not intersect.

Remark 2.3. (i) Observe that the optimal decision rule (2.36) and (2.37)
can be equivalently rewritten as follows:

τ∗ = inf�t ≥ 0 �Zt �∈ �Ã∗	 B̃∗��	(2.44)

d∗ =
1 �acceptH1�	 if Zτ∗ ≥ B̃∗	
0 �acceptH0�	 if Zτ∗ = Ã∗	

(2.45)
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where we use the following notation:

Zt =Xt − µt	(2.46)

Ã∗ = log
(

A∗
1−A∗

1− π
π

)/
log

(
λ1
λ0

)
	(2.47)

B̃∗ = log
(

B∗
1−B∗

1− π
π

)/
log

(
λ1
λ0

)
	(2.48)

µ = �λ1 − λ0�
/

log
(
λ1
λ0

)
�(2.49)

(ii) The representation (2.44) and (2.45) reveals the structure and applica-
bility of the optimal decision rule in a clearer manner. The result proved above
shows that the following sequential procedure is optimal: while observing Xt,
monitor Zt and stop the observation as soon as Zt enters either �−∞	 Ã∗� or
�B̃∗	∞�; in the first case conclude λ = λ0, in the second conclude λ = λ1.
In this process condition (2.35) must be satisfied, and constants A∗ and B∗

should be determined as a unique solution of the system (2.38) and (2.39). This
system can be successfully treated by means of standard numerical methods
if one mimics our travel from B∗ to A∗ in the construction of our solution in
Section 2.8 above. A pleasant fact is that often a few steps only by (2.24) will
be needed to recapture A∗ if one starts from B∗.

(iii) After we completed our work we observed that the same problem was
treated by different methods in [11]. It is interesting to note that we could
not find any later reference to that work. We also observed that the necessary
and sufficient condition (2.35) of Theorem 2.1 is different from the condition
aλ1 + b�λ0 + λ1� < b/a found in [11].

3. Solution of the variational problem. In the variational formula-
tion of the problem it is assumed that the sequentially observed process X =
�Xt�t≥0 is a Poisson process with intensity λ0 or λ1, and no probabilistic
assumption is made about the outcome of λ0 and λ1 at time 0. To formu-
late the problem we shall adopt the setting and notation from the previous
section. Thus Pi is a probability measure on �
	� � under whichX = �Xt�t≥0
is a Poisson process with intensity λi for i = 0	1.

3.1. Given the numbers α	β > 0 such that α + β < 1, let !�α	β� denote
the class of all decision rules �τ	 d� satisfying

α�d� ≤ α and β�d� ≤ β	(3.1)

where α�d� = P1�d = 0� and β�d� = P0�d = 1�. The variational problem is
then to find a decision rule �̂τ	 d̂� in the class !�α	β� such that

E0�̂τ� ≤ E0�τ� and E1�̂τ� ≤ E1�τ�(3.2)

for any other decision rule �τ	 d� from the class !�α	β�. Note that the main
virtue of the requirement (3.2) is its simultaneous validity for both P0 and P1.
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This formulation of the problem is due to Wald [15]. In [17] and [18] Wald
and Wolfowitz proved the optimality of the SPRT in the case of i.i.d. obser-
vations and under special assumptions on the admissibility of �α	β� (see [17,
18, 1, 8] for more details and compare it with the admissibility notion given
below). In [5], Dvoretzky, Kiefer and Wolfowitz considered the problem of opti-
mality of the SPRT in the case of a continuous time and satisfied themselves
with the remark that “a careful examination of the results of [17] and [18]
shows that their conclusions in no way require that the processes be discrete
in time,” omitting any further detail and concentrating their attention on the
problem of finding the error probabilities α�d� and β�d� with expectations
E0�τ� and E1�τ� for the given SPRT �τ	 d� defined by “stopping boundaries”
A and B in the cases of a Wiener and Poisson process. The explicit solution of
the Bayesian problem in the case of a Wiener process was given in [12] (see
also [13]). For the general problem of the minimax optimality of the SPRT for
the case of a continuous time, see [6].

Our main aim in this section is to show how the solution of the variational
problem together with a precise description of all admissible pairs �α	β� can
be obtained from the Bayesian solution in the previous section. The sequential
procedure which leads to the optimal decision rule �̂τ	 d̂� in this process is a
SPRT which (as already mentioned earlier) was studied for the first time in
[5]. We now describe a well-known procedure of passing from the Bayesian
solution to the variational solution with some basic facts from [5] adapted to
our aims.

3.2. Note that the explicit procedure of passing from the Bayesian solution
to the variational solution presented in the next three steps is not confined to
a Poissonian case but is also valid in greater generality (cf. [8]).

Step 1 (Construction). Given α	β > 0 with α + β < 1, find constants A
and B satisfying A < 0 < B such that the stopping time

τ̂ = inf
{
t ≥ 0 �Zt �∈ �A	B�

}
(3.3)

satisfies the following identities:

P1
(
Zτ̂ = A

) = α	(3.4)

P0
(
Zτ̂ ≥ B

) = β	(3.5)

where �Zt�t≥0 is as in (2.46). Associate with τ̂ the following decision function:

d̂ =
{
1 �acceptH1�	 if Zτ̂ ≥ B	
0 �acceptH0�	 if Zτ̂ = A�

(3.6)

We shall actually see below that suchA and B do not exist for all values α and
β; a function G: �0	1� → �0	1� is displayed in (3.24) such that the solution
�A	B� to (3.4) and (3.5) exists only for β ∈ �0	G�α�� if α ∈ �0	1�. Such values
α and β will be called admissible.
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Step 2 (Embedding). Once A and B are found for admissible α and β,
we may, respectively, identify them with Ã∗ and B̃∗ from (2.47) and (2.48).
Then, for any π̂ ∈ �0	1� given and fixed, we can uniquely determine A∗ and
B∗ satisfying 0 < A∗ < B∗ < 1 such that (2.47) and (2.48) hold with π = π̂.
Once A∗ and B∗ are given, we can choose a > 0 and b > 0 in the Bayesian
problem �2�4� + �2�5� such that the optimal stopping time in (2.8) is exactly
the exit time τ∗ of �πt�t≥0 from �A∗	B∗� as given in (2.36). Observe that this is
possible to achieve since the optimal A∗ and B∗ range through all �0	1� when
a and b satisfying (2.35) range through �0	∞�. (For this, let any B∗ ∈ �0	1�
be given and fixed, and choose ã > 0 and b̃ > 0 such that B∗ = b̃/�ã + b̃�
with λ1 − λ0 = 1/ã + 1/b̃. Then consider the solution V� · �B∗� �= Vb� · �B∗�
of (2.20) on �0	B∗� upon imposing Vb�π�B∗� = b�1 − π� for π ∈ �B∗	 S�B∗��
where b ≥ b̃. To each such solution there corresponds a > 0 such that π �→ aπ
hits π �→ Vb�π�B∗� smoothly at some A = A�b�. When b increases from b̃ to
∞, then A�b� decreases from B∗ to zero. This is easily verified by a simple
comparison argument upon noting that π �→ Vb�π�B∗� stays strictly above
π �→ V�π�B∗� + Vb�B∗�B∗� on �0	B∗� (recall the idea used in Remark 2.3
above). As each A�b� obtained (in the pair with B∗) is optimal [recall the
arguments used in sections (iii)–(v) of the proof of Theorem 2.1], the proof of
the claim is complete.)

Step 3 (Verification). Consider the process �π̂t�t≥0 defined by �2�12�+�2�14�
with π = π̂, and denote by �̂τ∗	 d̂∗� the optimal decision rule (2.36) and (2.37)
associated with it. From our construction above note that τ̂ from (3.3) actually
coincides with τ̂∗, as well as that �π̂τ̂∗ = A∗� = �Zτ̂ = A� and �π̂τ̂∗ ≥ B∗� =�Zτ̂ ≥ B�. Thus (3.4) and (3.5) show that

P1�d̂∗ = 0� = α	(3.7)

P0�d̂∗ = 1� = β(3.8)

for the admissible α and β. If now any decision rule �τ	 d� from !�α	β� is given,
then either P1�d = 0� = α and P0�d = 1� = β, or at least one strict inequality
holds. In both cases, however, from (2.4)–(2.6) and �3�7� + �3�8� we easily see
that Eπ̂ �̂τ∗� ≤ Eπ̂�τ�, since otherwise τ̂∗ would not be optimal. Since τ̂∗ = τ̂,
it follows Eπ̂ �̂τ� ≤ Eπ̂�τ�, and letting π̂ go first to 0 and then to 1, we obtain
(3.2) in the case when E0�τ� < ∞ and E1�τ� < ∞. If either E0�τ� or E1�τ�
equals ∞, then (3.2) follows by the same argument after a simple truncation
(e.g., if E0�τ� < ∞ but E1�τ� = ∞, choose n ≥ 1 such that P0�τ > n� ≤ ε,
apply the same argument to τn �= τ ∧ n and dn �= d1�τ≤n� + 1�τ>n�, and let ε
go to zero in the end.) This solves the variational problem posed above for all
admissible α and β.

3.3. The preceding arguments also show

If either P1�d = 0� < α or P0�d = 1� < β for some �τ	 d� ∈ !�α	β�
with admissible α and β, then at least one strict inequality in (3.2)
holds.

(3.9)
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Moreover, since τ̂∗ is known to be Pπ̂-a.s. the smallest possible optimal stop-
ping time (see the proof of Theorem 3.1 below), from the arguments above
we also get

If P1�d = 0� = α and P0�d = 1� = β for some �τ	 d� ∈ !�α	β� with
admissible α and β, and both equalities in (3.2) hold, then τ = τ̂
P0-a.s. and P1-a.s.

(3.10)

The property (3.10) characterizes τ̂ as a unique stopping time of the decision
rule with maximal admissible error probabilities having both P0 and P1 expec-
tation at minimum.

3.4. It remains to determine admissible α and β in (3.4) and (3.5) above.
For this, consider τ̂ defined in (3.3) for some A < 0 < B and note from (2.14)
that ϕt = exp�Zt log�λ1/λ0��. By means of (2.10) we find

P1
{
Zτ̂ = A

} = P1

{
ϕτ̂ = exp

(
A log

(
λ1
λ0

))}
= exp

(
A log

(
λ1
λ0

))
P0
{
Zτ̂ = A

}
(3.11)

= exp
(
A log

(
λ1
λ0

))(
1−P0

{
Zτ̂ ≥ B

})
�

Using (3.4) and (3.5), from (3.11) we see that

A = log
(

α

1− β
)/

log
(
λ1
λ0

)
�(3.12)

To determine B, let Pz0 be a probability measure under which �Xt�t≥0 is a
Poisson process with intensity λ0 and �Zt�t≥0 starts at z. It is easily seen that
the infinitesimal operator of �Zt�t≥0 under �Pz0�z∈R acts like

��0f��z� = −µf′�z� + λ0
(
f�z+ 1� − f�z�)�(3.13)

In view of (3.5), introduce the function

u�z� = Pz0
(
Zτ̂ ≥ B

)
�(3.14)

Strong Markov arguments then show that z �→ u�z� solves the following
system:

��0u��z� = 0 if z ∈ �A	B�\�B− 1�	(3.15)

u�A� = 0	(3.16)

u�z� = 1 if z ≥ B�(3.17)

The solution of this system is given in (4.15) of [5]. To display it, introduce
the function

F�x�B� =
δ�x	B�∑
k=0

�−1�k
k!

(
�B− x− k�ρe−ρ

)k
(3.18)
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Fig. 4. A computer drawing of the map u�z� = Pz0�Zτ̂ ≥ B� from (3.14) in the case A = −1	
B = 2 and λ0 = 0�5. This map is a unique solution of the system (3.15)–(3.17). Its discontinuity at
B should be noted, as well as the discontinuity of its first derivative at B − 1. Observe also that
u�A+� = u�A� = 0. The case of general A	 B and λ0 looks very much the same.

for x ≤ B, where we denote

δ�x	B� = −�x−B+ 1�	(3.19)

ρ = log
(
λ1
λ0

)/(
λ1
λ0
− 1

)
�(3.20)

Setting Jn = �B−n−1	B−n� for n ≥ 0, observe that δ�x	B� = n if and only
if x ∈ Jn.

It is then easily verified that the solution of the system (3.15)–(3.17) is
given by

u�z� = 1− exp�−ρ�z−A�� F�z�B�
F�A�B�(3.21)

for A ≤ z < B. Note that z �→ u�z� is C1 everywhere in �A	B� but at B − 1
where it is only C0; note also that u�A+� = u�A� = 0, but u�B−� < u�B� = 1
(see Figure 4).

Going back to (3.5), and using (3.21), we see that

P0�Zτ̂ ≥ B� = 1− eρA F�0�B�
F�A�B� �(3.22)



856 G. PESKIR AND A. N. SHIRYAEV

Letting B ↓ 0 in (3.22) and using the fact that the expression (3.22) is con-
tinuous in B and decreases to 0 as B ↑ ∞, we clearly obtain a necessary and
sufficient condition on β to satisfy (3.5), once A = A�α	β� is fixed through
(3.12); as F�0�0� = 1, this condition reads

β < 1− exp�ρA�α	 β��
F�A�α	β��0� �(3.23)

Note, however, if β increases, then the function on the right-hand side in (3.23)
decreases, and thus there exists a unique β∗ = β∗�α� > 0 at which equality in
(3.23) is attained. (This value can easily be computed by means of standard
numerical methods.) Setting

G�α� = 1− exp�ρA�α	 β∗�α���
F�A�α	β∗�α���0�

	(3.24)

we see that admissible α and β are characterized by 0 < β < G�α� (see
Figure 5). In this case A is given by (3.12), and B is uniquely determined
from the equation

F�0�B� − �1− β�F�A�B�e−ρA = 0�(3.25)

The set of all admissible α and β will be denoted by � . Thus, we have

� = ��α	β� �0 < α < 1	0 < β < G�α���(3.26)

3.5. The preceding considerations may be summarized as follows (see also
Remark 3.2 below).

Theorem 3.1. In the problem (3.1) and (3.2) of testing two simple hypothe-
ses (2.2) and (2.3) based upon sequential observations of the Poisson process
X = �Xt�t≥0 under P0 or P1, there exists a unique decision rule �̂τ	 d̂� ∈ !�α	β�
satisfying (3.2) for any other decision rule �τ	 d� ∈ !�α	β�whenever �α	β� ∈ � .

The decision rule �̂τ	 d̂� is explicitly given by �3�3�+ �3�6� with A in (3.12) and
B from (3.25); it satisfies (3.9), and is characterized by (3.10).

Proof. It remains only to prove (3.10). For this, in the notation used above,
assume that τ is a stopping time ofX satisfying the hypotheses of (3.10). Then
clearly τ is an optimal stopping time in (2.8) for π = π̂ with a and b as in
Step 2 above.

Recall that V∗�π� ≤ ga	b�π� for all π and observe that τ̂ can be written as

τ̂ = inf
{
t ≥ 0 �V∗�π̂t� ≥ ga	b�π̂t�

}
(3.27)

where π �→ V∗�π� is the payoff (2.8) appearing in the proof of Theorem 2.1.
Supposing now that Pπ̂�τ < τ̂� > 0, we easily find by (3.27) that

Eπ̂
(
τ + ga	b�π̂τ�

)
> Eπ̂

(
τ +V∗�π̂τ�

)
�(3.28)
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Fig. 5. A computer drawing of the map α �→ G�α� from (3.24) in the case λ0 = 1 and λ1 = 3.
The area � which lies below the graph of G determines the set of all admissible α and β. The
case of general λ0 and λ1 looks very much the same; it can also be shown that G�0+� decreases if
the difference λ1 − λ0 increases, as well as that G�0+� increases if both λ0 and λ1 increase so that
the difference λ1 −λ0 remains constant; in all cases G�1−� = 0. It may seem somewhat surprising
that G�0+� < 1� observe, however, that this is in agreement with the fact that �Zt�t≥0 from (2.46)
is a supermartingale under P0. [A little peak on the graph, at α̂ = 0�19 · · · and β̂ = 0�42 · · · in
this particular case corresponds to the disturbance when A from (3.12) passes through −1 while
B = 0+; it is caused by a discontinuity of the first derivative of the map from (3.22) at B− 1 (see
Figure 4).]

On the other hand, it is clear from (2.40) with LV∗ ≥ −1 that �t+V∗�π̂t��t≥0
is a submartingale. Thus by the optional sampling theorem it follows
that

Eπ̂
(
τ +V∗�π̂τ�

) ≥ V∗�π̂��(3.29)

However, from (3.28) and (3.29) we see that τ cannot be optimal, and thus
we must have Pπ̂�τ ≥ τ̂� = 1. Moreover, since it follows from our assumption
that Eπ̂�τ� = Eπ̂ �̂τ�, this implies that τ = τ̂ Pπ̂-a.s. Finally, as Pi $ Pπ̂ for
i = 0	1, we see that τ = τ̂ both P0-a.s. and P1-a.s. The proof of the theorem
is complete. ✷
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Observe that the sequential procedure of the optimal decision rule �̂τ	 d̂�
from Theorem 3.1 is precisely the SPRT. The explicit formulas for E0�̂τ� and
E1�̂τ� are given in (4.22) of [5].

Remark 3.2. If �α	β� �∈ � ; that is, if β ≥ G�α� for some α	β > 0 such that
α+β < 1, then no decision rule given by the SPRT-form �3�3�+�3�6� can solve
the variational problem (3.1) and (3.2).

To see this, let such �α	β∗� �∈ � be given, and let �τ	 d� be a decision rule
satisfying �3�3� + �3�6� for some A < 0 < B. Denote β = P0�Zτ ≥ B� and
choose α to satisfy (3.12). Then β < G�α� ≤ β∗ by definition of the map G.
Given β′ ∈ �β	G�α��, let B′ be taken to satisfy (3.5) with β′, and let α′ be
determined from (3.12) with β′ so that A remains unchanged. Clearly 0 <
B′ < B and 0 < α′ < α, and (3.4) holds with A and α′, respectively. But then
�τ′	 d′� satisfying �3�3� + �3�6� with A < 0 < B′ still belongs to !�α	β∗�, while
clearly τ′ < τ both under P0 and P1. This shows that �τ	 d� does not solve the
variational problem.

The preceding argument shows that the admissible class � from (3.26) is
exactly the class of all error probabilities �α	β� for which the SPRT is optimal.
A pleasant fact is that � always contains a neighborhood around �0	0� in
�0	1� × �0	1�, which is the most interesting case from the point of view of
statistical applications.
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