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ADAPTIVE DRIFT ESTIMATION FOR
NONPARAMETRIC DIFFUSION MODEL1

By Vladimir G. Spokoiny

Weierstrass Institute for Applied Analysis and Stochastics

We consider a nonparametric diffusion process whose drift and dif-
fusion coefficients are nonparametric functions of the state variable. The
goal is to estimate the unknown drift coefficient. We apply a locally lin-
ear smoother with a data-driven bandwidth choice. The procedure is fully
adaptive and nearly optimal up to a log log factor. The results about the
quality of estimation are nonasymptotic and do not require any ergodic or
mixing properties of the observed process.

1. Introduction. In this paper, we propose a procedure for adaptive esti-
mation of the drift coefficient of a diffusion system described by the Itô
equations

dXt = f�Xt�dt+ g�Xt�dwt� X0 = x0� 0 ≤ t ≤ T
(1.1)

Here wt is a standard Wiener process and T is the observation time. The
functions f�g entering in (1.1) are usually referred to as drift and diffusion
coefficients. The goal is to recover the unknown drift function f from the
observations Xt� 0 ≤ t ≤ T. We do not discuss here the problem of estimat-
ing the diffusion coefficient g since in the case of continuous observations,
the required information about this function g can be exactly recovered from
the data; see Section 3.5 below. We also restrict ourselves to the problem of
pointwise estimation; that is, given a point x, we estimate the value f�x�.
The reader is referred to Lepski, Mammen and Spokoiny (1997) for a dis-
cussion of the relation between pointwise and global estimation. Note that
the problem of the pointwise estimation of the drift function f is closely con-
nected to the problem of forecasting the process X. Indeed, if we observe the
process �Xt� until the time point T, and if we are interested in a behavior
of the process in the nearest future after T, then we have to estimate f�x�
for x =Xt.
Statistical inference for stochastic processes and time series has attracted

a lot of attention recently, especially in view of applications to financial math-
ematics. The estimation theory for diffusion-type processes is well developed
under parametric modelling when the underlying functions (drift and diffu-
sion) are specified up to a value of a finite-dimensional parameter [cf.
Kutoyants (1984b)]. In contrast, nonparametric estimation is not studied in
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detail. The known results concern only statistical inference for ergodic diffu-
sion models with a small noise or for a large observation time T. Kutoyants
(1984a) evaluated the minimax rate of estimation of the drift coefficient using
a kernel type estimator. Genon-Catalot, Laredo and Picard (1992) applied
wavelets. Locally polynomial estimators are described in Fan and Gijbels
(1996). Milstein and Nussbaum (1998) established the Le Cam equivalence
between the diffusion model and the “white noise model.” Some pertinent
results for autoregressive models in discrete time can be found in Doukhan
and Ghindes (1980), Collomb and Doukhan (1983), Doukhan and Tsybakov
(1993), Delyon and Juditsky (2000), Neumann (1998). A series of papers dis-
cusses simultaneous estimation of the drift and diffusion functions, among
them Hall and Carroll (1989), Härdle and Tsybakov (1997), Ruppert, Wand,
Holst and Hössjer (1997), Fan and Yao (1998).
It is worth mentioning that the stationarity assumption could be very

restrictive for practical applications. Typically, this assumption is fulfilled
only in some local sense; that is, observed processes are only locally station-
ary. In other words, for every time point t, there is a time interval contain-
ing t such that the observed process is stationary or near stationary within
this interval; see, for example, Dahlhaus (1997) for more discussion. Sta-
tistical inference under local stationary assumption requires studying some
nonasymptotic properties of statistical procedures. The reader is referred to
forthcoming paper by Mercurio and Spokoiny (2000) for an example of parame-
ter estimation for ARCH and stochastic volatility models under local
stationarity.
The present paper offers another approach to relax the stationarity assump-

tion, so that neither an ergodic property of the slow component nor large
observation time T is assumed. We propose a locally linear estimator of f�x�
with a data-driven bandwidth choice which goes back to Lepski (1990). Lep-
ski, Mammen and Spokoiny (1997) presented a slightly modified version of the
original Lepski procedure and showed its optimality in the asymptotic mini-
max sense (over a wide range of Besov classes) and for the global Lp-risk in
the “white noise model.” Lepski and Spokoiny (1997) constructed an asymp-
totically sharp optimal pointwise bandwidth selector for kernel smoothing,
again for the “white noise model.” In this paper the procedure is adapted to
locally linear smoothing in a diffusion-type model (1.1). The results compare
the quality of the adaptive procedure to that of an “ideal” estimate defined by
the optimal choice of the smoothing parameter (bandwidth); see Section 4 for
more discussion. In particular, it is shown that the accuracy of the adaptive
procedure is worse than the “ideal” one by a factor log logT to some power
which can be viewed as payment for the adaptive property.
The paper is organized as follows. The next section contains the description

of a locally linear estimator. Its properties are discussed in Section 3. The data-
driven bandwidth choice is presented in Section 4. All proofs are collected in
Sections 5 and 6.
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2. A locally linear estimator. For fixed x, to estimate the value f�x� we
apply the locally linear smoother [cf. Katkovnik (1985), Tsybakov (1986), Fan
and Gijbels (1996)].
We begin with some heuristic explanations of the method. Imagine for a

moment that the observed processXt�0 ≤ t ≤ T satisfies the Itô equation (1.1)
with a linear function f of the form f�u� = θ0 + θ1�u − x�/h, depending on
two parameters θ0� θ1, where x and h > 0 are fixed. The values θ0 and θ1 can
be estimated by the least squares method,

(
θ̃0� θ̃1

) = argmax
θ0� θ1

{∫ T

0

(
θ0 + θ1

Xt − x

h

)
dXt −

1
2

∫ T

0

(
θ0 + θ1

Xt − x

h

)2
dt

}



This quadratic optimization problem can be explicitly solved: with

µk =
∫ T

0

(
Xt − x

h

)k
dt� k = 0�1�2

one has

θ̃0 =
µ2
∫ T
0 dXt − µ1

∫ T
0 �Xt − x�/hdXt

µ0µ2 − µ2
1

�

θ̃1 =
−µ1

∫ T
0 dXt + µ0

∫ T
0 �Xt − x�/hdXt

µ0µ2 − µ2
1




Since clearly f�x� = θ0, the value θ̃0 can be taken for estimating f�x�.
The locally linear smoother is defined in a similar way. The only difference

is that the function f is not assumed to be linear but it is approximated by
a linear function θ0 + θ1�u − x�/h in a small neighborhood �x − h�x + h	 of
the point x. Then the coefficients θ0� θ1 of this function can be estimated from
the observations of Xt falling into the interval �x − h�x + h	. For a formal
description, let us introduce a kernel function K�u� which is assumed to be
smooth, nonnegative, bounded by 1, and vanishing outside of �−1�1	. Then
the locally linear estimate with the kernelK and a bandwidth h is defined as

f̃h�x�=
µ2�h

∫ T
0 K��Xt−x�/h�dXt−µ1�h

∫ T
0 ��Xt−x�/h�K��Xt−x�/h�dXt

µ0�hµ2�h−µ2
1�h

�(2.1)

where

µk�h =
∫ T

0

(
Xt − x

h

)k
K

(
Xt − x

h

)
dt� k = 0�1�2
(2.2)

The quality of estimate (2.1) essentially depends on the bandwidth h. Some
useful properties of f̃h�x� for the fixed h are described in Section 3. An adap-
tive (data-driven) choice of the bandwidth h is discussed in Section 4.
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3. Some properties of the locally linear estimate. In this section we
study some properties of the locally linear estimate f̃h�x� from (2.1). We first
formulate the required conditions on the coefficients f, g from (1.1). Then we
present the result and discuss some of its corollaries.

3.1. Conditions. In the sequel we suppose that the functions f�g from
(1.1) obey the following conditions:

�As� The function f�u� is two times continuously differentiable in u. The func-
tion g�u� is Lipschitz continuous in u and for some positive constants
gmin ≤ gmax

gmin ≤ 
g�u�
 ≤ gmax ∀u

It is worth mentioning that we do not impose any conditions which ensure
ergodic or mixing properties of the process X. Our approach is essentially
nonasymptotic and there is no difference between the ergodic and nonergodic
cases.

3.2. Accuracy of the locally linear estimate. To state the result, we intro-
duce some additional notation. With µk�h defined in (2.2), set

σ2
h�x� =

1

D2
h

∫ T

0

(
µ2� h − µ1� h

Xt − x

h

)2
K2

(
Xt − x

h

)
g2�Xt�dt

= v22� hV0� h − 2v1� hv2� hV1� h + v21� hV2� h�

(3.1)

where

Dh = µ0� hµ2� h − µ2
1� h�

vk�h =
µk�h

Dh

= µk�h

µ0� hµ2� h − µ2
1� h

� k = 1�2�

Vk�h =
∫ T

0

(
Xt − x

h

)k
K2

(
Xt − x

h

)
g2�Xt�dt


Although the expressions forVk�h, k = 0�1�2, use the unknown diffusion coef-
ficient g2�Xt�, these values can be computed on the base of our observations
�Xt� 0 ≤ t ≤ T� only; see Section 3.5.
The value σ2

h�x� is called the conditional variance of the estimate f̃h�x�.
This terminology is used by analogy with the regression case, where Xt is
a deterministic design process and σ2

h�x� is really the variance of the least
squares estimate f̃h�x�. Note that for the regression set-up, some design reg-
ularity is required to ensure that σ2

h�x� is not too large.
In our case, Xt is the observed process which at the same time can be

viewed as the design process. We therefore impose some conditions on the
trajectories of the process Xt which are similar to that used to describe the
design regularity in the regression setting. Our results are also similar to
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those that can be obtained in the regression context [cf. Lepski, Mammen and
Spokoiny (1997) or Lepski and Spokoiny (1997)]. In particular, we show that
under the conditions imposed, the conditional variance σ2

h�x� helps to control
the stochastic component of the estimate f̃h�x�.
For some ρ ≥ 0, r > 0, b > 0 and B ≥ 1 we introduce the set

�h =




b

Th
≤ v2� h ≤

bB

Th
�

b

Th
≤ σ2

h�x� ≤
bB

Th
�

µ0� h ≤ rµ2� h� V0� h ≤ rV2� h�

µ2
1� h ≤ ρµ0� hµ2� h� V

2
1� h ≤ ρV0� hV2� h


Since Xt is the random process, the set �h is random as well. In the sequel
we study the properties of f̃h�x� restricted to the set �h; see Section 3.3 for
further discussion.
The quality of the approximation of f�u� by a linear in u function in the

neighborhood u ∈ �x− h�x+ h	 is characterized by the following quantity:
�h�x� = sup


u−x
≤h

∣∣f�u� − f�x� − �u− x�f′�x�∣∣�(3.2)

where f′ denotes the derivative of f. The next theorem describes some useful
properties of the estimate (2.1).

Theorem 3.1. Let �As� be fulfilled, and Th ≥ 1. Then for every λ ≥ √
2,

P

(∣∣∣f̃h�x� − f�x�
∣∣∣ > c�h�x� + λσh�x���h

)
≤ α�λ�(3.3)

with

α�λ� = 4e log�4B3�
(
1+ 4r

√
1+ r

1− ρ
λ2
)
λ exp

(
−λ

2

2

)
(3.4)

and c = �1− ρ�−1/2.

Informally, the result of the theorem means that for sufficiently large λ,
the losses 
f̃h�x� − f�x�
 of the estimate f̃h�x�, being restricted to �h, are
bounded by the sum of two terms: c�h�x� and λσh�x�. The first one mimics
the accuracy of approximating the function f�u� by a linear in u function in
the small vicinity �x− h�x+ h	 of x. The second term is in proportion to the
“stochastic standard deviation” σh�x�.

3.3. Some remarks related to the random set �h. The result of Theorem 3.1
describes the accuracy of the estimate f̃h�x� on the random set �h only. Here
we briefly discuss some related questions.



820 V. G. SPOKOINY

3.3.1. Reason for restricting to �h. It was mentioned previously that
restricting to �h allows eliminating irregular cases when, for instance, the
trajectory X�0�T	 does not pass through the interval �x− h�x+ h	 and µ0� h =
µ1� h = µ2� h = Dh = 0. Note that for typical applications to forecasting, one has
to estimate f�x� with x =Xt, and the pathX�0�T	 obviously passes through x.
3.3.2. Verifying the condition X�0�T	 ∈ �h. Clearly the event �h is com-

pletely determined by the known values µk�h and Vk�h, k = 0�1�2. It is there-
fore always possible to check whether the observed path X�0�T	 belongs to
�h or not. If X�0�T	 does not belong to �h, we are not able to guarantee a
reasonable quality for the estimate f̃h�x�.
3.3.3. The conditions entering into the definition of �h. The conditions

0 ≤ K�u� ≤ 1 and K�u� = 0 for 
u
 ≥ 1 imply µ2� h ≤ µ0� h and V2� h ≤
V0� h. Further, by the Cauchy–Schwarz inequality, it holds µ2

1� h ≤ µ0� hµ2� h

and V2
1� h ≤ V0� hV2� h. The conditions µ0� h ≤ rµ2� h, V0� h ≤ V2� h, µ

2
1� h ≤

ρµ0� hµ2� h, and V2
1� h ≤ ρV0� hV2� h with ρ < 1 and r ≥ 1 ensure that the local

linear estimate is well defined. Note that these conditions are not completely
independent. In particular, if g�x� is a constant function and ifK�u� = 1�
u
 ≤
1�, then µk�h = Vk�h for k = 0�1�2 and σ2

h�x� = v2� h/�µ0� hµ2� h − µ2
1� h�.

3.3.4. The choice of the constants ρ� b� B� r. The choice of constants
ρ� b� B� r, entering in the definition of the set �h, is optional and they
even may depend on T.
For a regular design in the regression set-up, it holds µ1� h = V1� h = 0. If, in

addition, g�u� is constant in the interval �x−h�x+h	, then µ0� h = r�K�µ2� h

and V0� h = r�K�V2� h with r�K� = ∫
K�u�du�∫ u2K�u�du�−1. Therefore, one

reasonable choice would be ρ = 1/2 and r = 2r�K�.
Concerning the choice of the parameters b�B, note that the upper bound

(3.3) from Theorem 3.1 does not depend on b and it depends on B [which deter-
mines the range of different values for the conditional variance σ2

h�x�] only
via the log-factor log�4B3�. Simple heuristic consideration prompt a possible
choice b = hmin and B = T.
3.3.5. Unconditional result under ergodicity. If the coefficients f and g

obey some additional conditions which ensure ergodicity of the process Xt

[see, e.g., Veretennikov (1991)], then, at least with growing T the normal-
ized integrals �Th�−1µk�h and �Th�−1Vk�h�k = 0�1�2� converge to some fixed
values which depend only on the stationary distribution of the process Xt.
Moreover, one can usually select fixed constants b�B and ρ� r in such a way
that 1−P��h� converges to zero exponentially fast as T→∞. Since obviously

P
(∣∣∣f̃h�x� − f�x�

∣∣∣ > c�h�x� + λσh�x�
)

≤ P
(∣∣∣f̃h�x� − f�x�

∣∣∣ > c�h�x� + λσh�x���h

)
+P��h��

we obtain in this situation an unconditional asymptotic bound for the risk of
the estimate f̃h�x�.
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3.4. Quality of estimation under smoothness assumptions. Due to the
assumptions �As� from Section 3.1, the function f is twice continuously differ-
entiable. Assume also that for every u from a small vicinity of x, the second
derivative f′′ is bounded by some fixed constant L,


f′′�u�
 ≤ L
(3.5)

Then the value �h�x� defined in (3.2), is bounded above by Lh2/2. On the
other hand, on the set �h the stochastic variance σ2

h�x� is of order �Th�−1.
Therefore, following the standard approach in nonparametric estimation, the
bandwidth h can be chosen by balancing the accuracy of approximation and
the stochastic error: Lh2 � �Th�−1/2. (The symbol � here means equivalence
in order; that is, the ratio remains bounded as T grows.) This leads to the
choice h � �TL2�−1/5 and hence to the rate of the estimation L1/5T−2/5 which
is optimal in the minimax sense under the smoothness assumptions (3.5) [see,
e.g., Ibragimov and Khasmiskii (1981) for the related results for the “white
noise” model]. Unfortunately this approach hardly applies in practice, since
the constant L in (3.5) is typically unknown. An adaptive (data-driven) choice
of the bandwidth is discussed in the next section.

3.5. Computation of σ2
h�x�. Recall that the value σ2

h�x� is defined as

σ2
h�x� =

1

D2
h

∫ T

0
K2

(
Xt − x

h

)(
µ2� h − µ1� h

Xt − x

h

)2
g2�Xt�dt

= v22� hV0� h − 2v1� hv2� hV1� h + v21� hV2� h

with

µk�h =
∫ T

0

(
Xt − x

h

)k
K

(
Xt − x

h

)
dt�

Dh = µ0� hµ2� h − µ2
1� h�

vk�h =
µk�h

Dh

= µk�h

µ0� hµ2� h − µ2
1� h

�

Vk�h =
∫ T

0

(
Xt − x

h

)k
K2

(
Xt − x

h

)
g2�Xt�dt� k = 0�1�2


The formula for σ2
h�x� includes the unknown diffusion coefficient g2�Xt�. We

now show that despite this fact, the value σ2
h�x� can be computed via the

observations X�0�T	 only.
Let us introduce two random processes,

Z′
t =

∫ t

0
K

(
Xs − x

h

)
dXs and Z′′

t =
∫ t

0
K

(
Xs − x

h

)
Xs − x

h
dXs
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which are completely determined on the time interval �0�T	 by X�0�T	. Apply-
ing the Itô formula we get

�Z′
T�2 = 2

∫ T

0
Z′

tdZ
′
t +V0� h�

�Z′′
T�2 = 2

∫ T

0
Z′′

t dZ
′′
t +V2� h�

Z′
TZ

′′
T =

∫ T

0
Z′

tdZ
′′
t +

∫ T

0
Z′′

t dZ
′
t +V1� h


Hence V0� h = �Z′
T�2 − 2

∫ T
0 Z′

tdZ
′
t, so that V0� h is completely determined by

X�0�T	. Similar arguments apply for V1� h and V2�h and hence for σ2
h�x� as

required.

4. Data-driven bandwidth selection. In this section we consider the
problem of bandwidth selection for the locally linear estimator described in
Section 2. It is assumed here that the method of estimation, that is, the locally
linear smoother with the kernel K, is fixed and only the bandwidth h has to
be chosen. Below we discuss one adaptive (data driven) approach which goes
back to the idea of pointwise adaptive estimation; see Lepski (1990), Lepski
and Spokoiny (1997) and Spokoiny (1998).
The idea of the method can be explained as follows. In the light of Theorem

3.1, we could be interested in selecting a bandwidth h which leads to a possibly
small sum of the form c�h�x� + λσh�x� among all considered bandwidth val-
ues h. This sum comprises two terms. The first one (“bias”) characterizes the
accuracy of local approximation of the underlying drift function f by the linear
functions and it typically increases with h. The second term is proportional
to the conditional standard deviation σh�x� which typically decreases with h.
(Indeed, an increase of hmakes the estimation window �x−h�x+h	 larger and
hence more observations can be used for estimating the underlying function f
at the point x. This results in a smaller variance of the estimate.) To simplify
the exposition, we suppose that σ2

h�x� strongly decreases in h ∈ � . [If this
assumption is not fulfilled for the original set � , i.e., if there is h′ < h ∈ �
with the property σ2

h�x� ≥ σ2
h′ �x�, then we simply exclude h from � .]

Therefore, a “good” (or “ideal”) choice hid corresponds to a possibly large
bandwidth h (which makes the stochastic component of the estimate small)
still providing that the “bias” component c�h�x� is not significant larger than
σh�x�. (We call hid an “ideal” bandwidth since its definition relies on the
unknown function �h�x�.) The latter property is clearly fulfilled for all smaller
bandwidths h ≤ hid. Therefore, if hid is “good” and h < hid, then the two cor-
responding estimates f̃hid�x� and f̃h�x� should not differ significantly.
The proposed procedure can be viewed as a family of tests for whether the

estimate f̃h�x� for a bandwidth candidate h differs significantly from esti-
mates f̃η�x� with smaller bandwidths η < h. The latter is done on the base
of Theorem 3.1 which allows bounding with a large probability the difference
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f̃h�x�− f̃η�x�
 by λσh�x�+λση�x�+ c�h�x�+ c�η�x� provided λ is sufficiently
large. The terms c�h�x� and c�η�x� in this sum are unknown but, if h is “good,”
that is, if �h�x� � σh�x�, then their contribution is negligible. In opposition
a significant deviation of 
f̃h�x� − f̃η�x�
 over the level λσh�x� + λση�x� can
be explained only by a large bias component indicating that h is not a “good”
bandwidth. The procedure searches for the largest bandwidth h such that the
hypothesis f̃h�x� = f̃η�x� is not rejected for all η < h.
Now we present a formal description. Suppose a family � of bandwidth

candidates h is fixed. For technical reasons, we assume that this set is finite
and denote by H the number of its elements. Usually � is taken as a geo-
metric grid,

� = �h = hmina
k� k = 0�1�2� 
 
 
 � � h ≤ hmax�

where hmin ≤ hmax and a > 1 are some prescribed constants. As in Section
3 we restrict ourselves only to those h from � for which the observed path
X�0�T	 belongs to �h.
With every bandwidth value h we associate the estimate f̃h�x� of f�x�

and the corresponding conditional standard deviations σh�x� which can be
precisely calculated as described in Section 3.5.
Now, with two constants λ1 and λ2, define the adaptive choice of bandwidth

by the following iterative procedure.
Initialization. Select the smallest bandwidth in � .
Iteration. Select the next bandwidth h in� and calculate the corresponding

estimate f̃h�x� and the conditional standard deviation σh�x�.
Testing. Reject h, if there exists one η ∈ � with η < h such that

∣∣∣f̃h�x� − f̃η�x�
∣∣∣ > λ1ση�x� + λ2σh�x�
(4.1)

Loop. If h is not rejected, then continue with the iteration step by choosing
a larger bandwidth h in � . Otherwise, set ĥ = “the latest nonrejected h.”
The proposed rule can be packed in the following form:

ĥ = max�h ∈ � � 
f̃h′ �x� − f̃η�x�
(4.2)

≤ λ1ση�x� + λ2σh′ �x� ∀h′� η ∈ � � η < h′ ≤ h�

The choice of the parameters λ1� λ2 and the set � is discussed in Section 4.1.
Finally, to define our adaptive estimate, we plug the data-driven bandwidth

ĥ in the estimate f̃h�x�, that is f̂�x� ≡ f̃ĥ�x�.
In the next theorem we describe some properties of the adaptive estimate

f̂�x� restricted to the set

� ∗ = ⋂
h∈�

�h
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Theorem 4.1. The estimate f̂�x� ≡ f̃ĥ�x� with ĥ from (4.2) and λ2 ≥ λ1
fulfills the following property:

P
(
f̂�x� − f�x�
 > �2λ1 + λ2�σhid�x��� ∗) ≤ ∑

η∈� � η≤hid
α�λη��(4.3)

where α�λ� is defined in (3.4) and

λη = λ1 − c�η�x�/ση�x�
(4.4)

4.1. The choice of parameters λ1� λ2� hmin� hmax and a. Different proposals
for the choice of grid� are discussed in Lepski, Mammen and Spokoiny (1997)
and in Lepski and Spokoiny (1997). One possible choice for the grid� reads as
follows: hmin = 1/T�hmax = 1� a = √

2, although these values can be changed
without essential influence on the quality of the procedure.
The choice of parameters λ1� λ2, entering in (4.2), plays a more important

role. We start with the following general remark: the upper bound for the
risk from Theorem 4.1 is rather rough and should be used with care for the
parameter selection. However, it delivers some useful qualitative information
about this choice which can be used for a theoretical study. The bound in (4.3)
shows that the probability for 
f̂�x� − f�x�
 of being large is small, provided
that the value

∑
η∈� � η≤hidα�λη� is sufficiently small. Here we discuss briefly the

specific case when the values �η�x� vanish. The general case can be relatively
easily reduced to that one. Indeed, a “good” bandwidth hid can be defined by
trade-off arguments between the “bias” c�hid�x� and the conditional standard
deviation σhid�x�; that is, hid is the maximal h from � with c�h�x� ≤ Dσh�x�
for some fixed value D. Taking D small enough provides that c�η�x� � ση�x�
for all η ≤ hid.
If �η�x� vanishes for all such η, then λη = λ1 and

∑
η∈� � η≤hid α�λη� ≤

Hα�λ1�. Therefore, λ1 should be selected in a way to provide that Hα�λ1� is
sufficiently small. This leads to the choice

λ1 ≈
√
2 log�H� + λ2

with some fixed constant λ so that

H exp�−λ
2
1/2� ≈ exp�−λ

2/2� 


If � is taken in the form of the geometric grid, then we get H ≈ loga�hmax/
hmin�. Therefore, taking hmax ≈ 1 and hmin ≈ 1/T, we arrive at

λ1 ≈
√
2 log log T+ λ2


There are many degrees of freedom in the choice of λ2. The constraint λ2 ≥ λ1
from Theorem 4.1 is of technical matter and it is used only in theoretical inves-
tigations. It can be skipped in practical applications. Simulation results show
a reasonable (and very similar) performance of the presented procedure with
λ1 ≈ 2 and λ2 = 1, or λ1 = λ2 = 1
5 in most cases. We refer to the forthcom-
ing paper by Mercurio and Spokoiny (2000) for a more detailed discussion of
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practical issues and for a proposal for a data-driven choice of the parameters
λ1 and λ2 in the context of applications to finance time series.

4.2. Accuracy of adaptive estimation. We now compare the accuracy of the
adaptive procedure (4.2) with the “optimal” one designed for the case of known
smoothness properties of the underlying function f (see Section 3.4).
Assume 
f′′ �u�
 ≤ L; see (3.5). Then �h�x� ≤ Lh2/2 and the conditions

σ2
h�x� � �hT�−1 and the balance relation c�h�x� ≤ Dσh�x� yield for hid:

hid � �TL2�−1/5

so that σhid�x� � L1/5T−2/5. Hence, the above-mentioned choice λ1 ≈√
2 log logT and λ2 = λ1 leads, due to Theorem 4.1, to the following accu-

racy of the adaptive estimation:

�2λ1 + λ2�σhid�x� � L1/5
(
log logT

T

)2/5



At the same time, the “ideal” choice of the bandwidth leads to the rate
L1/5T−2/5; see Section 3.4. Thus, the accuracy of adaptive estimation is worse
then the “ideal” one within a log logT-factor only.
The origin of the log logT-factor in the rate of adaptive estimation can be

easily explained. The total number H of considered estimates is logarithmic
in the observation time T, and the adaptive choice of the bandwidth leads to
a worse accuracy by factor log�H� at some power.
The notion of “payment for adaptation” is now well understood in nonpara-

metric estimation: if we have too many estimates to select among, we have to
“pay” for the adaptive choice with some additional factor in the risk of estima-
tion. In particular, it is shown in Lepski (1990) and Brown and Low (1996) [see
also Lepski and Spokoiny (1997)] that for the problem of pointwise adaptive
estimation, the optimal adaptive rate has to be worse than the optimal one by
a log-factor.
In our results a log log-factor appears. This fact is not in contradiction to

earlier issues, since the above-mentioned results correspond to the case of the
power loss function *�x� = 
x
p� p > 0, while we consider the bounded loss
function. It can also be shown that the rate achieved by our estimate is optimal
for pointwise adaptive estimation with a bounded loss function (see Spokoiny
(1996) for similar results in the adaptive testing problem).

5. Proofs. In this section we prove Theorems 3.1 and 4.1.

5.1. Proof of Theorem 3.1. The proof of the theorem will be split into a few
separate steps.
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5.1.1. Decomposition of f̃h�x�. We use two obvious identities characteriz-
ing the locally linear smoother: for υ1� h = µ1h/Dh and υ2�h = µ2� h/Dh,

∫ T

0
K

(
Xs − x

h

)(
υ2� h − υ1� h

Xs − x

h

)
ds = 1�

∫ T

0
K

(
Xs − x

h

)(
υ2� h

Xs − x

h
− υ1� h

�Xs − x�2
h2

)
ds = 0

and hence ∫ T

0
K

(
Xs − x

h

)(
υ2� h − υ1� h

Xs − x

h

)
f�x�ds = f�x��(5.1)

∫ T

0
K

(
Xs − x

h

)(
υ2� h

Xs − x

h
− υ1� h

�Xs − x�2
h2

)
f′�x�ds = 0
(5.2)

Due to (2.1) and (1.1), the estimate f̃h�x� can be represented as follows:

f̃h�x� = υ2� h

∫ T

0
K

(
Xs − x

h

)
dXs − υ1� h

∫ T

0
K

(
Xs − x

h

)
Xs − x

h
dXs

=
∫ T

0
K

(
Xs − x

h

)(
υ2� h − υ1� h

Xs − x

h

)
f�Xs�ds

+υ2� h
∫ t

0
K

(
Xs − x

h

)
g�Xs�dws

−υ1� h
∫ T

0
K

(
Xs − x

h

)
Xs − x

h
g�Xs�dws


Now (5.1) and (5.2) imply the following decomposition:

f̃h�x� = f�x� + ξh + rh�(5.3)

where, with δ�Xs�x� = f�Xs� − f�x� − ��Xs − x�/h�f′�x�,

rh =
∫ T

0
K

(
Xs − x

h

)(
υ2� h − υ1� h

Xx − x

h

)
δ�Xs�x�ds

ξh = υ2� h

∫ T

0
K

(
Xs − x

h

)
g�Xs�dws

−υ1� h
∫ T

0
K

(
Xs − x

h

)
Xs − x

h
g�Xs�dws


Below we evaluate separately each term in this decomposition.
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5.1.2. An upper bound for 
rh
. Since K��u−x�/h� vanishes for any u �∈
�x− h�x+ h	 and 
δ�Xx�x�
 ≤ �h�x� for 
Xs − x
 ≤ h, we get


rh
 ≤
∫ T

0
K

(
Xs − x

h

)(
v2� h − v1� h

Xs − x

h

)

δ�Xs� x�
ds(5.4)

≤ �h�x�
∫ T

0
K

(
Xs − x

h

)∣∣∣∣∣υ2� h − υ1� h
Xs − x

h

∣∣∣∣∣ds

The properties 
K�u�
 ≤ 1 and K�u� = 0� 
u
 ≥ 1 imply the inequality µ2� h ≤
µ0� h. In addition we know that it holds on �h,

µ2
1� h ≤ ρµ0� hµ2� h
(5.5)

We now show that


rh
 ≤ �1− ρ�−1/2�h�x� on�h
(5.6)

The Cauchy–Schwarz inequality applied to (5.4) gives

r2h ≤ �2h�x�
∫ T

0
K

(
Xs − x

h

)
ds
∫ T

0
K

(
Xs − x

h

)(
υ2� h − υ1� h

Xs − x

h

)2
ds


Next,

∫ T

0
K

(
Xs − x

h

)
ds = µ0� h�

and using υk�h = µk�h/Dh, with Dh = µ2� hµ0� h − µ2
1� h� k = 0�1�2, we get

∫ T

0
K

(
Xs − x

h

)(
υ2� h − υ1� h

Xs − x

h

)2
ds

= 1

D2
h

∫ T

0
K

(
Xs − x

h

)(
µ2� h − µ1� h

Xs − x

h

)2
ds

= µ2
2� h

D2
h

∫ T

0
K

(
Xs − x

h

)
ds+ µ2

1� h

D2
h

∫ T

0
K

(
Xs − x

h

)
�Xs − x�2

h2
ds

−2µ1� hµ2� h

D2
h

∫ T

0
K

(
Xs − x

h

)
Xs − x

h
ds

= µ2
2� hµ0� h − µ2� hµ

2
1� h

D2
h

= µ2� h

Dh
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Hence, in view of (5.5),

r2h ≤ �2h�x�
µ0� hµ2� h

Dh

= �2h�x�
µ0� hµ2� h

µ0� hµ2� h − µ2
1� h

≤ �2h�x�
1

1− ρ

as required.
5.1.3. An upper bound for ξh. We study here some properties of the

“stochastic term,”

ξh = ν2� h

∫ T

0
K

(
Xs − x

h

)
g�Xs�dws

−ν1� h
∫ T

0
K

(
Xs − x

h

)
Xs − x

h
g�Xs�dws


Namely, we intend to show that the probability of the event �ξh > λσh�x��
with σh�x� from (3.1) is small provided that λ is large enough. Set for t ≤ T,

M0� t =
∫ t

0
K

(
Xs − x

h

)
g�Xs�dws�

M1� t =
∫ t

0
K

(
Xs − x

h

)
Xs − x

h
g�Xs�dws


The Itô integrals M0� t and M1� t are continuous local martingales with the
predictable quadratic variations [see, e.g., Liptser and Shiryayev (1989)]

�M0�t =
∫ t

0
K2

(
Xs − x

h

)
g2�Xs�ds�

�M0�M1�t =
∫ t

0
K2

(
Xs − x

h

)
Xs − x

h
g2�Xs�ds�

�M1�t =
∫ t

0
K2

(
Xs − x

h

)(
Xs − x

h

)2
g2�Xs�ds�

so that �M0�T = V0� h, �M0�M1�T = V1� h and �M1�T = V2� h. This yields

ξh�x� = ν2� hM0�T − ν1� hM1�T�

σ2
h�x� = ν22� h�M0�T − 2ν1� hν2� h�M0�M1�T + ν21� h�M1�T


Denote

uh =
ν1� h
ν2� h

= µ1� h

µ2� h



Obviously,

P�
ξh
 > λσh�x���h�

=P
(

M0�T−uhM1�T
>λ

√
�M0�T−2uh�M0�M1�T+u2h�M1�T��h

)
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To evaluate from above the right side of this equality, we apply the general
result from Proposition A.2; see the Appendix. First we check the required
conditions. The value 
uh
, being restricted to �h, can be bounded as


uh
 ≤
∣∣∣∣
√
ρµ0� hµ2� h

µ2� h

∣∣∣∣ ≤ √
ρr


Note now that

�M1�T
�M0�T − 2uh�M0�M1�T + u2h�M1�t

= V2� h

V0� h − 2uhV1� h + u2hV2� h

= V2
2� h

V0� hV2� h −V2
1� h + �V1� h − uhV2� h�2

�

and it holds on �h in view of V2� h ≤ V0� h,

�M1�T
�M0�T − 2uh�M0�M1�T + u2h�M1�T

= V2
2� h

�1− ρ�V0� hV2� h
+ 1
1− ρ




In addition, the definition of �h provides the following bounds for σ2
h�x� on

this set:

σ2
h�x�

Thν22� h
= Thσ2

h�x�
�Thν2� h�2

≤ bB

b2
= B

b
�

σ2
h�x�

Thν22� h
= Thσ2

h�x�
�Thν2� h�2

≥ b

�bB2� =
1

bB2



Applying now Proposition A.2 we get

P�
ξh
 > λσh�x���h� ≤ 4e log�4B3�
(
1+ 4r

√
1+ r

1− ρ
λ2

)
λ exp

(
−λ

2

2

)

(5.7)

5.1.4. End of the proof. Summing up the decomposition (5.3) and the
bounds (5.6), (5.7), we get

P
(∣∣f̃h�x� − f�x�∣∣ > c�h�x� + λσh�x���h

)

≤ 4e log�4B3�
(
1+ 4r

√
1+ r

1− ρ
λ2

)
λ exp

(
−λ

2

2

)



This leads to the required bound from Theorem 3.1.

5.2. Proof of Theorem 4.1. Let hid be a “good” bandwidth. We intend to
show that{∣∣f̂�x� − f�x�∣∣ > �2λ1 + λ2�σhid�x�

} ⊆ ⋃
η∈� �hid�

{∣∣f̃η�x� − f�x�∣∣ > λ1ση�x�
}
�
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where � �h� = �η ∈ � � η ≤ h�. This statement is equivalent to saying that
the inequality 
f̂�x� − f�x�
 > �2λ1 + λ2�σhid�x� is impossible if


f̃η�x� − f�x�
 ≤ λ1ση�x� ∀η ∈ � �hid�
(5.8)

Obviously,{∣∣f̂�x� − f�x�∣∣ > �2λ1 + λ2�σhid�x�
}

⊆ {∣∣f̂�x� − f�x�∣∣ > �2λ1 + λ2�σhid�x�� ĥ > hid
}+ �hid is rejected�


We consider separately each event in the right side of this inequality.
It holds on the event �ĥ > hid� in view of the definition of ĥ,


f̃ĥ�x� − f̃hid�x�
 ≤ λ1σhid�x� + λ2σĥ�x� ≤ �λ1 + λ2�σhid�x�

Next, by (5.8),


f̃hid�x� − f�x�
 ≤ λ1σhid�x�

Hence, �ĥ > hid� and (5.8) imply∣∣f̂�x� − f�x�∣∣ ≤ ∣∣f̂ĥ�x� − f̃hid�x�

∣∣+ ∣∣f̃hid�x� − f�x�∣∣
≤ �2λ1 + λ2�σhid�x�


Now we study the event �hid is rejected�. By definition,
�hid is rejected� =

⋃
h∈� �hid�

⋃
η∈� �h�

{
f̃h�x� − f̃η�x�
 > λ2σh�x� + λ1ση�x�
}



Condition (5.8) yields for every pair η < h ∈ � �hid�

f̃h�x� − f̃η�x�
 ≤ 
f̃h�x� − f�x�
 + 
f̃η�x� − f�x�
 ≤ λ1�σh�x� + ση�x��

so that the event �hid is rejected� is impossible under (5.8) in view of λ2 ≥ λ1.
It remains to bound the probability of the event in (5.8). With λη = λ1 −

c�η�x�/ση�x�, it holds by Theorem 3.1,

P
(
f̃η�x� − f�x�
 > λ1ση�x�

) = P
(
f̃η�x� − f�x�
 > ληση�x� + c�η�x�

)
≥ α�λη��

where α�λ� is from (3.4) and hence,

P
(
f̃η�x� − f�x�
 ≤ λ1ση�x��∀η ∈ � �hid�

) ≥ 1− ∑
η∈� �hid�

α�λη�


This completes the proof of the theorem. ✷

APPENDIX

Deviation probabilities for martingales. We present two general
results for continuous martingales. The first result describes some proper-
ties of real-valued martingales, while the second one deals with martingales
valued in �2.
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A.1. The scalar case. LetMt be a continuous martingale withM0 = 0 and
with the predictable quadratic variation �M�t.

Proposition A.1. For every T > 0, ϑ > 0, S ≥ 1 and λ ≥ 1,

P
(

MT
 > λ

√
�M�T�ϑ ≤

√
�M�T ≤ ϑS

)
≤ 4λ

√
e�1+ logS� exp

(
−λ

2

2

)



Proof. We use

P
(

MT
 > λ

√
�M�T�ϑ ≤

√
�M�T ≤ ϑS

)

≤ P
(
MT > λ

√
�M�T�ϑ ≤

√
�M�T ≤ ϑS

)

+P
(
MT < −λ

√
�M�T�ϑ ≤

√
�M�T ≤ ϑS

)



We estimate separately each term in the right side of this inequality.
Given a > 1, introduce the geometric series ϑk = ϑak and define the

sequence of random events �k = �ϑk ≤
√�M�T < ϑk+1�, k = 0�1� 
 
 
. Then

clearly,

P
(
MT > λ

√
�M�T�ϑ ≤

√
�M�T ≤ ϑS

)

≤
K∑
k≥0

P
(
MT > λ

√
�M�T�ϑ ≤

√
�M�T ≤ ϑS��k

)
�

(A.1)

where K is the integer part of loga S. We now bound each term in this sum.
Let, with γ ∈ �,

Zt�γ� = exp
(
γMt −

γ2

2
�M�t

)



The random process Zt�γ� is the continuous local martingale and, being pos-
itive, it is the supermartingale [see Problem 1.4.4 in Liptser and Shiryayev
(1989)]. Therefore for every T > 0,

EZT�γ� ≤ 1
(A.2)

For fixed k, we pick γk = λ/ϑk and use (A.22) for the inequality

1 ≥ EZT�γk�I
(
MT > λ

√
�M�T��k

)
�
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which implies

1 ≥ Eexp
(
λ

ϑk

MT −
λ2

2ϑk

�M�T
)
I
(
MT > λ

√
�M�T��k

)
�

≥ Eexp
(
λ2

ϑk

√
�M�T −

λ2

2ϑk

�M�T
)
I
(
MT > λ

√
�M�T��k

)
�

≥ Eexp
{

inf
ϑk≤v≤ϑk+1

(
λ2v

ϑk

− λ2v2

2ϑ2
k

)}
I
(
MT > λ

√
�M�T��k

)
�

It is easy to check that “infϑk≤v≤ϑk+1” is attained at the point v = ϑk+1 = aϑk

so that

P
(
MT > λ

√
�M�T��k

)
≤ exp

{
−λ2

(
a− a2

2

)}



Combining this bound with (A.1) and the use of K ≤ loga S yields

P
(
MT > λ

√
�M�T�ϑ ≤

√
�M�T ≤ ϑS

)
≤ �1+ loga S� exp

{
−λ2

(
a− a2

2

)}



Since the left-hand side of this inequality does not depend on a, its right side
can be optimized w.r.t. a. This leads to the choice a = 1+ 1/λ. Then

λ2
(
a− a2

2

)
= λ2

{
1+ 1

λ
− 1
2

(
1+ 1

λ

)2}
= 1
2
�λ2 − 1�

and, since log�1 + 1/λ� ≥ 1/�2λ� for λ ≥ 1, it also holds loga S ≤ 2λ logS.
Hence

P
(
MT > λ

√
�M�T�ϑ ≤

√
�M�T ≤ ϑS

)
≤ 2

√
eλ�1+ logS� exp

(
−λ

2

2

)



In the similar way, we obtain

P
(
MT < −λ

√
�M�T�ϑ ≤

√
�M�T ≤ ϑS

)
≤ 2

√
eλ�1+ logS� exp

(
−λ

2

2

)

and the assertion follows.

A.2. The vector case. Here, we consider continuous vector martingale MT

valued in �2 with components M0� t and M1� t. Define

V0� t = �M0�t� V1� t = �M0�M1�t� V2� t = �M1�t

Let u be a random variable and

σ2
t = V0� t − 2uV1� t + u2V2� t
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For a fixed time moment T and constants ϑ > 0, S ≥ 1, β ≥ 0 and ρ ∈ �0�1�,
introduce the event

�t =



ϑ ≤ σ2

T ≤ ϑS�

V2
1�T ≤ ρV0�TV2�T�


u
 ≤ β


(A.3)

Proposition A.2. Let Mt be a martingale with values in �2 such that
V0�T ≥ V2�T. Then, with �T from (A.3), it holds for every λ ≥ √

2,

P�
M0�T − uM1�T
 > λσT��T� ≤ 4e log�4S�
(
1+ 4β

√
1+ β

1− ρ
λ2

)
λ exp

(
−λ

2

2

)



Proof. For fixed β, ρ, and λ, define δ by the equality

2δ�1+ β�
1− ρ

= λ−2(A.4)

and denote by Dδ = �αk = kδ� k ∈ �� 
α
 ≤ β� the discrete grid with the step
δ in the interval �−β�β	.
Let ν+ (respectively, ν−) be the random variable valued inDδ which is closest

to u from above (respectively, from below). Then clearly,


ν± − u
 ≤ δ�(A.5)


M0�T − uM1�T
 ≤ max�
M0�T − ν−M1�T
� 
M0�T − ν+M1�T
�
(A.6)

Let now ν be one of ν− and ν+. Then by the construction 
ν − u
 ≤ δ. The next
step is to show that on the set �T it holds

1− λ−2 ≤ V0�T − 2νV1�T + ν2V2�T

σ2
T

≤ 1+ λ−2
(A.7)

Indeed,

σ2
T = V0�T − 2uV1�T + u2V2�T = V0�T −

V2
1�T

V2�T
+V2�T

(
u− V1�T

V2�T

)2

≥ V0�TV2�T −V2
1�T

V2�T
≥ �1− ρ�V0�T

and the use of V2�T ≤ V0�T leads to the bound


V1�T

σ2
T

≤
√
ρV0�TV2�T

�1− ρ�V0�T
≤

√
ρ

1− ρ
≤ �1− ρ�−1�

V2�T

σ2
T

≤ V2�T

�1− ρ�V0�T
≤ �1− ρ�−1
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Since on the set � it holds 
u
 ≤ β and by construction ν ≤ β we obtain, using
the definition (A.4) of δ,


V0�T − 2uV1�T + u2V2�T − �V0�T − 2νV1�T + ν2V2�T�

≤ 2
V1�T

u− ν
 +V2�T
u2 − ν2

≤ 2δ�1− ρ�−1σ2

T + 2βδ�1− ρ�−1σ2
T = σ2

Tλ
−2

and (A.7) follows.
Since on the set �T the value σ2

T is between ϑ and ϑS, it also holds for
ν = ν±,

�1− λ−2�ϑ ≤ V0�T − 2νV1�T + ν2V2�T ≤ �1+ λ−2�ϑS
(A.8)

Now (A.6), (A.7) and (A.8) imply

�M0�T − uM1�T
 > λσT��T�

⊆
{
M0�T − ν−M1�T
 >

λ√
1+ λ2

√
V0�T − 2ν−V1�T + ν2−V2�T��T

}

∪
{
M0�T − ν+M1�T
 >

λ√
1+ λ2

√
V0�T − 2ν+V1�T + ν2+V2�T��T

}

⊆ ⋃
α∈Dδ

{

M0�T − αM1�T
 >

λ√
1+ λ2

√
V0�T − 2αV1�T + α2V2�T��α�T

}
�

where

Aα�T = ��1− λ−2�ϑ ≤ V0�T − 2αV1�T + α2V2�T ≤ �1+ λ−2�ϑS�


Now, for every α ∈ Dδ, the process M0� t − αM1� t is a continuous local martin-
gale with �M0 − αM1�T = V0�T − 2αV1�T + α2V2�T. Proposition A.1 and the
inequalities λ2 ≥ 2 and

λ2

1+ λ−2
≥ λ2�1− λ−2� = λ2 − 1�

yield

P
(

M0�T − αM1�T
 >

λ√
1+ λ2

√
V0�T − 2αV1�T + α2V2�T�Aα�T

)

≤ 4
λ√

1+ λ−2

(
1+ log

�1+ λ−2�ϑS
�1− λ−2�ϑ

)
exp

(
− λ2

2�1+ λ−2� +
1
2

)

≤ 4λ
(
1+ log

3S
2

)
exp

(
−λ

2

2
+ 1

)





DRIFT ESTIMATION FOR NONPARAMETRIC DIFFUSION 835

Since the number of different elements in Dδ is at most 1+ 2βδ−1 and since
δ from (A.4) fulfills δ−1 = 2λ2�1+ β�/�1− ρ�, it follows that

P�
M0�T − uM1�T
 > λσT��T� ≤ 4e
(
1+ log

3S
2

)
�1+ 2βδ−1�λ exp

(
−λ

2

2

)

≤ 4e log�4S�
(
1+ 4β

√
1+ β

1− ρ
λ2

)
λ exp

(
−λ

2

2

)

as required.
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