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Assume that two sequences from a finite alphabet are optimally
aligned according to a scoring system that rewards similarities according
to a general scoring scheme and penalizes gaps (insertions and deletions).
Under the assumption that the letters in each sequence are independent
and identically distributed and the two sequences are also independent,
approximate p-values are obtained for the optimal local alignment when
either (i) there are at most a fixed number of gaps, or (ii) the gap initia-
tion cost is sufficiently large. In the latter case the approximation can be
written in the same form as the well-known case of ungapped alignments.

1. Introduction. An important step in learning the function of a new
gene (DNA sequence) or protein (amino acid sequence) is to compare the new
sequence with existing sequences in a data base search, for example, of the
DNA data base GenBank maintained by the National Institutes of Health. In
addition to the sequence information, these data bases contain whatever is
known about the function of a gene/protein, which may be comparatively easy
to determine in experimental organisms, for example, baker’s yeast or mice.
Evolutionary theory holds that genes/proteins having a similar function are
likely to have evolved from a common ancestor through mutation. Hence one
hopes that by finding in the data base sequences similar to the new sequence
one can make an educated guess about its function.

The major problem of sequence comparison is algorithmic determination of
sequence similarity [cf. Smith and Waterman (1981), Altschul, Gish, Miller,
Myers and Lipman (1990)]. In addition one would like to evaluate the sta-
tistical significance of sequences showing a particular level of similarity [e.g.,
Arratia, Gordon and Waterman (1990), Dembo, Karlin and Zeitouni (1994),
Altschul and Gish (1996)]. For a more detailed discussion of the scientific
background and introduction to the computational and statistical issues, see
Altschul and Gish (1996), Durbin, Eddy, Krogh and Mitchison (1998),
Waterman and Vingron (1994) andWaterman (1995). Pearson (1995) makes an
empirical comparison of different methods. Altschul, Madden, Schäffer, Zhang,
Zhang, Miller and Lipman (1997) discuss recent additions to the BLAST pro-
gram in a paper that at the same time is a readable introduction to many
basic issues.
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We shall be concerned with the optimal local alignment of two sequences of
letters from a common, finite alphabet. The quality of an alignment is deter-
mined by the total similarity score of letters at aligned positions and the num-
ber of gaps (insertions/deletions) in one or the other sequence. These concepts
will be made more precise below. Our goal in this paper is to give new p-value
approximations. Approximations when gaps are not allowed have been given
by a number of authors, for example, Arratia, Gordon andWaterman (1990) for
a special scoring function and more generally by Dembo, Karlin and Zeitouni
(1994). Neuhauser (1994) has obtained an approximation in the case that a
fixed number of gaps in allowed, but aligned letters are required to match.

The form of the approximation in the ungapped case has been conjectured to
be valid also in the gapped case [Waterman and Vingron (1994)] and has been
empirically fit to simulated and to real data to obtain values for parameters
in the approximating formula [cf. Waterman and Vingron (1994), Altschul and
Gish (1996)]. Recently Mott and Tribe (1999) have obtained a useful heuristic
approximation for a general scoring scheme with gaps. Their work is com-
plementary to ours. They heuristically piece together results for ungapped
alignments to obtain useful numerical approximations for gapped alignments;
we have attempted to obtain a mathematically precise approximation, which
turns out to be structurally similar although it differs in the value of important
parameters.

Except for Mott and Tribe, the authors cited above employ the Chen–Stein
method to obtain a Poisson approximation. Our method is a modification of
that introduced by Yakir and Pollak (1998) for one-dimensional random fields
and extended to multidimensional fields by Siegmund and Yakir (2000). Our
basic approximation is one of large deviations. We also show how that approx-
imation can be converted into a Poisson approximation.

2. Notation and assumptions. Consider two finite sequences x and y
from a finite alphabet. Thus, x = x1x2 · · ·xm and y = y1y2 · · ·yn with xi� yj ∈
� . We assume throughout that x1� 	 	 	 � xm are independently distributed with
P0�xi = α� = µα for all i; and similarly y1� 	 	 	 � yn are independently dis-
tributed with P0�yj = β� = νβ for all j. Moreover, the x’s and y’s are inde-
pendent.

These sequences are to be aligned. A candidate alignment z = ��it� jt�: 1 ≤
t ≤ k�, for some 1 ≤ i1 < i2 < · · · < ik ≤ m and 1 ≤ j1 < j2 < · · · < jk ≤ n,
specifies that xit and yjt are aligned for all t = 1� 	 	 	 � k. The other x’s with
subscripts between i1 and ik and the other y’s with subscripts between j1
and jk are said to be unaligned. Note that there may be other letters, at the
beginning or end of the two sequences, that are neither aligned nor formally
designated as unaligned. We assume that either it+1 = it + 1 or jt+1 = jt + 1
for all 1 ≤ t < k, that is, there can be unaligned letters in only one sequence
at a time.

With each candidate alignment z we associate a score Sz = Sz�x�y�.
Aligned letters xi and yj are scored according to a similarity matrixK�xi� yj�.
For the first of two cases that we consider, we assume a penalty of δ for each
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Fig. 1. A candidate local alignment of words of length m = 13 and n = 14 having k = 5 aligned
letters, l = 3 unaligned letters and j = 2 gaps.

unaligned letter. The total number of unaligned letters is l = �ik− i1−k+1+
jk − j1 − k + 1�, so Sz = Sz�x�y� = ∑k

t=1K�xit� yjt� − δl. When we use this
formulation, we also assume that all unaligned letters lie in at most a fixed
number j of gaps, where a gap is the interval of unaligned letters that begins
with a value t + 1 such that it = jt and either it+1 > it + 1 or jt+1 > jt + 1
and ends with the next aligned pair after �xit� yjt�. We also consider the case
where the maximum number of gaps is not fixed, but each gap is assessed
a cost � in addition to the cost δ of each unaligned letter. Frequently, one
refers to � as the “gap open” and δ as the “gap extension” cost. In this case
Sz = Sz�x�y� = ∑k

t=1K�xit� yjt� − �j − δl, where j is the number of gaps
and l is the total number of unaligned letters, or equivalently the total length
of all gaps. Figure 1 shows a candidate alignment with k = 5 aligned letters
and l = 3 unaligned letters within j = 2 gaps. Note that there are no costs
assessed for letters that are neither aligned nor unaligned. [This is the essen-
tial difference between the local alignments discussed in this paper and global
alignments. See Waterman (1995).]

Given a collection � of candidate alignments, one can identify the best
alignment—the one with the highest score. The p-value of the best score under
the null assumption that the sequences x and y are independent random
samples from the given alphabet is

P0�max
z∈�
Sz ≥ b��(1)

where b is the observed value of the score for the best alignment and P0 is the
null probability described above. Our main focus will be to approximate this
probability for large values of b�m and n and for an appropriate collection �
of candidate alignments.

Given a candidate alignment z, we construct an alternative probability
measure Pz for the sequences x and y and consider the log-likelihood ratio
�z = log�Pz�x�y�/P0�x�y�
 of the probability measure Pz over the original
null measure P0. Our construction will be such that the score function will
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be proportional to a penalized log-likelihood ratio. Notice that under P0 the
random part in Sz, namely

∑
t K�xit� yjt�, is a sum of independent, identically

distributed random variables. We assume that

E0K�x�y� < 0 and P0�K�x�y� > 0� > 0	(2)

Let ψ�θ� = log E0 exp�θK�x�y�
. Then fθ�α�β� = exp�θK�α�β� − ψ�θ�
µανβ
defines an exponential family of probabilities indexed by θ. Note that f0�α�β�
is the original product probability µανβ; but except in the trivial case that
K�α�β� is a sum of a function of α and a function of β�x and y are not
generally independent under fθ for θ �= 0.

From (2) it follows that there exists a unique value θ∗ > 0 for which
ψ�θ∗� = 0. We define Pz to be the probability that (i) makes the aligned
pairs in z independent with the distribution of fθ∗ and (ii) makes all other
xi and yj independent of each other and of the aligned pairs with the distri-
butions µ and ν, respectively. The log likelihood ratio of Pz relative to P0 is
�z = θ∗∑kt=1K�xit� jt�. The event of interest from (1) can be rewritten in terms
of a penalized log likelihood ratio. Let g�z� equal θ∗δl or θ∗�δl + �j� for the
two cases described above. Also let a = θ∗b. Then we can rewrite (1) as

P0�max
z∈�

��z − g�z�
 ≥ a�	(3)

In the first instance we take � to be the set of all matching patterns having
at most j gaps; in the latter case the restriction on the number of gaps is not
required.

In the case of protein alignment, the most important examples of func-
tions K�α�β� are designed to reflect both the rarity of the amino acid and
the ease with which one amino acid can change to another through mutation.
See, for example, Durbin, Eddy, Krogh and Mitchison (1998) for a detailed
discussion. A scientifically artificial, but mathematically illuminating exam-
ple is to put K�α�β� equal to 1 or −ξ�ξ > 1� according as α = β or not.
Then

∑k
t=1K�xit� yjt� = �1 + ξ�Xk − ξk; where under P0� Xk is binomially

distributed with parameters k�p0 and

p0 = ∑
α∈�
µανα

is the probability of a pair to match. In this case the probability measure Pz
gives elevated probability to the event �xit = yji� compared to what may be
expected when the sequences are independent. Let p1 > p0 be the unique
solution to ξ = log��1 − p0�/�1 − p1��/ log�p1/p0�. The Pz-probability of the
event �xit = α�yjt = β� equals �p1/p0�µανβ if α = β and equals ��1−p1�/�1−
p0�
µανβ if α �= β. Under Pz the distribution of Xk is Binomial �k�p1�.

3. Main results. Observe that the probability in (3) has the upper bound

P0

(
max
z∈�

��z − g�z�� ≥ a� ≤ ∑
z∈�

P0��z − g�z� ≥ a� ≤ e−a∑
z∈�

exp�−g�z��
)
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The collection � is a union of the subcollections �j� l� k where �j� l� k consists
of all candidate alignments with k aligned letters and j gaps of total length
l ≥ j. The cardinality of the collection �j� l� k is approximatelymn2j

(
k−1
j

)(
t−1
j−1
)
.

For large values ofm and n, a candidate alignment can begin at approximately
any ofmn positions. If there are to be k aligned letters, there are 2j

(
k−1
j

)
ways

of opening j gaps, and there are
(
l−1
j−1
)
ways to divide l unaligned letters among

these j gaps (the number of ways to put l balls into j boxes so that each box
contains at least one ball). Understanding the geometry of �, in particular
that k must be restricted to be proportional to a, will lead to approximations
to the probability rather than crude upper bounds.

The approximating formula involves an infinite number of constants
λ0� λ1� 	 	 	 	 The constant λ0 is defined in terms of fluctuations of a random
walk. It arises in the case of ungapped alignments [Dembo, Karlin and
Zeitouni (1994)] and has been thoroughly studied in the context of sequential
analysis [e.g., Woodroofe (1982), Siegmund (1985)]. For r ≥ 1, the parameter
λr is similar, but it is defined in terms of a Markov chain induced by a gap of
length r. It seems plausible from their probabilistic meaning that the λr for
r ≥ 1 are roughly equal. A more complete discussion is given in Section 6.

Define I and σ2 by the relations

Ez�z = kI
and

varz�z = kσ2	
We shall require the technical assumptions that min�m�n�/a→ ∞, and for

Theorems 1 and 2 that mn exp�−a1−ε� is bounded. The second assumption
puts the probability of interest into the domain of large deviations.

To simplify the presentation of our main results we assume here that
K�x�y� is a nonlattice random variable and limit our discussion of the more
complicated lattice case to a remark following Lemma 4. The notation an ∼ bn
means that an/bn → 1 as n→ ∞.

Theorem 1. Suppose � consists of candidate alignments having at most j
gaps and g�z� = δl. There exist positive constants λr ≤ 1, which are defined
following Lemma 4 and characterized in Section 6, such that as a → ∞, the
probability (3)

∼mn exp�−a��I−1λ20�2a/I�j/j!

∞∑
l=j
e−θ

∗δl∑λi11 · · ·λil−j+1l−j+1�

where the innermost summation extends over the
(
l−1
j−1
)

terms having i1 + · · · +
il−j+1 = j and i1 + 2i2 + · · · + �l − j + 1�il−j+1 = l. An upper bound for the
indicated sums is 1/�exp�θ∗δ� − 1
.

Although the cost structure of Theorem 1 is scientifically artificial, its proof
contains the essential ingredients needed for Theorem 2 given below. Note
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also that except for the large deviation normalization, the result of Dembo,
Karlin and Zeitouni (1994) for the ungapped case is the special case j = 0.

Now suppose that� consists of all candidate alignments without any restric-
tion on the number of gaps, �j is the subset of � consisting of candidate
alignments having exactly j gaps, and g�z� = θ∗�δl + �j�. The argument of
Theorem 1 applied to �j with a replaced by a+ θ∗�j formally yields

P0

(
max
z∈�j

��z − g�z�� ≥ a
)
∼mne−aI−1λ20

[(
2ae−θ

∗�/I
)j
/j!
]

×
∞∑
l=j
e−θ

∗δl∑λi11 · · ·λil−j+1l−j+1	

A natural conjecture is that we can replace �j by � on the left-hand side and
sum the right-hand side over j to obtain the approximation

P0

(
max
z∈�

��z − g�z�� ≥ a
)
∼mne−aI−1λ20

∞∑
j=0

[(
2ae−θ

∗�/I
)j
/j!
]

×
∞∑
l=j
e−θ

∗δl∑λi11 · · ·λil−j+1l−j+1	

(4)

We are unable, however, to prove (4) in general. In particular if the cost � of
initiating a new gap is fixed while m and n become large, there may be cases
when the score under the null hypothesis can be improved asymptotically by
candidate alignments with a very large number of gaps. This is usually unde-
sirable biologically, and can be controlled mathematically by assuming � to
be sufficiently large that j cannot be too large without incurring an unaccept-
able penalty. [In particular, this serves to keep the problem well within the
so-called “logarithmic domain”; see Waterman and Vingron (1994).]

The preceding considerations are formalized in the following theorem.

Theorem 2. Let � be the set of all candidate alignments and g�z� = θ∗�δl+
�j�. Assume θ∗� = log�a� +C for some constant C. Then (4) holds as a→ ∞.
The innermost summation on the right-hand side of (4) has the same meaning
as in Theorem 1.

If we replace the condition of subexponential growth of mn in Theorem
2 with the hypothesis that mn exp�−a� converges to a finite, positive limit,
then a general result of Arratia, Goldstein and Gordon (1989) allows us to
turn Theorem 2 into a Poisson approximation.

Theorem 3. Suppose the conditions of Theorem 2 hold, but that mn
exp�−a� converges to a finite, positive limit. Let Q denote the right-hand side
of (4). Then

P0

(
max
z∈�

��z − g�z�� ≥ a
)
− �1− exp�−Q�
 → 0

as a→ ∞.
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Remarks. If the λr for r ≥ 1 are replaced by an upper bound ), the right-
hand side of (4) is bounded by

mnI−1λ20 exp
(−a{1− 2I−1)e−θ

∗�/
[
eθ

∗δ − 1
]})
	(5)

In Section 6 we give an upper bound that usually improves on the inequality
λr ≤ 1 stated in Theorem 1. It is also shown in Section 6 that when K takes
on only two values, the λr are all equal, so in that case (4) simplifies to (5)
with ) = λ1. Numerical evidence that the λr� r ≥ 1, are effectively constant
in many cases of interest and the accuracy of (5) as an approximation to (3)
will be discussed elsewhere.

4. Discussion. The technical requirement of Theorem 2, that θ∗� =
log a + C, is awkward conceptually since the parameter � must be chosen
before one knows the values of a of interest. However, the condition can be
viewed as a diagnostic: for particular values of �� θ∗ and a it can always be for-
mally satisfied, but this may require a large value of �C�. Presumably a large
positive value of C is of no concern. That would indicate that there effectively
are no gaps, while formal application of (4) would lead to roughly the same
numerical result as Theorem 1 with j = 0, that is, when gaps are forbidden. A
large negative value of C serves as a warning that the approximation may be
poor for that value of a. With regard to Theorem 3, the condition can also be
viewed as a requirement that � be sufficiently large compared to log log�mn�,
which is conceptually more natural since it does not explicitly involve the
threshold a.

The p-value in the ungapped case (j = 0 in Theorem 1) is often written in
the (Poisson) form

P0

{
max

z
Sz ≥ b

}
≈ 1− exp

{−mnK exp�−λb�}	
Waterman and Vingron (1994) and Althschul and Gish (1996), among others,
have conjectured that an approximation of this form is valid in the gapped
case as well and have put considerable ingenuity into developing such an
approximation for numerical applications. The most common approach has
been to use simulated and/or actual data to estimate values of K and λ (and
in some cases to introduce modifications tom and n as an edge correction). We
see from Theorems 2 and 3 that the conjectured form of the approximation
is correct, at least when the technical hypothesis concerning � is satisfied.
Thus Theorems 2 and 3 can be viewed as a theoretical justification of current
practice. From this point of view, the complications arising from the different
λr are unimportant.

Mott and Tribe (1999) obtain heuristically an approximation of the form of
(5) with ) equal to λ0. They suggest a modified approximation, which they
study numerically and conclude is a good approximation for small values of
a parameter that in our notation equals �2I−1) exp�−θ∗��/�exp�θ∗δ� − 1
�.
For fixed δ this translates to the requirement that � be large. It also suggests
that our requirement on � might be replaced by the hypothesis that θ∗�� +
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δ
 = log�a� + C. While this modified hypothesis would widen slightly the
scope of application of Theorems 2 and 3, and appears to require relatively
inconsequential changes in the proofs given below, from an aesthetic point of
view we would prefer to be able to weaken the condition substantially or even
eliminate it entirely.

We conjecture that the technical requirement of Theorem 2 can be weak-
ened to θ∗� = γ log a + C for some 1/2 < γ ≤ 1. Under this hypothesis the
values of j that contribute to the final expression are all o�a1/2�, hence o�k1/2�
for the important values of k (cf. Lemmas 8 and 9 below). Many of the required
modifications go through easily, but others (e.g., Lemma 4) require substan-
tially more refined analysis. However, if we would try to replace the lower
bound on γ by anything smaller than 1/2, the important values of j would
in general exceed k1/2. It is easy to see from reasoning as in the birthday
problem, or in calculating the distribution of the minimum distance between
consecutive order statistics when sampling from a uniform distribution, that
when j exceeds k1/2, then a nonnegligible proportion of gaps are separated
by only short intervals of aligned pairs, and the argument given below based
on the independence that arises from having relatively long blocks of aligned
pairs between gaps, breaks down.

5. Proofs. Following Yakir and Pollak (1998) and Siegmund and Yakir
(1999), we use a likelihood-ratio identity in order to transform the problem
from one of computing the P0-probability of a rare event to a new measure
under which the same event is much more likely to occur. For an intuitive
description of the method, see Siegmund and Yakir (2000). It is convenient
to use the notational convention that the symbol E�X�A� denotes E�X1A�
when 1A is the indicator of the event A. The likelihood ratio transformation
to finite positive measure is as follows:

P0

(
max
z∈�

��z − g�z�� ≥ a
)

= E0

[ ∑
z∈� exp��z − g�z��∑
u∈� exp��u − g�u�� �max

u∈�
��u − g�u�� ≥ a

]
= ∑

z∈�
e−g�z�Ez

[(
1
/ ∑

u∈�
exp��u − g�u��

)
�max

u∈�
��u − g�u�� ≥ a

]
	

(6)

It follows that

eaP0

(
max
z∈�

��z − g�z�� ≥ a
)

= ∑
z∈�
e−g�z�Ez

[maxu∈� exp��u − g�u��∑
u∈� exp��u − g�u�� exp

(
−
[
max
u∈�

��u − g�u�� − a
])

�

max
u∈�

��u − g�u�� ≥ a
]
	

(7)

The analysis is carried through by approximating the terms in this sum.
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We will eventually want to approximate the p-values for the collection �
of all possible z’s. We begin with the simpler case that the unaligned letters
are concentrated in a finite number of gaps. In other words, using the usual
dot matrix representation of the candidate alignment, where a dot at the
position �i� j� indicates that xi and yj are aligned, runs of dots along diagonal
lines represent intervals of consecutive aligned pairs and jumps, horizontal or
vertical, represent gaps, our restriction is that the number of jumps is at
most j, for some fixed j. Equivalently, the statement is that the number of
runs is at most j+ 1. No restriction is put on the number of aligned pairs or
on the overall number of unaligned letters.

Until further notice we assume that � consists of matching patterns having
at most j gaps and the function g is given by g�z� = θ∗δl, where l is the total
number of unaligned letters.

Consider a smaller collection �j ⊂ �, defined to be the collection of all z ∈ �
for which the k aligned pairs satisfy �1−ε1�a/I < k < �1+ε1�a/I, the number
of gaps is exactly j, the overall number of unaligned letters, l, is bounded by
ε2a

1/2 for some small ε2 > ε1 > 0, to be specified more precisely later. We
intend to approximate the P0-probability that the maximum over z ∈ �j of
�z−g�z� exceeds a. This probability is smaller than the probability (4), but as
we will see in Lemma 8 in the Appendix, the ratio between the probabilities
converges to 1. Thus, an approximation of the probability for �j will effectively
give us the approximation for the probability for �.

The considerations that led to (7), applied to �j, yield

eaP0
(
max
z∈�j

��z − g�z�� ≥ a)
= ∑

z∈�j
e−g�z�Ez

[maxu∈�j exp��u − g�u��∑
u∈�j exp��u − g�u�� exp

(
−
[
max
u∈�j

��u − g�u�� − a
])

�

max
u∈�j

��u − g�u�� ≥ a
]

=
ε2a

1/2∑
l=j
e−θ

∗δl ∑
z∈�j� l

Ez

[max�j exp��u − g�u��∑
�j
exp��u − g�u��

× exp
(
−
[
max
�j

��u−g�u��−a
])

�max
u∈�j

��u−g�u�� ≥ a
]
�

where

�j� l = �z ∈ �j: z has j gaps of total length l�	
Next we approximate each one of the expectations in the above sum. In

broad outline we show that the fraction

maxu∈�j exp��u − g�u��∑
u∈�j exp��u − g�u��
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is asymptotically independent of

exp
{
−
[
max
u∈�j

��u − g�u�� − a
]}
1
{
max
u∈�j

��u − g�u�� ≥ a
}
�

and we evaluate the expectations of the two factors separately. The second
factor is evaluated by a local limit theorem in Lemma 4, while the first is
shown to equal approximately a product of independent random variables, the
expectation of which leads to the product of the λr. The proof is divided into a
series of lemmas, which to a certain extent parallel the argument of Siegmund
and Yakir (2000). Some technical results are deferred to the Appendix.

Let �z be the collection of all u ∈ �j which agree with z in all but at most
�log a�2 terms. Note that although both �z and �j involve subscripted versions
of �, there should be no confusion between the integer j and the matching
pattern z. The usefulness of �z stems from the observation that for most z, g
is constant on �z. In the first lemma it is shown that the collection �j can be
replaced by the much smaller collection �z, without changing the expectation
by much.

Lemma 1. Let ε > 0 be given. Then for all z ∈ �j,

Ez

[maxu∈�j exp��u − g�u��∑
u∈�j exp��u − g�u�� exp

(
−
[
max
u∈�j

��u − g�u�� − a
])

�

max
u∈�j

��u − g�u�� ≥ a
]

≤ Ez

[maxu∈�z
exp��u − g�u��∑

u∈�z
exp��u − g�u�� exp

(
−
[
max
�z

��u − g�u�� − a
])

�

max
u∈�z

��u − g�u�� ≥ a
]
+ a−1

and

�1+ ε�Ez

[maxu∈�j exp��u − g�u��∑
u∈�j exp��u − g�u�� exp

(
−
[
max
u∈�j

��u − g�u�� − a
])

�

max
u∈�j

��u − g�u�� ≥ a
]

≥ Ez

[maxu∈�z
exp��u − g�u��∑

u∈�z
exp��u − g�u�� exp

(
−
[
max
�z

��u − g�u�� − a
])

�

max
u∈�z

��u − g�u�� ≥ a
]
− a−1�

provided that a is large enough.
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Proof. LetW =∑
u∈�j exp���u−�z�−�g�u�−g�z���,Wz =∑

u∈�z
exp���u−

�z� − �g�u� − g�z��� and �Wz = W −Wz. Likewise, Qz = maxu∈�z
exp���u −

�z� − �g�u� −g�z���, �Qz = maxu∈�j\�z
exp���u − �z� − �g�u� −g�z��� and Q =

max�Qz� �Qz�. Note that W >Wz > 1, Q ≥ Qz ≥ 1, W ≥ Q and Wz ≥ Qz.
On the one hand

eaEz
[
1/�exp��z − g�z��W�� exp��z − g�z��Q ≥ ea]

= eaEz
[
1/�exp��z − g�z��W�� exp��z − g�z��Qz ≥ ea� �Qz ≤ 1

]
+Ez

[
ea/�exp��z − g�z��W�� exp��z − g�z��Q ≥ ea� �Qz ≥ 1

]
≤ eaEz

[
1/�exp��z − g�z��Wz�� exp��z − g�z��Qz ≥ ea]+ Pz� �Wz > ε�	

On the other hand

eaEz
[
1/�exp��z − g�z��W�� exp��z − g�z��Q ≥ ea]
≥ eaEz

[
1/��exp��z − g�z��Wz��1+ �Wz/Wz�
�

exp��z − g�z��Qz ≥ ea� �Wz ≤ ε]
≥ �1+ ε�−1eaEz

[
1/�exp��z − g�z��Wz�� exp��z − g�z��Qz ≥ ea]− Pz� �Wz > ε�	

In order to show that Pz� �Wz > ε� ≤ 1/a we divide the set �j\�z into two
subsets. The first subset contains all u’s which agree with z in all but (at most)
a1−ε terms. Note that the number of terms in this subset is polynomial in a,
and on this subset g�u� − g�z� ≥ 0. [Actually g�u� − g�z� = 0, although the
weaker relation is all that is required.] The rest of the matching patterns u
differ from z in more that a1−ε terms; the number of these terms is mn times
a polynomial in a. It is enough to show that for arbitrary c, for all a large
enough,

Pz��u − �z ≥ −c log a� ≤ 1/ac�(8)

for all u in the first subset, and

Pz
{
�u − �z ≥ −c�a1/2 + logmn�} ≤ 1/�mnac/2��(9)

for all u in the second subset.
The random variable �u−�z is a sum of a sequence of random elements over

the set of all indices on which u and z differ. The elements in the sequence
can be separated into pairs that do not share a common index with other pairs
and those that do. The former type of pairs form a sequence of independent
random variables and the latter type form a finite state Markov chain. Hence
by a large deviations result for finite Markov chains [e.g., Lezaud (1988)] or
by the Azuma–Hoeffding inequality for sums of uniformly bounded martingale
differences [cf. Williams (1991)], we have for some ρ > 0,

Pz��u − �z ≥ −ρs� ≤ ce−ρs�
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where s is the number of pairs that are not identical in both patterns. From
the definition of �z we obtain (8). From the definition of �j and the fact that
mn is assumed to be subexponential, we obtain inequality (9). ✷

Lemmas 2 and 3 provide technical bounds to guarantee the independence
required in the application of a local limit theorem in Lemma 4.

Lemma 2. For all sufficiently large a,

Ez

[maxu∈�z
exp��u − g�u��∑

u∈�z
exp��u − g�u�� exp

(
−
[
max
u∈�z

��u − g�u�� − a
])

�

max
u∈�z

��u − g�u�� ≥ a
]

≤ a−1 + Ez

[maxu∈�z
exp��u − g�u��∑

u∈�z
exp��u − g�u�� exp

(
−
[
max
�z

��u − g�u�� − a
])

�

a ≤ max
u∈�z

��u − g�u�� ≤ a+ log a
]
	

Proof. Note that

Ez

[maxu∈�z
exp��u − g�u��∑

u∈�z
exp��u − g�u�� exp

(
−
[
max
�z

��u − g�u�� − a
])

�

a+ log a < max
u∈�z

��u − g�u��
]
≤ a−1�

hence the claim. ✷

Let z̃ = ⋂
u∈�z

u. From the definition of �z it follows that z̃ consists of those
aligned pairs from z that are not within �log a�2 terms of a gap nor of the
initial or final aligned pairs of z. We observe that since z̃ contains gaps in
both sequences simultaneously, it is not a candidate alignment, although this
fact plays no role in what follows. The term maxu∈�z

��u − g�u�� is a sum of
two independent terms: �z̃ −g�z̃� and qz = maxu∈�z

��u −g�u� − �z̃ +g�z̃��. In
the next lemma we show that qz is of controllable order.

Lemma 3. Let ε > 0 be given. Then Pz�qz > εa1/2� ≤ 1/a, provided that a
is sufficiently large.

Proof. Note that for all u ∈ �z, �g�z̃� − g�u�� ≤ 2jθ∗δ�log a�2. Thus,
Pz
(
qz > εa

1/2) ≤ Pz
(
�z − �z̃ > a1/2ε/3

)
(10)

+ ∑
u∈�z

Pz
(
�u − �z ≥ a1/2ε/3)	(11)
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However, �u − �z is a log-likelihood ratio relative to Pz, thus Pz��u − �z ≥
a1/2ε/3� ≤ exp�−a1/2ε/3�. Since the cardinality of �z is O ��2 log a
2j�, it
follows that the sum in (11) is o�1/a�. Regarding the right-hand side of (10),
notice that �z − �z̃ is a sum of at most a constant times �log a�2 independent,
identically distributed random variables. The desired bound thus follows from
simple large deviation estimates. ✷

In the next lemma we condition on �qz = q� and integrate with respect to
the distribution of �z̃, which is independent of qz. Notice that the aligned pairs
in z̃ are independent.

Lemma 4. Let φ denote the standard normal probability density function.
Let ε > 0 be given. Let I and σ2 be defined by Ez�z = kI and varz�z = kσ2.
Let ã = a− q+ g�z̃�� for −ε2a1/2δθ∗ ≤ q− g�z̃� ≤ ε2a1/2/I. Then, for large a,
uniformly in q− g�z̃��

Ez
[
exp�−��z̃−ã���ã≤�z̃≤ ã+loga

]∼ �1+O�ε��
k1/2σ

φ

(�a−Ik��1+O�ε��
k1/2σ

)
	(12)

Proof. Lemma 5 in the Appendix applies to give (12), but with ã and k̃ on
the right-hand side. By considering separately the two cases, �kI−a�/k1/2 < c
and c < �kI−a�/k1/2 < ε1k1/2, we see that we can replace k̃ and ã by k and a,
respectively. ✷

Remark. The scoring matrices K of interest in applications take on suffi-
ciently many distinct values, especially for the 20 letter amino acid alphabets
of protein sequence analysis, that our assumption that �z is nonlattice seems
quite reasonable. If �z is lattice with span h, say, it does not seem feasible
to give an exact asymptotic expression for the behavior of the left-hand side
of (12), although one can bound that expectation asymptotically to lie in the
interval ��1 − ε�h/�eh − 1�� �1 + ε�h/�1 − e−h�
. This interval of uncertainty
filters through to the statement of Theorems 1–3 in the lattice case.

We now turn to consideration of

Ez

[maxu∈�z
exp��u − �z�∑

u∈�z
exp��u − �z�

]
�

which leads to the constants λ0 and λr for r ≥ 1. The constant λ0 arises from
discrepancies between u and z at the two ends of the candidate alignment;
it is the same constant that enters into the analysis of ungapped alignments
and has been thoroughly studied in the context of sequential analysis [e.g.,
Woodroofe (1982), Siegmund (1985)].

Consider the special alignment z = ��1�1�� and let u = ��1�1�� 	 	 	 � �u�u��,
for u = 1� 	 	 	 � t. Then

λ0 = lim
t→∞

Ez

[
max1≤u≤t exp��u − �z�∑

1≤u≤t exp��u − �z�
]
�
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which by the argument of Siegmund and Yakir (2000) [see also (16) in Section 6
below] has the alternative representation

λ0 = lim
t
t−1E0 exp

[
max
1≤u≤t

��u − �z�
]
	(13)

Since �u − �z = θ∗∑ui=2K�xi� yi� is a sum of independent, identically dis-
tributed random variables, computable expressions for λ0 can be obtained
along the lines of Appendix A of Siegmund and Yakir (2000) and Chapter 8 of
Siegmund (1985).

The constants λr are structurally similar, but they arise from discrepancies
between u and z in the neighborhood of the gaps in z. As a consequence they
involve Markov chains induced by the measure Pz and are substantially more
complicated to evaluate numerically. Let z be a candidate alignment of length
k� k ≥ a1/2, which contains one gap of length r. Assume this is a gap in the
y’s and that it is at least �log a�2 terms from the ends of z. Let

λ∗r = lim
a→∞Ez

[maxu∈�∗
z
exp��u − �z�∑

u∈�∗
z
exp��u − �z�

]
�

where �∗
z is the set of all u’s that agree with z in all but (at most) t = �log a�2

pairs, and agree completely at the ends of z. Obviously, λ∗r ≤ 1. For a gap in
the x’s the analogous constant λ∗∗r will in general be different. The constant λr
appearing in Theorems 1–3 is λr = �λ∗r + λ∗∗r �/2. See Section 6 for alternative
representations.

We are now in a position to prove Theorem 1.

Proof of Theorem 1. In Lemma 8 of the Appendix we show that it suf-
fices to prove the theorem with � replaced by �j, so there are exactly j gaps.
To simplify the argument we also assume that λ∗r = λ∗∗r = λr, which would be
the case if K is symmetric and the marginal distributions µ and ν are equal.
(These are often satisfied in applications.) We remove this assumption at the
end of the proof. Lemmas 1, 2 and 3 can be summarized by saying that the
term

Ez

[maxu∈�j exp��u − g�u��∑
u∈�j exp��u − g�u�� exp

(
−
[
max
u∈�j

��u − g�u�� − a
])

�

max
u∈�j

��u − g�u�� ≥ a
]

can be approximated, up to an additive error of size 1/a and an arbitrary
small relative error, by

Ez

[
Qz

Wz
exp

(−��z̃ − g�z̃� + qz − a
)�
a ≤ �z̃ − g�z̃� + qz ≤ a+ log a� 0 ≤ qz ≤ εa1/2

]
�

(14)

where Qz = maxu∈�z
exp��u − g�u� − �z + g�z�� and Wz = ∑

u∈�z
exp��u −

g�u�− �z +g�z��. In addition �Qz�Wz� qz� are independent of �z̃ −g�z̃�. Thus,
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by Lemma 4, we get that the expectation in (14) divided by the product of
Ez�Qz/Wz
 and

1
k1/2σ

φ

( �a− Ik��1+O�ε�

k1/2σ

)
= 1
k1/2σ

φ

( �k− a/I��1+O�ε�

k1/2σ/I

)
�(15)

eventually has values in the interval �1− ε�1+ ε�.
Consider the expectation Ez�Qz/Wz
. It is obvious that it is nonnegative and

bounded above by 1. We claim that for most z ∈ �j it is approximately equal to
λ20λ

i1
1 · · ·λi1−j+1l−j+1 , where ir is the number of gaps in z of length r. In particular,

it is independent of k. Indeed, let z be such that the number of aligned pairs in
the candidate alignment between consecutive gaps and between the outmost
gaps and the ends is more than 2�log a�2. It follows that �z contains only u’s
with the same number of gaps as z. Hence g�u� is a constant and cancels out.
For such z’s, the random variable Qz is a maximum of independent random
variable, each of which is a maximum of likelihood ratios over disjoint regions,
andWz can be factored as a product of sums of independent likelihood ratios,
the sums taken over the same disjoint regions. Hence, the random variable
Qz/Wz can be factored into j + 2 independent random variables, j of which
correspond to the gaps while the other two correspond to the edges of z. The
expectation for each of the j factors can be approximated by an appropriate
λr, where r is the length of the corresponding gap, and the expectation of each
edge factor can be approximated by λ0.

Hence,

eaP0

(
max
z∈�j

��z − g�z�� ≥ a
)

=
ε2a

1/2∑
l=j
e−θ

∗δl ∑
z∈�j� l

Ez

[max�j exp��u − g�u��∑
�j
exp��u − g�u�� exp�−�max

�j
��u−g�u��−a
��

max
u∈�j

��u−g�u�� ≥a
]

∼mnλ20
ε2a

1/2∑
l=j

�1+ε1�a/I∑
k=�1−ε1�a/I

e−θ
∗δl2j

(
k− 1
j

)
1
k1/2σ

φ
(k− a/I
k1/2σ/I

)∑
λ
i1
1 · · ·λil−j+1l−j+1

∼ nmλ20I−1
(2a
I

)j 1
j!

∞∑
l=j
e−θ

∗δl∑λi11 · · ·λil−j+1l−j+1�

which is the result stated in Theorem 1.
In the preceding argument, where λ∗r is assumed the same as λ∗∗r , the 2

ir pos-
sible choices for the ir gaps of size r to be in either the x or the y sequence each
contribute a factor λr. In general, for some i = 0�1� 	 	 	 � ir� i of the gaps will
be in the x’s and ir− i in the y’s. There are

(
ir
i

)
ways to distribute these gaps,

which contribute a factor λ∗ir λ
∗∗�ir−i�
r . When these possibilities are summed

over i, we obtain �λ∗r + λ∗∗r �ir = 2irλirr , as before. ✷
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The proof of Theorem 2 involves similar but more complicated arguments
along the lines of those used to prove Theorem 1. To obtain an upper bound,
we show that for arbitrarily large j1, (4) holds uniformly over j < j1. We then
use the assumption about � and Lemmas 10–13 of the Appendix to show that
other matching patterns make a negligible contribution. To obtain a lower
bound, we first replace � in (7) by ∪j<j1�j, where z ∈ �j is now restricted by
the additional requirements that any pair of gaps is separated by a distance
of at least �log a�2 and l < l1 for a large but fixed value of l1�� j1�. Since
different z in different �j must differ in at least �log a�2 positions, extending
the lower bound of Lemma 1 to this class of matching patterns requires only
trivial changes. Since the indicated restriction leaves the cardinality of the
(similarly restricted) �j� l� k essentially unchanged when k is of order a, the
rest of the proof proceeds as before.

To prove Theorem 3, suppose that mne−a → x. Let �̃ = ∪j≤j1�j, where
j1 is a large but fixed integer. By essentially trivial modifications in the
proofs of Lemmas 9–12 in the Appendix, we see that for all sufficiently large
j1�P�∪z∈�\�̃��z −g�z� ≥ a�� ≤ ε, so we can confine our attention to the set �̃.
Note that the elements of this set, represented as paths in two-dimensional
grid, are of restricted dimensions: a path that begins at the point �i1� i2� is
contained in the square

{�i1� i2�� �i1 + ca� i2�� �i1 + ca� i2 + ca�� �i1� i2 + ca�}�
where c = I−1�1+ ε1� + ε2.

For a candidate alignment in �̃, the dot matrix representation between the
two sequences is contained in a rectangle of sizem×n in the two-dimensional
lattice, which can be subdivided into squares of size a2×a2. Let α be the index
of a typical square and denote by �α the set of candidate alignments which
intersect with the square α. Note that though �α’s are not disjoint, �α can
have common elements with �β only if �β is a neighbor. Denote by Bα the
neighborhood of α. (The neighborhood contains α.) Let Xα be the indicator of
the event �maxz∈�α��z−g�z�
 ≥ a�. It follows thatXα andXβ are independent,
provided that β /∈ Bα.

Consider W = ∑
α Xα and note that E0W → xλ as a → ∞. According to

Arratia, Goldstein and Gordon (1989), the difference between the probability of
the event �W > 0� = �maxz∈�̃��z−g�z�� ≥ a� and the quantity 1−exp�−E0W�
is bounded by 2�b1 + b2�, where

b1 = mn
a4

P0

(
max
z∈�α

��z − g�z�� ≥ a
)2
�

b2 = 8mn
a4

P0

(
max
z∈�α

��z − g�z�� ≥ a�max
u∈�β

��u − g�u�� ≥ a
)
�
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with α �= β ∈ Bα. From Theorem 2 we see that b1 = O�λxe−a�. In order to
bound the term b2, note that

P0

(
max
z∈�α

��z − g�z�� ≥ a�max
z∈�β

��u − g�u�� ≥ a
)

≤ P0

(
max
z∈�α

��z − g�z�� ≥ a
)2

+ 3P0

(
max

z∈�α∩�β
��z − g�z�� ≥ a

)
	

Theorem 3 now follows since the last probability is asymptotically proportional
to a3e−a.

6. The constants λr� r = 1�2� 	 	 	 	 In this section we discuss different
representations of the parameters λr for r ≥ 1 and give a useful upper bound.

Consider two sequences x and y of length t, for some integer t→ ∞. Given r
and u, 1 ≤ u < t− r, let �u = �u be the log-likelihood ratio statistic calculated
for the alignment u which matches the first u x’s with the first u y’s and
the x’s between u + 1 and t − r with the y’s between u + r + 1 and t. Then
�u = θ∗�∑u1K�xi� yi� + ∑t−r

u+1K�xi� yi+r�
, so ζu = �u − �u−1 is a function of
xu� yu and yu+r only. The ζu are identically distributed, and ζu is independent
of any ζv for v such that �vmod r� �= �umod r�. For each 0 ≤ i < r the process
�ζu: 1 ≤ u ≤ t − r, �umod r� = i� is a first order Markov chain. The process
��u− �1�1 ≤ u ≤ t−r� is an additive functional of an rth order Markov chain.

For any εt < z < �1−ε�t the Pz-distribution of the process ��u−�z: �u−z� <
εt� does not depend on z. Using exponential bounds similar to those used in
Lemma 1, we see that∣∣∣∣Ez

[
maxu e�u∑

u e
�u

]
− Et/2

[
maxu e�u∑

u e
�u

]∣∣∣∣ ≤ ε�
where u ranges over �u − z� < εt. By summing over all z’s in the range εt <
z < �1 − ε�t and changing back the measure from

∑�1−ε�t
z=εt Pz to the original

null measure P0, it can be shown that∣∣∣∣Ez

[
maxu e�u∑

u e
�u

]
− 1
t
E0

[
max
u
e�u
]∣∣∣∣ ≤ ε	

Hence we obtain the representations [cf. (13)]

λ∗r = lim
t

1
t
E0

[
max
u
e�u
]
= lim

t

1
t
E1

[
max
u

exp��u − �1�
]
	(16)

Let P∞ denote the extension of Pt−r to infinitely long sequences �xi� yi� 1 ≤
i < ∞�. For x > 0 let τx = inf�u: �u − �1 > x�. By the argument of Hogan
and Siegmund [(1986), Lemma 3.4] [see also Siegmund and Yakir (2000),
Appendix A], we see that when �u − �1 is nonarithmetic the right-hand term
in (16) equals

lim
t
t−1E∞��t−r − �1� lim

x→∞E∞ exp
[−��τx − �1 − x�]	(17)
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The first limit equals I1 = θ∗E∞�K�x2� y2�−K�x2� y2+r�
. The second is guar-
anteed to exist by the renewal theorem for additive functionals of a Markov
chain [see Athreya, McDonald and Ney (1978)], applied to the process of ladder
variables.

Comparison of (13) and (16) shows the relation of λ0 and the λr, but evalua-
tion of the latter is complicated by the fact that the underlying process involves
a Markov chain instead of independent identically distributed random vari-
ables. Since the second factor in (17) is bounded by 1, the rough upper bound
λr ≤ I1 would yield a general asymptotic upper bound of the form of (5) with
) = I1. Asmussen (1989) has used the representation of the limit in (17) in
terms of ladder variables to evaluate an analogous constant in a related prob-
lem. The problem is also discussed by Karlin and Dembo (1992), although their
algorithm appears not to have been implemented. The representation (17) can
also be made the basis of simulation of the λr, which can be accomplished in
parallel for different values of r by virtue of the structure described above.
Since ζ2� 	 	 	 � ζr+1 are independent and identically distributed, the limit of λr
as r→ ∞ can be evaluated in terms of a random walk. This suggests to the
optimist that it may be possible to approximate the different λr by a single
value, which would lead to a substantially simpler overall approximation of
the form of (5).

In the very special case that K�α�β� equals 1 or −ξ according as α equals
or is different from β, it is possible to evaluate λ∗1 = λ∗∗1 explicitly. Recall
from the final paragraph of Section 2 that in this case p1 is defined to satisfy
ξ = log��1− p0�/�1− p1�
/ log�p1/p0�, and θ∗ = log�p1/p0�.

By simple algebra

�u − �1 = θ∗
u∑
i=2

[
K�xi� yi� −K�xi� yi+r�

] = θ∗�1+ ξ�Su�

where Su =∑u
i=2�1�xi = yi�−1�xi = yi+r�
. The terms in the summation can

take on only the values 1, 0 and −1. Because of the simple structure of the
increments of Su�Sτ = x+ 1 for integral x whenever τ < t− r. Hence trivial
modifications in the argument leading to (17) to account for the difference
between the arithmetic and nonarithmetic cases leads to(

1− exp�−θ∗�1+ ξ��) lim
t
t−1E∞�St
�

which is easily evaluated to give

λr =
(
1− exp�−θ∗�1+ ξ��)
×
(
p1 − e−2θ∗ξ∑

α

µανα
[
µα�eθ

∗�1+ξ� − 1� + 1
][
να�eθ

∗�1+ξ� − 1� + 1
])
	

APPENDIX

Here we include some technical lemmas that are used in the proofs of The-
orems 1–3. The first two are given as general results about sums of indepen-
dent random variables from a exponential family of distributions. The notation
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used here for Lemmas 5–6 is local; it is not consistent with the notation used
elsewhere in the paper.

LetX1� 	 	 	 �Xk be independent random variables from an exponential fam-
ily of distributions with likelihood ratio of the form exp�θx − ψ�θ�
. Assume
that ψ�0� = 0, ψ̇�0� = I > 0, and ψ̈�0� = σ2. Assume also that the distribution
of X1 is nonlattice. Let Sk =X1 + · · · +Xk.

Lemma 5. For any ε > 0� for all sufficiently large a uniformly in �kI−a� ≤
εk

E0
{
exp�−�Sk − a���a ≤ Sk ≤ a+ log a

}
= φ

{�kI− a��1+O�ε�

k1/2σ

} �1+O�ε�

k1/2σ

	
(18)

Proof. Fix δ > 0. Then

E0
(
exp�−�Sk − a���a ≤ Sk ≤ a+ log a

)
≤

 log a/δ!∑
i=0

e−iδP0
(
Sk ∈ �a+ iδ� a+ �i+ 1�δ
)	(19)

For each i, let θ = θ�k� a� i� be the solution to the equation

EθX1 = ψ̇�θ� = �a+ iδ�/k	(20)

A likelihood ratio identity yields the relation

P0
(
Sk ∈ �a+ iδ� a+ �i+ 1�δ
)

= Eθ
(
exp�−�θSk − kψ�θ����Sk ∈ �a+ iδ� a+ �i+ 1�δ
)

= exp�k�ψ�θ� − ψ̇�θ�θ��Eθ
(
exp�−θ�Sk − a− iδ���Sk ∈ �a+ iδ� a+ �i+ 1�δ
)

≤ exp�k�ψ�θ� − ψ̇�θ�θ��e�θ�δPθ
(
Sk ∈ �a+ iδ� a+ �i+ 1�δ
)	

Taylor expansion of ψ around θ yields, since ψ�0� = 0,

ψ�θ� − ψ̇�θ�θ = −ψ̈�θ1�θ2/2�
for some θ1 ∈ �0� θ
. Moreover, from (20) we get that

�a+ iδ�/k− I = ψ̇�θ� − ψ̇�0� = θψ̈�θ2��
where, again, θ2 ∈ �0� θ
. Hence by straightforward algebra, we obtain

k�ψ�θ� − ψ̇�θ�θ� = −�kI− a− iδ�2
2kσ2

�1+O�ε�
	(21)

Note also that since �kI− a� < εk,
�kI− a− iδ�2/k > �kI− a�2/k− 3εδi	(22)

To bound the probability

Pθ�Sk ∈ �a+ iδ� a+ �i+ 1�δ
� = Pθ
(
Sk − a+ iδ ∈ �0� δ
)(23)
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we consider separately the terms in (19) with i ≤ c and with i > c. For the
former we apply a local limit theorem [e.g., Durrett (1996), page 134] and for
the latter the upper bound constant times k−1/2 [cf. Chung (1974), page 177].
Using these bounds in conjunction with (20)–(23), letting c→ ∞, then δ→ 0,
we obtain an asymptotic upper bound of the form indicated in the statement
of the lemma. A lower bound follows by a similar argument. ✷

Now suppose θ > 0 and let �k = θSk − kψ�θ�.

Lemma 6. For any positive µ for any real x,

P0��k ≥ x� ≤ exp
{− �µ/θ�x− k��µ/θ�ψ�θ� − ψ�µ�
}	

Proof. Simple algebra leads to the relation{
θSk − kψ�θ� ≥ x} = {

µSk − kψ�µ� ≥ �µ/θ�x+ k��µ/θ�ψ�θ� − ψ�µ�
}	
The lemma thus follows from an exponential Chebyshev’s inequality, since
E0 exp�µSk − kψ�µ�� = 1. ✷

We now return to the notation used earlier in the paper. In particular k
denotes the number of aligned pairs in a candidate alignment z. The following
lemma gives a bound on the tail of the distribution of �z that is useful in
showing that for an optimal alignment, k must be about a/I.

Lemma 7. There exists a constant c such that for any η and for any real x�

P0��z ≥ x� ≤ exp�−x− η�kI− x� + kcη2
	
In particular,

P0��z ≥ a+ g�z�� ≤ exp�−a− η�kI− a� − �1− η�g�z� + kcη2
	

Proof. Assume η > 0. Choose µ = θ�1 − η�. A Taylor expansion of the
function ψ around θ gives

ψ�µ� = ψ�θ� − ηθψ′�θ� + θ2η2ψ′′�θ̃�/2�
for some θ�1 − η� ≤ θ̃ ≤ θ. The proof follows from Lemma 6 with µ = θ�1 −
η� and from the fact that ψ′′�θ̃� is bounded. Essentially the same proof also
applies for η < 0. ✷

Lemma 8. Let g�z� = θ∗δl and let � be the set of all matching patterns
having at most j gaps. Then

P0�maxz∈�j��z − g�z�� ≥ a�
P0�maxz∈���z − g�z�� ≥ a� −→ 1 as a → ∞	(24)
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Proof. Since the left-hand side of (24) is bounded from above by 1, it is
enough to show that

P0

(
max
z∈�\�j

��z − g�z�� ≥ a
)

= o�nmaje−a��

as a→ ∞.
Recall that � is a union of the subcollections �i� l� k and that the cardi-

nality of �i� l� k is approximately mn2i
(
k−1
i

)(
l−1
i−1
)
. Also, for any 0 ≤ i ≤ j,

�i = ∪k� i∈��i� l� k, with � = �k� l# l ≤ ε2a1/2� �k − a/I� ≤ ε1a/I�. The same
considerations that led to earlier results can be used in order to show that

P0

(
max
z∈�i

��z − g�z�� ≥ a
)

= O�mnaie−a�	

It follows that ∑
i<j

P0

(
max
z∈�i

��z − g�z�� ≥ a
)

= o�mnaje−a�	

Let �̃i denote the set of all pairs �k� l� which do not belong to �i. For any i,
0 ≤ i ≤ j, consider �̃i = ∪l� k∈�̃i�i� k� l. From Lemma 7, first taking η = a−1/2,
then η = −a−1/2, and taking ε1 sufficiently small compared to ε2, we obtain

�mn�−1eaP0

(
max
z∈�̃i

��z−g�z�� ≥ a
)

≤ ∑
k�l∈�̃i

2i
(
k−1
i

)(
l−1
i−1

)
eaP0��z ≥ a+θ∗δl�

≤ ∑
k>�1+ε1��a/I�

∑
l<ε2a

1/2

2i
(
k−1
i

)(
l−1
i−1

)
exp�−θ∗δl�1−a−1/2�−�kI−a�/a1/2+ck/a�

+ ∑
�kI−a�<ε1a

∑
l>ε2a

1/2

2i
(
k−1
i

)(
l−1
i−1

)
exp�−θ∗δl�1−a−1/2�−�kI−a�/a1/2+ck/a�

+ ∑
k<�1−ε1��a/I�

∑
l<ε2a

1/2

2i
(
k−1
i

)(
l−1
i−1

)
exp�−θ∗δl−ε1a1/2+c/I�

< ��ca�i+1/i!
�exp�−ε1a1/2/2�+exp�−�ε22−ε1�a1/2+ci�+exp�−ε1a1/2�
�

hence the proof. ✷

The following four lemmas provide appropriate upper bounds for Theorems
2 and 3. Let g�z� = θ∗�δl + �j�, and assume as in Theorems 2 and 3 that
θ∗� = log�a� + C. Let j1 be a large integer, to be specified later, and j2 =
�log a�2.
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Lemma 9. For �̃j defined as in Lemma 8�

∑
j<j2

P0

(
max

z∈�j� k<ca
��z − g�z�� ≥ a

)
divided by the right-hand side of (4) converges to 0 as a→ ∞.

The proof of Lemma 9 follows the pattern of Lemma 8, except now we must
also incorporate the cost of j gap intervals and sum over j. A review of the
proof of Lemma 8 shows that the final inequality holds uniformly in i < j2
provided k < ca. The rest is straightforward. ✷

Lemma 10. As a→ ∞�

P0

(
max

z∈�� j>j2� k<ca
��z − g�z�� ≥ a

)
= o�mne−a�	

To prove Lemma 10, we use the inequality

P0��z − g�z� ≥ a� ≤ exp�−a− g�z���
to see that the probability of interest is bounded by

mne−a
∑
j>j2

∑
l≥j

∑
k≤ca

2jkj
(
l− 1
j− 1

)
exp�−θ∗��j+ δl��/j!�

which simple calculations show is bounded by

mne−a
∑
j>j2

�2ca�j+1 exp�−θ∗j��/�eθ∗δ − 1
j/j!	

Since e−θ
∗� = eC/a, the series is easily seen to converge to 0 (e.g., by a tail

estimate for the Poisson distribution). ✷

Lemma 11. For sufficiently large c,

P0

{
max

z∈�� k>ca
��z − g�z�� ≥ a

}
= o�mne−a�	

To prove Lemma 11 we use again the bound of Lemma 7 with η = a−1/2 to
get the bound

mne−aec
∑
k>ca

exp�−�kI− a�/a1/2�∑
j≥0

∑
l≥j

2jkj

j!

(
l− 1
j− 1

)
× exp�−�1− a−1/2�θ∗��j+ δl��	

This time we sum first over j to obtain an exponential factor bounded by
exp�k/a1−ε�, then sum over the values k > ca. ✷
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Lemma 12. For arbitrary ε > 0� for all sufficiently large j1�

j2∑
j=j1

∑
z∈�j

P0��z ≥ a+ g�z�� < εmne−a	

To prove Lemma 12 we write

P0��z ≥ a+ g�z�� = exp�−a− g�z�
Ez�exp�−��z − a− g�z�
�� �· · ·
 ≥ 0�
and reason as in the proof of Lemma 4 and the now established pattern of
Lemmas 8–11 to obtain the stated result. ✷
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